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RELATIONS BETWEEN LAWS OF LARGE NUMBERS AND ASYMPTOTIC

MARTINGALES IN BANACH SPACES

NGUYEN Van Hung - DINH Quang Luu

Resume : Dans cet article on donne quelques resultats sur des
lois des grands nombres et 6tabli quelques relations famillieres
entre des martingales asymptotiques et des lois des grand
nombres pour les martingales de difference.

Summary. In this note we give several results on laws of large
numbers and establish some close relations between asymptotic
martingales md laws of large numbers for martingale differences.

1. Introduction. The present paper concentrates on the

Marcinkiewicz-Zygmund-Kolmogorov’s and Brunk-Chung’s laws of

large numbers for martingale differences with values in

a seperable Banach space E . Some general relations between

asymptotic martingales and laws of large numbers in Banach

spaces are established. Namely, according to the results of

Pisier [10], Assouad [2], Szulga [12~, Taglor [14], Acosta [1~,

Azlarov-Volodin [3] , Woyczynski [16,17,18] and others, different

geometric conditions should be imposed on E to proving the

(weak) strong law of large numbers for (D j . In the vector-

valued setting, our results show how theme geometric conditions

imposed on E can be replaced by other additional conditions

imposed on (D~) , for example, is uniformly tight or the

closed convex hull co k 2: i I &#x3E; of (D k) is compact,

a. e.

Further, it is known that the Kronecker’s lemma is in fact,

a martingale method frequently used in proving the strong law
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of large numbers in Banach spaces having the Radon-Nikodym

property. On the other hand, according to Krengel-Sucheston [6]

and Gut ([5 , Example 3.15), the strong law of large numbers

gives sometimes short proofs of some results on asymptotic

martingales. This observation leads us to find out general

relations between asymptotic martiigales and laws of large

numbers for martingales differences in Banach spaces which are

presented at the end of this note.

Finally, the authors wish to express their thanks to

Professor N.D. Tien for presenting the question of Woyczynski

[18] which is the first starting point of this consideration.

2. Definitions and Preliminaries

Throughout this note let (0." .P) be a probability

space, (jL k) an increasing sequence of sub-o-fields of A,

E a real seperable Banach space and E* the topological dual

of E . By 9B we mean the usual Banach space of all E-valued

A-measurable Bochner integrable functions X defined on Q

such that 
I

A Banach space E is said to be p-smoothable (l~ p~ 2) if

(possibly after equivalent renorming) , for t ~ 0

E is superreflexive if E is p-smoothable for some p &#x3E;1

(cf. [10]). It is worth notting that the real line is p-

smoothable for all p .
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A sequence (Dk) in 4 is said to be adapted to 

if each Dk is -Ak-measurable. Unlessotherwise stated, all
sequences considered in this note are assumed to be taken from

Li and adapted to 

A sequence is called a martingale difference (m.d.),

if = 0 for all k z 1 with A 0 = i of gl ji
where given a of 3i , B(./~&#x26;) denotes the

-%-conditional expectation operator on Li (of. (g]). It is

clear that (Dk) is a m.d. if and only if the sequence (Mn)g
n

where _I- Z is a martingale. Throughout this noteMI _ k=l 
"

and (~l) should be understood in this connection.

In what follows we shall need the following result which

follows from the martingale three series theorem of Szulga [12]

and a characterization of p-smoothability of Assouad [2].

Proposition 2.1. (cf. [12]) If E is p-smoothable and

11’r) is uniformly integrable then, for n 

We shall use also Theorem 4.1 of Woyczynski [18] which shows

how the identically distributed condition imposed on (Dk ) by
Elton [4] can be relaxed and how one can prove the a. e.

convergence to zero of for p f; 1 .

Proposition 2.2. (cf. [18]). Let (D ) be a m.d. in E .

a) If (1B)  Xo c- LLogL and E is superreflexive then
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that sup P( R Dl- 11 &#x3E; t) CP(IIX  It *&#x3E; t)k c 
k 

~ 0

for some posi-ci vc COllstallt C aiid f or all t &#x3E; 0 .

b) If (Dk)  Lr ,1r  2 , and E is p-smoothableb) If (Dk) ’ o G 4  .T  2 , and E i s )- s P.1 c c thable

fOrSG1:r1e p &#x3E; 2 f or n -+ w

Further, a sequence (Xn) is called an

L-amar t (cf. [8]), if

To establish a general relation between Ll-amarts and
the weak law of large numbers we shall need the following

characterization of L1-amarts (cf. [7]) which has been recently

extended by the second author even to the multivalued case

(of. [8]).

Proposition 2.3 (see [8]) A sequence (Xn) is an Ll-amart
if and only if (Xn) has a unique Riesz decomposition :

X¡1 = gn + pli , where is a martingale and (Pn) is an

L1-potential, i.e. lim Ellpn 11 = 0 . Moreover, if this occurs
n

then the martingale (9n) is given by

Finally, a sequence (Xp) is called a mil (martingale

in the limit) if

The following elegant result of Talagrand ([13], Theorem 6)

will be applied to establishing a general relation between the
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class of mils and the strong law of large numbers for m. d. ’ s

in general Banach spaces.

Proposition 2.4. (cf. [13~ ). Let (Xn) be a mil such that

limninf Suppose that (Xn) converges scalarly

to zero, a. e. that is i for each the sequence 

converges a.e. to zero. Then (X ) converges (strongly) to zero,»,e

For other related results on geometry of Banach spaces,

laws of large numbers or on asymptotic martingales, the

interested readers are refered correspondently to the Lecture

Notes in Math. given by L. Schwartz (11], R.L. Taylor [14] and

A. Gut and K.D. Schmidt [5].

3. Laws of large numbers for martingales differences.

As we have noted in the previous section, to establish

the L-convergence of (n7lMl,) , Szulga (12 ~ needed the p-smooth-

ability of E with (l S r  p) . In the following result,

this geometric condition imposed on E will be replaced by

an additional condition imposed on the m. d. (Dk) as follows

Proposition 3 1. Let be a m. d. such that

sup for some 1  2 . Suppose more that
k 
P ~ p _

(Dk) is uniformly tight, i. e. for each g &#x3E; 0 there exists a

compact convex subset g of E such that sup 1-s .
E 

k -K E

Then for all 1--g r  p we get

Equivalently, satisfies the weak law of large numbers,

i.e. o for 

M, = o(n) in probability.
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Proof. Let be a uniformly tight m.d. such that

sup E llDk llP  oo for some 1  p  2 . Then by Lemma 5.22
k 

"

[14] (see also [151, Lemma 2.3), it follows that for all

1 ~~ r  p , the m. d. (Dk) is uniformly bounded by some non-

negative function Xo 4E Lr 9 i.e. (D~)~( Consequently,

(11 Dk II r) is uniformly integrable. Hence by virtue of Lemma 2.2

[15], the additional uniform tightness of shows that

must be compactly uniformly r-th order integrable, i.e.

for every e &#x3E; 0 there exists a compact subset K of E

such that

Thus if we define the double array by

then this array (auk) and the m. d. (D k) satisfy just the

assumptions of Corollary 3.9 [15] which implies that the

following conditions are equivalent

iii) ML = ~ ‘~~ ~ in probability as n -&#x3E; 00 .

But on the other hand. Proposition 2.1 shows that the condition

(i) is satisfied. Then so do both conditions (ii-iii). It

completes the proof of the proposition.

In the following remark, we borrow two examples of Taylor

([14], Example 4.11, p.80 and Example 5, 22, p.127) to show that

neither the uniform tight assumption nor the uniform L 
p 
-bounded-
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ness condition imposed on in Proposition 3.1 cannot be,

in general removed.

Remark 3.1. Let E = 11 and ( e ~) be the usual basis

for 

a) Let (r k be the Rademacher independent sequence of random

variables defined by 1/2 and Dk = 
It is clear that sup = 1 for all p . But for n- W

k 
"

E ll Mn ll / o(n) which shows that the uniform tight condition

imposed on (Dk) in Proposition 3.1 cannot be, in general

removed.

b) Now let be the independent random elements (r.e’s),

given by

with probability 1/2Vl-i

with probability 

Thus by the argument given in Example 5.22 [13], is

a uniformly tight m. d. with 1 . But 

11 J o(n) which shows that the uniform Lp-boundedness
assumption on ( Dk ) with p &#x3E; 1 C&#x26;U10t be, in general removed.

It is worth notting also that by the Remark 3.1, it follows

that the p-smoothabilit7 condition imposed on E in Proposition

2.2 is also essentially necessary to establish the strong law

of large numbers for m. d.’s (D-) ’ This observation leads us

to the following general result.

Proposition 3.2. A sequence (Xk) of E-valued r. e’s

(which are not necessarily Bochner integrable) converges a.e.

to some r. e. X if and only if converges scalarly to Y ,

a.e. and the set is convex compact, a. e.
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proof . Since the necessity condition is easy, so we give

only a proof of the sufficiency condition. Indeed, let 

be a sequence of E-valued r . e’ s which converges scalarly a, e.

to some r. e. E . We shall show that (Xk) converges
also strongly to X , a.e provided the set co( k (u~ ), k ~ 1 )
is convex compact, a. e. For this purpose, let T be a countable

subset of e which is dense in the Mackey topology z(3l,E)
of E~ . This with the first property of (Dk) implies that

there exists a measurable subset Q1 of Q with probability

one such that the sequence (g, Xk(w)&#x3E;) converges to

Now let ) is convex compact

Then by the second property of (Dk) I it follows that 

Further, for each be the closed

convex symetric hull of the set Then

is also compact since K(uu) is contained in the closed

convex symmetric hull of the set

which is compact by the second condition imposed on (D ) . Let

Tm(cu) be the weakest topology on which makes elements

of T continuous. Then as in the proof of Theorem 5.27 C1~+~,

a sequence ( x ) of converges to zero in 

topology if and only if ( A x. 11 ) converges to zero. Hence,

~~ ~ ~ "’~n~ ~ converges to zero for all then x M)
converges also to zero. This conclusion follows also from the

fact that if C is a convex weakly compact subset of E then

a sequence (xn) of C converges weakly to zero if and only

if each (.c g,xl,*&#x3E; ) converges to zero T) . Further, on

each convex compact set the weak and the strong topologies
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coincide which shows also the above conclusion.

Finally, note that for each n2 ’ the sequence
is contained in K(w) and

converges to zero for all geT and = 1 . Then

the sequence ( ~(w ~ ~ converges to zero, a. e.

which completes the proof of the proposition. The following

corollaries are easy consequences of Proposition 2.2 and

Proposition 3-3-

Let be a m.d. in E .

a) If p=l and LLogL then, for n co

a,e, if and only if the set

is convex compact a.e.

b) for all ~,  p ~ 2 , ML = a,e, as 1? -&#x3E; oa if

and only if the set is convex

compact, a. e.

Corollary 3.2. Let be a m, d. in E such that

(Dk) 4 Xo E LLogL and the set 
"

is

convex compact, a.e. Then satisfies the strong law of

large numbers.

Remark 3.2. By Remark 3.1, it follows also that the

compactness condition imposed on the sets 1 )
in the above corollaries cannot be removed.

These above remarks lead us to the following general

relations between asymptotic martingales and laws of large

numbers for m.d.’s in general Banach spaces.

Proposition 3.3. Let (D ) be a m. d. in E and (a )
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an increasing sequence of real numbers such that all -&#x3E; oo ,

as 11 ~ w .

if and oiily if

and only if is a mil.

Proof. Let (Dk) be a m.d. in E and (a ) an increasing

sequence of real numbers such that an c o , 
as n 2013~oc~

(a) Suppose first that E I M 1.1 11 = n oo 1. Then

by definition, the sequence is an L1-potential.
Hence by Proposition 2.3, is wi L -amart. Conversely,
suppose that is &#x26;1 an L1-amart. Then by Proposition 2.3,
it follows that (a,7,’M,.,) can be written in a unique form :

where (gn) is a martingale and (Pn) is an L1-potential ,
i.e. lim Ellpn 11 = 0 . Moreover, the martingale (g ) is

n 
~ -

given by

This with (3.2) yields 6~~ = 0 , a.e. (ne N) . Consequently,

by (3.1), a7,,M11 = pn (n 6 N) which shows that Ell Mnll = 0(al,).
It completes the proof of (a).

(b) Now, suppose that Mn = a. e. as n ~oo . We shall

show that is a mil. For this purpose, let e &#x3E;0 be

given. Since = a.e., there exists N such that

for all n &#x3E; p one has
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Consequently,

Thus by definition, (a" Mn) is a mil.

Conversely, suppose that is a mil. We shall

show first that (a-l Mn) converges to zero, in probability.

Indeed, let e &#x3E; 0 be given. By definition, there exists

p e. N such that for all N , one has

Let k z p be any but fixed. Then for all k we have

Consequently,

This shows that ( a,, -1 Mn) converges to zero in probability.
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Further, let fe E* . It is clear that the sequence

is a real-valued mil with limn inf
This with Theorem 4 [12] shows that must

converge, a, e. But on the other hand, we have shown that

Mn) converges to zero in probability so ( f a,7,1 
converges to zero, a.e.

Finally, since (a -1 is a mil, by Proposition 2.4

it follows that Mn) converges strongly to zero a;e.

This completes the proof of (b) and hence of the proposition.

Corollary 3.3. Let (Dk) be a m.d. in E .

a) E 11 ’A ,,11.1 11 = ’o(n) if and only if (n-l Ll,,) is an L -amart.

b) If sup E Dk11  00 then M. = o(n) , a.e. if and only if

a mil. 

-

Corollary 3.4. Let be a m.d. of independent

identically distributed r.e.’s iii E . Then for all 1 p  2

is a mil if and only if the Banach space E is of

Rademacher type p (cf. [1 J).

Remark 3.3. It is clear that in Corollary 3.4 we have used

the results of A de Acosta [1 J on the Marcinkiewicz-Zygmand’s

type strong law to establish all amart property of 

It is desirable to apply different results in amart theory [5,6]

to prove such a type strong law of large numbers as suggested

by A. Gut ([5], P.30)o
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