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PROLONGATIONS
OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS : I.

A CONJECTURE OF ELIE GARTAN

BY HUBERT GOLDSCHMIDT (*).

This paper is motivated by the work of Elie Cartan on exterior
differential systems which culminated in the Cartan-Kahler theorem
for involutive systems. In his book [3], Elie Cartan attacks the problem
of finding solutions of systems of partial differential equations which
are not involutive and asks the following question : ( < etant donnee une
solution particuliere d'un systeme differentiel donne, peut-elle etre obtenue
comme solution non singuliere d'un systeme en involution susceptible
d'etre deduit du systeme donne par un precede regulier ?. . . Le precede
regulier auquel il est fait allusion repose sur la notion de prolongement
d'un systeme differentiel 9 ? . This is a fundamental problem : determine
conditions under which a system can be (< prolonged 5? to a compatible
system which admits the same solutions as the given one and under
which such a system can be deduced from the original one in a finite
number of steps.

Cartan distinguishes two cases. First, if the system is compatible,
Cartan affirms that, by prolonging a system a sufficient number of times
one obtains an involutive system whose solutions are the solutions of the
original system " sous certaines conditions qu'il n'est du reste pas facile
de preciser 3?. In 1957, Kuranishi [8] established this result, which is
known today as the Cartan-Kuranishi prolongation theorem. In the
case of an incompatible system, Cartan says that one must add to the
given system equations expressing the compatibility conditions of the
system and its prolongations.

(*) This work was supported in part by the National Science Foundation grant GP5855.
Ann. EC. Norm., (4), I. — FASC. 3. 53



418 H. GOLDSCHMIDT.

In this paper, we deal only with linear systems of partial differential
equations and show that Cartan's conjecture holds under certain regularity
conditions. Our regularity assumption is satisfied in particular by
constant coefficient equations.

If a system R/c of linear partial differential equations of order k satisfies
our regularity condition, we show that, by prolonging the system nio — k
times and by adding to this prolonged system of order mo the finite
number of equations expressing the obstructions to extending a solution
of order rrio to a solution of order m o + ^ o , we obtain a system R;^ of
order mo which is compatible or formally integrable and which has the
same solutions and formal solutions as the original system R/c (Theorem 1).
This new system is obtained from the original system R/^ by adding
finitely many equations to the system R/,. By the Cartan-Kuranishi pro-
longation theorem, one can choose mo such that the system R^ is
involutive.

In paragraphs 1 and 2, we define the symbol cohomology of a partial
differential equation introduced by Spencer [15]. The vanishing of these
cohomology groups was shown by Serre to be equivalent to Cartan's
notion of involutiveness. For a regular equation R/c, we also introduce
the cosymbol cohomology, which was already considered by Quillen [14]
under more restrictive hypotheses on R/c. Most of the results of this
paper including the prolongation theorem (Theorem 1) follow from the
S-Poincare lemma for the cosymbol cohomology (Lemma 3). Our proof
of this lemma is based on the work of Grothendieck [7] on the Hilbert
scheme in algebraic geometry.

The remainder of this paper is devoted to other consequences of
lemma 3 and of our prolongation theorem, most of which are extensions
of certain results of Quillen [14]. In paragraph 4, we define the naive
Spencer sequence of a regular partial differential equation RA; our construc-
tion is slightly different from Bolt's {see R. Bott [I], D. G. Quillen [14],
D. C. Spencer [15] and S. Sternberg [16]). We prove that under certain
regularity conditions the cohomology of the naive Spencer sequences
stabilizes (Theorem 2); we are thus able to define the Spencer cohomology
of equations which are not necessarily formally integrable as the cohomo-
logy of one of the stable naive Spencer sequences. Furthermore, the
stable naive sequences are formally exact (Corollary 2) and by our pro-
longation theorem, under the hypotheses of Theorem 1, the Spencer
cohomology of R/c depends only on the formal solutions of R/, (Corollary 1).
Finally, we show that the cohomology of the sophisticated Spencer sequence
of a formally integrable equation is isomorphic to the Spencer cohomology
of R/c, a result due to Quillen [14].
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In paragraph 5, using Spencer's estimate and our prolongation theorem,
we prove that the analytic stable naive sequences of an analytic partial
differential equation, satisfying the regularity assumption of Theorem 1,
are exact.

Throughout this paper, we use the notation of [5]. The author wishes
to express his gratitude to Professors D. Mumford and S. Sternberg for
several helpful conversations concerning this paper.

1. DIFFERENTIAL OPERATORS. — Let X be a differentiable manifold
of class C30 of dimension n. We shall denote by T the tangent bundle
of X and by T* the cotangent bundle of X. If E is a vector bundle
over X, we denote by E^ the fiber of E at xe X, by & the sheaf of germs
of sections of E and by J/c(E) the bundle of /c-jets of E; we set J/,(E) = o,
if k < o. We shall always assume that the fibers of a vector bundle have
the same dimension. We have a natural sheaf morphism j\ : S->^k(S),
a morphism pi(idk) : Jy^(E) -^(J/,(E)) of vector bundles and an exact
sequence

o—^T*(g)E^J,(E)^J^(E)—>o

of vector bundles over X {see [5]).
Throughout this paper, E, F will denote vector bundles over X. Let

y : J/c(E) —>- F be a morphism of vector bundles; such a morphism 9 is a
differential operator of order k from E to F. This morphism induces
sheaf maps 9 : ̂ (^) -> ̂  and 90^ : & -. ̂ ; the latter map is also
called a differential operator of order k from E to F. A solution of <p
is a germ s€<^ belonging to the kernel of yo j /c ; we denote by S the sheaf
of germs of solutions of 9. The map 9 also induces a morphism
J/ (9) : J i (J/, ( E ) ) -> J i (F) of vector bundles. The ?-th prolongation
7^(9) : J/H-^(E) -> J/(F) is the composition 3i(^)Qpi(id^\ this map induces
a morphism ^(9) : S^T*^ E -> S^T*(g) F; the morphism 0(9) =00(9)
is called the symbol of 9. In particular, if 9 is the identity map idk of J/c(E),
the map ^ (id/,) induces a morphism §: S^ T*(g)E-^T*(g)S^T*(g)E
(see [5]). We set

Rk+i== kerp/ (cp) , Q^= cokerp/ (9), gk+i= kero-/ ( cp) ,
pi=z cokero-/ (cp) for /^o,

and
R^=J^(E), .Qi=o, ^+z=S^T*(g)E, pi=o for /<o.

Let hk+i be the cokernel of the map ^k+i'- R/c+/+i -> R^ induced by the
map n^i: S^i+i (E) -> J^/(E).

DEFINITION 1. — A partial differential equation of order k on E is
the kernel R^ of a differential operator 9 : J/,(E) -> F of order k.
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In particular, any sub-bundle of J/c(E) is such an equation.
The following diagram is commutative and exact :

0 0 0

Y Y • ^

o———^g-k+i———^S^T^E-^S^T^F———>pi———>[• ['
o ———> RM ————> 3w (E) _ !̂L^ J; (F) ———» Q, ———» o

^n-i—i iti-n—i | ti—i | ̂ i—i

o ——> IW_, ——> J^i-i (E) p-^ J/_, (F) ——> Q,_, ——> o

hk+i-i o o

In fact, this diagram induces maps £ : pt -> Q/, ^i-i : Q^ —>- Q/-i such
that the last column is exact. Moreover, the diagram induces a mono-
morphism L : hh+i-i->pi such that, if qi is the kernel of 7i/_i : Q^-^Q/_i,
the sequence

o -> hk+i-i-^pi-^ qi-> o
is exact.

DEFINITION 2. — We say that a differential operator ( ? : J ^ ( E ) — ^ F
is regular if, for each ?^o, the morphism pi{f) : J/c+^(E) ->- J/(F) has
constant rank.

We shall henceforth assume that the morphism < p : J / ^ ( E ) - ^ F is a
regular differential operator.

The following diagram is commutative by Proposition 4.3 of [6] :
T fV\ ^-+-"*W, T /T7\ -. n ^ / ^
Jk+l+m W ———————> J/+m (^ ) ———————> y/+m ——————> °

(l) Pm{idk+l} \Pm(idl) \PmW^ s^ s^
J^ [S^i (E)) '^^- 3,n (Si (F)) ———> J» (Q;) ———> o

Because y is regular, Q; is a vector bundle and so Jm(Q<) is well-defined
and the bottom row is exact. Therefore the diagram induces a map
pm(idi): Qh-n,.—^ Jm(Q;). It is easily seen that the diagrams

(2)

(3) |x, \f
^ Y
1 o< (idj-^ -^l(^-l), -.Q/——^Ji(Q/-i)

Q^^J^Q/)
1 1 1 ; | i:i,+ •̂

Q/——^Q^
Q^/_^J,(Q,)

KI Ji (7l^_i)
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commute, using Proposition 4.3 of [6]. Hence there is a map
S : 5/4-1 ->-T*(^)^ such that the diagram

qi^ -8-^ T*0 qi ——> T*(g) Q/w [ [•
Q,»,———'-^——^J,(Q,)

commutes. The diagram

o ——>gk+i^ ————> S -̂1 T*(g) E ̂ ±^ s^1 T*(g) F ———>pi^ ———> o
(5) |s [ s [ s |o

.Y Y Y 4'
o——>T^)g-k+i——^T^S^T^E^-^T^^T^F—^T*(g)^/——>o

commutes and so induces morphisms

8 : gk+i+i->^®gk+h ^ ' • pi+i->T^ P i '

It is then easily verified that the exact diagram

t £
0 ————————>. ll^ —————————^/?/+1 ———————> ^4-1 —————^ 0

(6) J 6 |s |s
^ Y Y

o ——> T*(g) /4,-z-i ——> T*®^/ —'-> T*(g) qi ——> o

is also commutative; hence this diagram induces a map S : h^+i ->- T*(^) ^/c+z-i.
If TIA-+/-I : RA-+Z -^ R/^-i has constant rank, then gk+^ A/^-i, p^ are

vector bundles and the sequence

J l T» \ ^ (^^"4-Z—l) - l l - / T » \ T / 7 \
1 (R^+/) ——————^ J'l (H^+Z-l) ——————> Jl (hk+l-i) —————> 0

is exact. Under our hypotheses on <p, we have

R/n+i=Ji(^)nJ^i(E) for m^ (^[5]).

The exact diagram

RA-+/+I —————————-> RA:+Z ———————————> /Z^+/ —————————> 0

(?) |^i(^4-Z) ^i(^H-Z-i) J 8
Y Y ^

Jl (R^:+/) ——————> Jl (R^+/—l) ——————> Jl (^k+l—l) —————> 0

is clearly also commutative and so induces a map 8 : hk+i ->- Ji(/^+/-i).
We claim that this map S is the composition of the map S : hi,+i ->- T*0 hk+i-i
defined above and of the monomorphism £ : T*(^) /4+/-i -> Ji(A^+^_i).
Indeed, the three-dimensional diagram (8) is easily seen to be exact and
commutative. In diagram (8), the map § : S^^T*^ E -> J^S^T*^ E)
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[resp. ^S^'r^F-^J^T^F), S:p^^J,(p,)] is the composition
of the maps
8 : S^T*(g)E^T*(g)S^T*<g)E and e : T*0 S^T*0 E^J, (S^T*(g) E)

[resp.S:^*!*®?-^^^^^®? and e : T*(g) S'T*(g) F^J, (S'T*(g) F),
§ :pi+i-^T*<^pi and £ : T*0^^J,(^)].

If follows that the diagram
hk+l———>3i (/U4-;_i)

I' 'IW

pl+1.- -Jl(^)

commutes. Since S : p^i -> T*0 p< is the composition of S : p^ -> T*0 p<
and of the monomorphism £ : T * ^ > p i — J i { p i ) , and since the diagram

T*(g)/^_i^»Ji(A^_i)

' pi d)
^ , 4-

T*0/»/_i———^Ji(^-i)

commutes, it follows that S(^)C£(T*0^_,) and hence that
S: hk+i-^Ji(hk+i_i) is the composition of the map S : hk+i-^T*(S)hi,+i_i
defined above and of the monomorphism £ : T*(g)AA+^-i -> Ji(^-i).

J^S^® E)———^W >^(S'^, F) ____________ •Jl(Pl)^ y^\
^- lc77.i((p) ^74.1-^ - I /(8)

S^-^^T^E———LS±IM___^SMT^ F "Pl+1

"A'+i+l

Ji(R^J ^J^J^(E))——Jii£d£L) -^j^j^F))

^J^(E)———[B^l ^M(F')

J-l('n^^-i) J1 ^/(+M ) Jl(^-i)

^A+t ^

JI(RA+M)- -Jl(J^-l(E))- -Jl(J?-l(F))

^t^E) -J^(F)

^A+l-^

^mar/c. - Let F=J^(E)/RA and y:J , (E)-^F be the canonical
projection. Then clearly F is a sub-bundle of F and R^=ker^(y).
Therefore, if y is regular, the families of vector spaces R/,^, g^, h^i and
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the maps S : gk+i-^- T*(^) gk+i-i and S : hk+i-> T*0/i/c+^_i depend only on
the sub-bundle R/c of J/c(E).

2. SYMBOL AND COSYMBOL COHOMOLOGIES. — We consider a family
of graded vector spaces r = Q) ri over X, where each ri is a family of finite

Z € Z

dimensional vector spaces, and a linear map S : r->-T*(^)y* of degree — i .
We extend S to a linear map

6 : Af T* (g) r -> A^1 T* 0 r

of degree — i by setting

^(w^u)= (—iy'w f\Qu if oo^A^'T*, u^r.

We let M^ denote the family of vector spaces dual to the family ri and
we write M == (f) Mi. We obtain a dual map

iez
§* : T (g) M -> M

of degree i. We write S*(t(x) m) == t.m, if (€T, m€M. The following
lemma is an easy consequence of the definitions :

LEMMA 1 {see D. G. Quillen [14]). — The dual of the map

S : A^T^r-^A^T*®^

is the map
^ : A^T^M-^VT^M

defined by
/-+-!

^ ((t, A ... A ̂ i) ® ̂ ) =2(- ̂ '^^A.. • A ^A • • . A ^/+i) ® ̂ -^,
i=i

i/*^, ..., tj+i eT, m€M. Moreover, the sequence

o -> r-^> T*(g) r--^ A2^® r-^.. .-> A^T*® r -^ o

is a complex if and only if S* : T (^) M -^ M induces on M t/^ structure
of an ST-module. If one of these last two conditions holds, then

(9) o->AnT(g)M->., . .^A2T(g)M-^T(g)M-$M->o

is (Ae Koszul complex of the ST-module M; we denote by Hy(M) the homology
of the sequence (9) at A^T^^M. The complex (9) is the direct sum of
the complexes

o-^A^T^M^—.. .-^-A^^M/.a-^T^M/.i-^M/^o

whose homology at ̂ ^(^Mi^ we denote by H/(M)^. TAen H/(M) = ® Hy(M)^.
/ez
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Let r/== S^T^E and let S be induced by the unique derivation
o : ST*->T*(g)ST* of degree — i extending the identity map of T*,
that is

/

^ai...^)=S^0(^...l-...^),1=1
if S^T*, i^^^?. One easily verifies that the sequences (9) are
complexes and that S : S^tg) E -^T*(g) S^T^ E is the map defined
in paragraph 1. In fact, the ST-module structure of M given by Lemma 1
is precisely the same as the ST-module structure of ST(g)E* under the
identification of (ST*)* with ST described in [5]. Moreover, the sequence

(10) o -> S^T*(g) E -4 T*(g) S"2-1 T*(g) E -^... ->- A^T*^ S^-^T^ E -> o

is exact for m^i.
Let y : J / , ( E ) - > F be a regular differential operator from E to F.

Let ri be one of the following families of vector spaces gi, pi, q^ /4+/_i over X,
and let S : ̂ -^T*(g)i^-i be the corresponding map defined in paragraph 1;
We obtain the following sequences :

(n) o-^^^-^T^(g)^^^-^A2T*(g)^^_^...->A7^T*0^^_,->o;

(12) o—>^--^^T*(g)^_l-o-^A2T*0^_^>...—>A^T*(g)^_^—>o;
y 2- •>

(13) o —> qi —> T*(g) ^_i——> A2T*0 ^-2-°^. . .—> A^T*^ ^-,,—> o;

(14) o -> h^i\ T^(g) A,+/_i-i A2!^ /^/-,4.. .-^ A^T^ ̂ /_,-^ o.

Since 8 : gk+i->T*^) gk+i-i, S : pz—T*(g)p/_i are induced by the maps
o : S^T*0 E -> T*® S^-1 T'(g) E, S : S^T*0 F -^ T*(g) S^ T*(g) F respec-
tively, it is clear that (n) and (12) are complexes. The commutativity of
diagram (6) implies that (i3) and (i4) are also complexes.

DEFINITION 3. — The symbol [resp. cosymbol] cohomology of 9 is the
cohomology of the sequences (n) [resp. (i4)]. We denote by H^^'^g/,)
[resp; H^-7'-7^)] the cohomology of the sequence (n) [resp. (i4)] at
^T^g^-y E^sp. A^T*0A^_,]. We say that gm is involutive, with
m^/c, if B.^'^gk) == o for ^o, 7^0.

We recall that gk+i depends only on the family of subspaces gi, of S^T*(g) E
and that the sequences

o—^i^T^^i-^^T^^i-i

are exact for Z^o {see [5], [6]).
We now state the S-Poincare lemmas :

LEMMA 2. — There exists an integer ko^k depending only on n, k
and dimE such that H^7"'7^) = o, for all m^o, 7^0.
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LEMMA 3. — There exists an integer ki^k depending only on n, /c, dimE
and dimR/^(Z^o), such that H^7" ̂ '(A) = o, /or aM m^o, 7^0.

The remainder of this section is devoted to the proof of these lemmas.
Let A== (B AA- be the graded ring R[Xi, . . . , X^], where A/c is the

subspace of A consisting of all homogeneous polynomials of degree /c$
we write A A = = O for /c<o. We denote by A(p) the graded A-module

. A(^) = © A(7?),,
A:€Z

where A (?)/,-= A^-/,.
If M == ̂  M^ is a graded A-module of finite type, we denote by

/ €Z

H/(M) = (9 H/(M)/ the jf-th Koszul homology group of M.
^ez

Following Grothendieck [7], we make the next :

DEFINITION 4. — A family of graded A-modules Ma, a el, of finite
. type is said to be bounded if :

(i) there exist integers p, q such that the graded A-module

Ma== © (Ma)/ , where (Ma)/== (Ma)^/,
/^o

is a quotient of A'7, for all a € I;
(ii) a finite number of polynomials occur as Hilbert polynomials of

the A-modules Ma.

PROPOSITION 1 (see D. Mumford [13], Lecture 14). — Let Ma, a el, be a
bounded family of graded A-modules of finite type satisfying condition (i)
of Definition 4. Then there exists an integer TZo, depending only on p, q
and the Hilbert polynomials of the A.-modules Ma, a€ I, such that H/(Ma)/=== o
for all l^no, 7^0.

PROPOSITION 2 {see A. Grothendieck [7]). — Let k, p, g^o be given
integers. The family of all kernels and cokernels of all homomorphisms
from A^ to A^)^ of graded A.-modules of degree o is bounded,

Let M = Q) g^, P == ® p/*? N = Q) ^+/_i; by Lemma 1, these are
mez zez zez

ST-modules. By the commutativity of diagram (5), we have the exact
sequence of graded ST-modules

o -. P -> ST 0 F*°^ ST (g) E*-> M -> o,

where o-*(9) is the direct sum of the maps ̂ (y)* and is an ST-homomorphism
of degree /c. The commutativity of diagram (6) implies that there is an
epimorphism of graded ST-modules from P to N of degree o.

Ann. EC. Norm., (4), I. — FASC. 3. 54
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Proof of Lemma 2.. — Let p = dimE, q = dimF; then by Proposition 2,
{M^.ex? {Prc}^ex are bounded families of graded A-modules. We deduce,
from Proposition 1, that exists an integer ko^k depending only on
n, k, dimE and dimF such that Hy(M^)^= o, for all ^eX, ^0,7^0.
Since M does not depend on F and since (H/(M)^)* is isomorphic
to H^^g/,), we obtain the desired result.

Proof of Lemma 3. — By Proposition 2, a finite number of polynomials
3>i, . . ., ̂  occur as Hilbert polynomials of the graded A-modules M^, xG. X,
and moreover these polynomials depend only on n, k and dimE.
Hence if a;eX, there exists an integer i, with i^i^s, such that
dim (g/^ =$,(/c+i;), for all sufficiently large ;. Since R^ is a
vector bundle, for ?^o, only a finite number of polynomials can occur
as Hilbert polynomials of the graded A-modules N^, x^.X, moreover
these polynomials depend only on n, k, dimE, and dimR^(^o).
Now {Po^ex is a bounded family of graded A-modules and there exist
integers p, q depending only on n, k, dimE and dimF such that condi-
tion (i) of Definition 4 holds for the family {Po^ex. Because N^ is a
quotient of P^, it is finitely generated and condition (i) of Definition 4
holds for the family [ N^ex with the same integers p, q. Hence { N ^ ^ ^ x
is a bounded family of graded A-modules. By Proposition 1, there
exists an integer /Ci^/c, depending only on M, /c, dimE, dimF and
dimR^(^o), such that H^(N^_^==o for all r^eX, ;^o, 7^0.
Since Na; is independent of F, we obtain the desired result.

Remark. — In fact H^ + / o ( / l )==o for all ^i, where /Co is the integer
given by Lemma 2 depending only on n, k and dimE. By the commuta-
tivity and exactness of diagram (6), the map 8 : hk+i-> T*(g)A/^_i is
mjective if S : p^ -> T*(g)p^ is injective. From the exactness of (10)
and the commutativity and exactness of diagram (5), we deduce that
S : p/-M—T*(g)p^ is injective if and only if H^-152^) = o, for ^i.
Hence Hko+l'o{h)=o if H^1-19-2^) = o. The proof of the prolongation
theorem (Theorem 1) uses only this result and not the full statement of
Lemma 3.

3. THE PROLONGATION THEOREM. — We define the set of formal sections
of the vector bundle E to be

J , (E)^l imJ,(E) .

Let y : J / c ( E ) - > F be a differential operator of order k from E to F.
We let p,(y) : J,(E) -^ J,(F) be the map

T^W ==limp^(9).
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A formal solution of 9 is an element u€J,(E) satisfying p,(y) (u) = o.
The set of all formal solutions of y is R^=limR/^. We denote by R^
the projection ^m(RJ of R^ in R^.

We denote by R^ the family of subspaces T^R^, of J^(E). If R^
is a sub-bundle of Jm(E), then it has the same solutions as y. We have
a descending chain of families of subspaces of Jm(E)

(I5) ...C^C^C...C^CJm(E),

where R^==R^. We set Rn,= (^ R^; it is clear that R^CR^.
^0

Since (i5) is a chain of families of finite dimensional vector spaces, for
each point rcGX, and each m, there exists an integer I, depending on x
and m such that

R — R^^m,.^—— ^/n,^*

Hence we can find an integer p such that

I'•m,.v==: ̂ m (Rw+p);^ R/n+l^^^ TT/TZ+I {^m+p} se-

lf follows that the map TC^ : J^+i(E) -> J^(E) induces a surjective map
TT^ : R^+i -^ R^. Hence R^ C Rm? which implies that

R,,=^R^)
/^o

and R^= limR^.

DEFINITION 5. — A differential operator 9 : J / f (E)-^F is said to be
formally integrable if <p is regular and Rm== Rm, tor m^k.

The second condition is equivalent to the fact that n/^ : R/^-M -> R/,+1
is an epimorphism, for ?^o.

Following Cartan, we make the next :

DEFINITION 6. — A differential operator y : J / , (E) -^F is said to be
involutive if R/,+i is a vector bundle, if the map 71^ : R^i -> R/, is sur-
jective, and if g/c is involutive.

The Cartan-Kahler theorem implies that every involutive differential
operator is formally integrable (see [5], [6]).

If R/, is a sub-bundle of J/((E) and if y : Jyc(E) -> F is any morphism
such that kery=R^, we recall that R/^= kerp^(y), for ^o, is
independent of y and is equal to the Z-th prolongation J^R/c) nJ/c+z(E)
of Rk. Moreover, if the l-th prolongation R/^ of R/, is a sub-bundle
of J^(E), the m-th prolongation R^+n+m of R/,^ is the same as the
(l+m)-th prolongation R^+m) of R^ (see [5]). We say that the equa-
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tion R/, is regular [resp. formally integrable, involutive] is any such
morphism y is regular [resp. formally integrable, involutive]. We recall
that, if 9 is regular, the families of vector spaces g^+/, h/,+i, the maps
6 : gk+i-> T*(g)g/^_i, S : hk+i-^T'^hk+i^ are independent of the choice
of 9.

The remainder of this section is devoted to the proof of the following :

THEOREM 1 (PROLONGATION THEOREM). — Let R / ,CJ / , (E) be a
regular partial differential equation of order k on E. Assume that the
maps ^rn: Rm+r -> Rm have constant rank, for all m^k, r^o. Then there
exist integers lo^o, m^k such that the equation R^ of order m^ on E
is a formally integrable involutive equation^ which has the same formal
solutions as R/c, and whose r-th prolongation is Ri^+/.

Proof. — The hypotheses imply that R^ is a sub-bundle of Jm(E),
for all m^/c, Z^o. For each m^k, (i5) is a descending chain of
sub-bundles of Jm(E). This chain must obviously stabilize; hence for
each m^/c, there exists an integer r^, depending only on m, such that

t»(r^)—— /^\ R( / )——p
-llm —— I I ^fn——^w

^0

We denote by (R^)+,, the y-th prolongation of the equation R^CJm(E)
and first prove the following :

LEMMA 4. — R^C^R^ for all I, r^o, m^k.
Proof. — We have

•n•/^+^=::: ̂ m+r^m+l+r^^ '7^m4-r-n-(/7^+/) +r

== ^m+r (Jr(R/^/) 0 J' m+l+r (E) ) C Jr (^m) 3r ^m+l) 0 Jm+r (E)

since the diagram
T fV\ Pr(idnt+l} -r . , /T7 \ \
Jm+l+r (E) —————> J^ (Jm+l (E) )

|^m+r Jr(Tr^)

J^(E)-^^^J,(J^(E))

commutes. Because the map ^rn : Rm+^-^Rm has constant rank,
J, (7T^) J, (R^^) = J, (TT^R^z) = J, (R^) ;

we therefore obtain the desired inclusion

R^, c J. (R^) n 3^r (E) = (R^)^.

To prove the theorem, it suffices to show the following :
(I) There exists an integer ?o, independent of m, such that

R^==R^ for all m^k, /^/o.
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(II) For each ^^o, there exists an integer pi such that

R^==(R^ for all r^o.

Indeed, let mo^p/,,, where lo is the integer given by (I). Then,
for r^o,
(16) {W^\ —R^o) — Rv / ^-Ll/no/4-^——-n7/<o+/'—^no+r'

Since R^+, is a sub-bundle of JL^,(E), for r^o, it follows that R^
is formally integrable and has the same formal solutions as RA. Because
of (16), Lemma 2 shows that we can choose mo^p^such that gi^ is involu-
tive and such that R^ satisfies the desired properties.

For m^/c, the map ^m : Jm+i(E) -> J^(E) induces a map ^n : R^+i -> R^,
whose kernel and cokernel we denote by g^, h^ respectively. Then
g^n= gm, h^== hm. We have exact sequences

(17) o-^^,4R^^R^->^-^o; -
(18) 0-^.R^-^-^-^o

since ^(R^) = R^^. It follows that ^ and g;̂  are both vector
bundles, for m^/c. We therefore have a descending chain

( tQ) . • . C^C^C . . . C^CS-T^E

of sub-bundles of g^== S^tg) E, for m^/c+i. Set g^S^T^E,
for m < /c.

Proof of (I). — The image of g^ under the map
^ : S^T^E-^T^S^T^E

is contained in T*(g)g^ and the diagram

^-^(g)^

(20) I I
^ . Y

o.^-D^T*/^ p-^-D
^5/n+l^ -'- Vt'y&w

commutes. Indeed, the map <S is induced by pi (idw) : Jm+i (E) -^ Ji (J^(E))
and, for m^/c, pi{idm) maps R;^ into Ji(R^) by Lemma 4. Hence

W.i) C (T*® R^) n (T*(g) S-T*0 E) == T*(g)^,

and it is clear that (20) is commutative, for all m€Z.
Let M^= ® g^*; according to Lemma 1, M^ is an ST-module

wEZ

and M^^^ is a quotient of M^ as graded ST-modules. Let K^ be the
kernel of the natural projection of M^^ ST0 E* onto M^. We obtain
an ascending chain

ocK(°)c: . .. cK^cK^-^c . . . CM(-1)
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of ST-submodules of M^^. Choose an arbitrary point r r€X; then
STo-0 E^. is a noetherian module and therefore there exists an integer lo{x)
such that

K^==K^) for /^4(^).

This implies that M^M^, for l^h{x) and hence that g^== g^
for all m^o, Z^,?o(^). Since g^ is a vector bundle for m^/c+i,
the ehain (19) stabilizes and

^^/^ forall/n^-4-i, /^/o(^).

Let r be an integer such that
R.=R^

and let ?o= max(r, lo^)). We claim that

(21) R^=R^ for /^/o, ^^k.

This statement clearly implies (I). We prove (21) by induction on m.
The integer lo was chosen so that (21) holds for m=k. Assume (21) is
true for m, with m^k. For I^IQ, the diagram

0 0

f) ____^. <y[i} ____y £y(^o) ____^ f\u f 6 m+i ~'6in+l r u

Y ^
o __> R(^) __^ R^o)u ^--^'-w+l ^ •l'-/?^+'-w+1 ' ^'-m+l

o——>^———>W^——>o

[
0

is clearly commutative and exact, since TC^(R^) === ^:{^l)= R^ by our
induction hypothesis. This implies that ^rn '- R^i-> R^ is surjective.
The diagram shows that R^== R^, for Z^o.

Proof of (II). — To prove (II), it is enough to show that for each ?^o,
there exists an integer pi such that

(22) ^1== (I^)-M for all m^pi.

In fact, this condition implies (II) by induction on r. Clearly,
R;%,=(R^)^. Assume that R^+r= (R^+r; then since R^ is a
vector bundle

R^(^)= R(^)^= (R^^)^i= ((R^)^,)+.= (R^)+(^).

We shall show the existence of pi, by induction on I.
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By Lemma 4, p^{idm) : Jm+i(E) -> Ji(J^(E)) induces maps
p^id^: R^-^J^R^), pi(^): R^-M-^JI(R^).

The diagram
o ——> P^ -——^ R î ——^ <;-M ——> o

(23) y^(^) |/M^n) 1 6

o——^(R^>)——>3,m——>3,(^)—^o

is clearly exact and commutative, for m^k, and so induces a map
S:/^^J,(/Q.

LEMMA 5. — If R^=(R^)+i, for some m^/c, t/i^M the following
statements are equivalent :

f^\ p(^+i) /"R^-1-1^
(1) -^m+l^ [^m )+1;

(ii) S : h^ — Ji (/^)) 15 infective.
Proof. — We have

(R^)^ Ji (B^^) nJ^i (E) = J, (R^^) nJi (R^) nJ^ (E)
= J, (R^^) n (R^)^ = Ji (R;^15) nR^.

From diagram (23) and this equality, we deduce the lemma.
We apply Lemma 5, with I •-= o. It is clear that the map S : h,n+i -> Ji (hjn)

is precisely the map S considered in paragraph 1. Hence Lemma 3
implies the existence of an integer po such that the map 8 : hm+i —"Ji(^m)
is injective for all m^po, since this map is the composition of
8 : hm+i ~> T*0 hm and the monomorphism £ : T*(^) hm -> Ji (hm). The
hypothesis of Lemma 5 is clearly satisfied for all m^/c, and so Lemma 5
shows that R^,= (R^)^, for all m^po.

Assume that we have shown the existence of an integer pi such that (22)
holds for all m^pi. Consider the equation R^CJ^(E). Our induction
hypothesis implies that (R^)+r= R^+r; since (17) is exact and h^ is a
vector bundle, for m^/c, the above argument together with Lemma 5
shows the existence of an integer pi+i such that

W^)^= W for all m^p^

completing the proof of (II).

Remark. — In our proof of Theorem 1, we have preferred to prove (II)
rather than to show that, if lo denotes the integer given by (I), there
exists an integer m'^ such that

R^ti = (R^)+i for a-11 m ̂  m',.

This last fact together with (I) implies Theorem 1. We shall use (II) in
certain applications of Theorem 1 rather this weaker statement which can
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be proved using an argument due to Kuranishi [8] as follows. By Lemma 4,
we have

R^C(R^)-M fora l l /Tz^/c .

By (I), the map ri^ : R^ -^ R^ is surjective, for all m=,k. Let (g^+i
denote the kernel of ^.m'- (R^+i -^ R^. Since g^ is a vector bundle
for all m^/c+1 ^d since M^ is a quotient of ST(^)E*, we see that
{ M ^ ^ ^ x ls a bounded family of graded A-modules; by Proposition 1
there exists an integer m^^k such that the sequence

o \ p-^ -^ T* (9) ̂  > A 2 T* (9) ̂ /")^""Sw+l"^-*- '0' & ill —^ /v- -1- •<y 6 m—1

is exact, for all m^rn^ This implies that

°̂li= (^)^i for all m^mo (^ [5], [6]).

We recall that the map 11̂  : R^0^-^ R^ is surjective, for m^/c. The
exact and commutative diagram, for m^m'Q

0 0

[ [
0 ———>g^+l —————>^+1 ————> 0

[• I-
»—>R&«—>(R1;!').»

1- 1-^ ^
o ——^ R^o) ————^ R(̂ o) ———^ o

i l
0 0

shows that the desired result holds. Matsuda [12], using Kuranishi's
argument, noted that the first prolongation of PL is Rm+i tor all sufficiently
large m.

4. THE SPENCER COHOMOLOGY OF A DIFFERENTIAL EQUATION. — Let

Ci (E) == A/T*(g) h (E)/^ (A/-11*0 S^^F® E) for ./^i,
and

C ? ( E ) = = J , ( E ) .

Applying Proposition 5.1 of [5] to the equation RA== J/,(E) on E, we
obtain :

PROPOSITION 3. — There exists a unique differential operator

p : Ji(J,(E))-^C4(E)
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of order i, whose symbol is the natural projection T of T*(g) J/,(E) onto C^.(E)
such that the sequence

o——^J^(E)'^Ji(J,(E))-^Cl(E)——>o
is exact.

PROPOSITION 4. — There is a unique differential operator

^ : J,(J,(E))-^T*(g)J,_i(E)
such that :

(i) J^(E)Cker^;
(ii) The symbol of\ is the projection 71 -̂1 o/*T*(g) J/,(E) onto T*(g) J/c_i(E).

Proof. — From Proposition 3, it follows that any. such morphism A
satisfying (i) is of the form ^° p, where X is a morphism of vector bundles
from C^(E) to T*0J/,_i(E) and its symbol is the composition X o r .
The unique map X satisfying X O T = ^/,-i is the natural projection of C^.(E)
onto T*0J/,_i(E) induced by the projection ii/,_i of J/c(E) onto J/,_i(E).
Clearly ^ == X o p has the desired properties.

PROPOSITION 5. — The morphism X of Proposition 4 is determined by

S^==Ji(7TA.-i) —pi(idk-i) o 7 T o ;

moreover, if D = X o j \ : ^(E)-^ %*0^_i (<^), tAe sequence

(24) - 0-^64^(6)-^^(g)^_i(6)

^ exact.

Proof. — It is easily seen that

TTo . Ji ?-1) = ^o •7?l (l^k—i) . TTo

as maps from Ji(J/,(E)) to JA-i(E) and that the diagram

T / r-l \ Pl{1^^ T / T / T-l \ \Jk+i (E) ———> Jj (J^ (L) )

^fc Ji(^-i)
^^^^/^)j^j^^^

commutes by Proposition 4.3 of [6]. Hence ^(Ji^.i)—pi(id/,-i) .iio)
is a well-defined morphism from Ji(J/,(E)) to T*(g) J/,_i(E) satisfying condi-
tion (i) of Proposition 4. Moreover, the symbol of £~1 (Ji (Ti/,_i) —pi (iJ/,_i).7Co)
is 71 /^.i since it is determined by the symbol of Ji (Ti/,_i) which is precisely £ o 7i/,_i.
The exactness of the sequence (24) follows from Lemmas 5 .2 or 5.3 of [5].

Ann. Sc. Norm., (4), I. — FASC. 3. 55
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Note that condition (ii) of Proposition 4 is equivalent to

(25) D(/^)==J/07^_i(^)+/D^ for all/€A0^ ^e^(^).

The following proposition is easily verified.

PROPOSITION 6. — If 9 : J^(E) -> F is a differential operator^ the diagram

J , (J^/ (E)) ——. T*(g) J^_i (E)i-\h(piW} \Pi-iW

J,(Jz(F))——^T*®J^(F)
commu(e5.

Let us now compute the map
LJi(s) : Ji(S^T*0E)-^T*(g)J^(E).

Since ^k-i • £ = o,
£.^.Jl(s) == (Ji(7TA:_i) —/?i(^_i).7To).Ji(£)

==—pi {idk-i) . TTo . Ji (s)
==—7?i (^_i).£.7To.

Hence the diagram
Ji (8^*0 E) -7r^ S^T*® E —5-> T*(g) S^-1 T*0 E

| Ji (£)
^ -.

Ji (J^ (E)) ————————————> T*0 J,_, (E)

commutes; therefore so does the diagram

^ ̂ *(g) 6 -̂ > %* 0 ̂ /

(26)
^*(g) 6 —6-^ %*(g) ̂ -1 ̂ 0 6

^(<S)-—D-^^®^_l(^)

We extend D to a differential operator
D : A^^,^)-^^-1^^^)

by setting
(27) D (co 0 u) == dw 0 7^_i(^) + (—i)7^ /\ D^,

if coeA7®*, u€^/c(<^). It is easily seen from (25) that D is well-defined;
furthermore (27) and the commutativity of diagram (26) imply that the
diagram

A '̂ %* 0 ̂  ̂ * 0 <5 ~^> A '̂4-1 ̂  0 ̂ -1 %* 0 &
(28) J 5 £

A^*0 ̂  (<^) ———^ A^'4-1 %*0 ̂ _i (6)
commutes.



PROLONGATIONS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS. 435

We obtain the naive Spencer sequence for E

o^<S^^(<g)^^(g)^_l(<g,)^A2^®^_,(<g)-^...-^A^*(g)^,(<g)--^o

which is a complex {see R. Bott [I], D. G. Quillen [14], D. C. Spencer [15]
or S. Sternberg [16]).

If 9 : JA-(E) ->¥, ^ : J^(F) •-> G are differential operators, we say that
the sequence
/ \ /, Oo ^ DI(29) s-^^->^,

where Do= 9°^, Di= ^°ji, is formally exact if the sequence

(30) ^(E^J^F^.UG)

is exact. We note that if k == I = o, then if the sequence (29) is exact,
so is the sequence (3o) by Lemma 3.3 of [5].

LEMMA 6. — If 9:J / , (E)-^F, ^ : J / ( F ) - ^ G are differential operators,
the sequence (29) is formally exact if the sequences of sector bundles

pi+^w ^)
Jk+l+m { ^ ) ————> J/+^ (T ) ————> J^ (Gr)

are exact for m^o.

Proof. — Since finite dimensional vector spaces are artinian, the lemma
is a direct consequence of Corollary 2, § 3, n° 5 of Bourbaki [2].

PROPOSITION 7. — The nai^e Spencer sequence for E is exact and formally
exact, for k^o.

Proof. — For k== o, the statement is trivial. We deduce the pro-
position from the exactness of (10) and from the commutative diagram (3i).

0 0 0

o ——> ̂ *(g) <^——> -g*(g) ^-i^*(g) <g—^ . . .——^ A^*^ ̂ -^(g) 6——^ o

I I6 I6 • I 6
^ . 4- ^ 4-

(3i) o——^<g—L^^(6)—^^(g)^^)—0^...——^A^*(g)^_,(6)——>o

| ^t-l pfc-2 '̂-n—1
'̂ . Y Y Y

o——^^^(^-^-^(g)^^)—^...——^A^*0^_^(<5)——>o

0 0 0 0

Now let R/(CJ/c(E) be a regular partial differential equation of order k
on E. By Proposition 6, the operator

D : A/^® ̂  (6) -. A^^0 3:,,_, (6)
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induces a first order differential operator

D : ,V ̂  (g) iR,n -> A^1 ̂  (g) cR^_i.

We obtain a complex

0 -> eS ̂  (^-]^ ̂ ® ̂ -l-^ A2^*(g) <R^_2-^ . . .-^ A^*(g) ̂ ^_^-> 0(32) 0 -> eS A^ (̂  ->

which is always exact at S and at c%^, which we call the m-th naive
Spencer sequence of the equation R/..

THEOREM 2. — Let R/,CJ/f(E) be a regular partial differential equation
of order k on E. Assume that the maps ^rn '- Rm+i —^ Rm have constant
rank, for all m^/c. Then there exists an integer mi^/c such that the
cohomology of the sequence (32) is independent of m, for m^mi.

We call a sequence (3s), with m^mi, a stable naive Spencer sequence
of R/( and call its cohomology the Spencer cohomology of R/<:. We say
that R/c has stable naive Spencer sequences.

Proof. — Under our assumption, Am is a vector bundle for m^/c.
We first show that the diagram

Ji(R/.)-^>T*0R,,_,
Jl (X) [ X

Ji^^T^/^

commutes, where x:R^-^/ i^ is the natural projection for m^k.
It suffices to verify that

£X^ == Ji (%) .5 .^ = = — 3 . 7 T o . J i ( x )

as maps from Ji(R^) to Ji(/im-i). We have

Jj (>:).S.^==Ji(x) (Ji(7T^_i) —pi(ld,n-i)7lo)

== Ji ( K . 7^-1) — Ji ( y - ) pi (^-i) 7:0
= — Ji W ?! (^m-i) 7:0 == — ̂  . TTo . Ji (x)

by the commutativity of diagram (7). It follows from (27) that the
diagram

A^*(g) ̂  -"-> A/^ ̂ *(g) ̂ _i

-V^(g) /z^ —^> A^1 ^(g) h^
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commutes. Hence, by the commutativity of (28), we see that the
diagram (33) is commutative.

0 0 0 0

r -8 T -? T -8 Y

t+l ————> %*(g)^m ———'-> A2 ©*<g)^,n-i ——^...———> A»®*(g)^,»_n-n ———> 0Qm-\

( i £ I5 ' I 6

Y . Y . Y Y ^ ^
0———^^±>^,^ ——!!-> -g*(g) ̂ ——L^A2^ ̂ _i—"->...———>An^^ ^n-n+i———> 0

| \^m \^,n-l \^,n-2 \ ̂ ,n-n(33)
Y . Y Y Y Y

0———^ ̂  /w > ^——->^*(g)^^_i———^A2^®^^——'-^...————^A»^*(g)(^^_^————^0

Y Y ^ Y _ ? ; Y _^ T

o ——> hjn ——> ̂  0 h^-1 ——^ A2 ̂  0 A^_2 ——> •..———> A" ̂  0 //w-/z ——> o

Y Y Y Y
0 0 0 0

We set mi== max(/Co+ n, /Ci+ ^)? where /Co, A-i are the integers given
by Lemmas 2 and 3 respectively, and obtain the desired conclusion.

PROPOSITION 8. — Let RACJ/ , (E) be a regular partial differential
equation of order k on E. If the maps ^m ; Rm+r—^ Rm have constant ranky
for all m^/c, r^o, then, for all l^o, there exists an integer pi^k such
that the equation Rj^CJ^(E) has stable naive Spencer sequences and its
Spencer cohomology is isomorphic to the Spencer cohomology of R/(.

Proof. — Let pi^k be the integer given in the proof of Theorem 1,
such that R^+r== (R^)+7, for all r^o. Since A^ is a vector bundle,
the exactness of (17) implies that ^.rn: R^+i^- R^ has constant rank,
for m^/c. Hence, by Theorem 2, R^ has stable naive Spencer sequences.
It suffices to show that the Spencer cohomology of R^ is isomorphic to
the Spencer cohomology of R^^, for Z^o. By the exactness of (17)
and (18), diagram (34) is commutative and its columns are exact, for
m ̂  max (pi -)- n, pi+i-}-n).

0 0 0 0 0

-^ Y Y Y Y •

0———^^-^^^.^^^^^.^A2^®^^ . .———>An^®^tin———>0

(34) o- ^^->^-^^®6^_,——^A2^®^^-1^...——>An^®^_,——>o

Y _g ^
o ———> ̂  —î  ̂ (g) ̂  —^^ A^*® h^, - .̂ . .——> A^*® h^ ——> o

Y Y Y • Y
0 0 0 0
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Applying Lemma 3 to the equation Rj^CJ^E), the bottom row of
diagram (34) is exact for all m sufficiently large. This clearly implies
that the cohomology of the top row is isomorphic to the cohomology of
the middle row, for all m sufficiently large, proving the desired result.

COROLLARY 1. — Let R/,CJ/c(E) be a regular partial differential equation
of order k on E. Assume that the maps ^jn f- Rm+r—^Rm have constant
rank for all m^/c, r^o. Then the Spencer cohomology of R/, depends
only on the formal solutions R^ of R/c.

Proof. — Let mo, lo be the integers given by Theorem 1. By Propo-
sition 8, since mo^pi,, the Spencer cohomology of R^ is isomorphic
to the Spencer cohomology of RA. Because R^== R^=== r.^(R^) for
m^mo, the corollary follows.

The following theorem establishes the existence of resolutions for
regular differential operators. In [5], we proved the first part of this
theorem for formally integrable operators (see also M. Kuranishi [9]).
The proof given here is based in part on an argument of Quillen [14]
which he used to prove a weaker version of this theorem.

THEOREM 3. — Let y : J \ ( E ) — ^ F be a regular differential operator of
order k from E to F; let Do == 9°./A-. Then there exists a formally exact
complex
, Q K \ „_____.-C ./? I)o^^ Dl. ^ ^ ^ D3 _ _ _ _ ^ Dr, ^ ^4-1
(55) 0———> ib———>6———>§o———->^\———^2———>' - -———>^r-\ ———>^r———>' . .,

where Gr is a sector bundle and Go==F, and Dr= ^r°j'/, ; ^r-i-^^r
is a differential operator of order lr; moreover the sequences

(36) o———>^m———>J^.(E)-^^>J^(Go)^=^J^_^(GO———>...
-———>^m-l,-.-l^ (Or) —————>. . .

are exact at R/,+m and JA+m(E) for m^o, at Jm(Go} for m^?i, and
at J^-i,-...-dGr) for m^Zi+.. .+^+1, y^i.

Furthermore^ if the maps ^m ; Rm+i ~> Rm have constant rank, for all m^k,
the cohomology of (35) is isomorphic to the Spencer cohomology of R/c.

Proof. — Set Zi==max(/Co, A * i ) — A ' + i ? where /Co, ki are the integers
given by Lemmas 2 and 3 respectively. Let Gi == Q/, and let
^i : J/,(F) -> Q/i be the natural projection. By the commutativity of
diagram (i), to show that the sequences
/ Q ^ T Ph+mW Pm(^{ T /P \
(^7) JAr-i-^+w^) ————-^/i+mk1 ') —————>Jm (^l)

are exact for m^^o, it is sufficient to prove that the map
pm{id/,) : Q/,+w -> Jm(Q/J is injective for all m^o. We shall show in
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fact that pm{idi) : Q^+m-^Jm(Q/) is injective for all ?^?i, m^o.
It suffices to prove this for m= i, since the diagram

„ p^^{idi}
V^+m+l ————————>- J m+1 {\fl)

Li(^+^) \pi{id^}

J^Q^'-^^^^J^J^Q.))

is commutative, where pi(idrn) is a inononiorphisra. By the commuta-
tivity of diagrams (2) and (4), it is clear that the kernel of
pi{idi) : Q/+ i—^Ji (Q^) is contained in the kernel of S: qi+i—^T*(^)qi.
Hence it is enough to show that 8 : ^+i—T*(g)^ is injective for l^l^
From diagram (6), we deduce that the diagram

0 0 0

Y -^ ^ Y

o —————> hk+i ———————^pi^ ———'-——> qi^ ———^ o

1° I8 I 8
Y Y S^

o -——> T* (g) hk+i-i -————^ T* (g) pi ——'—„ T* 0 qi ——> o

I6 1 °4- Y

o ——> A2 T* (g) A^_, ——. A2 T* (g) pi_,

is commutative and its rows are exact. Hence 8:^+i-^T*0g/ is
injective if the sequences

(38) h^i -°> T^(g) h^i_, 4. A2!*® ̂ ^

and

(39) o-.pi^ T^pi

are exact. Now (38) is exact for l^k^—k-}-i and (3g) is exact for
l^ko—/c+i by the commutativity and exactness of diagram (5) and
the exactness of (10).

The differential operator ^i : J^(F)-^Gi is formally integrable by the
exactness of (37). Therefore we can apply the abov.e result or Corollary 4.2
of [5] to ^i to obtain the complex (35) and the exact sequences (36).
By Lemma 6, it follows that (35) is formally exact. The construction
of Gr, D^, with r>i , given in [5] shows without appealing to Lemma 6
that the sequence

Q \^ ^ _ _ _ ^ P^ ^ Dr+1
^0 —^ ^1 ——^ • • • ——> ̂ r-i ——> §r ——> •

is formally exact.
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^>

^ -^ ^;4

^ ^ I ^

^ ^
^

^ _^ o <^ ^ a T a s ft _ s _

t .4 ^ ib ® ^°
® & ^3

^ ^ ^
o'A Q~^

T r 1
is | S S
-̂ ^ ^

^ ^^

+ ^0 7 s s
__ ^ —: ft S ft ^ ft ^

-}- "s<i •S"̂  ' 'S'̂  / ®

^ ^ ® <g)
t Qs) & fe

<* <<
^ ^

^ 1 ^ 1 !
o __^ ^ _1^. I -^ ̂ ^ ^ ^^ ... __^ ^ __^ ,^ % 0 0t <? fe . is

o o o o o

o-̂1-
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We now assume that the maps T^ : R^+i -> R,,z have constant rank for
m^/c, so that RA has stable naive Spencer sequences by Theorem 2.
The commutative diagram (4o) has exact and formally exact columns,
except for the first one, by Proposition 7. The exactness of the
sequence (36) of vector bundles implies that the Spencer cohomology
of RA is isomorphic to the cohomology of (35), completing the proof of
Theorem 3.

Moreover, since the sequence (35) is formally exact, we deduce that
the stable naive Spencer sequences of RA are formally exact.

COROLLARY 2. — Let RA-CJA-(E) be a regular partial differential equation
of order k on E. Assume that the maps r^: R^+i —^ R,n have constant
rank for all m^k. Then the stable naive Spencer sequences of RA are
formally exact.

Remark. — Let 9 : JA-(E) —> F be an arbitrary differential operator of
order k from E to F. Assume that there exists a complex

^-"l^c?f^-> <y ->^,

where G is a vector bundle and Di== ^ ° ] i : ^ -> ̂  is a differential
operator of order I, such that the sequences

-0 T / "T'\ Pl-^-mW T /T7'\ Pm['^ T //-^ \
0 ————> t\fc+l+fn————> ^k+l+m (^) ————> J/+m (r ) ————^ ^m (^)

are exact for m^o. By Lemma 3.3 of [5], for m=-o, RA+/+m is a vector
bundle over each connected component of X. Hence the condition
that 9 be regular is essentially necessary and sufficient for the existence
of the complex (35) of Theorem 3.

Assume that R A C J A ( E ) is a formally integrable involutive equation of
order k on E, Following Quillen [14], we apply Theorem 3 to the differential
operator

p : Ji(C°)->C1

defined in paragraph 5 of [5] and to the sophisticated Spencer sequence of R/(

o^^e^c-^e^...^->o

constructed in [5], which is formally exact, and we obtain :

COROLLARY 3 {see D. G. Quillen [14]). — If RA<:JA(E) is a formally
integrable involutive equation of order k on E, then the cohomology of the
sophisticated Spencer sequence of RA is isomorphic to the Spencer cohomo-
logy of R/c.
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5. THE SPENCER COHOMOLOGY OF AN ANALYTIC DIFFERENTIAL EQUATION.

— Now assume that X is a real analytic manifold and that the vector
bundle E is analytic. For any such analytic vector bundle E, we denote
by ^ the subsheaf of 6 of analytic germs. If R/, is an analytic sub-
bundle of JA-(E), we say that R/, is an analytic equation. We let ^,>
denote the subsheaf of 2> of analytic germs of solutions of R/,.

THEOREM 4. — Let R^CJ/,(E) be a regular analytic partial differential
equation of order k on E. Assume that the maps r.^ : R,,,+i -> R^ have
constant rank for all m^k. Then the analytic stable naive Spencer
sequences

(41) o --> ̂  ̂  (i^n)^^ (^(g) ̂ -i)^ \ (A^(g) ̂ _,),> -^.. .-> (A/^(g) ̂ _,)^ -. o

are exact except possibly at (^*(^) ^m-i)o).

If moreover^ the maps r^z : R,̂ +, -> R,̂  have constant rank for all m^/c,
r^o, then the analytic stable naive Spencer sequences are exact.

Proof. — Let F be an analytic vector bundle and let 9 : J/;(E) --> F
be an analytic differential operator such that ke ry=RA. Set Go==F
and let

(42) o->^-^^A^^ (^i),)A. . .--> (^,_,)^> (^o^. . .

be a complex, where G, is an analytic vector bundle, D,.= ^r°j^ : ̂ /-i -> ̂ r
is an analytic differential operator of order lr for r^i. Assume
that Gi, Di are constructed by Theorem 3 and that G,, Dr are constructed
by Corollary 4.2 of [5] such that the sequences (36) are exact. Using
Spencer's estimate {see L. Ehrenpreis, V. W. Guillemin, and S. Sternberg [4]
and W. J. Sweeney [17]), we showed in [5] that the sequence (42) is exact
at (G,)a), tor r^i. By Theorems 2 and 3, the cohomology of the
sequence (4i) is independent of m and isomorphic to the cohomology
of (4^) for all m sufficiently large, proving the first part of the theorem.
Note moreover, that if R/c is formally integrable, we can construct G,, D,,
for r^i, by Corollary 4.2 of [5] such that the sequence (36) is exact; in
this case the sequence (42) is exact and the analytic stable naive Spencer
sequences are exact.

Now assume moreover that the maps T.^ : R^+,. -> R^ have constant
rank, for all m^/c, r^o. Let lo, mo be the integers given by Theorem 1.
Then by Proposition 8, the cohomology of (4i) is isomorphic to the
cohomology of the sequence

(43) o -^ ̂  ̂  «^ -D- (^0 ̂ _, )co -^ (.V2^ ^-^-^(.V2^^ ^),-^...->(\-^(g)^Lj.
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if m is sufficiently large. Since R^ is formally integrable and
R^+^= (R^)+r, for m^o, thesequence (43) is exact for all sufficiently
large m by the above argument and so the cohomology of (4i) vanishes
for all sufficiently large m.

From Theorems 3 and 4, we deduce :

COROLLARY 4. — Let y : J/,(E)->-F he a regular analytic differential
operator of order k from E to F. Assume that the maps ^rn: R^+^-^R^
have constant rank for all m^k, r^o. If G is any analytic vector bundle
and ^ : J/(F) -> G is any analytic differential operator of order I from F to G
such that the sequences

T fV\pl+n^{(^^ /I7\ P^^ T /n\
*U-+/+m(^) -———>3l+m{r ) ————>Jm(^)

are exact for m^o, then the sequence

^-^^CO-^^O)

where D == y°jA, D'= ^°ji, is exact.
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