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GROUP SCHEMES OF PRIME ORDER

BY JOHN TATE AND FRANS OORT (*)

INTRODUCTION. — Our aim in this paper is to study group schemes
G of prime order p over a rather general base scheme S. Suppose

G===Spec(A), S=:Spec(R),

and suppose the augmentation ideal I = = K e r ( A — ^ R ) is free of rank one
over R (so G is of order p = 2), say I = Rrc; then there exist elements a
and c in R such that x2 = ax and such that the group structure on G is
defined by s x = x ( ^ ) i - { - i ( ^ ) x — c x ( ^ ) x . One easily checks that ac=i\
conversely any factorization ac = 2 € R defines a group scheme of order
2 over R. In this way all R-group schemes whose augmentation ideal
is free of rank one are classified, and an easy sheaf-theoretic globalization
yields a classification of group schemes of order 2 over any base S. In
case p > 2 the difficulty is to find a good generator for the ideal I. To
this end we prove first (theorem 1) that any G of order p is commutative
and killed by p, i. e. is a < ( module scheme 59 over F^==Z/pZ. In order
to exploit the action of F^ on G, we assume in section 2 that the base S
lies over Spec (Ap), where

^ '̂î -d '̂
^ being a primitive (p —i)-th root of unity in the ring of p-adic integers
Zp. For S over Spec (Ap) we prove (theorem 2) that the S-groups of
order p are classified by triples (L, a, &) consisting of an invertible
0s-module L, together with sections a and b of L0^"^ and L0^ such
that a(^) b = Wpy where Wp is the product of p and of an invertible element
of Ap. Since the p-adic completion of A.p is Zpy this structure theorem

(*) Work on this paper was partially supported by the National Science Foundation.
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applies in particular to a base of the form S==Spec(R), where R is a
complete noetherian local ring of residue characteristic p : for such an R,
the isomorphism classes of R-groups of order p correspond to equiva-
lence classes of factorizations p = ac of p€R, two such factorizations
p = ai Ci and p = a^c^ being considered equivalent if there is an invertible
element u in R such that a^=up~^a^ and c^=ui~PCl (c/*. remark 5 at
the end of section 2). In section 3 "we apply this theory to obtain a
classification (theorem 3) of group schemes of order p defined over the
ring of integers in a number field, in terms of idele class characters. As a
special case we recover an unpublished result of M. Artin and B. Mazur,
to the effect that the only group schemes of order p over Z are the constant
group ( Z / p Z ) ^ and its Cartier dual pi^'

Our original proof of theorem 1, insofar as the " killed by p 9? part is
concerned, was intertwined with the proof of theorem 2. We can now
avoid this procedure thanks to P. Deligne, who communicated to us a
direct proof of the fact that, for any integer m^i, a commutative group
scheme of order m is killed by m. We give Deligne's proof in section 1.

1. PRELIMINARIES AND TWO GENERAL THEOREMS. — Let S be a prescheme
and T a prescheme over S. We say that T is of finite order over S if T is
of the form T==Spec(A), where A is a sheaf of ©g-algebras which is
locally free of constant rank r; and then we say that T is of order r over S.
If S is locally noetherian and connected, then T is of finite order over S
if and only if it is finite and flat over S.

Suppose G-='Spec{A.) is a group scheme of finite order over S. We
denote by
( J ) s^=zs: A->A(g)^A respectively t^== t : A (g)^ A -> A

the homomorphisms of ©s-algebras which correspond to the law of compo-
sition, respectively the diagonal map

GxsG-.G, Ao : G->GxsG.

Let A' denote the (^-linear dual of A :

A'=S€om^(A, 0s);

this is a locally free sheaf of the same rank as A. As A' is locally free
of finite rank, the natural map

A'(g)^A^>(A(g)^Ay

is an isomorphism, and we obtain

(2) t ^ = ( s ^ ' : A'^A^A7 and ^= W ; A'-^A^^A',
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which makes A' into an associative, coassociative, and cocommutative
Hopf-algebra over Og, with unit and counit — the analog of the group
algebra of G. The map

(3) G (S) == Hom^,y ^-algebras (A, ̂ ) ^~> T (S, A ' )

is an isomorphism of G(S) onto the multiplicative group of invertible ele-
ments ger(S, A') such that s^,{g} === g0g.

The group scheme G is commutative if and only if the ring A' is commu-
tative. Suppose this is the case. Then the S-prescheme G'= Sp^c(A'),
with the law of composition induced by s^y is a commutative S-group
of the same finite order as G, the Cartier dual of G. As there is a cano-
nical isomorphism

A^AT,

we have G===(G') ' , and (3) can be interpreted as an isomorphism

(4) G(S) ^ Homs-g^G^ Gr/^s),

where G,^g is the multiplicative group over S. Viewed symmetrically,
(4) gives a bimultiplicative morphism of schemes over S,

(5) GxsG^G^s,

which we call the Cartier pairing.
Let G — ^ - S be an S-group scheme. For each integer m€Z we denote

by
me: G-^G

the morphism obtained by raising to the m-th power all elements of the
group functor G, i. e. for all T -> S, and any ^eG(T),

m^^)=^1.

Suppose G=Spec(A), then we use [m]: A -> A for the corresponding
0s-algebra homomorphism. The < ( laws of exponents 9) (^n)m=^nm and
(^m) (^) == ^m+/^ amount to the identities

[m ].[ /?] == [mn\ and t^o {\m\ (g) [ n]) o s^== \m 4- n\

Of course [ i ]====idA, and [o] = 1*0^ where £ : A —>• (9g corresponds to the
neutral element of G(S), and where i: (9s-^-A corresponds to the struc-
ture morphism G -> S. The ideal I = Ker(s) = Ker[o] is called the
augmentation ideal of A (or of G). If m^2, clearly

[m]== (A-^A^-^A),
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the first arrow being defined by iteration of s^, and the second being
the multiplication.

We thank P. Deligne for letting us present here his proof of :

THEOREM (Deligne). — A commutative S- group of order m is killed
by m (i.e. 171^=0^).

The proof of the theorem is inspired by the following : let F be a finite
commutative (abstract) group of order m, and let x^T. Then

n^n^^fn^)^
yer T€r \er /

and hence xm= e.
In order to be able to apply this idea to group schemes Deligne defines

the following trace map : let G be a commutative group scheme of finite
order over S, and suppose 1T=t§pec(B) is of order m over S, with struc-
ture morphism f :T-^S. Then Tr/ is the unique map such that the
diagram

G(T)C——^(T^^A^^B®^)

I Try N
4- ' 4-

G(S) c—————————————^r(S, A')

is commutative, where the (injective) horizontal arrows are as in (3),
and where N denotes the norm map for the A'-algebra B(g)^A', which
is locally free of rank m over A' (here we use the commutativity of A').
From this definition we easily deduce that Try is a homomorphism,
and that
(6) Tiy(/^)==:^ f o r a l l ^ e G ( S ) ,

where f =G{f): G(S) -> 'G(T). Suppose t : |T -> T is an S-automor-
phism; then
(7) Tiy(p)=Tiy(T^T_iG) for all (3eG(T) ;

this follows immediately from the properties of a norm map.

Proof of the theorem. — In order to prove that a group scheme H -> U
of order m is killed by m, it is sufficient to show that for any S -> U, each
element of H(S) has an order dividing m; as

H(S)= Horns (S, H x u S ) ,

it suffices to prove that for any f: G-^S, a commutative group scheme
of order m, and for any section u€G(S) we have 1^=1. We denote
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by ta: G -> G the translation on G by u, i. e.

^= (G ̂  G XsS^ G XsG->G).

We consider ic.eG(G) (the analog of JJn? ^d using (7) we note that
TCP

Tiy(i,0 ==Tiy(G-^G-^G).

As
I G O ^ = I G X (fu) : G — G

(o means composition, and X means multiplication), using (6) we obtain

Tiy(iG) =Tiy(iGX (/^)) = Try^) X Try (/^) == Try (i(,) X ̂ ,

and the theorem is proved.

Remark. — A group scheme of order m over a reduced base is killed by
its order [cf. [I], ¥11^.8.5), however we do not know whether this is true
for (non-commutative) group schemes over an arbitrary base.

Example and notation. — Let F be a finite group, R any commutative
ring with identity element, R[F] the group ring ofr, and R1 = Map(F, R)
the ring of functions from F into R. The constant group scheme defined
by r over R is 1^= Spec(R1). Elements of R[F] are R-linear functions
on R1, and we see that R1 and R[F] are in duality. In particular the
dual of the constant cyclic group scheme (Z/nZ)^ is ^,R, the group scheme
representing the n-th roots of unity

^ , R ( B ) = = : J ^ [ ^ € B , ^==1 $
for any R-algebra B.

Let p be a prime number. For the rest of this section we will be
concerned exclusively with groups of order p.

THEOREM 1. — An S-group of order p is commutative and killed by p.
By Deligne's theorem we need only prove commutativity. It is clear

that it suffices to treat the case S = Spec(R), where R is a local ring with
algebraically closed residue class field.

LEMMA 1. — Let k be an algebraically closed field, and suppose G = Spec (A)
is a k-group of order p. Then either G is the constant group scheme, or
the characteristic of k equals p and G == ^p,k or G = a?^. In particular,
G is commutative and the k-algebra A is generated by a single element.

Postponing the proof of the lemma for a moment we first show how
theorem 1 follows from it. Let tilda (i. e.") denote reduction modulo

Ann. J?c. Norm., (4), III. — FASC. 1. 2
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the maximal ideal of R. Then G = GXsSpec(/c) is commutative by
lemma 1, and we can apply that lemma to its Cartier dual G'= Spec (A').
Let rceA' be such that its residue class £e(A') == (A)' generates
the /c-algebra A'. Then {R[x]f= k\x~\ = (A'f, and by Nakayama's
lemma (which is applicable because A' is a free R-module of finite rank p)
we conclude that A'==R[^]. Hence A' is commutative, and this means
G is commutative.

For the convenience of the reader we include a proof of the well-known
lemma 1. Recall first that the connected component H° of a finite
/c-group H is a (normal) subgroup scheme, and if Hi is a subgroup scheme
of H, then the order of H equals the product of the orders of Hi and of
H/Hi (c/1. [I], ¥1^.3.2 (iv)). Since G is of prime order, its connected
component is either Spec(/c) or all of G, and, accordingly, G is either
etale or connected. If G is etale, then it is constant because k is alge-
braically closed, hence it is isomorphic to (Z/pZ)/,, and A, the /c-algebra
consisting of all /c-valued functions on Z/pZ, is generated by any function
which takes distinct values at the points of Z/pZ.

Suppose G=Spec(A) is connected, i.e. the /c-algebra A is a local
artin ring. Its augmentation ideal IcA is nilpotent. By Nakayama's
lemma 17^ I2, hence there exists a non-zero /c-derivation d : A -> A*. This
means that the element de. I'C A' has the property s^ {d) = d(^) i + i(g) d
(as £= ieA ' ) . Thus /c[c?]cA' is a /c-sub-bialgebra of A', and as k[d]
is a commutative ring, we obtain a surjective /c-bialgebra homomorphism
A"^ A—» {k[d]Y ; as the order p of G is prime, this implies that the order
of k[d] equals p, and hence k[d] = A'. As before we conclude that
G'=Spec(A') is either etale or connected. If G' is etale this means
G'^ (Z/pZ)/,, and thus G^^,/,; as G was supposed to be connected this
implies char(/c)=p. If G' is connected, d is nilpotent, and, as k[d] is of
rank p, we must have d^1 ̂  o and d1' = o; as s^, is a ring homo-
morphism this implies p = o in /c, hence char(/c) = p ; moreover we
already know that s^, {d) = d (g) i + i (g) d, hence G' ̂  a^/,, and thus G ̂  a^/,
which proves the lemma. Note that the last part of the proof could have
been given using p-Lie algebras (c/*. [I], VIL. 7).

Remark. — In contrast with group theory there exists a group scheme
of rank p which acts non-trivially on another group scheme of rank p,
namely ^ resp. Up. Hence there exist group schemes of rank p2 which
are not commutative. For example, let R be any F^-algebra, and define
A=R[T,a] , with T^==I , 0-^=0, ST== T^T, and 50- = T(g)G-4-cr(g) i.
The R-group G==Spec(A) is isomorphic to the semi-direct product
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of the normal subgroup scheme defined by T = = I , which is isomorphic
to a^R, and the subgroup scheme defined by o- === o, which is isomor-
phic tO ^R.

2. A CLASSIFICATION THEOREM. — We denote by Z^, the ring of p-adic
integers, and by

x : y/.->Zp
the unique multiplicative section of the residue class map Z^—^-F^== Z^/pZ^.
For any a€Z^,, we have

^W= lim [aP-\,
V->- os

where 2 is the residue of a modp. Thus, y (o)==o , and for m€F^,
y^(m) is the unique (p-i)-th root of unity in Zp whose residue (mod?)
is m. The restriction of ^ to F^ is a generator for the group Horn (Fj^, Z^)
of ( < multiplicative characters of F^ ? ? .

Let

^-^^'^-Ty]^-'
the intersection being taken inside the fraction field Qp of Zp. Thus Ap
is the ring of elements in the field of (p—i)-th roots of unity Q^^))?
which are integral at all places not dividing p ( p — i ) and also at one
place above p, namely that given by the inclusion Q(y,(F/>))CQ^. The
prime ideal in A.p corresponding to this last place is

A/.npZ/,==pA^

and Zp is the p-adic completion of Ap.
Examples :

p==2, A^=Z;

p=3, A^=Z ^ j ;

p=5, A^zp,^^],

where ^ = ^ ( 2 ) is the unique element of Z,^ such that i2:^—-!, and
1^2 (mod 5).

In this section we fix a prime number p, we write A == A^,, and we
assume our ground scheme S is over Spec (A). We shall often view ^
as taking values in the A-algebra r(S, 0s)? writing simply %.(m) instead
of %.(^).i(9 $ tor example if p0s==o? then ^(m) = m.

Let G== Spec(A) be an S-group of order p. By theorem 1, the group
F* operates on G, and we can therefore regard A, and the augmentation



8 J. TATE AND F. OORT.

ideal I of G, as sheaves of modules over the group algebra (9s [F^]. For
each integer i, let I,==^I, where ei is the (?s-linear operator

(8) ^^-S^^W^F;].
"^ € F/S

Clearly e^ hence also I,, depends only on i (mod(p--i)).

{>—\
LEMMA 2. — We have I =^, I^, direct sum. For each i, I, is an

!==!

iwertible Q^module^ consisting of the local sections of A. such that [m]f=^{m) f
for all m^Tp. We have IJyC !,+/ for all i andj, and I; == I, for i^i^p— i.

Proof. — For i^^'^p — i , the elements e, are orthogonal idempotents
in the group algebra A[F^] whose sum is i and which satisfy [m}ei=^(m)ei
for m€F^. Hence I is the direct sum of the !„ for i^i^p — i ,
and \i consists of the local sections f of I such that [m]f= ̂ {m)f for all
m€F^, or, what is the same since y/(o) ==o, of the local sections f of A
such that [m]f==^{m)f for all m€F^. From this and the rule
[m}{fg)={[m\f}(\[1n\g) we see that IJyCl^. Since the <9s-module I ts
locally free of rank p — i , its direct summands I, are locally free over
0s of ranks r, such that r^ + . ... + ^_i = p — i. To prove that
n=i for each i, and that 1[ = I, for i^^p—i, it suffices to examine
the situation in case S = Spec(/c), where the A-algebra k is an alge-
braically closed field, and to exhibit in that case a section fi of Ii such
that f[^o for i ^ i^p—i ; then kf[ C I, shows r^i for all i, hence
^=i , and kf[ = I;. By lemma 1 there are only three cases to consider,
namely G ̂  (Z/pZ)^ <x^/,, or ^,/,, and the last two only for char(/c) = p,
in which case %(m) = m. If G ̂  (Z/pZ)/,, then A is the algebra of /c-valued
functions on Z/pZ = Tp, and ([m]/*) {n) = f{mn) for jfeA and m, n€F^;
hence we may take fi=^ If G^a^/, (resp. ^/,), then A = k[t] with
tP= o, ^ = ((g)i + i (g) ^ so [m]( = m<^ [resp. 5(14- () = (i+ <)®(i+ (),
so [m]t = ( i+ ^—i]; hence in both cases [m]t= mt = ̂ (m)t (modt2),
we have eit=t^o (modt2), and can take f^=eit. This completes
the proof of lemma 2.

Example and Notation. — The group p^,A. We have p^,A= Spec(B),
where B = A[js], with ^==1. The comultiplication in B is given by
sz == z(^)z, and [m]z = z"1 for all m€F^. The augmentation ideal L = J
of B is J = B{z — i), and has a A-base consisting of the elements 7^— i
for m€F^ :

B (z — i ) = J === A (z — i ) +.. . 4- A (zP-1 — i ) .



GROUP SCHEMES OF PRIME ORDER. 9

For each integer i we put

(9) y i == (p - i ) e i ( i - z ) == ̂  r^H1-^)^)::=: ̂  r"1^) (i-^
m €F?

^//t i f ^ = = o mod ( / ? — i ) ,
w€Fp

-'(/n)^ i f ? - ^ o m o d ( / ? — i )

[ 7^ — ^1 ^/n i f ^ = o mod ( p — i ) ,
} m€Fp

^ — ^ ^'(/n)^ i f^o mod(p-i).

Note that yi depends only on ^ m o d ( p — i ) . Then
p-i

(10) 1—^^==-
p

(10) i-^^:^-^.^^(^)^ for m€F;,
i=l

and
^•—J^i—i®j.=— ^ /^'(w) { ( i — ^ ) .(g)(i—^)

^€F^
/?—l p—\

^"(^"z'Tyi^z"^^)^ 2%7(/n) z^^)^-®^
/^ /=1 k=l

='^ 2j ^^^'
/+^E^

mod(p—l)

hence
p-\

( 1 1 ) ^•=^•®I+I0^+Y-L—^J/0J^-7••
/=1

Formula (10) shows that
Jr=Aji+...4-A^_i.

Hence J ,=^J==A?/ , for each i, because ^ , . . . , ^_ i are orthogonal
idempotents. Putting y = y^ we can therefore define a sequence of
elements i = w^ ^2, . . . in A by
(12) y^^-jz.

PROPOSITION. — The elements wi are invertible in A for i^i^p—i,
and Wp= pWp^. We have B == A[y], w^ ^ = w^2/, anrf

/^-l

(13) ^J=J0i+i0 j+ ^-^.^^(g)^-!;>/? -v^-—^'
-100 y + —— >, J- (g) -"—:

^-P ^ Wi Wp-i'
Z=1

( t ^ ) I .^Jj^ZC^)^ ^or m€F/,;
( i ^ ) Wi===i\ (mod?) for i^^^—i;

(.<.) .=,+——fj+^+...+.2^).
I — / ? V tVa W,,_J
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Proof. — By lemma 2,
AY=(\yY=^^=^=\y^

thus the Wi are invertible for i ^ ^ ^ p — i . Clearly [z—iY==o (modp),
thus 2/^=0 (modp); moreover

5=i+J4--— +...+2^— (mod/,);
^2 ^ { ) — }

comparing the coefficients of y ' ^ y , i ^ = ^ < ^ P — i ? m both sides of
/ y/^1 \ - / y^-1 \

i + y 4-. . . + •-——— (g) i 4- y +. . . 4- -——\ w p - ^ ) \ ^-l/
^i4-5j+_(.^)2_^__^. __(^)/.-i (mod/^),

^2 W^-l

we obtain w,+i=( i+ i ) -^ (modp) for i ^ ^ < p — i , which proves (i5).

The other formulas have been proved already, except for the identity
Wp= pWp_y. To this end, choose an embedding A=Apc-^K, where K
is some field containing a primitive p-th root of unity ^ € = K (e.g. ACZ^,
and choose for K an algebraic closure of Qp, or choose an embedding of
A into the field C of complex numbers). Extend the embedding A C —^K
to a homomorphism A[jz] -> K by z(->C; let yi ̂ ->r\i and r\=r\^ under
this homomorphism. Then by (9) we find rjp_i = p; as p ̂  o and w?^^ o
in A, we see YJ ̂  o, and using (12) we have

Y^
pWp^ == ^^-i W/,-1 == Y^-1 == —— = W,,, .

which concludes the proof of the proposition.

Remark. — The wi^A can be computed inductively from Wi == i and
the relations

p if (E== o or / = o,

( 1 ?) S^-^ (-1)' if^o, j ^ o but,+./=o,
( — i ^ ^ - ' J ^ — ^ — . / ) , i f^o, y ^ o and ?+y^o ,

where the congruences are mod(p — i), and where ^ denotes the Jacobi
sums

g(i,./)= V ^(^)y/(^).^J
m 4- TI = — 1
/«,/i€F?

Choose an embedding A = A^—A^C K as in the proof of the proposi-
tion; then

^z+/ _ f}jrij
WiWf ~~ Yj^/
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The first case of (17) is clear, because ^_i=p. Suppose i^o and
j^omod(p— i ) ; then p ̂  2, and ^ ( — i ) = — i ; letting Z, m, and n
run through Fp we have

^/ = j 2 ̂ (m) ̂  \ \ 2 ̂ /(n) s / /}
( ^7^0 ) ( fl-^0 )

= ^J X-/"(m) % - - /(^)S / / /+ / /

//(7l-^:(>

=2^ 2 y.-'(/w)x-/(/')
l /n-{- /f,=l

mn^:0

= S^'(-") 7-7 (/() ̂ 2 2j ^ ̂ t (-/w) ̂ -/ (-//^
^7^0 /^:0 fti-+-n=:—1

7/l/i T :̂ 0

==(- I)^2^(^+7)( /2)+(- I)^+/(2c/> '~(^+7)(/)i
/ / -^o ( /^o )

( ^ /.- /(^)x-/( /^)X
/// + n-=--

[ inn-^-O

i (-i)^+' Y .̂ ;} (- ,, -y), if / +y ̂  o,

= (-i)^-i)- ^ ^Y^V in-+./=o.
,/n^

//< + // •= — i
//mT'^o

This proves the third case of (17), and the second results on replacing n
by mn in the last formula

2 ''-'W^ 2 t'(")=-7.'(-')=-(-i)'-
/ /^+/? .==—1 / / f ( l4 - / z )==—1

inn-^.0 n-^Q, —l

Many of the facts established in the last few paragraphs are essentially
equivalent to well-known properties of the Jacobi sums ^(^j) , and the
Gauss sums g[i)=—r\_i attached to the multiplicative character y/ of
the prime field (e. g. see [5]). As examples we mention

p=2, A2==Z, W i = = I , W2==2;

p = 3 , A3=:Z -1 , w j = i , ^==—1, w;;=:—3,

7?=5, Ag==Z^\ ^/^-. , where ?= :%(2 ) and ^^r—i,

Wi=I , W 2 = — ^ ( 2 + 0 , W 3 = = ( 2 4 - 0 2 ^ W 4 = = — ( 2 4-Q2, w , = — 5 ( 2 4 - ? ) 2 .
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We now continue our discussion on the S-group G. Let

S^[I,]=(9s®Ii©I?2®...

denote the symmetric algebra generated by Ii over 0g. Lemma 2 shows
that the homomorphism S^[Ii]-^A induced by the inclusion l iCA is
surjective, and that its kernel is the ideal generated by (a—i) (^ ) I f^?
where
(18) aer(S, I^-^HomJl^ iQ

is the element corresponding to the homomorphism If^ -> Ii induced by
the multiplication in A.

Let G' = Spec (A') be the Cartier dual of G and let I', l'^ and
a'eI^S,^)0^) be the analogs for G' of I, I., and a for G. Note that
the notation is consistent as ( IA) '==IA ' ) and {^-iY = (^D'= I;- By
theorem 1 the Cartier pairing G X G'—G,^s factors through ^,g and
is therefore given by a homomorphism

c p : BS^OS^AB^^M-^A^^.

LEMMA 3. — The image y(y) ofy is a generating section of Ii0 1\; if we
use it to identify 1\ with If^, then a(^)a==Wp.T.^

Proof. — The Cartier pairing ( ^ ^ ) ^ < ^ ^ > satisfies

<^, aD^a.o".
Hence, for all m,M€F^

(W(g)[^])cpj==cp([m/i]j) =^(^(mn)y) =%(m) ^(^)cpJ.

On the other hand, by lemma 2, 1^0 Iy consists of the local sections h
of A(g)A' which satisfy ([m] ®[n])h = ̂  {m) ̂ \n) h', hence ̂ y€T{S,l^ I,).
Clearly yy does not vanish at any point s^ S, for if it did, then the Cartier
pairing on the fibre G ,xG,—G^, would degenerate. Since y is a
homomorphism of algebras, Wp. 9 y == (9 yY = (y y)^ ® a (g) a', and this
shows that a0a'= Wp, if we identify Ii0 I^ with 0s i11 such a way that
y i /==i . This proves the lemma.

THEOREM 2. — jPor any prescheme S o^r 5pec (A), (Ae map G\-> ( I i , a, a')
discussed above gives a bijection between the isomorphism classes of S-groups
of order p and the isomorphism classes of triples (L, a, b) consisting of an
iwertible ^-module L, a section a€r(S, L0^), and a section fcer(S, L0^),
such that a 0 b = Wp. i^.

Proof. — It is clear from lemma 3 and the discussion preceeding it,
that from a triple (I^, a, a) we can reconstruct the S-preschemes G and
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G' (at first without the group structures), together with the Cartier mor-
phism GxG'-^^s- Indeed, A is the quotient of the symmetric algebra
S^rj0^] by an ideal determined by a, A' is the quotient of S[FJ by an
ideal determined by a', and the homomorphism <p :B[y] — A(^) A' is deter-
mined by 92/= i€ (Ii)0^^ Ii == 0g. But the Cartier morphism deter-
mines the group structures on G and G', because it gives for each S-pre-
scheme T a map

G (T) ^—— HorilT-schemes (^ XsT, ̂ ^)

which identifies G(T) with a subgroup of ^p(Gf XsT). The law of compo-
sition thus induced on the functor T i-> G(T) determines the law of compo-
sition in G (for an explicit description of the functor in terms of the data
(1^, a, a'), see remark 1 below).

To complete the proof of the theorem, we have only to show that every
triple (L, a, b) comes from a group scheme. The problem is obviously
local on the base S, so we can suppose S is affine and that L is free of rank i,
say S == Spec(R), and L == R. The problem is to show that for every
A-algebra R and for every pair of elements a, &€ R such that ab = Wp. IR,
the triple (R, a, b) comes from an R-group of order p.

Let F denote the field of fractions of A, and let U be an indeterminate.
By the proposition above, the group P^,F(U) 1s equal to Spec (A), where

A=F(U)[j], yp=wpy,
with

•y =.r ® i +1 (g)j + -^— ̂  ̂ ^r®^

and [m] y = y (m) y . Let Y == U-1 y^. A. Then

A =:F(U) [Yj, ¥/-=: ̂ L'-^Y,
and

p-^ _ ^
.s-Y == Y (g) i + i (g) Y + —1— y ' Y^ Y/^

I —P ̂  WiWp-i ^

and [m]Y=y(m)Y. Now let

Ro=:A[^U1-^ U^jcF^U) and G=Ko[Y]cA.

From the formulas above, we see that C is free of rank p over Ro, and
that ^(C)CC0i^C (we identify C(x)^C with its image in A0nA). Also
[— i]Cc C. Hence we can define an Ro-group G of order p by G == Spec(C),
with the multiplication induced by s C. Clearly

Ro^A[\,, \ , j /(X,X,-^).
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