JOHN TATE

FRANS OORT
Group schemes of prime order

Annales scientifiques de [ "E.N.S. 4¢ série, tome 3, n° 1 (1970), p. 1-21

© Gauthier-Villars (Editions scientifiques et médicales Elsevier), 1970, tous droits réservés.

L'accés aux archives de la revue « Annales scientifiques de I'E.N.S. » (http:/www.
elsevier.com/locate/ansens) implique 1’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=ASENS_1970_4_3_1_1_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. scient. Ec. Norm. Sup.,
4e série, t. 3, 1970, p. 1 4 21.

GROUP SCHEMES OF PRIME ORDER

By Joun TATE ano Frans OORT (*)

InTRODUCTION. — Our aim in this paper is to study group schemes
G of prime order p over a rather general base scheme S. Suppose

G = Spec (A), — Spec (R),

and suppose the augmentation ideal I = Ker(A - R) is free of rank one
over R (so G is of order p =12), say I = Rz; then there exist elements a
and ¢ in R such that 2* = az and such that the group structure on G is
defined by szc=2Q1+1 Q2 —cx@2x. One easily checks that ac =2;
conversely any factorization ac = 2€ R defines a group scheme of order
2 over R. In this way all R-group schemes whose augmentation ideal
is free of rank one are classified, and an easy sheaf-theoretic globalization
yields a classification of group schemes of order 2 over any base S. In
case p> 2 the difficulty is to find a good generator for the ideal I. To
this end we prove first (theorem 1) that any G of order p is commutative
and killed by p, i.e. is a “ module scheme” over F,=2Z/pZ. In order
to exploit the action of ¥} on G, we assume in section 2 that the base S

lies over Spec (A,), where
Ay=2|¢ —— J Z,,
3 [c pr—o "
¢ being a primitive (p — 1)-th root of unity in the ring of p-adic integers
Z, For S over Spec (A,) we prove (theorem 2) that the S-groups of
order p are classified by triples (L, a, b) consisting of an invertible
Os-module L, together with sections @ and b of L®”™ and L®"“” such
that a @ b = w,, where w, is the product of p and of an invertible element
of A,. Since the p-adic completion of A, is Z,, this structure theorem

(*) Work on this paper was partially supported by the National Science Foundation.
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applies in particular to a base of the form S = Spec(R), where R 1s a
complete noetherian local ring of residue characteristic p : for such an R,
the isomorphism classes of R-groups of order p correspond to equiva-
lence classes of factorizations p=ac of p€R, two such factorizations
p=a,¢, and p=a.c, being considered equivalent if there is an invertible
element u in R such that a.=wu?"a, and ca=u""¢, (¢f. remark 5 at
the end of section 2). In section 3 ‘we apply this theory to obtain a
classification (theorem 3) of group schemes of order p defined over the
ring of integers in a number field, in terms of ideéle class characters. As a
special case we recover an unpublished result of M. Artin and B. Mazur,
to the effect that the only group schemes of order p over Z are the constant
group (Z/pZ), and its Cartier dual g, ,.

Our original proof of theorem 1, insofar as the ¢ killed by p” part is
concerned, was intertwined with the proof of theorem 2. We can now
avoid this procedure thanks to P. Deligne, who communicated to us a
direct proof of the fact that, for any integer m>>1, a commutative group
scheme of order m is killed by m. We give Deligne’s proof in section 1.

1. PRELIMINARIES AND TWO GENERAL THEOREMS. — Let S be a prescheme
and T a prescheme over S. We say that T is of finite order over S if T is
of the form T =Spec(A), where A is a sheaf of Os-algebras which is
locally free of constant rank r; and then we say that T is of order r over S.
If S 1s locally noetherian and connected, then T is of finite order over S
if and only if it is finite and flat over S.

Suppose G = Spec(A) is a group scheme of finite order over S. We
denote by

(1) - sa=s: A>AQyA respectively {,=1: AQy A—>A
the homomorphisms of Os-algebras which correspond to the law of compo-
sition, respectively the diagonal map
G xsG— G, Ay : G—G xsG.
Let A’ denote the Og-linear dual of A :
Al'=#om, (A, O5);

this is a locally free sheaf of the same rank as A. As A’ is locally free
of finite rank, the natural map

N oA > (A @o A)
is an isomorphism, and we obtain

(2) Le=(52)"1 A QoA —A and sv= () 1 A=>AQpA,
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which makes A’ into an associative, coassociative, and cocommutative
Hopf-algebra over O, with unit and counit — the analog of the group
algebra of G. The map

(3) G (S) — [Ion]lll\itﬂl'y Og-algebras (Aa @S) C—> r (S, AI)

1s an isomorphism of G(S) onto the multiplicative group of invertible ele-
ments g€'(S, A’) such that s, (g) =g g.

The group scheme G is commutative if and only if the ring A’ is commu-
tative. Suppose this is the case. Then the S-prescheme G'= Spec(A’),
with the law of composition induced by s,, 1s a commutative S-group
of the same finite order as G, the Cartier dual of G. As there is a cano-

nical isomorphism
A5 (AT,

we have G=(G’)’, and (3) can be interpreted as an isomorphism

(%) G (S) 2 Homg geoups (G, G 5,

where G, ¢ 1s the multiplicative group over S. Viewed symmetrically,
(4) gives a bimultiplicative morphism of schemes over S,

(5) G <sG'— G, s,

which we call the Cartier pairing.

Let G— S be an S-group scheme. For each integer m&€Z we denote

by
mg: G—>G

the morphism obtained by raising to the m-th power all elements of the
group functor G, i. e. for all T - S, and any £€ G(T),
mg (£) = E™.

Suppose G = Spec(A), then we use [m]: A— A for the corresponding
Os-algebra homomorphism. The ¢ laws of exponents ” (")"=E&" and
(&™) (E») = &™ amount to the identities

[m].[n]=[mn] and Lho([m)@[n])osx=[m—+ n].

Of course [1]=1id,, and [0o] = to¢, where ¢ : A > @ corresponds to the
neutral element of G(S), and where ¢: O;— A corresponds to the struc-
ture morphism G —>S. The ideal I= Ker(c) = Ker[o] is called the
augmentation ideal of A (or of G). If m> 2, clearly

[m]=(A—=>A®" A7),
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the first arrow being defined by iteration of s,, and the second being
the multiplication.

We thank P. Deligne for letting us present here his proof of :

Taeorem (Deligne). — A commutative S-group of order m is killed
by m (i. e. mGZOG).

The proof of the theorem is inspired by the following : let I' be a finite
commutative (abstract) group of order m, and let x€I'. Then

I =lla>= ([] Y) am,

vel vel vel’
and hence 2" =ce.

In order to be able to apply this idea to group schemes Deligne defines
the following trace map : let G be a commutative group scheme of finite
order over S, and suppose T = Spec(B) is of order m over S, with struc-
ture morphism f: T —S. Then Tr, is the unique map such that the
diagram

G (T) ST (T, 01Qe A") =T (S, B®p A')
K E

\4
G(S) < I'(S, A)

is commutative, where the (injective) horizontal arrows are as in (3),
and where N denotes the norm map for the A'-algebra B, A’, which

is locally free of rank m over A’ (here we use the commutativity of A’').
From this definition we easily deduce that Tr, is a homomorphism,
and that

(6) Trp(f*u) =um forall ueG(S),

where f*=G(f): G(S) > G(T). Suppose ¢:{T—+T 1is an S-automor-
phism; then

(7) T, (8) =T (TS T L G) forall BeG(T);

this follows immediately from the properties of a norm map.

Proof of the theorem. — In order to prove that a group scheme H— U
of order m is killed by m, it is sufficient to show that for any S - U, each
element of H(S) has an order dividing m; as

H (S) = Homs (S, H xyS),

it suffices to prove that for any f: G— S, a commutative group scheme
of order m, and for any section u€ G(S) we have u"=1. We denote
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by t,: G— G the translation on G by u, i.e.
tu=(G =G xsS"Y G xsG—>G).

We consider 1€ G(G) (the analog of HY>’ and using (7) we note that

yel'

uw I
Tr, (1) = Tr, (G5 628 G).
As :
fgoty—1ex (ffu): GG

(> means composition, and X means multiplication), using (6) we obtain
Try(rg) =Trp(1g < (f*u)) =Tryp(15) X Trp (f*u) = Trp(1g) X< u™,
and the theorem is proved.

Remark. — A group scheme of order m over a reduced base is killed by
its order (c¢f. [1], VII,.8.5), however we do not know whether this is true
for (non-commutative) group schemes over an arbitrary base.

Ezample and notation. — Let I' be a finite group, R any commutative
ring with identity element, R[I'] the group ring of I', and R" = Map (T, R)
the ring of functions from I' into R. The constant group scheme defined
by I' over R is T'y= Spec(R"). Elements of R[I] are R-linear functions
on R', and we see that R and R[I] are in duality. In particular the
dual of the constant cyclic group scheme (Z/nZ); is @, gz, the group scheme
representing the n-th roots of unity

Prr(B) ={z|zeB, 2"=1}
for any R-algebra B.

Let p be a prime number. For the rest of this section we will be
concerned exclusively with groups of order p.-

Tueorem 1. — An S-group of order p is commutative and killed by p.

By Deligne’s theorem we need only prove commutativity. It is clear
that it suffices to treat the case S = Spec(R), where R is a local ring with
algebraically closed residue class field.

Lemma 1. — Let k be an algebraically closed field, and suppose G = Spec(A)
is a k-group of order p. Then either G is the constant group scheme, or
the characteristic of k equals p and G =g, or G=a, ;. In particular,
G is commutative and the k-algebra A is generated by a single element.

Postponing the proof of the lemma for a moment we first show how
theorem 1 follows from it. Let tilda (i. e.”) denote reduction modulo
Ann. Ec. Norm., (4), II1. — Fasc. 1. 2
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the maximal ideal of R. Then G = GxsSpec(k) is commutative by
lemma 1, and we can apply that lemma to its Cartier dual G’ = Spec(A’).
Let €A’ be such that its residue class #€(A’) = (A)" generates
the k-algebra A’. Then (R[z]) =k[Z]=(A’)", and by Nakayama’s
lemma (which is applicable because A’ 1s a free R-module of finite rank p)
we conclude that A’= R[z]. Hence A’ is commutative, and this means
G is commutative.

For the convenience of the reader we include a proof of the well-known .
lemma 1. Recall first that the connected component H° of a finite
k-group H is a (normal) subgroup scheme, and if H, is a subgroup scheme
of H, then the order of H equals the product of the orders of H, and of
H/H, (¢f. [1], VI,.3.2 (iv)). Since G is of prime order, its connected
component is either Spec(k) or all of G, and, accordingly, G is either
étale or connected. If G is étale, then it is constant because k is alge-
braically closed, hence it is isomorphic to (Z/pZ);, and A, the k-algebra
consisting of all k-valued functions on Z/pZ, is generated by any function
which takes distinet values at the points of Z/pZ.

Suppose G = Spec(A) is connected, 1. e. the k-algebra A is a local
artin ring. Its augmentation ideal IC A is nilpotent. By Nakayama’s
lemma [5£ I, hence there exists a non-zero k-derivation d: A — k. This
means that the element d€1’C A’ has the property s, (d) =dQ1+1Qd
(as e=1€A’). Thus k[d]C A’ is a k-sub-bialgebra of A’, and as k[d]
i1s a commutative ring, we obtain a surjective k-bialgebra homomorphism
A"~ A—» (k[d])'; as the order p of G is prime, this implies that the order
of k[d] equals p, and hence k[d]=A’. As before we conclude that
G'=Spec(A’) 1s either étale or connected. If G’ is étale this means
G'~ (Z/pZ),, and thus G p,; as G was supposed to be connected this
implies char(k) = p. If G’ is connected, d is nilpotent, and, as k[d] is of
rank p, we must have d’'s£0 and d’=o0; as s, is a ring homo-
morphism this implies p=o0 in k, hence char(k) = p; moreover we
already know that s, (d)=d® 1+ 1Q d, hence G'>~ a,, ;, and thus G >~ «,,,
which proves the lemma. Note that the last part of the proof could have
been given using p-Lie algebras (c¢f. [1], VII,. 7).

Remark. — In contrast with group theory there exists a group scheme
of rank p which acts non-trivially on another group scheme of rank p,
namely @, resp. «,. Hence there exist group schemes of rank p® which
are not commutative. For example, let R be any F,-algebra, and define
A=R[r,0], with =1, =0, sT=7Q 7T, and sc=1QRs+cQR 1.
The R-group G = Spec(A) is isomorphic to the semi-direct product
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of the normal subgroup scheme defined by ©=1, which is isomorphic
to @, 3, and the subgroup scheme defined by =0, which is isomor-
phic to @, g ‘

2. A crassiFicaTioN THEOREM. — We denote by Z, the ring of p-adic
integers, and by
v: F,~2Z,
the unique multiplicative section of the residue class map Z,—~F,=2Z,/pZ,.

For any a€Z, we have
£ () = lim [},

where @ is the residue of @ modp. Thus, 7(0) =0, and for me€F,,
7.(m) 1s the unique (p —1)-th root of unity in Z, whose residue (modp)
is m. The restriction of 7 to F, is a generator for the group Hom (F), Z7)
of ‘ multiplicative characters of F,”

r *
Let
T
A,,_.Z[,(_(F,,), m}ﬂzw

the intersection being taken inside the fraction field Q, of Z,. Thus A,
is the ring of elements in the field of (p — 1)-th roots of unity Q(y(F,)),
which are integral at all places not dividing p(p —1) and also at one
place above p, namely that given by the inclusion Q(%(F,))CQ,. The
prime ideal in A, corresponding to this last place 1s

AnpZ,=—pA,,

and Z, is the p-adic completion of A,.

Examples :
p=2, A =12;
p =3, As—=2Z ;J,
. I
P = 5, 1\;,—vZ'\l, ;(m:l,
where 7 = y(2) is the unique element of Z, such that = —1, and
1= 2 (modb).

In this section we fix a prime number p, we write A=A, and we
assume our ground scheme S is over Spec(A). We shall often view y
as taking values in the A-algebra I'(S, &), writing simply ¥ (m) instead
of y(m).1, ; for example if pOs= o, then y(m) = m.

Let G = Spec(A) be an S-group of order p. By theorem 1, the group
F, operates on G, and we can therefore regard A, and the augmentation
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ideal T of G, as sheaves of modules over the group algebra O,[F,]. For
each integer i, let I;=e;I, where e; is the Os-linear operator

(8) ;==

—i

[m]eos[F,].

meF,

Clearly e;, hence also I;, depends only on ¢ (mod(p —1)).

p—1
Lemma 2. — We have 1 =2 I;, direct sum. For each i, I, is an
invertible Og-module, consisting of_the local sections of A such that[m]f=7y'(m)f
forallmev¥,. Wehave ;1,C 1 ;foralliandj,and 1, = 1; for 1i=i<=p—r1.

Proof. — For 11— p —1, the elements ¢; are orthogonal idempotents
in the group algebra A[F,] whose sum 1s 1 and which satisfy [m]e;=y(m)e;
for me€F,. Hence I is the direct sum of the I, for 1—=i=p —1,
and I; consists of the local sections f of I such that [m]f=y'(m)f for all
me€F,, or, what is the same since y’(o) =o, of the local sections f of A
such that [m]f=y‘(m)f for all m€&F,. From this and the rule
[m](fg) = ([m]f) ([m]g) we see that I;I;CI;,;. Since the Og-module Iis
locally free of rank p —1, its direct summands I, are locally free over
Oy of ranks r; such that r,+...4+r,,=p—1. To prove that
ri=1 for each i, and that I; =1, for 1=Zi—p —1, it suffices to examine
the situation in case S = Spec(k), where the A-algebra k is an alge-
braically closed field, and to exhibit in that case a section f; of I, such
that fi5£0 for 1=Zi=p —1; then kf,CI; shows r>>1 for all i, hence
ri=1, and kf, = I;. By lemma 1 there are only three cases to consider,
namely G 2 (Z/pZ);, a, 1, or g, «, and the last two only for char(k) = p,
in which case y (m) =m. If G2 (Z/pZ), then A is the algebra of k-valued
functions on Z/pZ = F,, and ([m]f)(n) =f(mn) for f€A and m, n€F,;
hence we may take fi=y. If G~a,  (resp. pp, ), then A =k[t] with
t'=o0, st = t®1 + 1@, so [m]t = mt [resp. s(1+t) = (1+ t)Q(1+ 1),

o [m]t = (14 t)" —1]; hence in both cases [m]t = mt = y (m)¢ (mod#?),
we have e,t=t=0 (mod¢’), and can take fi=e,;t. This completes
the proof of lemma 2.

Example and Notation. — The group g, n. We have p, A= Spec(B),
where B = A[z], with z2=1. The comultiplication in B is given by
sz = 2z, and [m]z = z" for all m&€F,. The augmentation ideal I, = J
of B is J =B(z —1), and has a A-base consisting of the elements z" —1
for meF,

B(z—1)=J=A(z—1)+...+ A (s —1).
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For each integer ¢ we put

(9) yi:([)'—‘l)ei(l——z): Z X’”i(m) (1 — ™)
mel-";‘,
K[)~ Z zm if i=o0 mod(p—1),

m GP,,

_—) - 2 xi(m)z™ if i=Zo mod(p—1).

\ m EPF

Note that y; depends only on i mod(p —1). Then

p—1
I . .
(10) 1— z’":p — EX' (m)yi, for meF;,
i=1
and
.Yyi—yi®l—1®}/i:_ Z Z—»i(,”) { ([____5//1) ®(1 _Zm) }
mGF,*,
p—1 p—1
—1I N\ . 'y .
:—(pﬁl)gzx“(m)g Zx’ww 2E(m)y ;@ i
m =1 k=1
— 1 O
=r= z Yi® Vi
JH+ k=i
mod(p—1)
hence
p—1
1
(11) Y=Y @1+ 1@ Y+ rgzy@yz‘j-

j=1
Formula (10) shows that
J=Ayi+...+ Ay,

Hence J;=e;J = Ay; for each i, because e,, ...,e, , are orthogonal
idempotents. Putting y = y,, we can therefore define a sequence of
elements 1=¢,, w,, ... In A by

(12) Yi=wiye
Prorosition. — The elements w; are invertible in A for 1=1=p —1,
and wp= pw,_.. We have B = Aly], with y’ = w,y, and "
p—1
3 — e L N e
(13) Y=y @11@y+ 0 XL ®
i=1
(14) [m]y=y(m)y for meF,;
(15) w;=1i! (modp) for 1 =i Zp—1;

. 1 2 p—1
(16) 5—=1-4 <]+Z——i—+y )
1—p W, w1
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Proof. — By lemma 2,
A== U= = Ay,
thus the w; are invertible for i=—1~p —1. Clearly (z —1)’=0 (modp),
thus y’=o0 (modp); moreover
),2 )»//—l

E=EI+ Y+ 4.4
Wy W

(modp);
comparing the coeflicients of y'@y, 1=_1t< p —1, in both sides of

)//l‘——l y/l—l
<1+y+...+" >®<1—|—y+...+' )

W p—1 \\’/,_ 1

1

=148y + WL(SQ*)?—»—...—{-- (sy)r—' (modp),
2

‘V/)~——1
we obtain w;, = (1 4 1).w; (modp) for 1=t << p —1, which proves (15).

The other formulas have been proved already, except for the identity
w,= pw,_,. To this end, choose an embedding A =A,“>K, where K
is some field containing a primitive p-th root of unity (€K (e.g. ACZ,
and choose for K an algebraic closure of Q,, or choose an embedding of
A into the field G of complex numbers). Extend the embedding A<+ K
to a homomorphism A[z] > K by z+>{; let y;+>v;, and v =7, under
this homomorphism. Then by (g) we find v, ,=p;asps2o0and w, 50
in A, we see 1% 0, and using (12) we have

.n/l
PWVpaa = 0pa W, == o =W,

which concludes the proof of the proposition.

Remark. — The w;€A can be computed inductively from w, =1 and
the relations
P ifi=o or j=o,
(17) Wer ]y if iZo, j#Zo buti+ j=o,

Wi i . N g . .
(=0 g (=6 —)), fiz£o, jzo and i+ )0,
where the congruences are mod(p — 1), and where J denotes the Jacobi
sums v '
JEH= Y Amy g ().

m—+n=——1

m,/LEI‘;,
Choose an embedding A =A,“>A[{]CK as in the proof of the proposi-
tion; then

Wirj _ M),

Wi Nivj
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The first case of (17) is clear, because 7, ,=p. Suppose t=o0 and
jZ omod(p — 1); then p> 2, and y(—1)=—1; letting [, m, and n
run through F, we have

mn,:{ Zw‘(m):'“}{ N () c"}

m£ "0

- Z X»i (/n) X’“'/ (/L) :/,H_,,

mn£o
— Z{‘ 2 H(m) /()
! m—n=I
mn#0
:EX*"(—/L) =/ (1) —1—2 2 oyt (—Im) =7 (— In)
n#o0 l#0 m—+n=—1
mn=z£0
= (— )y () + (—1)”/{261 7 () }
nA0 1#£0
A el
ma-n=—1
mno

(_I)H_/_HY)H—}' :‘ (_ts _/)7 lf t+/£07

=1 (=D (p—1)— Z X"<%>7 if (+j=o0.

m4+n=—1
mn o

This proves the third case of (17), and the second results on replacing n
by mn in the last formula

Y u(n)= ¥ wm=—g—n=— (-

m-+n=—1 m(l+n)=—1
mnz0 nF#0, —1

Many of the facts established in the last few paragraphs are essentially
equivalent to well-known properties of the Jacobi sums J (i, ), and the
Gauss sums g(t) = —v_; attached to the multiplicative character 7° of
the prime field (e. g. see [5]). As examples we mention

p=2, A=2, wy=—1, Wy==2;

p=3, 4\3:Z[§J’ w, =1, Wy——1, wy— —3,
p =5, As:z[i’——i)]’ where =y (2) and #=—1,

wy=1, Wy=—1(2 +1), wy== (2 +1)2, w,=— (2 +1)2, ws=—>5 (2 +1)2
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We now continue our discussion on the S-group G. Let
Se,[L]=0s®LOITD. ..

denote the symmetric algebra generated by I, over Os. Lemma 2 shows
that the homomorphism S, [I,] -~ A induced by the inclusion I,CA is
surjective, and that its kernel is the ideal generated by (a —1)Q I1®7,
where

(18) ael(S, 127" = Hom, (1%, 1,)

is the element corresponding to the homomorphism I®” - I, induced by
the multiplication in A.

Let G' = Spec (A’) be the Cartier dual of G and let I'; I, and
a’' €Tl'(S, (I))®"")) be the analogs for G’ of I, I;, and a for G. Note that
the notation is consistent as (I,)’=1,, and (I,)’=(e;l,)’=1,. By
theorem 1 the Cartier pairing G X G'— G, factors through p,s and
1s therefore given by a homomorphism

@ BS:05®AB:@S[}/]._>A®L‘)SA"

Lemma 3. — The image 9 (y) of y ts a generating section of 1, QI ; if we
use it to identify I, with 127", then a @ a’ = w,.1,..

Proof. — The Cartier pairing (&, 2')— (%, &> satisfies

<‘am’ (5,)'l> — <éa a/ >mn'
Hence, for all m,n€F,

([(m]Q[n]) oy =0 ([mn]y) =¢ (g (mn)y) =y (m)y(n)sy.

On the other hand, by lemma 2, I;® I consists of the local sections h
of A® A’ which satisfy ([m] @ [n])h =y (m)y/(n)h;hence pyel'(S,I,Q I,).
Clearly 9y does not vanish at any point s€ S, for if it did, then the Cartier
pairing on the fibre G, X G, Gn,, would degenerate. Since ¢ is a
homomorphism of algebras, w,.0y=(ey)’=(¢ey)*’Ra®a’, and this
shows that a @ a'= w,, if we identify I, @ I, with O in such a way that
oy=1. This proves the lemma.

Tueorem 2. — For any prescheme S over Spec (A), the map G— (I, a, a)
discussed above gives a bijection between the isomorphism classes of S-groups
of order p and the isomorphism classes of triples (L, a, b) consisting of an
invertible Og-module L, a section a €T (S, L®7™"), and a section b€ (S, L2"7)),
such that a@ b=w),.1,.

Proof. — It 1s clear from lemma 3 and the discussion preceeding it,
that from a triple (I}, a, a’) we can reconstruct the S-preschemes G and






