DAVID GIESEKER

Stable vector bundles and the frobenius morphism

Annales scientifiques de l’É.N.S. 4e série, tome 6, n° 1 (1973), p. 95-101

<http://www.numdam.org/item?id=ASENS_1973_4_6_1_95_0>
1. Let X be a curve of genus g, proper and smooth over an algebraically closed field, and let E be a vector bundle over X. Mumford defines E to be semi-stable if whenever F is a quotient bundle of E, then

\[
\frac{\deg F}{\text{rank } F} \leq \frac{\deg E}{\text{rank } E},
\]

where $\deg E$ is the degree of the line bundle \mathcal{O}_E, r the rank of E. If the characteristic of X is $p > 0$, $E^{(p)}$ will denote Frobenius pullback of E.

Theorem 1. — For each prime p and integer $g > 1$, there is a curve X of genus g in characteristic p and a semi-stable bundle E of rank two on X so that $E^{(p)}$ is not semi-stable.

Examples of non-ample semi-stable bundles of positive degree constructed by Serre for $p = g = 3$ and later by Tango for $p(p - 1) = 2g$ incidentally proved Theorem 1 when $p(p - 1) = 2g$.

We prove Theorem 1 by constructing a sequence of bundles E_n so that $E_n^{(p)}$ is isomorphic to E_{n-1}, and E_1 is not semi-stable. In such a sequence, we must have E_n semi-stable for $n \geq 0$, and then we obtain the E of Theorem 1 as the first semi-stable E_n.

The bundles E_n will be constructed in the following situation: Let $\Lambda = k[[t]]$, where k is a field of characteristic $p > 0$, and let X be a stable curve over Λ with k-split degenerate fiber in the sense of Mumford [5]. Thus by definition X is proper and flat over Λ, and its geometric fibers are reduced, connected and one dimensional. Further, all the normalizations of the components of the special fiber X_s of X are isomorphic to \mathbb{P}^1, and the singularities of X_s are double points with $2k$-rational branches. Further each component X_s meets at least three other
components counting itself. We also assume the generic fiber is smooth over K, the quotient field of A.

Let Y_0 be the universal covering scheme of X_0, i.e. there is an etale map p_0 from Y_0 to X_0 with the usual universal mapping property. Y_0 is not of finite type over A. Mumford shows that the group G of covering transformations of Y_0 over X_0 is a free group on g generators, g the genus of X_K. G operates freely and discontinuously in the Zariski topology of Y_0.

Section two is devoted to associating to each representation γ of G on K^m a sequence of bundles E_n on $X_K^{(n)}$ so that $F^* E_n$ is isomorphic to E_{n-1}, where $X_K^{(n)}$ is the fiber product of X with the n^{th} iterate of the Frobenius map on $\text{Spec } K$, and F is relative Frobenius. The construction of E_n from γ is analogous to the construction of a bundle E' on a smooth, compact complex variety X' from a representation γ' of the fundamental group of X' on \mathbb{C}^n. Further, the sequence $\{ E_n \}$ defines a stratification on E_1, which is analogous to the stratification on E' whose monodromy is γ' [2].

Section three is devoted to the study of the bundle associated to a particular representation γ of G on K^2 which arises in Mumford's work. We show that the E_1 associated to γ is not semi-stable. This γ is analogous to the following γ' associated to a compact Riemann surface X'. Let $a_1, \ldots, a_g, b_1, \ldots, b_g$ be the usual generators of $\pi_1(X')$, and let U be an open subset of \mathbb{P}^1, and let π be a covering map from U to X'. Assume that the group G of covering transformations acts on U by linear fractional transformations, and that G is freely generated by the images of b_1, \ldots, b_g. Such a π is called a Schottky uniformization. Thus we have a homomorphism from G to $\text{PGL}(2, \mathbb{C})$, and this lifts to a homomorphism γ' of $\pi_1(X)$ to $\text{SL}(2, \mathbb{C})$. Following Gunning, one may show the bundle E associated to γ' is an extension

$$0 \to L \to E \to L^{-1} \to 0$$

where $L^{\otimes 2}$ is isomorphic to $\Omega^1_{X,\mathbb{C}}$. In particular, E is not semi-stable. The representation γ of G on K^2 is the rigid analytic analogue of γ', and the bundle E_1 associated to γ is an extension of the above type.

We conclude by noting that semi-stable bundles are not closed under symmetric product and with some examples of semi-stable bundles of positive degree which are not ample.

2. X will continue to denote a stable curve over A with smooth generic fiber and k-split degenerate fiber, Y_0 the universal covering space of X_0, and G the group of covering transformations of Y_0. There is a unique structure of a formal scheme Y with underlying space Y_0 and an etale
map p of Y to \hat{X} which reduces to p_o, \hat{X} being the completion of X along X_o.

Definition. — Meromorphic descent data on a coherent sheaf F over Y is a collection of elements $h_g \in \Gamma(Y, \text{Hom}_{\mathcal{O}_Y}(F, g^* F) \otimes K)$ for each $g \in G$ so that

$$h_g \circ g^* (h_g) = h_g^g,$$

and h_c is the identity. If $\{ h_c \}$ and $\{ h^g \}$ are sets of meromorphic descent data on F and G respectively, a map from $\{ h_c \}$ to $\{ h^g \}$ is an element $f \in \Gamma(Y, \text{Hom}_{\mathcal{O}_Y}(F, G) \otimes K)$ so that

$$k_c \circ f = g^* (f) \circ h^g.$$

We will show the category of coherent sheaves on Y with meromorphic descent data is equivalent to the category of coherent sheaves on X_o.

Lemma 1. — Given meromorphic descent data on a coherent sheaf F on Y, there is a coherent F' with descent data $h' \in \text{Hom}_{\mathcal{O}_Y}(F', g^* F')$ so that $\{ h' \}$ and $\{ h^g \}$ are isomorphic. F' may be taken to have no A torsion.

Proof. — We may assume F has no A torsion by replacing it by its image in $F \otimes_A K$. We will construct a coherent subsheaf F' of $F \otimes_A K$ so that the map of $F' \otimes_A K$ to $F \otimes_A K$ is an isomorphism and so that

$$h_g (F') = g^* F'$$

where we are regarding h_g as a map of $F \otimes_A K$ to $g^* (F \otimes_A K)$. Suppose such an F' has been constructed over a G invariant open set U of Y, and let V be a quasi compact open not contained in U so that $V \cap g V \subseteq U$ if $g \neq e$. V exists, since G acts discontinuously and has no torsion.

F' may be extended to a coherent subsheaf of $F \otimes_A K$ over $V \cup U$ using the following idea of Raynaud. On $V \cap U$, we may find an N so that

$$F \subseteq F' \subseteq t^{-N} F,$$

where t is a uniformizing parameter of A. Let \overline{F}' be the image of F' in $t^{-N} F/t^N F$. \overline{F}' is a coherent sheaf on a scheme whose sheaf of local rings is $\mathcal{O}_Y/t^{-N} \mathcal{O}_Y$. Thus \overline{F}' extends to a coherent subsheaf \overline{F}'' of $t^{-N} F/t^N F$ over $V \cup U$. The inverse image \overline{F}'' of \overline{F}'' in $t^{-N} F$ extends F'. Finally, F' may be extended to the G invariant open set consisting of the union of the translates of $V \cup U$ by taking the subsheaf of $F \otimes_A K$ generated by $h^{-1}_g (g^* F'')$ over $U \cap g^{-1} V$.

Annales Scientifiques de l'École Normale Supérieure
Given a coherent F on X, the natural map

$$h^F_y: p^* F \to g^* p^* F$$

gives meromorphic descent data on $p^* F$.

Lemma 2. — Let $\{ h_x \}$ be meromorphic descent data on a coherent F. There is a coherent H on \hat{X} so that $\{ h_x \}$ is isomorphic to $\{ h^H_x \}$. Further the natural map α,

$$\text{Hom}_{\hat{X}}(H, H') \otimes \Lambda K \to \text{Hom}(\{ h^H_x \}, \{ h^H'_x \})$$

is an isomorphism.

Proof. — By Lemma 1, we may assume h_x maps F to $g^* (F)$. There is a quasi-compact open U of Y so that the translates of U by G cover Y. $\{ h_x \}$ gives descent data for the morphism $U \to \hat{X}$ and so F descends to a coherent H on \hat{X}, and $\{ h_x \}$ is isomorphic to $\{ h^H_x \}$.

If $f \in \text{Hom}(\{ h^H_x \}, \{ h^H'_x \})$, then $t^n f$ gives a morphism from $p^* H$ to $p^* H'$ compatible with descent data, and so a morphism from H to H'. Thus α is surjective. On the other hand, if $f \in \text{Hom}_{\hat{X}}(H, H')$ and if $\alpha (f) = 0$, then $t^n p^* (f) = 0$, and so $t^n f = 0$ for some integer N. So f is zero in $\text{Hom}_{\hat{X}}(H, H') \otimes \Lambda K$, and α is injective.

Proposition 1. — There is an equivalence of categories α from the category of coherent sheaves on X_k to the category of coherent sheaves on Y with meromorphic descent data. If F is a coherent sheaf on X, $\alpha (F_k)$ is the descent data $\{ h^F_x \}$ on $p^* (\hat{F})$.

Proof. — Consider the category C whose objects are coherent sheaves on X, with $\text{Hom}'(F, G) = \text{Hom}_{\hat{X}}(F, G) \otimes \Lambda K$. C maps isomorphically to the category of coherent sheaves on X_k. On the other hand, Grothendieck’s existence theorem and lemma 2 show that it maps isomorphically to the category of coherent sheaves with descent data on Y.

Any representation φ of G on K^n gives meromorphic descent data $\{ h^\varphi_x \}$ on \mathcal{O}_Y, and so a bundle $F_{\varphi, x} = x^{-1} \{ h^\varphi_x \}$. When char $k = p > 0$, we let $F: X \to X^{(p)}$ be the relative Frobenius morphism. $X^{(p)}$ is a stable curve with k split degenerate fiber, and the fundamental group of its special fiber is G. Further we have

$$F_{\varphi, x} = F^* (F_{\varphi, x'})$$
Thus we have proven:

Proposition 2. — If \(\varphi \) is a representation of \(G \) on \(K^2 \) and \(F_i \) is pullback of \(F_{\varphi} \) to \(X_K \), then there is a sequence of bundles \(F_1, F_2, \ldots \) so that \(F_{k+1}^p \) is isomorphic to \(F_k \).

Remark. — There is in fact a unique stratification on \(F_i \) associated to the sequence \(|F_i| \) [2]. This stratification may be defined directly, and exists even when \(\text{char } K = 0 \).

3. Mumford's theory [5] gives us a natural representation of \(G \) on \(K^2 \) in the following way: Let \(D \) be a positive Cartier divisor on \(Y \) so that \(D \) meets only one component of \(Y_0 \), and let \(L \) be the quotient field of \(\bigcup_{n=0}^{\infty} \Gamma(Y, \mathcal{O}_Y(nD)) \).

\(L \) does not depend on \(D \), and since \(G \) acts on \(Y \), we get a homomorphism from \(G \) to the \(K \)-linear automorphisms \(\text{PGL}(2, K) \) of \(L \). This homomorphism may be lifted to a homomorphism \(\gamma \) of \(G \) to \(\text{SL}(2, K) \) since \(G \) is free. We will show that \(F_{\varphi, \gamma} \) is not semi-stable.

Lemma 3. — There is a transcendence basis \(\{ z \} \) of \(L \) over \(K \) so that \(z \) and \(\frac{1}{z} \) are sections of \(\mathcal{O}_Y \otimes K \). Further, multiplication by \(dz \) gives an isomorphism of \(\mathcal{O}_Y \otimes K \) with \(\Omega_{Y/K}^1 \otimes K \).

Proof. — Let \(\gamma \in \text{PGL}(2, K) \) be a non-identity element in the image of \(G \). \(\gamma \) is known to be hyperbolic, so let \(P_1 \) and \(P_2 \) be its two fixed points in \(\mathbb{P}^1 \), and let \(z \) be a function on \(\mathbb{P}^1 \) having a pole at \(P_1 \), a zero at \(P_2 \), and no other poles or zeros. Identifying \(L \) with the functions on \(\mathbb{P}^1 \), we get an element \(z \) of \(L \). Any quasi-compact open \(V \) of \(Y \) may be embedded via an open immersion in the formal completion of an \(A \)-scheme whose generic fiber is \(\mathbb{P}^1 \) so that \(L \) is identified with the rational functions on \(\mathbb{P}^1 \) as above and so that the closures of \(P_1 \) and \(P_2 \) do not meet \(V \cap Y_0 \) ([5], Prop. 2.5, 4.20). The lemma follows using this \(z \).

Lemma 4. — There is an exact sequence

\[
0 \to L \to F_{\varphi, \gamma} \to L^{-1} \to 0
\]

where \(F_{\varphi, \gamma} \) is the bundle associated to the representation \(\gamma \) of \(G \) on \(K^2 \) considered above, and \(L^{\mathcal{O}_Y} \cong \Omega_{Y/K}^1 \).

Proof. — Let \(\{ h_{\gamma} \} \) be the meromorphic descent data on \(\mathcal{O}_Y \) defined by \(\gamma \). If

\[
\rho_{\gamma} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]
as a matrix, define descent data \(\{ h'_{\varphi} \} \) on \(\mathcal{O}_X \),

\[
h'_{\varphi} : \mathcal{O}_X \to \mathcal{O}_X \otimes_{\Lambda} K
\]

by

\[
h'_{\varphi}(f) = \frac{f}{cz + d}.
\]

Let \(\varphi \) be the section of \(\text{Hom}(\mathcal{O}_X, \mathcal{O}_X) \otimes_{\Lambda} K \) defined by sending \(f \) to the vector \((zf, f) \). \(\varphi \) is a map of the descent data \(\{ h'_{\varphi} \} \) to \(\{ h_{\varphi} \} \) since

\[
g^* (z) = \frac{az + b}{cz + d}.
\]

The cokernel of \(\varphi \) is \(\mathcal{O}_X \) with descent data \(\{ h''_{\varphi} \} \),

\[
h''_{\varphi}(f) = (cz + d) f.
\]

Letting \(L \) denote the line bundle on \(X_K \) obtained from \(\{ h'_{\varphi} \} \), we have an exact sequence

\[
0 \to L \to F_\varphi \to L^{-1} \to 0.
\]

It remains to identify \(L^{\otimes 2} \) with \(\Omega^1_{X_K/K} \). \(L^{\otimes 2} \) is the bundle associated to the meromorphic descent data

\[
h''_{\varphi} = \frac{1}{(cz + d)^2}.
\]

Since \(g^* (dz) = \frac{dz}{(cz + d)^2} \) and since multiplication by \(dz \) gives an isomorphism of \(\Omega^1_{X_K/K} \otimes_{\Lambda} K \) with \(\mathcal{O}_X \otimes_{\Lambda} K \), we see \(L^{\otimes 2} \) is \(\Omega^1_{X_K/K} \).

Let \(F_i \) denote the pullback of \(F_{\varphi, x} \) to \(X_K \). Proposition 2 shows there is a sequence of bundles \(F_k \) on \(X_K \) so that \(F_k^{(p^k)} \cong F_{k-1}^{(p^{k-1})} \).

Lemma 5. — If \(g \leq p^{k-1} \), then the \(F_k \) above is semi-stable.

Proof. — Suppose \(F_k \) were not semi-stable. Then \(F_k \) would have a quotient bundle of negative degree. Thus \(F_i = P_k^{(p^{k-i})} \) would have a quotient bundle \(L' \) of degree at most \(-p^{k-1} \). Then there is a non-zero map \(\varphi \) from either \(L \) or \(L^{-1} \) to \(L' \). The degree of \(L \) is \(g - 1 \), and so \(\varphi \) cannot exist if \(g - 1 < p^{k-1} \).

Proof of Theorem 1. — It suffices to show that for each \(g > 1 \) and each algebraically closed field \(k \) of characteristic \(p \), there is a stable curve of genus \(g \) over \(k[[t]] \) whose generic fiber is smooth and geometrically connected, and whose special fiber is \(k \)-split degenerate. Let \(X_0 \) be a rational curve over \(k \) with \(g \) nodes. There is a complete regular local ring \(B \) of characteristic \(p \) with residue field \(k \) and a lifting \(X \) of \(X_0 \) to Spec \(B \).
so that the generic fiber of \(X \) is smooth and connected \([1]\). Pulling back by a suitably generic map of \(\text{Spec } k[[t]] \) to \(\text{Spec } B \) gives the desired curve.

Finally, we give two consequences of Theorem 1.

Corollary 1. — For each prime \(p > 0 \) and integer \(g > 1 \), there is a smooth curve \(X \) of genus \(g \) over an algebraically closed field \(k \) of characteristic \(p \) and a semi-stable bundle \(E \) so that \(S^p(E) \) is not semi-stable.

Proof. — \(E^{(p)} \) is a subbundle of \(S^p(E) \), and the degree of \(S^p(E) \) is zero, where \(E \) is the bundle of Theorem 1.

Remark. — Hartshorne has shown that in characteristic zero, every symmetric power of a semi-stable bundle is semi-stable \([3]\).

Corollary 2. — For each prime \(p > 0 \) and integer \(g > 1 \), and each positive integer \(n < \frac{g-1}{p} \), there is a semi-stable bundle of rank 2 and degree \(2n \) on a curve of genus \(g \) which is not ample.

Proof. — If \(E \) is the bundle of Theorem 1, consider \(E \otimes L \), where \(L \) is a line bundle of degree \(n \). \((E \otimes L)^{(p)} \) has a quotient of non-positive degree, so \(E \otimes L \) is not ample.

It is known that if \(\deg E > \frac{2g-2}{p} \), and \(E \) is semi-stable of rank two, then \(E \) is ample \([4]\).

REFERENCES

(Manuscrit reçu le 6 novembre 1972.)

D. Gieseker,
Columbia University,
Department of Mathematics,
New York, N. Y. 10027,
U. S. A.