DAVID GIESEKER

Stable vector bundles and the frobenius morphism

Annales scientifiques de l’É.N.S. 4e série, tome 6, no 1 (1973), p. 95-101

<http://www.numdam.org/item?id=ASENS_1973_4_6_1_95_0>
1. Let X be a curve of genus g, proper and smooth over an algebraically closed field, and let E be a vector bundle over X. Mumford defines E to be semi-stable if whenever F is a quotient bundle of E, then

\[
\frac{\deg F}{\text{rank } F} \geq \frac{\deg E}{\text{rank } E},
\]

where $\deg E$ is the degree of the line bundle \mathcal{O}_E, r the rank of E. If the characteristic of X is $p > 0$, $E^{(p)}$ will denote Frobenius pullback of E.

Theorem 1. For each prime p and integer $g > 1$, there is a curve X of genus g in characteristic p and a semi-stable bundle E of rank two on X so that $E^{(p)}$ is not semi-stable.

Examples of non-ample semi-stable bundles of positive degree constructed by Serre for $p = g = 3$ and later by Tango for $p(p - 1) = 2g$ incidentally proved Theorem 1 when $p(p - 1) = 2g$.

We prove Theorem 1 by constructing a sequence of bundles E_n so that $E_n^{(p)}$ is isomorphic to E_{n-1}, and E_1 is not semi-stable. In such a sequence, we must have E_n semi-stable for $n \gg 0$, and then we obtain the E of Theorem 1 as the first semi-stable E_n.

The bundles E_n will be constructed in the following situation: Let $\Lambda = k[[t]]$, where k is a field of characteristic $p > 0$, and let X be a stable curve over Λ with k-split degenerate fiber in the sense of Mumford [5]. Thus by definition X is proper and flat over Λ, and its geometric fibers are reduced, connected and one dimensional. Further, all the normalizations of the components of the special fiber X_s of X are isomorphic to \mathbb{P}^1, and the singularities of X_s are double points with $2k$-rational branches. Further each component X_s meets at least three other
components counting itself. We also assume the generic fiber is smooth over \(K \), the quotient field of \(A \).

Let \(Y_0 \) be the universal covering scheme of \(X_0 \), i.e. there is an etale map \(p_0 \) from \(Y_0 \) to \(X_0 \) with the usual universal mapping property. \(Y_0 \) is not of finite type over \(A \). Mumford shows that the group \(G \) of covering transformations of \(Y_0 \) over \(X_0 \) is a free group on \(g \) generators, \(g \) the genus of \(X_k \). \(G \) operates freely and discontinuously in the Zariski topology of \(Y_0 \).

Section two is devoted to associating to each representation \(\rho \) of \(G \) on \(K^m \) a sequence of bundles \(E_n \) on \(X_k^{(n)} \) so that \(F^* E_n \) is isomorphic to \(E_{n-1} \), where \(X_k^{(n)} \) is the fiber product of \(X \) with the \(n \)th iterate of the Frobenius map on \(\text{Spec} \, K \), and \(F \) is relative Frobenius. The construction of \(E_n \) from \(\rho \) is analogous to the construction of a bundle \(E' \) on a smooth, compact complex variety \(X' \) from a representation \(\rho' \) of the fundamental group of \(X' \) on \(\mathbb{C}^m \). Further, the sequence \(|E_n| \) defines a stratification on \(E_1 \), which is analogous to the stratification on \(E' \) whose monodromy is \(\rho' \) [2].

Section three is devoted to the study of the bundle associated to a particular representation \(\rho \) of \(G \) on \(K^2 \) which arises in Mumford's work. We show that the \(E_1 \) associated to \(\rho \) is not semi-stable. This \(\rho \) is analogous to the following \(\rho' \) associated to a compact Riemann surface \(X' \). Let \(a_1, \ldots, a_g, b_1, \ldots, b_g \) be the usual generators of \(\pi_1(X') \), and let \(U \) be an open subset of \(\mathbb{P}^1 \), and let \(\pi \) be a covering map from \(U \) to \(X' \). Assume that the group \(G \) of covering transformations acts on \(U \) by linear fractional transformations, and that \(G \) is freely generated by the images of \(b_1, \ldots, b_g \). Such a \(\pi \) is called a Schottky uniformization. Thus we have a homomorphism from \(G \) to \(\text{PGL}(2, \mathbb{C}) \), and this lifts to a homomorphism \(\rho' \) of \(\pi_1(X) \) to \(\text{SL}(2, \mathbb{C}) \). Following Gunning, one may show the bundle \(E \) associated to \(\rho' \) is an extension

\[
0 \to L \to E \to L^{-1} \to 0
\]

where \(L^\otimes 2 \) is isomorphic to \(\Omega^1_{X, \mathbb{C}} \). In particular, \(E \) is not semi-stable. The representation \(\rho \) of \(G \) on \(K^2 \) is the rigid analytic analogue of \(\rho' \), and the bundle \(E_1 \) associated to \(\rho \) is an extension of the above type.

We conclude by noting that semi-stable bundles are not closed under symmetric product and with some examples of semi-stable bundles of positive degree which are not ample.

2. \(X \) will continue to denote a stable curve over \(A \) with smooth generic fiber and \(k \)-split degenerate fiber, \(Y_0 \) the universal covering space of \(X_0 \), and \(G \) the group of covering transformations of \(Y_0 \). There is a unique structure of a formal scheme \(Y \) with underlying space \(Y_0 \) and an etale
map p of Y to \hat{X} which reduces to p_o, \hat{X} being the completion of X along X_o.

Definition. — Meromorphic descent data on a coherent sheaf F over Y is a collection of elements $h_g \in \Gamma(Y, \underline{\text{Hom}}_{\text{crys}}(F, g^* f) \otimes \Lambda K)$ for each $g \in G$ so that

$$h_g \circ g^*(h_{g'}) = h_{gg'},$$

and h_e is the identity. If $\{h_g\}$ and $\{k_g\}$ are sets of meromorphic descent data on F and G respectively, a map from $\{h_g\}$ to $\{k_g\}$ is an element $f \in \Gamma(Y, \underline{\text{Hom}}_{\text{crys}}(F, G) \otimes \Lambda K)$ so that

$$k_g \circ f = g^*(f) \circ h_g.$$

We will show the category of coherent sheaves on Y with meromorphic descent data is equivalent to the category of coherent sheaves on X_o.

Lemma 1. — Given meromorphic descent data on a coherent sheaf F on Y, there is a coherent F' with descent data $h'_g \in \underline{\text{Hom}}_{\text{crys}}(F', g^* F')$ so that $\{h_g\}$ and $\{h'_g\}$ are isomorphic. F' may be taken to have no Λ torsion.

Proof. — We may assume F has no Λ torsion by replacing it by its image in $F \otimes \Lambda K$. We will construct a coherent subsheaf F' of $F \otimes \Lambda K$ so that the map of $F' \otimes \Lambda K$ to $F \otimes \Lambda K$ is an isomorphism and so that

$$h_g(F') = g^* F'$$

where we are regarding h_g as a map of $F \otimes \Lambda K$ to $g^* (F \otimes \Lambda K)$. Suppose such an F' has been constructed over a G invariant open set U of Y, and let V be a quasi compact open not contained in U so that $V \cap g V \subseteq U$ if $g \neq e$. V exists, since G acts discontinuously and has no torsion.

F' may be extended to a coherent subsheaf of $F \otimes \Lambda K$ over $V \cup U$ using the following idea of Raynaud. On $V \cap U$, we may find an N so that

$$F \subseteq F' \subseteq t^{-N} F,$$

where t is a uniformizing parameter of Λ. Let \bar{F}' be the image of F' in $t^{-N} F/t^N F$. \bar{F}' is a coherent sheaf on a scheme whose sheaf of local rings is $\mathcal{O}/t^{-N} \mathcal{O}$. Thus \bar{F}' extends to a coherent subsheaf \bar{F}'' of $t^{-N} F/t^N F$ over $V \cup U$. The inverse image \bar{F}'' of \bar{F}'' in $t^{-N} F$ extends F'. Finally, F' may be extended to the G invariant open set consisting of the union of the translates of $V \cup U$ by taking the subsheaf of $F \otimes \Lambda K$ generated by $h_g^{-1} (g^* F'')$ over $U \cap g^{-1} V$.

Annales Scientifiques de l'École Normale Supérieure
Given a coherent \(F \) on \(\hat{X} \), the natural map

\[
h^F : p^* F \to g^* p^* F
\]

gives meromorphic descent data on \(p^* F \).

Lemma 2. — Let \(\{ h^*_x \} \) be meromorphic descent data on a coherent \(F \). There is a coherent \(H \) on \(\hat{X} \) so that \(\{ h^*_x \} \) is isomorphic to \(\{ h^*_g \} \). Further the natural map \(\varpi \),

\[
\text{Hom}_{\mathcal{E}X} (H, H') \otimes \lambda K \xrightarrow{\varpi} \text{Hom}(\{ h^*_x \}, \{ h^*_g \})
\]
is an isomorphism.

Proof. — By Lemma 1, we may assume \(h^*_x \) maps \(F \) to \(g^* (F) \). There is a quasi-compact open \(U \) of \(Y \) so that the translates of \(U \) by \(G \) cover \(Y \). \(\{ h^*_x \} \) gives descent data for the morphism \(U \to \hat{X} \) and so \(F \) descends to a coherent \(H \) on \(\hat{X} \), and \(\{ h^*_x \} \) is isomorphic to \(\{ h^*_g \} \).

If \(f \in \text{Hom}(\{ h^*_x \}, \{ h^*_g \}) \), then \(t^n f \) gives a morphism from \(p^* H \) to \(p^* H' \) compatible with descent data, and so a morphism from \(H \) to \(H' \). Thus \(\varpi \) is surjective. On the other hand, if \(f \in \text{Hom}_{\mathcal{E}X} (H, H') \) and if \(\varpi (f) = 0 \), then \(t^n p^* (f) = 0 \), and so \(t^n f = 0 \) for some integer \(N \). So \(f \) is zero in \(\text{Hom}_{\mathcal{E}X} (H, H') \otimes \lambda K \), and \(\varpi \) is injective.

Proposition 1. — There is an equivalence of categories \(\varpi \) from the category of coherent sheaves on \(X_\kappa \) to the category of coherent sheaves on \(Y \) with meromorphic descent data. If \(F \) is a coherent sheaf on \(X \), \(\varpi (F_\kappa) \) is the descent data \(\{ h^*_g \} \) on \(p^*(\hat{F}) \).

Proof. — Consider the category \(C \) whose objects are coherent sheaves on \(X \), with \(\text{Hom}'(F, G) = \text{Hom}_{\mathcal{E}X} (F, G) \otimes \lambda K \). \(C \) maps isomorphically to the category of coherent sheaves on \(X_\kappa \). On the other hand, Grothendieck's existence theorem and lemma 2 show that it maps isomorphically to the category of coherent sheaves with descent data on \(Y \).

Any representation \(\zeta \) of \(G \) on \(\kappa^* \) gives meromorphic descent data \(\{ h^*_x \} \) on \(\mathcal{O}_Y \), and so a bundle \(F_{p, x} = \pi^{-1} \{ h^*_x \} \). When \(\text{char } k = p > 0 \), we let \(F : X \to X^{(p)} \) be the relative Frobenius morphism. \(X^{(p)} \) is a stable curve with \(k \) split degenerate fiber, and the fundamental group of its special fiber is \(G \). Further we have

\[
F_{p, x} = F^* (F_{p, x^e}).
\]
Thus we have proven:

Proposition 2. — If φ is a representation of G on K^n and F_1 is pullback of F_φ to X_K, then there is a sequence of bundles F_1, F_2, \ldots so that F_{k+1}^φ is isomorphic to F_k.

Remark. — There is in fact a unique stratification on F_1 associated to the sequence $|F_i|$ [2]. This stratification may be defined directly, and exists even when $\text{char } K = 0$.

3. Mumford's theory [5] gives us a natural representation of G on K^2 in the following way: Let D be a positive Cartier divisor on Y so that D meets only one component of Y_0, and let L be the quotient field of

$$\bigcup_{n \geq 0} \Gamma(Y, \mathcal{O}_Y(nD)).$$

L does not depend on D, and since G acts on Y, we get a homomorphism from G to the K-linear automorphisms $\text{PGL} (2, K)$ of L. This homomorphism may be lifted to a homomorphism $\tilde{\varphi}$ of G to $\text{SL} (2, K)$ since G is free. We will show that $F^\varphi_{x_1}$ is not semi-stable.

Lemma 3. — There is a transcendance basis $\{z\}$ of L over K so that z and $\frac{1}{z}$ are sections of $\mathcal{O}_Y \otimes \Lambda K$. Further, multiplication by dz gives an isomorphism of $\mathcal{O}_Y \otimes \Lambda K$ with $\Omega^1_{Y/\Lambda} \otimes \Lambda K$.

Proof. — Let $\gamma \in \text{PGL} (2, K)$ be a non-identity element in the image of G. γ is known to be hyperbolic, so let P_1 and P_2 be its two fixed points in \mathbb{P}^1_K, and let z be a function on \mathbb{P}^1_K having a pole at P_1, a zero at P_2, and no other poles or zeros. Identifying L with the functions on \mathbb{P}^1_K, we get an element z of L. Any quasi-compact open V of Y may be embedded via an open immersion in the formal completion of an A-scheme whose generic fiber is \mathbb{P}^1_K so that L is identified with the rational functions on \mathbb{P}^1_K as above and so that the closures of P_1 and P_2 do not meet $V \cap Y_0$ ([5], Prop. 2.5, 4.20). The lemma follows using this z.

Lemma 4. — There is an exact sequence

$$0 \to L \to F^\varphi_{x_1} \to L^{-1} \to 0$$

where $F^\varphi_{x_1}$ is the bundle associated to the representation $\tilde{\varphi}$ of G on K^2 considered above, and $L^\otimes 2 \simeq \Omega^1_{X_K/K}$.

Proof. — Let $\{h^x_\varphi\}$ be the meromorphic descent data on \mathcal{O}_Y^x defined by φ. If

$$\varphi_\varphi = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPERIEURE
as a matrix, define descent data \(\{ h'_g \} \) on \(\mathcal{O}_Y \),

\[
\begin{align*}
 h'_g : \mathcal{O}_Y &\to \mathcal{O}_Y \otimes \Lambda K \\
 f &\mapsto \frac{f}{cz + d}.
\end{align*}
\]

Let \(\varphi \) be the section of \(\text{Hom}(\mathcal{O}_Y, \mathcal{O}_Y^*) \otimes \Lambda K \) defined by sending \(f \) to the vector \((zf, f) \). \(\varphi \) is a map of the descent data \(\{ h'_g \} \) to \(\{ h_g \} \) since

\[
 g^* (z) = \frac{az + b}{cz + d}.
\]

The cokernel of \(\varphi \) is \(\mathcal{O}_Y \) with descent data \(\{ h''_g \} \),

\[
 h''_g (f) = (cz + d)f.
\]

Letting \(L \) denote the line bundle on \(X_K \) obtained from \(\{ h'_g \} \), we have an exact sequence

\[
 0 \to L \to F_{\gamma} \to L^{-1} \to 0.
\]

It remains to identify \(L^\otimes 2 \) with \(\Omega^{i}_{X_K/K} \). \(L^\otimes 2 \) is the bundle associated to the meromorphic descent data

\[
 h''_g = \frac{1}{(cz + d)^2}.
\]

Since \(g^* (dz) = \frac{dz}{(cz + d)^3} \) and since multiplication by \(dz \) gives an isomorphism of \(\Omega^{i}_{X_K/K} \) with \(\mathcal{O}_Y \otimes \Lambda K \), we see \(L^\otimes 2 \) is \(\Omega^{i}_{X_K/K} \).

Let \(F_i \) denote the pullback of \(F_{\varphi, x} \) to \(X_K \). Proposition 2 shows there is a sequence of bundles \(F_k \) on \(X_K \) so that \(F_{\varphi, k} \cong F_{k-1} \).

Lemma 5. — If \(g \leq p^{k-1} \), then the \(F_k \) above is semi-stable.

Proof. — Suppose \(F_k \) were not semi-stable. Then \(F_k \) would have a quotient bundle of negative degree. Thus \(F_i = F^j_{p^{k-1}} \) would have a quotient bundle \(L' \) of degree at most \(-p^{k-1} \). Then there is a non-zero map \(\varphi \) from either \(L \) or \(L^{-1} \) to \(L' \). The degree of \(L \) is \(g - 1 \), and so \(\varphi \) cannot exist if \(g - 1 < p^{k-1} \).

Proof of Theorem 1. — It suffices to show that for each \(g > 1 \) and each algebraically closed field \(k \) of characteristic \(p \), there is a stable curve of genus \(g \) over \(k[[t]] \) whose generic fiber is smooth and geometrically connected, and whose special fiber is \(k \)-split degenerate. Let \(X_0 \) be a rational curve over \(k \) with \(g \) nodes. There is a complete regular local ring \(B \) of characteristic \(p \) with residue field \(k \) and a lifting \(X \) of \(X_0 \) to Spec \(B \).

4e série — tome 6 — 1973 — no 1
so that the generic fiber of X is smooth and connected [1]. Pulling back by a suitably generic map of $\text{Spec } k[[t]]$ to $\text{Spec } B$ gives the desired curve.

Finally, we give two consequences of Theorem 1.

Corollary 1. — For each prime $p > 0$ and integer $g > 1$, there is a smooth curve X of genus g over an algebraically closed field k of characteristic p and a semi-stable bundle E so that $S^p(E)$ is not semi-stable.

Proof. — $E^{(p)}$ is a subbundle of $S^p(E)$, and the degree of $S^p(E)$ is zero, where E is the bundle of Theorem 1.

Remark. — Hartshorne has shown that in characteristic zero, every symmetric power of a semi-stable bundle is semi-stable [3].

Corollary 2. — For each prime $p > 0$ and integer $g > 1$, and each positive integer $n < \frac{g-1}{p}$, there is a semi-stable bundle of rank 2 and degree $2n$ on a curve of genus g which is not ample.

Proof. — If E is the bundle of Theorem 1, consider $E \otimes L$, where L is a line bundle of degree n. $(E \otimes L)^{(p)}$ has a quotient of non-positive degree, so $E \otimes L$ is not ample.

It is known that if $\deg E > \frac{2g-2}{p}$, and E is semi-stable of rank two, then E is ample [4].

REFERENCES

(Manuscrit reçu le 6 novembre 1972.)

D. GIESEKER,
Columbia University,
Department of Mathematics,
New York, N. Y. 10027,
U. S. A.