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ON p-ADIC DIFFERENTIAL EQUATIONS IV
GENERALIZED HYPERGEOMETRIC FUNCTIONS AS p-ADIC

ANALYTIC FUNCTIONS IN ONE VARIABLE

BY B. DWORK

In a recent article, [I], we investigated the analytic continuation in
the sense of Krasner of certain ratios of generalized hypergeometric series.

We are concerned with the series (q ̂  n) :

p /9i, ...,9.;^
""'7-1 [ „

\^i, . . . » °y-i/

[c/*. equation (2.2) below]. Our previous methods permitted a discussion
of the case in which q = n and 1 = o-i = 0-2 — . . . = o\y_i. The present
article eliminates this restriction. Briefly, we show that subject to the
hypotheses of Theorem 3.1 below, we have the formal congruence of
equation (1.2). In [1, §3] we showed how such a congruence leads to
analytic continuation. The application of such functions to the theory
of zeta functions of varieties is explained in [1, § 6].

It is well known that n¥q^ satisfies an (f order ordinary differential
equation with rational coefficients. In paragraph 4 of this article we
obtain congruences (Theorem 4.1 below) satisfied by certain ratios of
solutions of these equations. It seems quite likely that the results of
this article can in the case q = n be deduced from the action of Frobenius
on p-adic cohomology ([2], [3]). However for q > n the differential equa-
tion satisfied by nFq-i has an irregular singularity and hence cannot be
obtained by variation of cohomology of algebraic varieties. Thus the
present article may provide new tests for conjectures [4] concerning the
existence of Frobenius structures for ordinary linear differential equations.

We assume throughout that q ̂  n. In the contrary case, q < n,
the origin would be the irregular singularity and the series given by equa-
tion (2.2) below would be of asymptotic type. This would not deprive
this situation of interest. From our point of view the difficulty is that
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296 B. DWORK

in this case ? == __ . would be negative and thus condition (iv) of

Lemma 2.2 below could be satisfied only under extremely unusual circums-
tances. (In any case paragraph 2 remains valid.) At the suggestion
of the referee some numerical examples are given in paragraph 5 to explain
how conditions (iv) and condition (vi) of paragraph 3 below may be readily
reduced to questions of primes in arithmetic progressions.

Notation :

D == completion of algebraic closure of the p-adic rationals;
® === ring of integers of ti;
d* = multiplicative group of II;
Z = ring of ordinary integers;
Z+ = the non-negative elements of Z;
(jt == the set of all rational numbers which are p-integral but which

are neither zero nor a negative rational integer;

^ -(-P)^;p = ^-
1. A FORMAL C O N G R U E N C E . — We first generalize Theorem 2 of [1]

THEOREM 1 .1 . — For r= 0, 1, . . ., let A^ be a mapping of Z+ into t2*
and let gr be a mapping of Z+ into ® — { 0 } such that

(i) ^(0)1=1;
(ii) A^(m)€g,.(m)©;

(iii) for all a, r, pi, ^EZ^- such that a <; p, [L < p8 we have

n ^ A7) (a + p p. + mp^) A(^1) (̂  + mp8) g^, (m)
vl • 1 / A(-) (a + p [J.) A^) (/JL) -= p ^ (a + p )̂ •

Furthermore, let

F (X) =^ A(°) (j) X/, G (X) = ̂  A(^) (j) X/( 0 ) (

/=0 7=0

and let Fm,s {respectively : Gm,s) denote the partial sum
(m-+-l)/^—l / (m+l)?1—! \

^ A(">0-)X/ (resp. ^ AD(7)X/
j=mp' \ j^mp'

Then

(1.2) F (X) G^ (XP) = G (XP) F,«,,+i (X) (mod g , (m) p^ [[Xj)).
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P-ADIC HYPERGEOMETRIC FUNCTIONS 297

Note. — The functions gr, may be viewed as mappings of Z+ into the
value group of Q. Given the mappings \{ A^ }r=o,i,..., the choice of g^
is to some extent arbitrary. In our earlier work we chose gr to be the
same as A^ |.

Proof, — Let a, N be positive integers, a < p. We denote by
Ha (m, 5, N), the coefficient of X^^ in the difference between the two
sides of equation (1.2). Precisely as in our earlier work,

(W4-1) /^—l

Ha (m, s, N) = ^ IL (j, N),
y == m p9

where
U.(j, N) == A(°) (a + p (N -j)) A^) (j) - A<1) (N -j) A(°) (a + pj).

We must show
(1 • 3) H, (m, s, N) € p^ gs^ (m) (D

for all m, 5, N € Z+.
For 5^1 let a.y denote the statement,

a,: Ha (/n, u, N) == 0 [mod p^1 ^+1 (m)] for u e [0, s); zn, N ̂  0.

For O^^^^ , let P<^ denote the statement,
ps-t_i

^.: H. (m, 5, N + znpQ - ̂  A^AO^(^P^O Hff u919 N) [mod ^^1 ^-M (m)!-
7=o

We now list three assertions whose validity imply equation (1.3).

ASSERTION 1. — Va (rn, N)€pgi (m).

ASSERTION 2. — For j << p\

U. (j + mp\ N + mpQ = A(l)^^mpo U. (7, N) [mod p^ ^^, (m)].

ASSERTION 3. — For t << 5, statements a.y, ^,.y imply ^t+i,s'

Before proving these assertions, we show that their validity implies
equation (1.3). Since

(1.4) U, (m, N) = H. (m, 0, N),

it is clear that Assertion 1 is equivalent to ai. We note that 60,^ is the
statement

ps-\
Po,,: H. (m, 5, N + mp8) = ̂  A(l)^+mpo H. (j, 0, N) [mod p^1 ̂ , (m)].

/=o w/
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298 B. DWORK

It follows from equation (1.4) and Assertion 2 that the right side of
statement p o , ^ coincides mod p^1 gs+i {m) (since the sum is over j < p ' )
with

p^-i
^ U. (j + mp\ N + mp8),
=0

which clearly coincides with the left side of [3o,.y Thus (assuming the
validity of the three assertions) we have verified ai and using induction,
assume y.s tor fixed 5^1. Having verified po , ,v? we assume p^, for
fixed (o€[0, s). Assertion 3 now implies pi-^,,, and hence we may assume
^t,s for all f€[0,5]. In particular this implies ^ s , s ' The remainder
of this part of the proof follows [1, Theorem 2]. Briefly : Let y^ he the
statement (a, s both fixed) :

Y N : H,(0,s,N)ep^1.

We know -y^ to11 N ̂  0. We let N' be minimal (if it exists) such that -y^
is false. By

A (^4-1) (rrA
^: Ha (m, s, N + mp8) = ̂ ^^v / Ha (0, s, N) [mod p^1 g,^ (m)],

^(54-1) /^-\

and using hypotheses (i), (ii), we conclude that A ( ^ + I ) /n\ ^ ̂  ^d hence
putting (for m > 0) N == N' — mp' < N', we conclude that for m > 0,

(1.5) H. (m, s, N') == 0 (mod p^1).

But for (T + 1) p5 > N', we have {cf. [1, equation (2.5)]) :
T

(1.6) ^ H. (m, s, N7) = 0.
rn=:0

Equations (1.5) and (1.6) show that Ha (0, s, N') === 0 (modp'4-1),
contradicting the choice of N'. This prove (y^) and equation (1.3) now
follows from ^s,s and hypotheses (i), (iii).

The proof of the theorem has thus been reduced to the proof of these
assertions.

Notation. — Let A^ (resp. A^) be denoted by A (resp. B).

Proof of Assertion 1. — By definition

., _. -- , —. , , . - , . rA (a + D (N — m)) B (N — m)~|
(1.7) U. (m, N) == A (a) B (m) ̂  v A (a)———~ B (0) J

^-^w[A^-B^].
4® S^RIE —— TOME 6 —— 1973 —— ?3



p-ADIC HYPERGEOMETRIC FUNCTIONS 299

We apply hypothesis (iii) (with 0 == r = s = [k) and obtain

U.(»z,N)eA(«)B(^^^m>(D+B(N-m)A(a)^)

which is
, , _ , A (a) [B (m) „ , B (N - m) ^~]

pg, (m) g, (N — m) —-— —-— €) + ——.——- 0v / " v / M<0 L^i (̂ ) ^i (N- m) J

and Assertion 1 now follows hypothesis (ii).

Proof of Assertion 2. — It follows from the definitions that

(1.8) U. (j + mp\ N + mpQ - A(l)^+^po U. (7, N)

, _B<N -,)A(^)[M^J-) _B(^1)].

Since ^ << p^, we may apply hypothesis (iii) and deduce that the right
side of the last equation lies in

n^' a (m\a W ft A (a + PJ) B(N-J').p g^ (m) ff, (N -^^(a+p^y,(n_^)'

which by hypothesis (ii) implies Assertion 2.

Proof of Assertion 3. — For t < s, we write P( , , in the form (putting
j = i + p y., i < p, a < p'-'-1) :

^ : H. (m, s, N + n )̂ =^ "^l ̂ î̂ ^.^^"0 H» (. + P ̂  t, N)
?=0 LL=0

[mod p54-1 ^+1 (/n)].

We are to show that this statement together with a., implies ^t+i,s-
By a purely formal manipulation, we deduce from ^ ,, that if we define X
by ^-i-(_i ^^ ^_ i

(1.9) H» (m, s, N + mp^) - ^ ^{w) ̂  J^~l~l) S H« (f + p ^. f, N) = X
?L=0 !'==0

then ^_i ^-(-i__i
(1.10) X=^ ^ H . ( f + P ^ / , N )

;=:0 pL==0

FA^4-1) (i + p a + mp^-O A^^2) OJL + mp^-1) ] .. , , ,,x L—M^a+p^ - —x^5—-I [mod p-1 ̂  (m)]-
In the sum on the right side of this last equation, [j. < p^""1 and hence

by hypothesis (iii) the expression in the square brackets lies in

® P^ 9M(m) .. Furthermore ( < s and hence by a,,

H, (i + p ̂  t, N) e p^1 gi^ (i + p ^) ^.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



300 B. DWORK

These estimates, together with (1.10) show that

(1.11) X - 0 [mod p^ g,^ (m)].

We recall [1, equation (2.G)] that
p — i

(1.12) H» ( ,̂ t + 1, N) =^ H^ (i + p y., t, N).
1=0

The statement, ^+1,, follows from equations (1.11), (1.09), (1.12).
This completes the proof of Assertion 3 and hence of the theorem.

2. BOXJNDEDNESS OF HYPERGEOMETRIC SERIES. — To apply the preceding
theorem to hypergeometric series, we must associate with each hyper-
geometric series, a sequence of such series and a definition of the auxiliary
functions, gr. In this section we give such definitions together with
sufficient conditions for the applicability of hypotheses (i), (ii) of the
theorem. (A corresponding discussion of hypothesis (iii) will be found in
paragraph 3 below.)

Let p be a fixed prime and let (£ be the set of all rational numbers which
are p-integral but are neither zero nor a negative rational integer. As in
[1, § 1] we use the mapping x -> x of € into itself, defined by the condition
that px — x be the minimal representative (in Z+) of the class of — x
mod p. By v-fold iteration, we obtain

(2.1) x->x^

a mapping of € into itself and we may use the same symbol to denote
the component-wise application of this mapping to M-tuples whose compo-
nents lie in C. If 9 (resp. a) is an yz-tuple [resp. (q — l)-tuple] with compo-
nents in C then the (generalized) hypergeometric function is defined by

(2.2) ^•^^A^X'"
in —Q

1

where ri == (— p)p~~l and
nn <^

^m (n-q) ̂  ̂  =

it being recalled that

(^=S 1 if m = 0,
x (x + 1) ... (x + m — 1) if m > 0.

4^ S^RIE —— TOME 6 —— 1973 —— ?3



P-ADIC HYPERGEOMETRIC FUNCTIONS 301

It is clear that for 9 and o- with components in C, we have associated

with nFn-i | ^ as defined by equation (2.2) , an infinite sequence

of hypergeometric series,

(2.3) ^_.[olv)^-"x]=i;AM(nOX-.
HI •= 0

In particular the original series (2 .2) corresponds to the case v == 0. [Note
that A^ (m) is defined by equation (2.3) and that this symbol should not
be taken to denote the result of applying to A (m) the operation of (2.1).]

Let q be the number of components, cr/, of o- such that CT/ 7^ 1. We
rearrange the subscripts so that a"/ 7^ 1 for j ^- q . We define the auxi-
liarly functions, g^;

A^) (m)(2.4) 9.(rn)=—<7'

['[(m+^r")]'[(m+^r")

For x e € , a€[0,p) we define

( 0 if a ̂  p x ' — x,
^'•^il if a > p x ' - x

and we put

No (d) =^ p (a, 9,)

and similarly
7'

NQ (a) ==^ p (a, <7y),

We define NQ(,) and N^,) by similar formulae, using the same value
of q ' for all cr^. For fixed x, the map a —^ p (a, r^) is discontinuous with
a certain jump. We use ^ (a -{-, x) to denote the limit of p (&, rr) as b
approaches a from the right. A similar meaning for N^ (a +)? No (a +)
is to be understood.

LEMMA 2.1. — For a, pi€Z+, a < p, we Aa^o
71

ord g o ( a + p l j : ) = No (a) - N^ (a +) +^ p (a, 9,) ord (^ + 9;.)

+^ (1 - p (a +, ay)) ord (^ + a',) + P a.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



302 B. DWORK

Proof. — We recall [1, equation 1.3] that for ^€^5

ord^-^ = ^ + (1 + ord (^ + ^/)) p(^ rr)
^ ;IJL

and in particular, for x = 1 the right side is just [j-. Thus we obtain
n

ord^^= ^;[ l+ord(f .+9; ) ]p(< , ,9 , )+pa
z=l

y
-^[1 + ord (p. + ̂ .)] p (a, cry)

7=1

y
+^ (ord (^ + ^y) — ord (a + p ^ + cry)).

7=1

The right-hand side of the last equation is clearly
n q '(I'

(a) - JN<, (a +) +^ ord (̂  + ̂ ) P (o, ^} +^ (Y/ + ^7) + P a,
i=l /==l

N9 (a) - N<, (a +) +^ ord (^ + 9,) p (a, 9.) +^ (Y/ + E^) + P ̂

where
Y; = (1 - p (a +, .̂)) ord (̂  + ^),
E/ === (P (^ +, (7/) -- P (a, cry)) (1 + ord (^ + ̂ .)) — ord (a + p ^ + cry).

The lemma follows from Ey = 0 which in turn follows from the explicit
formulae

/ , \ / \ ( 1 if tt = P O-y — cry,
P (d +, <7y) — p (a, (7y) = ^( 0 otherwise;

, ( 1 + ord (^ + <7y) if a = p cry - cry,
ord (a + P ^ + ^y) = ^ . -( 0 otherwise.

LEMMA 2.2. — J/' /br aH a, v €Z+, a < p, 7 == 1, 2, . . ., y' we Aa^e

(iv) p a + No( . ) ( a )^N^) (a+) ;
(v) | ̂ ^ = 1

then for all v, gv maps Z-+- 172(0 ® 072^ in particular

{^-'•^^[[X]].Fr9 '^'^^.
GT

Proof. — Using induction on m, we may use hypothesis (iv) and
Lemma 2.1 to show that g^ (m) € © for all v provided this holds for m = 0.
Since

^(O)--^—^

n^
4® SERIE —— TOME 6 — 1973 —— ?3
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hypothesis (v) shows that gv(0 )€®. This proves the assertion concer-
ning gv, and the lemma then follows from equation (2.4).

3. FORMAL C O N G R U E N C E S FOR HYPERGEOMETRIC SERIES. — We USC the

same notation as in paragraph 2. Our object is to find sufficient conditions
for the applicability of Theorem 1.1 to the series defined by equation (2.2).
Throughout this section we shall suppose that 9 ando- satisfy the conditions :

(v) cr^ [ = 1 for j = 1, 2, . . . , q\ v € Z+ and if p = 2 then q == n
(mod 2);

( v i ) p a + Ne( . ) (a )^N, ( . ) ( a+) + jgi (N,(.) (a+)) , for a€[0,p), v€Z^
(where J8i denotes the characteristic function of the set of strictly positive
real numbers, viewed as a subset of the reals). Hypothesis (vi) means
that gor each pair (v, a) we have either

(3.1) NQ(.) (a) = No(.) (a +) == 0

or

(3.2) (3 a + NQ(.) (a) - N<.(.) (a +) ̂  1.

LEMMA 3.1. — If pi < p ' then (for j == 1, 2, . . ., n'),

ord (07 + ̂  ^=. s.

Proof. — Suppose otherwise, say ord (o-i + p1) > s. Then
6-— 1

(3.3) .^^^(P^""-'7*.")
V==0

since the right side is the minimal (non-negative) integral representative
of — (TI modulo p\ Thus p. 4- ^i = J^ ^)- Hence (T^ = 0 (mod p),
which contradicts hypothesis (v).

LEMMA 3.2. — For a, [^, m, 5€Z+, a < p, p. <; j/, we /iape

(3 4) 90 (a + p ^ + mpw) € €* g^(m)

Denoting this ratio by u, we assert that

(3-5) ^pT-F^-o;9^60 =0 ^^^ ^r ^= l »2, . . . ,n ,

(3.6) ^-^p(^^.)^o (modp) /or 7 = 1 , 2 , ..^n'.
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Proof. — The first assertion follows from iteration of Lemma 2.1,
using ^ <; p\ This assertion is equivalent to

(3.7) ^° € (D (for all N e Z_)

^Lpd)
and hence in particular
(3.8) M^+mp-)^

^+1 (̂ )

Thus is verifying (3.5) we may with no loss in generality replace u by

' ( ' p—-' Equation (3.5) now follows from Lemma 2.1.

To verify equation (3.6) we may suppose j — 1,

a > p o\ — (7.1

so that equation (3.2) holds for v === 0. It follows from Lemma 2.1 that

ord^+^+^^l^i ( .̂ + mp') —

and hence it is enough to prove

^ '-^p^^^-
Setting ( = ord (^ + ^i) the assertion follows from (3.7) unless t > 0

as shall now be supposed. However, by the preceding lemma, t^- s.
For v = 0, 1, . . ., s — 1, put

^^_^[ii4^^
<^-([^:l]+;npi-v-l)

and we note that the left side of (3.9) is the same as ToTi . . . T,v-i.
By (3.7) each T,€© and hence we may prove (3.9) if we can show

(3.10) T ^ e p O for ^ =0, 1, . . . , < - 1.

The definition of t shows that

^ -2pv ^(7(lv+2) - ̂ lv+11) + ̂ 'M
where M€Z+.

Hence, for v ̂  ^ — 1, putting a^ = p ̂ ^ — ^+1), we have

[~]^^ (mod?)

4® SERIE —— TOME 6 —— 1973 —— ?3
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and hence by lemma 2.1, for v ̂  ( — 1,

ord Tv ̂  No(v+i) (o?v) — N,r(v+i) (fly +) + (3 a.
Now

N )̂ (^ +) ̂  p (av +, ̂ v+l)) = 1

and hence by hypothesis (vi), ord Tv ̂  1. This completes the proof
of the lemma.

THEOREM 3.1. — The hypotheses of Theorem 1 .1 are satisfied by the
functions A^, gv defined by equations (2.3), (2.4), it being understood
that hypotheses (v), (vi) are valid.

Proof. — Lemma 2.2 shows that gv is a mapping into ®, hypothesis (ii)
of Theorem 1.1 follows from equation (2.4) and hypothesis (i) is trivial.
The remainder of the proof concerns the verification of hypothesis (iii).

We may restrict our attention to the case r = 0 in that hypothesis
and as in paragraph 1 we use A (resp. B) to denote A^ (resp. A^).

We must show for [JL < p\

.B(^+7np-)\(3.11) A (a + P ^ + mp^) - A (a + p p.)- B(^)

x 1 e n.̂ i ^+1 (m)
A (a + p ^) r 9o(a+ p ^)

Let

H/ i _L mp-"' y^''7/)\L+]^-^-J
(3.12) Y = ^

\ p(^9;)mp'n • l^ + Q; /

We assert that (3.11) is implied by

(3.13) ^o (a + p p. + mp^1) (Y' - 1) e p^1 ̂ i (m) ̂

for all ¥'€(!+ p^1) Y, ^ < p\

To prove this assertion, we use [1, equations (1.1). (1.2)] which shows
that [if p = 2, we use here the hypothesis q = n (mod 2)] :

A(^ + P^)80^^ - A(^ + P^ + mp-OY'

where Y'€ Y 1 + (p^)) and hence (3.11) is implied by

(3.14) (Y- - 1) A^+PM-y-) ̂  . ^^^ (m)
A (a + P ̂ ) ^o (a + p ̂ )

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



306 B. DWORK

It follows from equation (2.4) that

A (a + p ^ + mp^) ̂  g, (a + p ^ + mp^) j-w / mp^1 .
A ( ^ + P ^ ) M^+P^) 11 \ o • 7 • + a + P ^ /

7=1

Since a + p pi < p^1, it follows from Lemma 3.1 that the factors
( ] '

of the product, ]̂ [, lie in ® and hence (3.14) is implied by the same
7=1

statement with the function A replaced by go. The assertion that equa-
tion (3.13) implies (3.11) is now clear. To verify equation (3.13) we
consider three cases.

Case I : s == 0. — In this case, [k = 0 and hence (3.13) assumes the form

(3.15) ^^ .^(^-^ep.

There are two possibilities :

(a) Equation (3.1) holds for v = 0 : In this case Y = l ; hence
Y ' — l e p ® and equation (3.15) then follows from equation (3.7).

(?) Equation (3.2) holds for v = 0 : Let
n

(3.16) T (m) =^ p (a, 9Q ord (m + 9;).
i=i

For future use we note

(3.16') T (x + mpQ ̂  Min (s, T (x)).

Lemma 2.1 shows that

(3.17) ord^^^l+TQn).

On the other hand, equation (3.12), hypothesis (v) and UL = 0 give

ord Y ̂  - T (m).

In any case ord Y' = ord Y and since T (m) is non-negative we conclude
that
(3.18) ord (Y' - 1) ̂  - T (m).

Equation (3.15) follows from (3.17), (3.18). This completes the proof
of (3.13) in Case I.

Case II. — Here we assume 5^1 and that in the notation of (3.16)

(3.19) T(^)^s.

4® S^RIE —— TOME 6 —— 1973 — ?3
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Clearly (3.1) cannot hold (as s ̂  0) and hence (3.2) holds for v = 0.
Thus by Lemma 2.1 we have

c^ ord?•(°^:;)p"'>^+T<^•>•
From Lemma 3.1 and equation (3.12), we find

(3.21) ord Y' = ord Y ̂  T (p) - T QJL + mpQ.

It follows from equations (3.19), (3.1G') that

1 + T (^ + mp^ + Min S 0, T QJL) - T QJL + mpQ } ̂  1 + s.

Hence the sum of ord (Y' — 1) and the left side of (3.20) is not less
than 5+1- Equation (3.13) now follows from equation (3.8). This
completes the proof in Case II.

Case III. — We assume x ̂  1 but that T (^) << s. Hence in particular,
if a > p 6,, — Qi then

(3.22) ordQji + 0;) < 5.

We deduce from this hypothesis, from Lemma 3.1, and from equa-
tion (3.12) that

n n

(3.23) Y' - lep-1 (D +]gp (a, 9,)^^^ +^P (^ ̂ •);77^^
?=l ' /=l y

Equation (3.13) follows immediately from this equation and Lemma 3.2.
This completes the proof in this case and thus completes the proof of
the theorem.

4. RATIO OF SOLUTIONS. — We recall that the differential equation,

(4.1) / ( I - 0^ + (1 - 2Q^ - \u = 0,

satisfied by F = F (^ o? 1, t\ has a logarithmic singularity at t = 0 and

hence there exists a unique (local) solution

(4.2) u = J + F l o g / ,

specified by the choice of F and the condition that £ be holomorphic
and vanish at ( = 0. It is well known from the theory of elliptic modular
functions that for p ^ 2 :

(4.3) exp^e(D[[/]].
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The object of this section is to exhibit this fact as a special case of a
property of generalized hypergeometric functions.

We use the notation of paragraph 2. For a;€=€, m€Z+, let
0 if m == 0,D-(m)= |'̂  " ">»•

LEMMA 4.1. — For a-e €, b, t, M€Z+, b < p, we have

D, (bp' + M p'-) - D, (M p'-) =. -^ ̂ '^), (mod ^).

Proof. — The left side is equal to the sum of the reciprocals of
v + x + M p^1 as v runs through all integers in [0, bp1}. Modulo p~1

we need retain only those v for which v == — x mod p^1. The p-adic
and archimedean conditions imply that at most one v be retained, namely

<
v =^P^(p^+l) — X^),

7=0

and this appears only if
b > px^^ — x^\

This completes the proof of the Lemma.
We now need a combinatorial result.

LEMMA 4.2. — Let W be any mapping o/*Z+ into {say) il. Let W denote
the " integral"

(w+i ) p8—i
W (m, s) = ^ W (j).

y=m/?^

Let f be any mapping of Z+ m^o Q, <Aen for 5€Z+,
p^+i—i ^ ^i+^-(_i

2 ye') w (j) = f (o) w (o, s +1) +^ ^ (/-(jpo - f ([J ] p^) w (j, o.
/'==0 t-=:0 -'==0

Proof. — Let ^i+^-(_i

x<= 2 />OP<)WO''0

and let Y( be the corresponding sum with f {jp1} replaced by f(\ J- \pl^l\
Using the definition of W,

pl+s-l—l ( / + 1 ) ^ / _ 1

xt= 2 2 /'OPO^)-
;=o v=y/?t
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But for v € [jp^ (7+1) P^)? we have j = -^ • Furthermore we have
the disjoint union, ^i+.-'-i

[o,p^)= ^J L/psa+i)^)
7=0

which shows that
/^+1—!

^-s ̂ lil)^)-
v==o

Similarly17 î-i

Y < = 2 ^^[^T^WM.
v==o

We now compute

2(X, - y.) -'i'w(«)2 (f(p.[^) - f(p- [^))
<==o v==:o <==o

^^1 -1

= 2 W (.)(/•(.)-/•(()))
v==o

^+1-1
= 2 W(.)/-(v)-/-(0)W (0,5+1).

v==:o

This proves the lemma.
Again referring to the notation of paragraph 2 we consider

P-.F.-^.";-']

as defined by equation (2 .2). It is well known that F is a solution (regular
at the origin) of the differential equation

(4.4) (7^-^P(3)-Q(^))u=0

where S == ( „ and P and Q are the polynomials,
np^^ri^9')'

;'=!

y-1Q^^'n^+^-i).
y=:l

By hypothesis, CTI, . . ., o-^-i all lies in € and hence 1 — cry cannot lie
in Z+ unless o-y = 1. Since Q is the indicial polynomial (at t = 0) of (4.4),
it follows that F is the unique solution holomorphic at the origin.
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We now assume that the equation (4.4) has a logarithmic type solution
at the origin, i. e. we suppose
(4.5) ^-i=l.

Then there exists a power series £ uniquely determined by the conditions
that J (0) = 0 and that J + F log t is a solution of equation (4.4). The
computation of £ is based on the fact that if R (S) is a polynomial in S
with constant coefficients and log t is used to denote the multiplication
mapping

u -> uAog t
then

R (^ o log t = log to R (3) + R' (o).

The result of the computation is

/F(0=^A(7n)^,

(4.6) \ °0

f £ (0 = ̂  A (m) D (m) t'-
m=0

where
n y

D(m)=^D^(m)-^D^.(m)(m) =

and A is used to denote A^. We now consider

G = .F. re', TT^n
L ^ J

and define the power series © by the condition that 0 (0) = 0 and that
C& -|- G log ( satisfies the same differential equation as G [which is given
by (4.4) with the obvious modifications]. Clearly (using B to denote A^),

(4.6')
(G(0=^B(7n)^,

G(0=^B(m)E(m)^

where E is given by the same formula as D after replacing each 6; (resp. o-y)
by its prime.

For r^eff , let us put

J.(0=^A(m)D,(m)^,
m =0

<&.. (0 = 2 B ̂  Dx (m)tm-
w==0
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THEOREM 4.1. — If 9, (T satisfy conditions (v), (vi) of paragraph 3, (A<°n

§(^)=P^(0 (modp©[M]).

Remark. — If G = F then equation (4.3) is an immediate consequence.

Proo/*. — Let S == { 61, . . ., 6^, cri, era, . . ., cr^i, 1 }. We will show

(4-7) ^ (^) == P ̂  (0 (mod p (D [Ml)

for each ^€ S. This will be adequate for the proof of the theorem since £
is a linear combination (with coefficients ± 1) of the { £ ^ }^g and (6 is
the corresponding linear combination of { (6^ }^s. It follows from
Lemma 2.2 that F and G are units in © [[(]] and hence equation (4.7)
is equivalent to

F (0 ̂  (IP) - p J, (0 G (t?) ep (D [[t]]

and trivially by computing the coefficient of ^+/)N (a < p), this is equivalent
to the assertion that for all a, NeZ+, a < p, we have

(4.8) L^ (a + p N) = 0 (mod p)

where
N

L, (a + p N) =^B (N - j) A (a + pj) (D,, (N - j) - p D, (a + /y)).

We compute D^ (;?/') mod ® by noting ,4,hat it is the sum of reciprocals
of numbers v + x, v€[0, pj), that the non-units of this type correspond to

v =px' - x + p y . , p-e[0,j),
and thus

(4.9) D, (pj) = l D^ (j) (mod ®).

Furthermore from Lemma 4.1, we obtain

D-c (a + pj) - D. (pj) = ̂  P^ (mod ©).
P J I" x

We assert
(4.10) A (a + pj) (p D, (a + pj) - D,./ (7)) ̂  0 (mod p).

Indeed the left side lies in

^(^+p7)(^)(D+po)
\J ~r a/ /
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