Annales scientifiques de l'É.N.S.

LAKSHMI BAI C. MUSILI C. S. SESHADRI Correction to "Cohomology of line bundles on *G/B*"

Annales scientifiques de l'É.N.S. 4^e série, tome 8, nº 3 (1975), p. 421 http://www.numdam.org/item?id=ASENS 1975 4 8 3 421 0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1975, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Correction to

COHOMOLOGY OF LINE BUNDLES ON G/B

BY LAKSHMI BAI, C. MUSILI AND C. S. SESHADRI

(Ann. Scient. Éc. Norm. Sup., 4° série, t. 7, 1974, p. 89 à 138.)

G. Kempf has pointed out that the computation of the line bundle K_r on $X(w_n)_r$ [cf. § 3, B, type B_n , 6, 7 (b) and 8; p. 115 to 121] is incorrect and that in fact it turns out to be the trivial line bundle. However this does not affect the proof of the main theorem of paragraph 3, Type B_n (Theorem B. 11), in fact the proof of the essentiel step I on p. 121 now becomes immediate after writing the exact cohomology sequence. Further as we shall now see, the proof that K_r is trivial also turns out to be simpler than the considerations of the paper for computing K_r .

Thus one has to make the following correction: In place of Proposition B. 9 (p. 119) one has

PROPOSITION. $-K_r$ is isomorphic to the trivial line bundle and in particular, we have the exact sequence.

$$0 \to \mathcal{O}_{X(w_n)_r} \to \mathcal{O}_{Z_r} \to \mathcal{O}_{X(w_n)_r} \to 0.$$

Proof. - Let $P = P_{\hat{x}}$, T, B be the subgroups of $G = SO(2n+1) \subseteq GL(2n+1)$ and identify $P \setminus G$ with the quadric $Q \equiv x_1 y_n + \ldots + x_n y_1 + z^2 = 0$ in $P^{2n} = \{(x_1, \ldots, x_n, z, y_1, \ldots, y_n)\}$ as in the paper. The coordinate functions $x_1, \ldots, x_n, z, y_1, \ldots, y_n$ can be canonically identified with functions on G, namely the entries of the last row. We have the ideals $I = (x_1, \ldots, x_n, z)$ and $J = (x_1, \ldots, x_n)$ in A = k [G]. Take the action of G on A induced by right translation. Recall that I and J are B-stable ideals. Further notice that the element z is B-*invariant* modulo J (not merely B-stable modulo J, we see that B acts on z mod J through the trivial character).

Let K = I/J as in the paper. Let R = A/I; then $R = k [X(w_n)]$. Since $I^2 \subset J$, I/J acquires a B-action consistent with the canonical B-action on R (B-actions induced by right multiplication). To prove that K_r is the trivial line bundle on $X(w_n)_r$, we have to show that (as R-module) I/J is B-isomorphic to R, R being considered as a module over itself. Since K_I is a line bundle, we know that I/J is a projective R-module of rank 1. Hence it suffices to show that there exists $m \in I/J$ such that: 1° m generates I/J over R and 2° m is B-invariant. For m we take the image in I/J of $z \in I$. Since $z^2 \in J$ it follows that z generates I/J over R and we have seen that z mod J is a B-invariant element.

Q. E. D.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE