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Introduction

Let X/fe be a proper variety. The formal completion Pic X^ of the Picard group of X
may be regarded as representing a problem of deformation theory about isomorphism
classes of line bundles on X. If S = Spec A is an artinian local affine scheme with residue
field k, the S-valued points of the formal group Pic X^ may be described in cohomological
terms by the short exact sequence

0 ̂  PicX'(S) -^ H1 (X x S, GJ ̂  H1 (X, GJ.

Schlessinger, in his paper [30], takes this observation as a point of departure in the study
of Pic X. In particular, he establishes easily manageable criteria for pro-representability
of functors of the above type, and, defining Pic X" by the above exact sequence, he shows
that it is pro-represented by a formal group over k.
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88 M. ARTIN AND B. MAZUR

The origin of this paper is the observation that this approach is by no means limited
to studying deformation problems involving H1. For any integer r ^ 0, we can mimic
the above exact sequence and define functors

0': Art/fe°-^(Ab)

using H'' (X, G^) (cf. II). We show that these functors O1' exhibit a strong tendency
to be pro-representable and, in fact, by formal Lie groups (/). The exact hypotheses
are in II, paragraph 3, where the theory is systematically developed for flat schemes X/S
and €>7S is studied as a formal group over the base S. For example, ̂ /k is a formal Lie
group if A0'!'""1 = h°'r+1 = 0, hence when X/fc is a smooth complete intersection of dimen-
sion r ^ 2 in projective space.

The formal groups ^r appear, then, as higher dimensional analogues of the classical
formal group Pic X^. In the first interesting case, r = 2, we shall sometimes refer to O2

^\
as Br, and call it the formal Brauer group of X.

Two natural problems arise:
(a) Interpret the numerical invariants of these formal groups in terms of the algebraic

geometry of X.
(b) Find new properties of X which are brought into focus by these formal groups and

their particular properties.

The purpose of this paper is to set up some fragments of a theory to answer the above
questions. We sketch some of the principal results, which we prove under certain hypo-
theses. For the exact hypotheses, the reader is referred to the body of the text.

The most obvious invariant of a formal group is its dimension. One has (§ 3):

dim <y == h ° ' r = dinifc H^X, 0^\

If k is of characteristic 0, the dimension is the only numerical invariant of a formal Lie
group. However, in characteristic/? there are subtler invariants contained in the Dieudonne
module D ̂ r. We establish two facts about this Dieudonne module. The first result
relates D ̂  to something as difficult to compute:

DO^H^X.^T),

where-^ is Serre's Witt vector sheaf'on X [31]. This provides in some measure an expla-
nation of the fact that Serre's Witt vector cohomology may fail to be of finite type over
W = W (fe): It is of finite type over W if and only if ^r is a formal group of finite height
(i. e., has no unipotent part). More tangibly,

H^X.^OwK

is finite dimensional over the field of fractions K of W, whenever O1' is pro-representable.

(1) This fact was first noticed by Levelt (unpublished).
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FORMAL GROUPS 89

The second result relates D ̂  to more familiar arithmetic invariants of X. Its precise
statement involves some further hypotheses which may be found in chapter IV. In this
introduction we shall try to apply these precise statements to the calculation of the nume-
rical invariants of D ̂ r. Suppose k is algebraically closed. Then the action of the
semi-linear endomorphism F on the vector space D <y ®^ K decomposes this vector
space into eigenspaces, giving us a family of eigenvalues

04, . . . , a^eK

counted with multiplicites (see § 1). Unlike the situation in linear algebra, these eigen-
values are not unique, for modification of the eigenvector by scalar multiplication tends
to change them. Nevertheless, their /?-adic ordinals Oj = ordp a, are uniquely determined
by the semi-linear endomorphism F. We normalize by taking ordpp = 1. Then the a-
are non-negative rational numbers which we may write in non-decreasing order

0 ̂  a^ ^ a^ ̂  ... ̂  a^,

and these rational numbers together with their multiplicities of occurrence are called
the slopes and multiplicities of the Dieudonne module of O1', or more succinctly, the slopes
and multiplicities of y. They are numerical invariants which determine, and are deter-
mined by, the isogeny class of a "maximal quotient of O1' of finite height" (see § 1).
Indeed, most of the salient invariants of this quotient are readily visible from the above
set of slopes and multiplicities. For instance, its height is simply the number h. Further,
C^ is connected and therefore there is a topologically nilpotent endomorphism V
on D <y ®w K such that FV == VF = p. It follows that all slopes are less than 1.

There is another semi-linear vector space with an operator F determined by X/k. This
is the crystalline cohomology group H^g (X/W).

By performing the analogous semi-linear algebra to the semi-linear endomorphism F
on H^ys (X/W) ®w K? w^ may obtain its set of eigenvalues

&i, &2» • • • » bn,

and setting Py = ordp bj we obtain the slopes counted with multiplicities of the semi-
linear F-module H:̂  (X/W) ®w K

O^P^P^...^p,.

Here, again, we have arranged things in non-decreasing order. (One should note that
when X is defined over a finite field Vq (q = p1), then the P/s are indeed well-known ari-
thmetic invariants of X/F^, for the quantities i ̂  are then the /?-adic orders of the eigen-
values of the Frobenius automorphism acting on the r-dimensional /-adic cohomology
of X [23].)

In contrast with the ay's, the P/s need not be less than 1. Nevertheless, a consequence
of the Corollary 3 of paragraph 4 is that, under certain hypotheses, the relationship between
the a/s and the P/s is the best that can be hoped for. Namely, the a/s coincide with
those P/s which are less than 1.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



90 M. ARTIN AND B. MAZUR

The above facts, taken together, give fairly explicit information concerning Serre's Witt
vector cohomology.

It is also interesting to combine this determination of the slopes and multiplicities
of ^r with knowledge of the dimension of <S>1'. One obtains the following inequality:

^^EmpO-P),
p

where P ranges through the rational numbers < 1 occurring, as slopes of H^y,, and Wp
denotes their multiplicity (Cor. 4, § 4). This inequality is the first of a series of inequalities
known as the Katz conjecture ([26], [27]).

CONNECTIONS WITH NERON-SEVERI. — Let X be a smooth proper surface over k, and
let p be the rank of the Neron-Severi group of X. In characteristic zero, one has the clas-
sical formula

p^-2^'2,

where b^ is the second Betti number. We prove an analogue of this formula in characte-•̂  /\.
ristic p involving the formal Brauer group Br of X. Namely, suppose Br is representable
by a formal group of finite height A. Under some supplementary hypotheses we prove

p^b^-lh.

Since h ^ A02, this is stronger than the classical assertion, provided h < + oo. On the
other hand, there are many surfaces [33] in characteristic^ for which the classical inequality
breaks down, though the weaker inequality p ^ b^ continues to hold (Igusa [20]). The
simplest example of such a surface is the product of a supersingular elliptic curve with
itself, which has p = b^ = 6, and h02 = 1. Its formal Brauer group is the additive
group.

A proof of the following conjecture would complement our result, and the two could
be considered a satisfactory generalization of the classical inequality to characteristic p:

CONJECTURE. — With the above notation, assume that the characteristic is not zero,
^

and that Br X is unipotent. Then b^ == p.

Examples. — Throughout our work the case of K 3 surfaces [4] (over an algebraically
closed field) in characteristic p > 0 has been an extremely useful guide. For these sur-
faces h°'1 = 0 and A0'2 = 1 and consequently the formal Brauer group is a formal one-
parameter group; denote its height by A. The second Betti number of a K3 surface
is 22. The Neron-Severi group of a K 3 surface is a free abelian group (of rank p). Using
results of the present paper, the relation between A and the eigenvalues of Frobenius
(best visualized by the Newton polygon [26]) may be summarized as follows:

/\ /<
A = oo; Equivalently, one has that Br = G^, or that the 22 eigenvalues of Frobenius

acting on 2-dimensional cohomology have ordp equal to 1. These K 3 surfaces are called
supersingular in [4] (compare with definition p. 199 of [23]). An elliptic K 3 surface
is supersingular if and only if p = 22 [4].
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y\

h < oo; Equivalently, Br is a /^-divisible formal group. In this case 1 ̂  A ^ 10,
and as is proved in [4] and [35], every h in this range occurs. The 22 eigenvalues
of Frobenius acting on 2-dimensional cohomology distribute themselves as follows:
There are h such eigenvalues with ordp equal to h—l/h', there are h eigenvalues with ordp
equal to A+l /A; the remaining 22— 2 h eigenvalues have ordp equal to 1.

To treat moduli problems arising from this example, and others, it is convenient to
develop the theory of the formal Brauer group over general bases. Given a parameter
space T of K 3 surfaces, the function h has an upper-semi-continuous behavior on T,
and may be used to define a stratification on T, studied in [4]. It is proved in [4] that
the supersingular K 3's determine a stratum of relatively low dimension in "the" moduli
space (2).

/\
Two examples where the formal Brauer group Br is of multiplicative type (a finite

product of G^s if the groundfield is algebraically closed) are worth mentioning:
(a) The Format surface ^ (d) : X^+Y^+Z^W = 0 in characteristic p, where

p = 1 mod d.
(d) Any "sufficiently general" smooth surface in P3.

One obtains (d) using the results of the present paper, together with a calculation of
the Newton polygon of Fermat varieties ([23], V. 2) and similarly (b) is obtained using a
theorem of Koblitz ([23] (II); the condition of "sufficient generality" is, however, not
explicit, and therefore one doesn't obtain specific examples in hand).

THE "ENLARGED" FUNCTOR ̂  — The formal Brauer group is, by definition, a connected
formal group, and therefore the slopes of its Dieudonne module are constrained to be < 1.

ys

It is natural to seek an enlargement of Br, which, under suitable hypotheses, will be a
(not necessarily connected) p'divisible group whose Dieudonne module slopes coincide
with the slopes of H^yg (X/W) ®w K m Ae closed interval [0, I], and whose connected

ys

part is Br.
This intention is served (under suitable hypotheses) by the functor y introduced in (IV. 1).

Its etale quotient ̂  is the divisible part of H^ (X^, Upoo) [as Gal (^/fe)-module]. Using
a result of Bloch [7] when p > 2, we obtain that the height of Y61 is the number of eigen-
values of slope 1 in H^yg (X/W) ®w K- Although this gives what we wish as far as nume-
rical values are concerned, it would be better to have a direct relationship between the
Dieudonne module of y and the quotient of H^ys (X/W) comprising all eigenvalues whose
slopes lie in the interval [0, 1]. Can this be obtained by considering a hybrid "crystal-
line-fppf" site, in analogy with the construction of crys-et in paragraph 3 below?

COHOMOLOGY WHICH IS ANALYSABLE BY ^-DIVISIBLE GROUPS; HODGE-TATE DECOMPO-
SITIONS. — Let K/Q be a finite extension, R c: K its ring of integers and X/K a proper
smooth surface. Let T(-) denote the Tate construction. In (IV. 4) we study

(2) There are several moduli problems interesting to consider in connection with K 3's : polarized K 3's
(or not), elliptic K3's...

ANNALES SCD3NTIFIQUES DE L'^COLE NORMALE SUP&UEURE



92 M. ARTIN AND B. MAZUR

H = T^^X/K',/^))®^ Qp Ae finite dimensional Qp-vector space, with its natural
Gal (K/K) action. The cup-product pairing induces an isomorphism between H and H*,
its vector space dual, with respect to which the action of Gal (K/K) enjoys an evident
compatibility. Let us say that H is analy sable by p-divisible groups if there is a filtration

(*) 0 c: W c V <= H

by sub-Qp-vector spaces, stable under the action of Gal (K/K), such that:
(a) W is a Gal (K/K)-representation "coming from a /^-divisible group" W/R^i.e.

W ^ TW ®^ Qp). __
(b) V is the Gal (K/K)-representation coming from W°/R, the connected component

o f W ( V = = T W ° ® ^ Q p ) -
(c) The filtration (^) is self-dual under the cup-product pairing, in the sense that

W = V1 and (equivalently) V = W1.
One has a rather tight description of the Gal (K/K)-representation H, when it is

"analysable by /^-divisible groups". For example, using results of Tate one sees that
if H is "analysable by /^-divisible groups", then the semi-simplification of the Gal (K/L)-
representation H admits a Hodge-Tate decomposition with the expected "Hodge"
numbers; H itself admits such a Hodge-Tate decomposition if W° is of multiplicative
type. It is not true that all surfaces (even those with good reduction in characteristic p)
will have "analysable" 2-dimensional cohomology. Indeed, it is plausible that for/\
any X/R a proper smooth surface such that Br/R is pro-representable by a formal group
of infinite height, the 2-dimensional cohomology of X/K is not analysable. We show
however, that ifp > 2, and X/R is a proper smooth surface such that Pic1^ (X/R) is smooth
and Br X/R is of finite height, then the 2-dimensional cohomology of X/K is analysable.
These hypotheses hold, for example, when X/K is a K3 surface which admits a good
nonsupersingular reduction to characteristic p > 2, or when X/K is any lifting of the
Fermat surface ̂  (d) (p = 1 mod d). In the latter case one obtains that the 2-dimensional
cohomology of X/K admits a Hodge-Tate decomposition.

QUESTIONS FOR FURTHER STUDY:

(a) It is clear that as long as our theory is set in its present frame, it is doomed to be
dependent upon a steady rain of hypotheses, and cannot be totally general. One problem
rests in our insisting that the functors 0'" be pro-representable. The should be viewed
as a dispensable crutch used to convince the reader that one is dealing with a manageable
object, and to suggest the appropriate directions of study. The arithmetic content of
the theory (e. g., the inequality quoted above) should be independent of any such hypo-
thesis. Moreover, the most satisfactory theory would deal with some object in a derived
category finer than the simple collection of ys for all r. Such an extension will not
be merely technical, for it involves a systematic extension of the elegant theory of Cartier
on which much of our work is based.

(b) Our groups ^r might be suggestively denoted O0*1', since they are related to the
Hodge cohomology of bidegree (0, r), and they recapture only the part of r-dimensional
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cohomology given by slopes in the interval [0, 1]. One might hope to find a bigraded
system of groups O1'7 (i+j = r) where O1'-7 is somehow related to the Hodge cohomology
of bidegree (f, j) and whose Dieudonne module yields information about the part of r-dimen-
sional cohomology given by slope in the interval (i, i+1) (3).

(c) Convergence questions, and the notion of a link between crystalline cohomology in
characteristic p and etale cohomology in characteristic 0.

Let X/W be a smooth proper scheme, and suppose the system of deformation cohomology
groups

^(Xx^W^GJ, n^O,

yields a smooth formal group which we shall denote <D1' over V = Spf(W). Suppose
further that <Sf is of finite height. Then ^r yields a /^-divisible (connected) group scheme
GVSpec W, following the equivalence of categories given in [34]. Associated to the
/^-divisible group GVSpec W one has the Gal (K/K)-module TG1' ®z Qp, where TG' = TO
denotes the Tate module. One has also the Gal (K/K)-module coming from etale cohomo-
logy at the geometric generic point

H^Xx^K.T^c^z.Qp.

QUESTION. — Can one define, in the above situation, a natural injective homomorphism
of Gal (K/K)-modules

TG^z.Qp^H^XxwK, T^oo)®z,Qp7

(d) It would be interesting to prove that H2 (Xx w K, T [ipj ®zp Qp is a Gal (K/K)-
module of Hodge-Tate type, for a reasonably large class of surfaces. In this direction
see IV, §2, Remark 4 below.

I. — Formal Groups

1. CARTIER MODULES. — To begin, let us set some terminology for this section :
k, a perfect field of characteristic p, often taken to be algebraically closed in the key

propositions below;
W, the Witt vectors of k\
K, the field of fractions of W;
(p : k -^ k, the p-ih power map x —> x1^ referred to as the Frobenius automorphism of k;
(p ; \v —^ W, the lifting ofthe/?-th power map, referred to as the Frobenius automorphism

o/W.
<p : K --> K, the map induced by the Frobenius automorphism of W, on its field of

fractions, called the Frobenius automorphism of K.

(3) This program has been carried out now by Bloch [6], 4.5, [7] under the hypothesis that p > dim X.

ANNALES SCIENTinQUES DE L'ECOLE NORMALE SUPERIEURE 13



94 M. ARTIN AND B. MAZUR

DEFINITION. — A Cartier module is a pair (M,/) where M is a free W-module of finite
rank and /: M —> M is an endomorphism which is compatible with (p, in the sense that

/(^.m)=(p(a)f(m)

for all a e W and m e M. (In other words / is a ^-linear endomorphism.)
Carrier modules form a category where morphisms are defined in the evident way.

We shall abbreviate our notation by referring to the "Cartier module M" when the
(p-linear endomorphism / which goes along with M admits no possible confusion of
identity.

If M is a Cartier module, let V = M ®w K- Then V is a finite dimensional vector
space over K with a (p-linear endomorphism /, such that / preserves a W-lattice in V
(/ preserves M).

Let sf = K [T] be the noncommutative polynomial ring in one variable T over K
where the commutation law is given by

(p(a).T=T.a for all aeK.

The vector space V above may be regarded as a left ^-module by letting T act as /:
T.r=/(r), i;6V.

For integers r, s, with s ^ 1, let U,.̂  denote the left ^/-module
u^^/^.cr^jO.

We refer to U,.̂  as the canonical j^-module of pure slope r / s and multiplicity s. One can
check that U,.̂  is a K-vector space of dimension s.

In the case r ^ 0, the action of T on Uy^ preserves the W-lattice
wET^wlTj.cr-^cru,.,

This is an inclusion since
w^].^5-^) == W[T] rw.cr-j/).

If r < 0, then T preserves no W-lattice in U,.̂ .
One has the following relation for any integers r, s, with s ^ 1 m ^ 1:

IT ^HT y"^mr^rns — V^r,®/ •

Moreover, Uy^ is a simple j^-module if and only if (r, s) = 1.

PROPOSITION (Dieudonne, Manin [25]). — Let k be algebraically closed. Let V be a
finite dimensional vector space over K admitting a (^-linear endomorphism T. Then V may
be regarded as a left ^/-module via the action ofT, and for a unique choice of integers r^s^
with Si ^ 1 such that r^s^ < r^s^ < ... < r^/s^ the left ^/-module V may be expressed
uniquely as a direct sum

(1.1) V= ®V^,
1=1

where V^/^ is an ^-submodule o/*V, noncanonically isomorphic to the s/-module Ur^.

4® SERIE — TOME 10 — 1977 — N° 1



FORMAL GROUPS 95

The action of T on V preserves a W-lattice if and only if the integers r. which occur
are all non-negative.

We refer to (1.1) as the canonical slope decomposition of V, and we say that V has slopes
rjsi with multiplicity s^ (i = 1, ..., t). It is clear from the above proposition that the
numerical data consisting of the slopes of V given with their multiplicities determine V,
up to noncanonical isomorphism. This numerical data is most conveniently represented
by a "Newton polygon" (see [23], [25] and [26].) We refer to V^/^ c V as the part o/V
of pure slope r,/^,.

Continuing with the hypothesis that k is algebraically closed, let M be a Cartier module.
By the slopes and multiplicities of M we shall mean the slopes of V = M ®^y K with their
multiplicities. If a is a non-negative rational number, let M, <= M denote the sub-Cartier
module defined by

M,=MnV,cV,
where V, <= V is the part of V of pure slope a.

By the construction of M^ we have:
(i) M, is a saturated submodule of M in the sense that if x e M andpx e M^ then x e M,.
(ii) V, = M, ®wK^ and M, has pure slope a.
(iii) If M' c: M is a sub-Cartier module of pure slope a, then M' <= M^.
Thus, M, deserves the name: the part of M of pure slope a.
If a; (i = 1, ..., t) are distinct non-negative rational numbers, then the natural map

(1.2) ©M,,->M
i

is an injection. Moreover, if the a, run through all the slopes of M, the cokemel of (1.2)
is a W-torsion module. We then refer to (1.2) as the slope decomposition of M.

If a = a^ is a slope of M, let N, denote the module obtained from M/( © M^) by
i ̂  10

annihilating its W-torsion. This is a Cartier module of pure slope a, and if M -^ M' is
any map of Cartier modules such that M' has pure slope a, it must factor through N,.
We refer to N, at the maximal quotient of M of pure slope a. Clearly N^ ®^K ^ V,,
and the natural map

(1.3) M^^

is an injection whose cokemel is W-torsion. Thus by (1.2), the map

(1.4) M^riNa,
1=1

is also an injection whose cokemel is W-torsion.
One final notion: We say that two Carrier modules M, M' are equivalent (M = M')

if M ®^ K = V is isomorphic as j^-module to M7 ®w K = V'. This is the same as
asserting that M and M' have the same slopes and multiplicities. It is also the same

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERDEURE



96 M. ARTIN AND B. MAZUR

as asking that there exist a morphism h : M —> M' which is injective and whose cokemel
is W-torsion. Thus the slope decompositions (1.2) and (1.4) are equivalences of Cartier
modules, and consequently any Cartier module is equivalent to a direct sum of Carrier
modules of pure slope.

The classification of Cartier modules up to isomorphism and not just equivalence is
undoubtedly a subtle matter involving further numerical invariants, such as the lengths
of the cokemels of the morphisms A, of (1.3) (compare [25]).

Examples:

(1) Let r be a formal Lie group of finite height h over k. Let M denote its Dieudonne
module. For definiteness we take M to be the module of typical curves of r as defined
in Carrier's theory (c/. §3).

Since T is of finite height h, the module M is free of rank h over W. There are two
operators F and V on M with the following properties:

(i) F is (p-linear; V is (p~ 1-linear;
(ii) V is topologically rdlpotent as an endomorphism of M;

(iii) FV = VF = p.

Therefore (M, F) is a Carrier module. One may retrieve the operator V from the
Carrier module (M, F) using the commutation relations (iii) and the fact that M has no
^-torsion. The existence of such a topologically nilpotent operator V insures that the
slopes of the Carrier module (M, F) are rational numbers in the half-open interval [0, 1).
Conversely, any Carrier module whose slopes are in the interval [0, 1) is equivalent to
a Dieudonne module. This can be shown as follows: Adjoin formally an operator V
with the property FV = VF = p, and check that the module obtained in this way is iso-
geneous to the old one.

Or, one may take M7 £ M ® Q to be : M' = ^ j?" F-" M and check that M' is stable
n ^ O

under F and under V = p.F 1 and, moreover, M' is equivalent to M.
If r, r' are two formal Lie groups of finite height whose Dieudonne modules are M, M'

respectively, then M is equivalent to M' if and only if F and r' are isogenous
Let r be an arbitrary (finite dimensional) formal Lie group over k, and consider multi-

plication by p" in F. One checks immediately that the image F of p" is independent of n
for large n, and that F is a formal Lie group of finite height. The Dieudonne module
of r is equivalent to the quotient of the Dieudonne module of F, modulo W-torsion.

If r, r' are arbitrary (finite dimensional) formal groups over k, with Dieudonne
modules M, M' respectively, we say that F and P are equivalent if M E= M' (i. e. if
M ®w K = V is isomorphic to M' ®w K = V as e^-modules). This is the same as
asking that r and r' be isogenous.

(2) Cartier modules coming from crystalline cohomology. Let X/k be a proper and
smooth scheme. Then the crystalline cohomology group [5] H^y, (X/W) is a W-module
of finite type endowed with a (p-linear operator F induced by the Frobenius morphism.
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To recall the Frobenius operator, let W^ denote W regarded as W-module via (p : W -> W.
If X is a W-scheme write X^/W for the pull back of X/W via (p. Then Frobenius is
a morphism from X to X^, inducing a homomorphism,

H:̂  (X/W) ® W^ ̂  H:̂  (X^/W) ̂  H:̂  (X/W),
w

which may be viewed as a (p-linear operator on H^, (X/W). If H^y, (X/W) is torsion-free
over W, the pair (H^yg, F) is a Cartier module.

In slightly more special circumstances, one has an interesting but partial picture of the
Carrier module H ,̂. Namely, let X/W be a lifting of X/k to a smooth projective scheme,
such that all the W-modules W(X, Q^) are free. Then [26], [27] the H^/are free
W-modules as well, and the homomorphism F : H^g -> H^yg may be put in the form
of a diagonal matrix with entries:

h°'1' h1^-1 hr,o

[p°, p ° , . . . , p°, p\ p\..., p\..., ̂ T"^}
by making the appropriate independent choices of W-basis for domain and range of F.
Here

h^ = rankwWX, Q^)) = dim^H^X, Q^)).

It follows from this description that the slopes of the Carrier modules H^g, if this group
is non-zero, lie in the interval [a, b~} where

a = smallest non-negative integer such that h^'" ^ 0.
b = largest integer such that hbfr~b ^ 0.

One also obtains from this a strong requirement concerning the geometric position
of the "Newton polygon" of the Cartier module H^y^: the conjecture of Katz
(see [26], [27]).

An open area of questions concerning the structure of the Cartier module W lies in
the direction of a study of its finer numerical invariants. In particular, what are the
^-lengths of the cokemels of the homomorphisms A, of (1.3)?

We conclude this section by listing some further interesting structures possessed by
the category of Carrier modules:

THE SHIFT OPERATOR. — If M stands for the Cartier module (M,/), let M [k] stand
for the Cartier module (M, ̂ k/), for any non-negative integer k. If a runs through the
slopes of M, then a + k runs through the slopes of M [fe] and with the same multiplicities.
The rule

M-^M[fe]

is a functor from the category of Carrier modules to itself-the k-fold shift.
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Suppose M is a Cartier module all of whose slopes a are greater than or equal to a
fixed positive integer k. It is not necessarily true that M is isomorphic to N [ k ' ] for some
Cartier module N. It is true, however, that M is equivalent to some N [fe]. Here is
an efficient way of constructing such an N:

Regard M as a module over the noncommutative polynomial ring W [T], where T acts
as /. Consider

WiTjcWO-'Tjc:^.

Form the W [/^ T]-module

N = image (W [p^Tj ®W[T]M <= V)

and define the (p-linear operator /: N —» N to be given by the action of/^ T on N. To
show that (N,/) is a Carrier module, it suffices to show that N is contained in a W-lattice
in V. This one can do by using the hypothesis

(1.5) a ^ f e

for all slopes a of M, and by reduction of the problem to the canonical modules V^s of
pure slope a.

Under hypothesis (1.5) for the Carrier module M and the non-negative integer k, we
denote the constructed Carrier module (N,/) by the symbol M[—fc]. Then

M=M[-fe][fe].

As Grothendieck remarked, we may use the shift operator to associate to any Carrier
module M whose slopes lie in the interval [0, r) a sequence

ID? 1 ! ? • • • ? Ir-1

of formal groups up to equivalence as follows:
Let M^'-^^ c: M denote the sum of the parts of M of pure slope a, where a ranges

through the rational numbers in the interval [7,7+1). Then

Mufj+l)[-j]=L,

is a Carrier module whose slopes are concentrated in the interval [0, 1). It follows that Ly
is equivalent to the Dieudonne module of some formal group Fy.

2. CARTIER GROUPS. — Here we shall study formal Lie groups G over the ring of Witt
vectors. By a Cartier group we shall mean a pair (G, v) where G is a finite-dimensional
commutative formal Lie group over W and v : G —> G is a homomorphism of formal
Lie groups compatible with the automorphism (p~1 of the base ring W, which has the
following additional property:

The restriction to the residue field VQ : Go —> Go is the Verschiebung of the formal
group Go/k [10, p. 511].

As with Carrier modules, we shall refer to a Carrier group by the letter G if there is no
possible confusion concerning the identity of its «lifting of Verschiebung" v. Carrier
groups form a category in an evident manner.
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Let TG denote the tangent space of a Carrier group G over W. It is a free W-module
of finite rank. The homomorphism v : G^ —> G induces a W-homomorphism

J;(TG)(<P)=T(G((P))--^TG.Ty

Which we view as a (p-linear endomorphism of TG.
Thus "tangent space over W" may be viewed as a functor

(Carrier groups) -> (Carrier modules),
Gh^TG.

A beautiful result, and one that is essential to our theory, is the following (see [9], [10],
[11] and [24]).

THEOREM OF CARTIER. — Let k be a perfect field. The functor T is an equivalence of
categories.

Carrier establishes this theorem by constructing explicity an essential inverse S to the
functor T. The particular properties of this inverse will undoubtedly be useful in further
elaborations of our theory, but for the present, the above assertion will suffice.

PRELIMINARY REMARKS:

(1) If G is a Carrier group, and M = TG is its associated Carrier module, then the
equivalence class of the formal group Go/k is determined by the equivalence class of the
Carrier module M.

Proof. - Let G, G' be two Carrier groups, and M, M' their associated Carrier modules.
Suppose M and M' are equivalent. We shall show that Go, Go are equivalent. Note
that if M and M' are equivalent, there are morphisms of Carrier modules

such that the indicated compositions are multiplication by pv for some suitable v. By
virtue of the Theorem of Carrier, one gets an analogous diagram in the category of Carrier
groups

G-^G'-^G-^G'

This establishes the equivalent of the formal groups Go/k and Go/fe.

ANNALES SCffiNTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



100 M. ARTIN AND B. MAZUR

(2) (vector groups). If P is a free W-module of finite rank, define a formal group
Vec (P) by the following law: For any artinian ring A over the ring W of Witt vectors,
of k set

(2.1) Vec (P) (A) = ker (P ® A -^ P ® A,ed),

where the right-hand side is taken with its additive group structure.
Clearly Vec (P) is isomorphic to a finite direct sum of copies of the formal completion

of Go. Its tangent space over W is canonically isomorphic to the W-module P.
The morphisms Vec (P)^ —» Vec (P) of formal groups are in natural one-one correspon-
dence with the (p-linear homomorphisms of the W-module P.

Explicitly, if g : P^ -> Pis a (p-linear homomorphism, then (2.1) permits us to define
an endomorphism

Vec(g): P^^P

(defined on A-valued points by g ® id : P^ ® A —> P ® A).

For which pairs (P, g) is (Vec (P), Vec (g)) a Carrier group? Clearly the missing requi-
rement is that Vec (g) be a lifting of the Verschiebung endomorphism of Vec (P)o. But
since the Verschiebung endomorphism of G^ is identically zero, it is also zero on Vec (P)o.
Thus we need

Vec(g)o=0,

or, translated in terms of g, we must have that

g==Q (modp).

COROLLARY (2.2). - Let (P, g) be a Cartier module such that

g = 0 (modp).

Then (Vec (P), Vec (g)) is a Cartier group whose image under the functor T is isomorphic
canonically to (P, g). We call such a Cartier group a vector Cartier group.

COROLLARY (2.3). — Let G be a Cartier group such that the slopes of the Cartier module
M = TG are all greater than or equal to one. Then Go/k is a unipotent formal group.

Proof. - Since M = M[-l] [1] {see § 1), M is equivalent to a Cartier module (P, g)
such that g == 0 (mod/?). Since the question of unipotence of Go/A: depends only on the
equivalence class of Go/k by Remark 1 above, we may replace M by the Carrier
module (P, g). But then, by Corollary (2.2), G = Vec(P), and we are done.

(3) (Groups of Finite Height). Let T/k be a formal Lie group of finite height. Let G/W
be the formal completion of its universal extension as developed in [28] and [29]. The
Verschiebung endomorphism of F induces, by functoriality, an endomorphism v of G,
which makes (G, v) a Cartier group (this is asserted in [11]). The functor T sends (G, v)
to (M,/) where M is the Dieudonne module of I" and / is its Frobenius operator.
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FUNDAMENTAL LEMMA (2.4). — Let k be algebraically closed. Let G be a Cartier group
and M === TG its associated Cartier module. Let

M[O, I )<=M

be the sum of the parts of M of pure slope less than one. Let DGo denote the Dieudonne
module of typical curves of Go. Then DGo ®w K and M[Q,I) ®w K are isomorphic
^-modules.

In other terms, M[O,I) is equivalent to the Dieudonne module of a maximal finite-height
quotient of Go.

Proof. — Consider the short exact sequence of Carder modules
(2.5) O->M[O,I)-^M->B->O.

By the Theorem of Cartier there is a short exact sequence of Cartier groups
(2.6) 0 -^H^G~>Q->0

whose image under the functor T is a short exact sequence isomorphic to (2.5).
Applying the Dieudonne module functor of typical curves to (2.6), one gets

0 -> DHo -^ DGo -> DQo -^ 0.

Since B is a Cartier module all of whose slopes are greater than or equal to 1, Qo is
unipotent by Corollary (2.3), and consequently DQo is annihilated by a power of p. Thus

DHo ®wK ̂  DGo Ow^-

But now, since M[Q,I) is equivalent to the Dieudonne module of some formal group
of finite height V/k, by Remark 3 above, Ho is equivalent to the universal extension E
of r. But the universal extension of T is an extension of r by a vector group. Therefore

^o, i) ®wK ^ DE ®wK = DHo ®wK = DGo®wK.

This proves Lemma (2.4).
Example. — Let X/k be a scheme proper and smooth such that H^yg (X/W) is torsion-

free over W. Then H^yg is a Cartier module. By the Theorem of Cartier, there is a Cartier
group O^yg such that applying T to O^yg gives a Cartier module isomorphic to H^yg.
The fundamental lemma then implies:

COROLLARY (2.7). - The part o/H^yg of slope less than 1 is equivalent to the Dieudonne
module of a maximal finite-height quotient o/O^ys.o-

3. CARTIER'S THEORY OF CURVES. — We follow Cartier's notes [9] (see also Lazard [24]).
Cartier studies smooth formal groups over arbitrary bases. For us it will suffice to consider
smooth formal groups E over smooth ^-schemes X, where k is a perfect field of charac-
teristic p.

Regard E as a sheaf for the Zariski topology on X, and define the sheaves of abelian
groups C^E by taking its sections on open affines U = Spec B c X to be:

C,,E(U)=ker(E(BD]/0->E(B)).
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By definition, C^E = tan E, the Zariski tangent space (sheaf) to E. The sheaves (€„)„ ^ o
form a projective system, and each C^E admits a finite composition series of subsheaves
of abelian groups each factor of which is isomorphic to tan E.

Let CE denote the projective limit of the system (C^E)^ ^ o- Then CE is referred to
as the sheaf of curves on E.

On CE one has the standard operators:
(a) For any open U c: X and any local section c e T (U, 0^) one has an operator

[c]: CE|u^CE|u

obtained (in the special case where U = Spec B) by composition with the endomorphism

B[(]-B[(],

t^ct.

(b) For any integer m ^ 1, one has

V^: CE->CE
induced by 11-> t"1.

(c) For any integer m ^ 1, one has the Frobenius operator

F^ : CE -> CE

defined explicitly in [9]. One way of thinking of these operators is as follows: One
extends k by forming ^[^/(^—l). Then F^ is the unique operator such that

m-i
Vw F^ = ^ [ ,̂]. Let I (p) denote the integers relatively prime to p. Since 1 (p) is

»=o
invertible over X, the projection operators defined in [9] break CE up into the product
of l(p) copies of the sheaf TCE, the sheaf of typical curves of E. The sheaf TCE is defined
to be the intersection of the kernels of F^ for m > 1, m e 1 (p). By DE, or the (Cartier)-
Dieudonne module of E we mean the abelian group TCE endowed with the operators F == Fp,
V = Vp, and regarded as W = W(/Q module in a certain natural way (see [9]).

In the special case where X = fe, and E is a smooth formal group over k, DE is indeed
isomorphic to the "classical" Dieudonne module of E [11]. There seems to be no
published reference for this fact, and Messing has provided us with a proof of it, which
he intends to publish shortly.

II. — Infinitesimal properties of cohomology

1. DEFORMATION COHOMOLOGY. ~ We work for the most part with the etale topology,
or more precisely, with the big etale site on a scheme (or algebraic space) S. Let E be
a sheaf on S which in our applications will be G^ or Gy Then we define a functor E by

E(Z)=ker(E(Z)^E(Z^)).
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^
We call E the formal completion of E (along its zero section). The fact that passage to
the associated reduced scheme is compatible with etale maps implies that E is a sheat. It is
a left exact functor of E. A sheaf E is called discrete if E = 0.

Let us denote by E [ Z the restriction of E to the small etale site on Z. We will usually
identify this small site with that ofZ' i f Z c Z ' is an infinitesimal extension, i. e., is a closed
immersion defined by a nilpotent ideal, and thus we may consider the "restriction" map

(1.1) E|Z'-^E|Z

of sheaves on this small site.
A map E -» F of sheaves is called formally smooth if the natural map

E|Z '^E|ZxF,zF |Z '

is surjective for every infinitesimal extension Z <= Z', and E is formally smooth if (1.1) is
always surjective. It is immediately seen that

(1.2) The map fi -> E is formally smooth.

The notion of formal completion extends naturally to the relative case. Let/: X —> S
be a map of schemes or algebraic spaces, and let E be a sheaf on X. Then on the small
etale site on X, we define a relative completion Eg by the rule

(1.3) Es (X') = ker (E (X') -> E (X' x s S,^))

for any X' etale over X. The deformation cohomology of X/S, with coefficients in E,
is the sheaf

(1.4) ^(X/S,E) = R^^Es,
defn

where R^/^ is taken respect to the etale topology (4).
It is defined on the small site of S, and by pull-back on the small site of any S' over S.

Hence its definition naturally extends to give a sheaf on the big site of S. Note that
0^ (X/S, E) is zero on any reduced S. In other words, this sheaf is its own formal comple-
tion. When no confusion will arise, we may use the notation 0^ (X, E) or O3 (E) for it.

We have

(1.5) 0°(X/S, E)=ker(E(X)->E(XxsS,ed))=/<.E,

and there is a natural map
(1.6) ^(X/S,E)^R^E.

Main examples. - When E = G^, S = Spec k (k an algebraically closed field), and X/k
is proper and smooth, then 0^ (X/k, GJ defines a functor on Artin local fe-algebras
A = k+1 (I = kernel of A -> A/m = k):

^(X/fe, GJ(A) = H^(X, l+I®^x),

(4) We may also refer to this as 0^ E.
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where 1+1 ®k^x is the sheaf of "principal units relative to I over X" contained in
(A ®k ^x)*- As will be shown under more general circumstances (2.6 below) the coho-
mology may be computed for the Zariski, etale or fppf sites and one obtains the same
answer, since 1+1 0^ 0^ can be constructed as a successive extension of sheaves ofabelian
groups, which are coherent O^-modules.

PROPOSITION (1.7):
(i) ^(X/S^E^^pC/S.E)/

(ii) if X is smooth over S, then ^q (X/S, E) w R^ E ;
(iii) if E is formally smooth, then the map ^q (X/S, E) -> R^ E is formally smooth,

and moreover, the tangent spaces to these functors at any point, if defined, are equal.
Proof. - The first assertion is clear. If X is smooth over S, then X x g S,^ = X^d.

Hence Es = E | X, and so 0^ (X/S, E) = R^ Eg = R^ E, which proves (ii).
Suppose E formally smooth, and let Z c= Z' be an infinitesimal extension of S-schemes.
Denote by Xz c: Xz. the product with X, and let Xo = Xs x g Z^d. Then we have a
diagram

O^Ez^E|Xz^EJXo-^0

^ 1" I
0->Ez -^E|Xz ->E|Xo-^0.

Thus the kernel and cokernel of a and a are isomorphic, and so the hypercohomology
of the complexes a and a is the same, yielding a diagram

R^a^RV^EiZ'^R^ElZ^R^V^a
i( 1 I II

RV^a^RV^EiZ'^RV^ElZ-^R^1/^.

This diagram shows that the map 0^ (X/S, E) = R4/* Es -> R4/* E is formally smooth,
as required. The last assertion of the proposition also follows from this diagram.

Here are four questions we may ask about the deformation functors 0) = 0^ (X/S, E).
(I) Is 0 formally smooth ?
(II) Is €> representable by a formal group over S ?
Here, formal group will mean in the extended sense. If the answer to (II) is yes, 0 will

always be a connected formal group. If the answer to (I) and (II) is yes, then 0 will "be"
a formal Lie group.

(Ill) What is the Zariski tangent space of O?
Here, we shall mean either: at any point of S, or under suitable conditions, as a coherent

sheaf over S.
(IV) What is the Dieudonne module of <6?
Concerning question (II), we have

PROPOSITION (1.8). - Letf : X -> S be aflat proper map and let E be a formally smooth
sheaf on X such that E is represented by a (necessarily smooth) formal group scheme on X.
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T/'R^"1/^ E is formally smooth, then O9 (X/S, E) is represented by a formal group scheme
on S.

As mentioned in the introduction, it is desirable to work with a general global base S
so as to be able to consider stratifications induced on moduli spaces.

We defer the proof to Section 3 below and conclude this section with the following
remarks:

Remarks (1.9):
(i) with the assumptions of (1.8), it follows that the sheaf 0^ (X/S, E) is a sheaf for the

flat topology;
(ii) it may happen that R4/* E is itself a representable functor. In this case (1.7)

shows that 0^ (X/S, E) is the formal completion of R9/^ E along its zero section.

2. REVIEW OF SCHLESSINGER'S THEORY. — Let R be a local ring with residue field k,
and denote by ^ the category of artinian affine local R-schemes with residue field k. In
this section, we consider the restrictions of the functors O4 (X, E) to ^. If S G ̂ , a sub-
script S will denote pull-back from Spec R to S. As before, we work with the etale
topology.

By a deformation couple S c: S' we mean a closed immersion on the category ̂  given by
a homomorphism of R-algebras of the following sort:

(2.1) o^I->A^A'^0,

where m^ 1=0. The ideal I may then be regarded as a /^-vector space, and we make
the further hypothesis that I is of ^-dimension one. We call I the ideal of definition of
the deformation couple.

Let X be a flat scheme or algebraic space over R, and let E be a smooth group scheme,
or a smooth formal group scheme, on X. Given a deformation couple (1.1) as above,
one has the usual exact deformation sequence of sheaves on Xj^:

(2.2) 0 -> I ® k€o -> ES^ Es -> 0,
where CQ is the sheaf of sections of the Lie algebra of Ej^. This abelian sheaf is actually
a locally free Gymodule of finite rank on Xj^. Of course, I (3k ^o w eo since I is one-
dimensional.

The sequence (1.2) fits into a diagram
0 0
I I

0 -> I ® CQ -> Ey ~> Eg -> 0

(23) 11 [ l
^•^ O^I®6?o->Es^Es^O

[ [
E,=E,
i i
0 0
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The exact cohomology sequences of the rows of this diagram show:

COROLLARY (2.4). - The Zariski tangent spaces to O4 (X, E) and R3/^ E are both
isomorphic to W (Xg, Co).

COROLLARY (2.5). - <^(X, E) and RV^ E are formally smooth ifW^1 (X, eo) = 0.
Since CQ is coherent, induction on the length of the nilradical of S shows:

COROLLARY (2.6). — IfX is a scheme, the sheaves <D3 (X, E) may be computed as higherM
direct images for the Zariski topology: 0^ (X, E) = R^ar* ES*

By definition, a square of deformation couples is a cocartesian square in the category (€:

^2 ^ 2

(2.7) T T
Si => S,

where S[ =? Si is a deformation couple. The word cocartesian means that

^2 =^ w! ̂ S1 "2 ?

or in terms of rings, that A^ w A[ x ̂  A^. It follows that S^ => S^ is also a deformation
couple and that the natural map 1̂  •—> Ii of the ideals of definition is an isomorphism
of fe-vector spaces.

By definition, a functor 0 :<^o—>(Sets) will be said to satisfy the Mayer-Vietoris
condition if for every square of deformation couples (2.7), the natural map

(2.8) 0(S2)-^(Si)x^so<l>(S2)

is a bijection.

LEMMA (2.9). — Let E be a smooth group scheme or formal group, as above. Then the
map (2.8) is surjective if 0 = O3 (X/S, E). It is bijective if O4"1 (X/S, E) is formally
smooth, or if R4"1/^ E is formally smooth along its zero section.

Proof. — The surjectivity of (2.8) follows from the diagram

H^Xo, (?o)^'(X2, E)-^(X,, E^H^^Xo, ^o)
(2.1) || i i ||

H^Xo, ^o)^^(Xi, E)-.^(Xi, E^H^^Xo, ^o)

obtained from the sequence (2.2). IfO^1 is smooth, then the left-hand arrows of (2.10)
are injective, and (2.8) is bijective. Since the map <S>q~l (X/S, E) —> R'1"1/^ E is smooth
[(1.7) (iii)], 0<z-l will be smooth if R4-1/^ is.

COROLLARY (2.11). — A sufficient condition for O4 (E) to be representable by a formal,
group (not necessarily smooth) over R is that C^"1 (E) or R3"1/^ E be formally smooth
and H^(XQ, Co) be finite dimensional over k.

Proof. — By Schlessinger's criterion [30], if03 satisfies the Mayer-Vietoris condition and
if its Zariski tangent space over k is finite dimensional, then 0^ is pro-representable.
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The Corollary follows from Lemma (2.9) and the fact the cohomology of a coherent
sheaf over a proper scheme is finite dimensional.

Combining the above results, we have:

COROLLARY (2.12). - If W4'1 (Xo, eo) = 0 and ^~1 (E) is formally smooth, then
<&3 (E) is pro-represented by a formal Lie group.

PROPOSITION (2.13). — Suppose X smooth and let E be a formal smooth group over X.
IfW (X, Co) is a finite dimensional vector space over k (e. g., ifX/k is proper), then the
Dieudonne module of typical curves of O1' (X, E) may be computed as follow

D<S>r(X,E)=Rr(X,DE).

Proof. — We use two properties of the sheaves C,,E, both stemming from the fact that C«E
has a finite composition series whose successive quotients are isomorphic to tan E:

(a) W (U, C^E) = 0 for r > 0, and any affine open U <= X;
(b) W (X, C^E) are W-modules of finite length.
Consequently the Mittag-Leffler conditions of [19] Ch. 0., Ilia, 13.2.3 are satisfied

and one has
C((p^) = lim ir(X, C,E) = H^X, CE).

n

This isomorphism is compatible with the decomposition of both sides into the product
of l(p) copies of typical curves. This proves the proposition.

3. REPRESENTABILITY OVER GENERAL BASES S. — In the previous paragraph we have
worked over artinian bases, and have obtained a proof of Proposition (1.8) in this case
(Cor. 2.11). We shall now prove the full Proposition (1.8) by combining the infinitesimal
techniques of Schlessinger with the approximation techniques of [2] and [3].

y\

To prove Proposition (1.8), we may replace E by E, using (1.2) and (1.6). Let e denote^\
the Lie algebra of E = E, which is a vector bundle on X. If Z c: Z' is an extension of
S-schemes defined by a square-zero ideal I c: 0^,, then there is an exact sequence analogous
to (2.3):
(3.1) 0->^®I-^E|x^->E|x^-^0,

where we view the term on the left as a coherent sheaf on X^. Since O4"1 (E) is formally
smooth, this leads to an exact cohomology sequence
(3.2) 0->Rg^(^®I)^€)g(E)|Z'-^^(E)|Z^Rg+l^(^®I).

Again since ^q~l (E) is formally smooth, Rq^lf^e commutes with base change on S,
and R^/i; e ® M is a right-exact functor of the Os-module M. This is because e is the
first-order term of E, i. e., e ® M w E [ X^ when Z' = Spec Q^ ® M. Therefore [17]
(Chap. Ill, 7), RV* (e 00 M) is left exact, and is of the form
(3.3) R4/* (e ® M) = ker (V ® M -> V ® M)

for some map V — > V of locally free (Ps'^dules (tensor products being over fl?s).
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LEMMA (3.4). -- Let a' be a section of^ (E) on Z7. Then the condition^' = 0 is repre-
sented by a closed subscheme of Z'.

Proof. — We use induction on Z' to reduce to the situation in which Z c Z' is defined
by a square-zero ideal I, and a' = 0 is represented by a closed set C = V (J) above Z.

We first show that if T —> Z7 is any scheme on which a' = 0, then T lies over the
subscheme Z* = V (J2). Replacing Z by Z* it will then follow that it suffices to treat
the case C = Z.

Consider, therefore, T—^Z' such that a' = 0 on T'. Then T = Spec ^/l.Oj lies
over Z, and hence over C:

I.(PT-=J^r.

Thus J.^-r' is a square-zero ideal, as required.
Now when C = Z, our element a' lies in Rqf^ (e ® I), by (3.2). So, using (3.3),

we can view a' as a section of V ® I. If T' is a scheme lying over Z', then pull-back
to T' changes V ® I to V ® I ̂ - Therefore we may view V ® I functorially as a submo-
dule of V ® Qy, hence a' € V ® 0^. Since V is locally free, it is clear that the condi-
tion a' = 0 is closed on Z'. This completes the proof of the lemma.

Now to represent ̂  (E) by a formal group on S, it suffices to represent by algebraic
spaces each of the subfunctors R^ <= <^ (E) defined as follows: Let a be a section of R4/^ G
on some scheme Z. Let J, denote the ideal such that V (J,) represents the condition a = 0.
Then

(3.5) aeR^ iff ^ == 0.

By Lemma (3.4), the map R,, —> ̂ q (E) is represented by closed immersions. It is clear
that (J R^ == ^q (E), and that this union will give ̂  (E) the required structure of formal
group.

To prove R^ representable, we want to apply the criterion of [3, 5.4]. The main point
is to check that Schlessinger's conditions hold, and to find a reasonable obstruction theory.
We denote ^ (E) by 0, and take n ^ 2.

Consider a surjection A '—>A of infinitesimal extensions of a reduced ^s-algebra Ao,
whose kernel M is an Ao-module.

LEMMA (3.6). - Assume that aeR^(A) and that some lifting a' o/a to 0(A') lies
in Rn (A7). Then they all do, provided n ^ 2.

Proof. - Let J = J,,, and let A = A/J, A' == A'/J,,. Lemma (3.4) implies that
A = A' ®A' A- By right exactness of tensor product, the map A' —> A induces a sur-
jection J,/ —> J. Thus, denoting by J' the inverse image of J in A', we have

J '=J^+Mnr=J^+N,

where N = M n J'. Since N c: M is an Ao-module, J^ N = N2 = 0. Therefore
J'" = J;., if n ^ 2. This shows that the vanishing of J^ is independent of the lifting a',
and proves Lemma (3.6).
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We now check Schlessinger's conditions using notation of [3]. The exact sequence (3.2)
shows that (S 1' 2) holds for 0 and S 1' for R, follows formally from this, together with
the fact (3.4) that R^-^0 is represented by closed immersions. By Lemma (3.6), the
functors R^ and 0 have the same tangent spaces D^ (M) = R^/^ e ® M. Standard
arguments show that the conditions S2 and (4.1) of [3] hold for this D.

To obtain an obstruction theory, we consider the Ao-module Ext^ (LA/(P, M) = E
classifying infinitesimal extensions A' of A with kernel M (cf. Illusie [21]). Consider
the condition J'" = 0 on A' [notation as in the proof of Lemma (3.6)]. The set of exten-
sions with V" == 0 is easily seen to form a submodule V of E. We set E = E/V. Given
a class a e R,, (A) and an extension A' —> A, there is an obstruction o in

^ExR34-1/^®]^

to lifting a to R^(A'). Namely, the obstruction to lifting to a'eC^A') lies in
R4'1'1/* e ® M, and the element of E determined by the extension A' vanishes if and only
if a' e R^ (A'), by (3.5). Thus (0, o) serves as an obstruction theory for R^. Condi-
tions [3] (4.1) for 0 are easily checked using generic flatness.

The remaining conditions of [3] (5.4) to be verified are (2) and (4). But (4) is vacuous
since R, is trivial on reduced rings, and (2) reduced to [3] [4.1, (ii)] by induction on the
nilradical of A.

4. THE MULTIPLICATIVE GROUP. — We now apply the above theory to the sheaf E == G^,
and to a flat proper map/: X ~> S. Recall that the Lie algebra of G^ is G^. Assuming
that the map/is cohomologically flat in dimension zero [16], R1/^ G^ = PicX/S is
represented by an algebraic space whose formal completion along the zero-section
is 0>1 (GJ. Combining (1.8) and (1.7) (iii), we obtain:

COROLLARY (4.1). — Suppose PicX/S is formally smooth along its zero section. Then
^2 (G^) is represented by a formal group scheme on S.

We call <D2 (GJ the formal Brauer group of X/S (<D2 = Br X/S). If X is smooth over
y\

a field k we just write Br X for its formal Brauer group.
The Zariski tangent space of <Sf (GJ at a point s e S is isomorphic with IT(X,, 0^)

and hence is of dimension

AO•r(5)=dim,^Hr(X„^).

The functor ̂  (GJ is formally smooth at s ifh0*'"1'1 (s) = 0. In particular, the formal
Brauer group of a surface is always formally smooth.

Proposition (1.8) provides us with a general criterion for representability of O1' (G^)
for all r which implies the following useful:

COROLLARY (4.2). - Let S = Spec A;, and suppose that b0'1"1 = 0. Then ^(GJ
is representable.

Proof. — For, in this case one shows by induction on the length of a test object S e V
that y1 (GJ is zero, and hence formally smooth.
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SPECIAL CASE. — Let X/fe be a complete intersection of dimension r ^ 2 in projective
space. Then €>'' (G^) is pro-representable by a formal Lie group over k.

For, in this case: h0''1"1 == h0'^1 = 0.
Finally, suppose R = k is a perfect field. Suppose X/fe is proper.

COROLLARY (4.3). - Let IT denote the sheaf of Witt vectors over X, as defined in Serre's
paper [31]. Then

D<S>r(X,G^=Vr(X,ir).

Proof. — This follows immediately from the identification

DG,=^T
and proposition (2.14).

COROLLARY (4.4). - Suppose that <^~1 is formally smooth. Then W (X,i^) ®w K
is a finite dimensional vector space. Moreover, suppose ^f is a formal Lie group. Then
W (X, i^) is of finite type over W if and only if<Sf is of finite height (i. e., has no unipotent
part).

III. — Crystalline and de Rham Cohomology

1. FORMAL GROUPS ASSOCIATED TO DE RHAM COHOMOLOGY. -- Let S denote either the
etale or the Zariski site. Let X/R be a smooth proper scheme, where R is a local ring
as in II, paragraph 2. There are two related complexes of abelian sheaves on X that
have been the object of study:

The additive (or ordinary) de Rham complex:

^X/R ^X^^X/R^^X/R^ • • •

The multiplicative de Rham complex (cf. [28]);

^X/R : ^X ——^X/R'^^X/R"^ • • •

By definition, the additive or multiplicative de Rham cohomology of X/R is the hypert
Cohomology of the additive or multiplicative de Rham complex of X/R. We adopt the
following purely evocative notation:

HDR-S;(X/R, G^) = H^(X, Qx/p)?

HDR-£(X/R, G^) = H^(X, Qx/p)-

We also denote by ODR-S W^ ̂  th^ functor whose value on S e ̂  (see section 2) is

H^X,^/R(S)),
<w

where ^^(S) is the total complex associated to the double complex
ox > r^*
"X XRS/S^^'X X R So/So-
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Here So = S^ed = Speck, and the term ^;RS/S of Ae above double complex is given
bidegree (0, r) while the term OxxeSo/so is ^ven bidegree (1, r).

If we let E denote ambiguously G^ or G^ we may then refer to H^ (X/R, E) which will
be additive or multiplicative de Rham cohomology depending upon the value of the
symbol E.

Now let S <= S' be a deformation couple whose ideal of definition is I. Let S = Spec A,
S' = Spec A'. For any S = Spec A in ^ we have:

^XXRS^^X/R^pA

and therefore if we tensor the short exact sequence of R-modules

O^I-^A' -^A^O

by OX/R» we obtain the additive de Rham deformation sequence

(1.1 add) 0 -^ I ®fcftxo/fc ̂ xx^y/y ̂  ̂ xxns/s -> 0.

One also forms the multiplicative de Rham deformation sequence

(1.1 mult) 0 ̂  I ®A/fc ̂  ̂ x'^y/y -^ "xx^s/s ̂  0

which, in degrees 0 and 1, looks like:

0-^ I®^xo -^^xn^/s^^^s/s^O
d\ d log d log

0 -^ I ®fcQxo/fc ̂  "LnS'/S- ̂  "L^S/S -̂  0

and which coincides with the additive sequence in degrees > 1. Consequently it, too,
is exact.

Let us now introduce a third complex which will play a role in our analysis of both
additive and multiplicative de Rham cohomology:

r: O-^QX/R^^/R-'>...
It fits into the exact sequence of complexes:

(1.2 add) 0 -^ J'-> Q'x/R -> ^x -̂  0.

where the last term 0^ is taken to be the complex concentrated in dimension 0, and

(1.2 mult) 0 -> J' -> QX/R -> ̂ x -^ 0,

where again the last term is taken to be a complex concentrated in dimension 0.
For completeness, one can include the deformation sequence for J';

(L3) O^I^jJxo/fc-^JxxRS'/S'-^JxxnS/S-^O,

which sits comfortably in both additive and the multiplicative de Rham deformation
sequences.
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Recall. — We may regard all complexes and exact sequences of abelian sheaves so
far discussed as complexes and exact sequences of sheaves for the site 2 over X, where S
is the etale or the Zariski site. By rights £ should occur everywhere as subscript, indicating
which site is being used. Although one has

HDR/6t(X/R, GJ ̂  HDR/^X/R, G,),

%(X/R,r)^H^(X/R,J-),

it is not always true that H^-^ (X/R, GJ and H^_^ (X/R, GJ are equal.
The exact sequences listed above put us in the same formal framework as paragraph 3,

and one obtains analogous results, some of which we summarize below. As usual in
this section, let X/R be proper and smooth.

PROPOSITION (1.4). - The tangent space of ODR(X/R,GJ over R is given by
HDR (X/R, GJ. // €^1 (X/R, GJ is formally smooth, then O^ (X/R, GJ is represen-
table by a formal group over R (in the extended sense). If H^1 (Xo/k) = 0, then
ODR (X/R, G^) is formally smooth.

If we wish to compare the functors €^R (X/R, GJ and <D1' (X, GJ, we must introduce
^ (X/R, J'), the functor on ^, whose value is given by the r-dimensional hypercoho-

mology of the total complex associated to the double complex

[JxXRS/S->JxX^ So/So].

One then has the long exact sequence of functors on ( € ' .

... -.^(X/R, J')-^R(X/R, GJ-^X, GJ-^^X/R, J')^ ...

The functor ^r (X/R, J") is exceptionally well-behaved. We shall related it to the
uncompleted functor R^ J', the higher direct image in hypercohomology. This is
the sheaf on R associated to the presheaf

S-^H^XxRS/S.J').

More generally, let X be proper and smooth over R. Let ^ be a coherent sheaf over X
which is flat as an R-module, or let it be an finite complex of flat R-module sheaves over X,
each term of which is coherent. Consider the functor R'1/^ ^. One says thai formation
of W ( , ̂ ) commutes with base change in ^ if the natural map

IT(X, ^')®RA-^R7^F(S)

is an isomorphism for every S = Spec A in .̂ We have the evident:

LEMMA (1.5). — Suppose formation ofW~1 ( , ̂ ) commutes with base change. Then
these conditions are equivalent:

(a) Wf* SF is formally smooth, for all r;
(b) W (X, ̂ ) is a free R-module of finite rank, and formation ofW( , ̂ ) commutes

with base change in V.for all r. Moreover, if these conditions hold, then Vf^ 3^ is repre-
sented by the vector group over R whose associated R-module is W (X, 3F).
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Proof. - Clearly (b) implies (a) and the final assertion. To show that (a) implies (b)
use the following diagram:

0->M®RI^H r(XxRS7S / ,^)-^H r(XxRS/S,^^)-^0i- i- i-
M®RI———^MOpA'——————^M®RA———>0

where M = IT (X, ̂ ) and S = Spec A, S' = Spec A', S <= S' being a deformation
couple with ideal of definition I.

An easy diagram-chase shows that a is an isomorphism if and only if a' is. Starting
with S' = Spec R, and by descending induction on the length of the maximal ideal, one
shows that

a: M®Rfc-^ir'(Xo/fe,^')

is an isomorphism. By ascending induction on the length of the maximal ideal, one
shows that

a: M^A-^H^XxRS/S,^")

is an isomorphism for any S = Spec A in the category c€. Thus the bottom line of the
above diagram is isomorphic to the top line, for any deformation couple S <= S'. It follows
that formation of W ( , ̂ ) commutes with base change. It remains to show that M is
free:

LEMMA (1.6). — Let R be an artinian local ring, and M a module of finite type over R,
such that

O ^ M ® R I ^ M ® R A ' ^ M ® R A - ^ O

is exact for every deformation couple S = Spec A c S' = Spec A' over R. Then M is
free over k.

Proof. — Let m S R be the maximal ideal. We shall prove the lemma by induction
on the length of m over k. It is evident if this length is zero. Consider an ideal I c m of
length 1, and form Ro = R/I. Then Mo = M ®R Ro is free over Ro by the inductive
hypothesis, for MQ/RQ satisfies the same hypotheses that M/R does. Thus we have:

(a) I is a nilpotent ideal in the radical of R.
(b) Mo = M ® R/I is free over R/I.
(c) I ® M —>• M is injective.

By Proposition 5 of [8] (Chap. II, § 3), M is free over R.

COROLLARY (1.7). — Let X/R be smooth and proper. Suppose that the ^-modules
W (X/R, J') are free, and that formation ofW~1 ( , 0') and W ( , J') commutes with base
change in ^. Then R*"/^ J* is represented by a finite dimensional vector group over R
whose associated module is W (X/R. J') and we have the short exact sequence of functors
on ^\

... ->Vf^ ̂  <^DR(X/R, GJ -> ̂ (X, GJ-^R^AJ- ̂  ...
8r 8r+l
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Let us call the morphism ^+1 : ̂  (X, GJ -> R1'4'1/^, J* the DR-Chern map. When is

this map zero? It is clearly zero if ^r (X, G^) is /^-divisible or if R''4'1/^ J" vanishes,
which will happen frequently in our applications. The following lemma, due to Messing,
provides a more interesting case where this map vanishes.

LEMMA (1.8). — Let X/W be a smooth proper scheme. Set R^ = W^+i, and let
X,, = X x ̂  R,,. Suppose that for a fixed r,

(i) ^r (XJRn, G^) is smooth and representable for all n\
(ii) formation of H1'4^1 ( , J') commutes with arbitrary artinian base changes of W,

and IT4-1 (X/W, J') is flat over W;
(iii) either the Hodge Spectral sequence for XJR^ degenerates for all n, or at least

the maps:
H^X^x^H^WR^J-)

are all zero. Then for R any local ring as in II, paragraph 2 the DR-Chern map 5,.+i
vanishes, for X ®w R/R-

Proof. — We prove this using the following general fact:
Let /: A —> B be a morphism of smooth formal groups over A = Spf (W). Let tan,,

denote the tangent space functor over W^. Suppose

tan,, (/): tan,, (A) ̂  tan, (B)

is zero for all n. Then /is zero.
The lemma follows quite simply: By (i) and (ii) the domain and range of the DR-Chern

map may both be considered smooth formal groups over A; and by (iii) tan,, (^+1) = 0
for all n.

COROLLARY (1.9). — The long exact sequence above splices to the following short exact
sequence of formally smooth groups

0->R7*J'^^DR(X/R, G^O^X, G,)-^0

in the following cases:
(a) X is a smooth complete intersection in projective space over R, of dimension r;
(b) take r = 2, and suppose that X/R is a smooth proper surface such that

H° (XXR S, Q1) = H1 (XXR S, 6?xx^) = 0 for all S in ^ (e. g. a K 3 surface);
(c) take r = 2, and suppose that X/R is a smooth proper surface such that:

(i) H1 ( , J') and H2 ( , J') commute with base change in ^,
(ii) H2 (X/R, J') is flat over R,
(iii) PiCx/R is formally smooth,
(iv) O2 (X, GJ is p-divisible.
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Proof. - Set U = Wf^ 3\
(a) First, we may assume that r ^ 2. Secondly, X/R lifts to a smooth complete inter-

section X/W. The functor ^ is representable by a formal smooth group because
h 0 ' 1 ' - 1 =ho>r+l =0. Finally, X/W satisfies the conditions of lemma 1.8 by [16]
(Exp. XI, theorem 1.5).

It then follows that the sequence splices, and I/ is formally smooth. Consequently <1>^
is also formally smooth. ^\

(b) By Serre duality, we also have H2 (Q1) = H1 (Q2) == 0. It follows that Pic, L1,
L3 are all zero. Consequently L2 is formally smooth, and the long exact sequence splits.
Since A0 '3 vanishes, O2 is formally smooth, and therefore so is O^p.

(c) Follows in a straightforward way.
COROLLARY (1.10). — Suppose R = k, and both functors <S>^ and <Sf are representable

by formal Lie groups. Then (Dj^ s ̂ r (modulo unipotent groups).

2. THE CRYSTALLINE NATURE O^R WR, G^). — We shall put ourselves in the context
of the theory of Berthelot. For this, we draw extensively from the results and terminology
of his thesis [5].

The results of this section are due to Berthelot, and we are quoting, with mild modifi-
cations, a letter he sent to us on August 22, 1973.

As usual we shall have to make a choice of basis site 2 which can be either the small
etale or Zariski site. However, we shall consider other sites depending on £. For example,
if X/R is smooth, we consider S-Crys (X/R). Its objects are triples (U, T, 5), where U —> X
is an "open set" of the site £, T is a scheme over R containing U as a closed subscheme,
and whose ideal of definition is endowed with the divided power structure 8. A family
of maps (Uy, Tj, §y) —> (U, T, §) is a covering family if and only if (Ty —^T) is a covering
family for £. If Xo/k is smooth, and the maximal ideal of R is given a divided power
structure y, then we will also consider the site S-Crys (Xo/(R, y)). Its objects are tri-
ples (U, T, 8) where U — ^ X o is an "open set" of the site S, T is an R-scheme contai-
ning U as a subscheme whose ideal of definition is endowed with the divided power
structure y. Covering families are as before.

From now on we fix a site, and drop the symbol £ to simplify the typography. Thus
we shall refer to the site Crys (X/R), etc.

Let k be a perfect field of characteristic/?, and let R = Wn+1 (k) = W^+1 for some n ^ 0.
Assume, as usual, that X/R is smooth. For any S in (^7, let 6^yg (S) denote the complex
of length 2 on Crys(X x R S/S) given by

Cys (S) (U, T, 8) = \0 x (T) -. 0 x (U x „ fe)].

Let O^yg (X/R, G^) (S) be the r-dimensional hyper-cohomology over Crys(X x R S/S)
of the complex S^ (S).

PROPOSITION (2.1) (Berthelot). — There is an isomorphism of functors
<DDR (X/R, G,) ̂  $^ (X/R, GJ.
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Proof. - Let L denote the "linearization functor" [5, Ch. V. 3] which associates to
a differential operator on X x ^ S relative to S, an ^ X R S/S linear homomorphism of
sheaves on Crys(XxR S/S). Denote by L(Qxxns/s) Ae complex

L^xx.s^-^L^L.s/^^LCOLHS/s)-...,

and by L^ (S)) the total complex associated to the double complex

L^x^s/s^Wo/^

where the term of degree r in the constituent complexes is given the bidegree (0, r) and (1, r)
respectively.

By the Poincare lemma [5] (V. 2) L^xx^s/s) is acyclic in degrees ^ 2, in degree 0
its cohomology is ^(xxRs/s)crys» and in d^ee 1 all one can say is that its cohomology
is some sheaf £5 which would vanish if there were an exponential map [5]. But since
such a map is not available to us on the site Crys (X x R S/S), we cannot suppose that it
is zero. What is true, however, is the following:

LEMMA (2.2). - The complex [es—^ej has trivial hyper cohomology in all dimensions
over Crys (Xx^S/S).

Proof of proposition (2.1), granted lemma (2.2). - Let u denote the projection of the
crystalline topos (X x R S/S)erys onto the S-topos X x p S. The calculation of cohomology
by "Cech-Alexander complexes" (c/. [5], V, Cor. 2.2.4) shows that

R^(L(n^s/s))^n^s/s,
and consequently:

Ru^(L(Slx(S)))^^x(S).

We obtain the following cohomological calculations:

H^XXRS/S)^, L(Q^s/s)) ̂  H*(Xx,,S/S, Qxx,s/s),

H*((Xx^S/S)^, L(QX (S))) ̂  H^Xx^S/S, Q^S)).

By virtue of the last isomorphism and the above discussion, we have the following long
exact sequence of hypercohomology:

^H r((XxRS/S)^,^)^H r(XxRS,Q><(S))^H r- l(XxRS,e(S))^,

and the lemma therefore establishes the proposition.

Proof of lemma (2.2). - It suffices to prove that R1 ̂  (eg) -^ R1 ̂  (sg^) is an isomor-
phism for all f. But the R1^ are the cohomology sheaves of the "Cech-Alexander"
complex relative to the smooth imbedding given respectively by X and XQ. What we
shall show is that there is an isomorphism of the Cech-Alexander complexes themselves-v • v •
^XXRS/S (̂  -^ CAxo (£so)- Tl^s assertion is local, and we may therefore suppose that X
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is etale over affine w-space, and therefore the complex L(Q^s/s) can be written over
any object (U, T, 8) of the crystalline site as follows:

d
K-((PT)=^T<^ ...^n>-^T<^ ...^^(SQ^^k^ ...,^>®Q2^...,

where A < TI, ..., T^ > is the divided power series ring over A in the indeterminates
TI, ..., Tn (c/. [5], Chap. I) and d is the d^-linear derivation with respect to the inde-
terminates TI, ..., T^. It suffices, then, to prove the following assertion: Let B, B' be
two rings such that O — ^ I — ^ B ' - ^ B — ^ O where I is an ideal of square zero and let N'
denote the complex which is the kernel of the surjective homomorphism K* (B) —> K"(B).
Then N' is acyclic in dimensions greater than zero. But N* is the complex:

l+I .B<Ti, . . . ,T^>^I .B<TI, ....^XaQ^I.B^, . . . , ^>®Q 2 - ^ . . .

Now this complex is acyclic in dimensions ^ 2 by the Poincare lemma [5] (V.2). In
dimension 1, the Poincare lemma tells us that for every co such that rf(co) = 0, there is
an element/e I.B < TI, . . . , T^ > such that co = df. Since I is of square zero, g = exp (/)
exists and dg/g = co.

Remarks. — 1. We emphasize again that we do not necessarily have an isomorphism
between the groups H^p (X x R S/S, GJ and H^g (X x R S/S, GJ due to the nonexis-
tence of an exponential map. We do, however, have an exponential map in the site
Nil. Crys.—I. which is the analogous variant of Berthelot's nilpotent crystalline site.
Consequently,

HDR(XX^S/S, GJ^HNH. crys. (XXR S/S, GJ.

The only problem with the site Nil. Crys. is that the divided power structure on the ideal 2
of the Witt vectors of a perfect field of characteristic 2 is not nilpotent.

2. The main advantage of the crystalline interpretation for O^R (X/R, G^) is that it
is functorially dependent only on Xo/R. Explicitly, consider y, the standard divided
power structure on the ideal p.W^+i (k) c: W,+i (k). If S = Spec A is in ^,
let S = Spec (A/p. A). Working over the site Crys (Xo x ^ S/(S, (p), y)), let
^rys P^o/R» G^) (S) be the r-dimensional hypercohomology of the complex ^ys (S) of
length two, defined at the beginning of this paragraph.

PROPOSITION (2.3). - 0)^(X/R, GJ ̂  0^(Xo/R, GJ.

3. The above functor (D^ (Xo/R, G^) : ̂  —> (Ab) is available to us even if no smooth
lifting X/R ot Xo to R exists. To establish our theory in the case where Xo does not lift
to the Witt vectors of k, it would undoubtedly be necessary to work with this functor
directly. We have not done this.

3. THE FROBENIUS ENDOMORPHISM OF 0^ (XQ/R, GJ. — Continuing with R = W^+i
consider the Frobenius morphism F : Xo --> X^.

When <]>^yg (Xo/R, G^) is representable by a formal group over Spec R, the above
morphism induces a morphism of formal groups v : (D^yg (Xo/R, G^)010 —> <3>^yg (XQ/R, G^).
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LEMMA (3.1). — When <3>^ys (^o/R? GU is pro-representable by a formal lie group 0,
the operator v is a lifting of the canonical Verschiebung morphism O010 —> Oo C^o = 0 x R A:).

Proof. — Since the assertion is about Oo? we may suppose R = k and consequently
we have O^ys C^o/^ G^) = O^R (Xo/^ G^). Denote by Ver the canonical Verschiebung
of <l>o- We must show c—Ver = 0. It suffices to show that Frob. (i;-Ver) = 0, for
the kernel of the Frobenius is a finite subgroup scheme ofOo ̂ d there are no nonconstant
morphisms from a smooth formal group to a finite group scheme over k. Consequently
we are reduced to establishing Frob. v = p.

But what is the composition of v with Frob ? The reader will easily obtain from the
definitions that the endomorphism Frob. v on HJ^ (Xo x ^ To, G^) is induced from the
Frobenius morphism for the scheme X Q X ^ T O . Thus, denoting the scheme X o X j ^ T o
by the letter Z we are reduced to showing that the Frobenius morphism for Z/Spec k
nduces multiplication by p on the multiplicative de Rham complex of Z:

., d log < d „ d
^Z-^/.-^/^...p! °! °!^—^/fc-^/k->...

One finds that Frob acting on 0^ is multiplication by p, but on 0^/fc 0^ 1) ll ls identi-
cally zero. Since multiplication by p on Q^ (f ^ 1) is identically zero, we have indeed
that the Frobenius endomorphism is simply multiplication by p on the multiplicative
de Rham complex. A consequence of the above discussion is the following:

Let X/W be a smooth proper scheme. For any n, set X,, = X x gpecw ̂ P^ ̂ n+1- ^lx

a nonnegative integer r, and consider

^n = <%R(XJR, G,) == <^(Xo/R, GJ,

where Rn = W^+i. Suppose that the ̂  are representable as formal Lie groups over R^
for every n. Let ^ : ̂ <p) —> 0,, denote the morphism which was denoted v previously.
Then the system of formal groups and morphisms (0^, v^) are compatible with restriction
and give rise to a formal group 0 over A = Spf (W), together with a morphism v : ̂ ^ —>- 0.

PROPOSITION (3.2). — Under the hypothesis that the (&„ are formal Lie groups over R,,
for all, n, the pair (0, t;) is a Cartier group whose associated Cartier module is
H£rys C^o/W, Go) == tScrys C^o/W) whose associated endomorphism f is the one induced
by Frobenius.

Proof. — This follows from the previous lemma and discussion.

COROLLARY 3.3. — Let X/W be proper and smooth. Suppose, for a given r, that
0'' (Xo, Gm) is a formal Lie group, and that O^R Q^n/^n ? ^w) are formal Lie groups over R,,
for all n ^ 0. Then

H^Xo, ̂ ) = DO^Xo, GJ = H^(Xo/W),o, i) (5).

(5) The isomorphism IT (Xo, i^) <8) K s Hcrys (Xo/W)[o, D 0 K has also been proved by Bloch [7]
see also [6] 4.5) when dimXo > char k.
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Proof. - This merely combines corollary (I, 2.27), lemma (II, 2.14) and proposition (3.2)
above.

COROLLARY 3.4. — Continuing with the hypotheses and notation of the previous corollary,
let

0 ̂  ao/bo < fli/fci < ... < a^bf < 1

be the slopes of the Cartier module H^.yg (XQ/W)[O,I) written in such a way that a^b, has
multiplicity b,. Let hQfr = dim,, W (Xo, ^xo)- Then

ib.-a^h0^
i=0

where one has equality if and only if^f (Xo, GJ is of finite height, or equivalently, if and
only if H^Xo,^) is of finite type over W.

Proof. — If we let r be a formal group of finite height whose Dieudonne module is
equivalent to H^ys (Xo/W)^, i> then one easily computes the dimension of F to be S (b^—a^.
The inequality follows from the fact that dim 0,. = hQfr, as does the rest of the corollary.

Remarks:
1. The above inequality is the first of a series of inequalities involving the Hodge

numbers and the slopes of H^ys (Xo/W), known as the Katz conjecture ([26], [27]).
2. The hypotheses of these corollaries are fulfilled when X/W is a smooth proper scheme

of any of the types a, b, c, of corollary (1.9).

IV. — The formal Brauer group of a surface as link between crystalline cohomology
in characteristic p and etale cohomology in characteristic zero

1. REPLACING G^ BY u^. — To introduce the "enlarged functor" T (c/. introduction)
we shall consider the cohomology of u^oo rather than G^. Since the group schemes n n
are not smooth, the etale site is insufficient for cohomological calculations, and we must
work in the fppf site. Since ^ —> [G^ -"> G^] is a quasi-isomorphism of complexes
of fppf sheaves, and since G^ is smooth, we will use a theorem of Grothendieck to obtain
an isomorphism

Hn(-,^)^Hi,(-,[G,^Gj)

enabling us to work with the etale site. Passing to the inductive limit gives an expression
for H^i ( — , Hpoo) in terms of etale hypercohomology. By means of this, we will show
(Prop. 1.5) that the ̂ /-deformation cohomology of^oo is isomorphic to the etale defor-
mation cohomology of G^, at least over bases where p is nilpotent. This will enable

/s
us to identify the connected component of ^F with Br [see introduction, and (1.8) below].

The flat topology will be indicated by the subscript fl.
We assume that our spaces X are defined (not necessarily of finite type) over Spec Z/p^

for some v, or that we are working with formal objects over Spec Z .
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Let G be a sheaf on X. We can consider the sheaf Gg = G ® Q, which is the direct
limit of G, mapping to itself by multiplication by n. Define complexes of sheaves G [w],
^ ^ °o? by

G[n] == [G-">G] if n<oo ,
(1 -1) G [oo] == lim G [n] == [G ̂  Go].

^ "
/<

Suppose that G is formally smooth on X, and that G is represented by a (smooth)
formal group on X, with Lie algebra 9. Let Xi <= X[ be an infinitesimal extension of
X-schemes defined by a square-zero ideal J, so that we have an exact sequence

(1.2) 0 -^9®J-^G |Xi~>G|Xi^O.

Then g ® J is /^-torsion, hence tensoring by Q gives

GQ[XI—»GQ|XI.

In other words, GQ is discrete. Correspondingly, there is an exact triangle of complexes

(1.3) 9®J-^G[oo]|X'i-^G[oo]|Xi.

Let /: X —» S be a proper flat map, and let G be as above, on X. Then if Z c: Z' is
an infinitesimal extension of S-schemes defined by a square-zero ideal I, we obtain
from (1.3) an exact sequence

(1.4) ...^RV^®l|Z-^RV^G[oo]lZ'^R^G[oo]|Z-....

PROPOSITION 1 . 5 . — With the above notation, assume that Rq~lf^G is formally smooth
along every torsion section. Then

(i) R4"1^ G [oo] is formally smooth, and hence the map i of (1.4) is injective:
y\

(ii) O9./^ G w ^f^ G [oo], and this sheaf is represented by a formal group scheme
on S;

(iii) let (Xo be a section of^f^ G [oo] over a point SQ e S. Then R^/* G [oo] is pro-
representable, along the section (Xo, say by y, and R^ G operates simply and transiti-
vely on y.

Proof. — (i) Consider the exact sequence

R^^GQ^R^-V^OO^R^^G^R^V^GQ.

The extreme terms are Q-modules and are discrete (II, 1.4), while R4"1^ G [oo]
is torsion. It follows from the assumption (R^~1/^ G is formally smooth along every
torsion section) that R^~1/^ G [oo] [ Z'-^ R4"1/^ G [oo] [ Z is surjective for every
infinitesimal extension Z <= Z', as required.

(ii) The exact sequence (1.2) shows that G is a torsion sheaf. Hence there is a natural
map G—^G[oo], inducing 0^ G—>^/^ G [oo]. This map is an isomorphi
because of (i) and [II, 1.7 (iii)].
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Assertion (iii) is clear from Schlessinger's theory.

Remark 1.6. — The important point in this discussion was the fact that 9 ® J is
p-torsion. So, it would work equally well if G [oo] were replaced by

lim G|y] = G-> G®Z[l/p].
v

Consider the case that G is represented by a smooth algebraic space on X which is
divisible, i. e., such that G -"> G is a flat epimorphism. Denote its kernel by G^, and let
Goo = (J Gy The group G^ (n ^ oo) will be a flat algebraic space, but it will usually

n
not be smooth. By a theorem of Grothendieck ([15], Appendice) the etale and the flat
cohomology for G are isomorphic, and so the same is true of the complexes G [n\.
On the other hand, the complex G \n} is isomorphic, in the derived category of sheaves
for the flat topology, to the sheaf G^ concentrated in dimension zero. Thus we have

COROLLARY 1 . 7 . — Let G be represented by a smooth divisible algebraic group on X.
Then for all n ^ oo we have:

(i) Hj,(X,G[<|)^H?i(X,G,);
(ii) iff : X —> S is a proper map, then Rjt/* G [n\ is the etale sheaf associated to the

presheaf ^ defined by ^ (S') = H^i (Xs., G»).

A technical point. — One can not quite identify Rjt/* G \n\ with R^i/^e G, for we
don't know whether ^/^ G \n\ is a sheaf for the flat topology.

We apply the above formalism as follows. Let R be a discrete valuation ring with
perfect residue field of characteristic p. Let X/R be a proper smooth surface and let V
denote the subsheaf of

Pit/* G, [p00] == lim Rl /„ G, [>"] = R,

which to any Artinian local R-algebra A with residue field k associates the subgroup x? (A)
of those sections of R (A) which map to the divisible part of H^i (Xj^, Upoo)^

0 ̂  ̂  (A) ̂  H?i (XA, Hp.) ̂  Div H^ (X, , ^oo).

PROPOSITION 1.8 .— Suppose (Hypothesis A) Pk^ (X/R) is smooth and the formal Brauer
/\

group Br is of finite height A. The functor ^ is (the restriction to the category ofartinian
local ^-algebras of the functor associated to a p-divisible group over R. Denoting this

^\
(necessarily unique) p-divisible group by the same letter V, we have ^° = Br and the etale
part of ̂  may be identified with the divisible part of H^ (X^, ^poo) as Gal (k/k) module.

Proof. — First suppose that k is algebraically closed. Since X/R is a surface,
applying (1.4) one sees that ^F is formally smooth. Applying (1.5) and hypothesis A,
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one sees that for every ^ eDiv H^i (X,,, p^oo) the functor ^ defined by

^(A)={xexP(A)\x^^},
/\

is pro-representable as a torsor over Br (where Div means "the divisible part of"). The
proposition then follows for k algebraically closed, since Div R^ (X^, ^oo) is a ^-divisible
(abstract) group of finite corank. It is easy to descend to the case where k is perfect:

For a pair of positive integers m, n, let ̂ ^ be the sheaf kernel of/?"* in x?, taken over
the base R^ = R/p" R. We must show that ^P^ is representable by a finite flat group
scheme over R^. But the pullback of ^^ to R^ = R^ ®w<fc) W (AQ is so representable.
Since we are given ̂ ^ as sheaf for the big etale site over R^, we have the requisite "descent
data" for the etale extension R^/R^.

PROPOSITION 1 . 9 . — Let p > 2, and suppose X/R is a smooth proper surface as above,
/\

satisfying hypothesis A. Then height Br = rank^ H^y, (Xo/W)[o, i) and

height ̂  = rank^H^(Xo/W)^, n.

Pnw/. - The first equality is just Corollary (3.3) and its footnote. The second comes
from the first, proposition (1.8), and the theorem of Bloch [7] which when/? > 2 interprets
the number of eigenvalues of Frobenius of slope 1 in terms of flat cohomology

rankz^ H^, (Xo/W)^, ̂  = corank^ H^ (Xj,, Upoo)
(see also [6] 4.5).

Relation to blow-up. — If X/R satisfies hypothesis A, and /: X' —> X is the blow-up
of X along a section over R, then R4/^ 0^ = 0 for q > 0, which implies that

/\ /\
Pic" X'/R = Pic' X/R and Br X' = Br X. It follows that X/R satisfies hypothesis A
if and only if X'/R satisfies hypothesis A. One has the following relation for the ̂ -divisible
groups ^F over R, associated to X and X':

(1.10) o^x-^x'-^/Z^O.
2. THE RELATIONSHIP BETWEEN ^ AND ETALE COHOMOLOGY IN CHARACTERISTIC 0. —

We shall work in a mixed characteristic local situation. Best for our purposes is to let R
denote a discrete valuation ring whose residue field k is algebraically closed of charac-
teristic p and whose field of fractions K is of characteristic zero. Let S = Spec R, and
let X/S be a smooth proper surface. Let the subscript 0 denote reduction to k.

Let R denote the absolute integral closure of R, i. e., the integral closure in the alge-
braic closure K of K. Let S = Spec R, and let the subscript rj denote passage to the
geometric general fiber (i. e. the fiber over rj). If G is a group, G (n) denotes the kernel
of multiplication by p" on G. Let TG denote the projective system lim G (n).

n

Consider the Zp-module (of finite rank == 63) : H = T(H^ (X,,, ^oo)). This is a
Gal (K/K)-module and H ®^ Qp possesses a nondegenerate quadratic form given by
cup product on the surface X^.
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PROPOSITION 2.1 (CONVERGENCE). — Under hypothesis A (Pk^X/S is formally smooth
^\

and Br is of finite height):
(a) the natural map

TH^(Xs,^oo)^TCF(S))
is an isomorphism.

(b) the natural map
TH^Xs-H^-^TH^X,,^)

is injective.
Preparation/or the proof. — Our object is to reduce (a) and (b) to assertions concerning

0/2^-dimensional cohomology, and then, by treating a one-dimensional cohomology class
as a torsor, we shall have strong geometric tools at our disposal.

Since the assertions of our proposition are statements over S, we are free to replace X/R
by X'/R/ where R' is (say) any finite discrete valuation ring extension of R, and using (1.10),
we may also replace X by the blow-up of X along a finite union of disjoint sections over S.

Choose a family of Lefschetz pencils ([18], SGA 7, II, Pinceaux de Lefschetz: theoreme
d'existence) over the family X/S. Any family of pencils which specializes to give a
Lefschetz pencil over k will automatically give a Letschetz pencil over T| since the fibre
dimension is odd. Replace X by an appropriate blow-up along disjoint sections of S,
to obtain a fibration

X-/>Y=Psl

whose only singularities are quadratic degeneracies above finitely many disjoint sections
PI, . . . , Pi of Y over S. Put P = (J P,.

i
Let us write Pic X/Y = A © Z, where A is the fibration of generalized jacobians ofX/Y.

This decomposition is canonical if we fix a section, say 9, of X/Y. Let the subscript j
denote reduction modulo ̂ J+l. The Leray spectral sequence for/shows that the group
H^(Yj,An) is canonically identified with the subgroup of H^(Xy,p^) of elements
whose restrictions to the fibres (Xy)y and the section 6y are trivial. Since the fibre and
section are algebraic classes, we may for our purposes work with H^i (Y,, A^) as well
as H^(X,,^).

To prove (a) and (b) of (2.1) it will suffice to prove the following two lemmas. The
second we state slightly more generally than needed.

LEMMA 2.2. - The restriction map Hf\ (Y, A^) -> Hf\ (Y^, A^) is injective for every n.
LEMMA 2.3. — Let R be a complete local ring with maximal ideal m and S = Spec R.

Let f : Y —> S be a proper map, and let A. be a quasi-finite, flat, separated group scheme
over Y. Assume that A is finite over Y at all points of the closed fibre Yo except for a
finite set p^, ..., pi e Yo. Denote by a subscript j truncation modulo m-74'1. Then, the
canonical map

Hn(Y,A)^limHn(Y,,A)
j

is surjective. Iff is flat, it is bijective.
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We shall also show:

LEMMA 2.4. - The map H1 (Y, A,) -^ H1 (Yo, A,,) is surjective, and its kernel is iso"
— ^\ _

morphic to the group B^ of sections of order n of Br X/S over S.
We defer the proofs of these lemmas to the next section and terminate the present one

by relating cup-product over Y to intersection pairing on the Neron-Severi group of X.

LEMMA 2.5. — There is, on Y, a canonical pairing of sheaves A,, ® A^—>^, induced
by the autoduality map A —> ^xt1 (A, G^) of the jacobians.

Proof. — According to [I], there is an isomorphism

(2.6) A^xt^GJ

if these sheaves are restricted to the small smooth site on Y, the map being induced by
the classical pairing of ideles. Since A is smooth, the universal class on A defines a mor-
phism (2.6) for the big flat site, though it is no longer an isomorphism above the locus P.
Multiplication by n yields a map A^ -^^om (A^, GJ w ^om (A^, ^), hence a pairing
A^ ® An —> ̂ , as required.

Thus we can consider the cup product pairing

(2.7) H«(Y, A^)®Hn(Y, A^H^(Y, ̂ ).

It is compatible with restriction to the fibres of Y over S.

LEMMA 2.8. - Let N denote the Neron-Severi group ofXo , and let N' c: N be the sub-
group of divisor classes orthogonal to the fibres XQ and section 9o. The intersection pairing
on N' is compatible with cup product on H^ (Yo, A^), i. e., the diagram

N' ® N' -^ Z
I I

H^H^Z/n^H^Yo,^)
commutes.

Proof. — The autoduality map (2.6) gives rise to a Yoneda pairing

(2.7) H1 (Yo, A) ® H1 (Yo, A) ̂  H1 (Yo, GJ = Z.

Since the pairing on A^ is induced from autoduality, the pairings (2.7) and (2.9) are compa-
tible (up to sign), and so it suffices to relate (2.9) to intersection theory on Xo, via the
surjection H° (Yo > A) —> N'. This relation is clear from the definition of the autoduality
pairing: If D is a divisor and a is an idele class on X, then an idele class < a, D > on Y
is defined as a ((D)), where a is an idele representing a and with support disjoint from D.
It is clear that if a represents the divisor class of C, then the degree of < a, D > on Y
is (C.D). That is the required compatibility.

3. PROOFS OF LEMMAS (2.2), (2.3) AND (2.4).

Proof of Lemma 2.2. — Let R' be a discrete valuation ring finite over R, with field
of fractions K', and let YR, = Specxg Y, etc. By an easy limit argument, it suffices to
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show the map H1 (YR., A^) -> H1 (YK-, A^) injective for every such R'. We may take
the case that R' = R.

Let a class a e H^i (Y, A^) be given, which is zero on the generic fibre Y^. We repre-
sent it by a torsor T under the quasi-finite group scheme An. Then T has a section F
over YK; let F be its Zariski closure in T. We claim that F is a section of T over Y. This
will show that T is trivial, as required. Since Y is normal and A is quasi-finite, it follows
from Zariski's Main Theorem that the map r —> Y is an open immersion. We have
only to show that it is surjective.

The local structure of A^ is as follows: At any point y e Y whose fibre Xy is smooth,
A^ is a finite group scheme. Hence A^ is finite over U = Y—P, and so r is, too, i. e.,
r covers U. It also covers the generic point of each P^.

Let p^ be the closed point of P^, and work locally at p^ for the etale topology. By
HenseFs lemma, there is a finite subgroup FA^ c: An whose stalk at p^ is the same as
that of An:
(3.1) o-^FA,.->A^G-^0 (locally at p^

The sheaf G is a quasi-finite flat group scheme which is trivial at/\,. Hence its zero section
is open and closed and so G is etale. Since its stalk at/^ is trivial, G has trivial cohomology
on the henselization, and therefore any torsor T under A^ is induced from a canonical
torser FT under TA^,

T^FTxp^A^.

Thus FA^ acts on T, and T/FA^ may be canonically identified with G. The inverse image
in T of the zero-section of G is the finite subscheme FT c: T.

Now the fibration X/Y has a node above both points of P^, and so the restriction of A^
to p^ is a finite group scheme of constant rank n29'1. It follows that G is zero on Py.
Therefore the image ofFinG must be zero. Thus F lies in F F, and so F is finite over Y
at p^ i. e., it covers p^

Proof of2.3. — We represent the cohomology classes by torsors. If A were finite
over Y, we could apply Grothendieck's existence theorem [19] to get the surjectivity
immediately. Since this is not assumed, we proceed by using suitable compactifications.

Let P be the locus of points of Y above which A is not finite. This is a closed set which
decomposes by HenseFs lemma into closed sets Py containing p^. Each P^ is finite over S,
and so is P.

If TT : W —> Y is a quasi-finite, separated map which is finite outside of P, it can be
embedded as schematically dense open set into some space W finite over Y, which we
call a compactification of W. The choice of W is not unique, but is given by any finite
subalgebra 0^ of Ti^w which is large enough. The set of such subalgebras is filtered
by inclusion, its union being the integral closure of d?y in n^ 0^. It is clear that 0^ is
determined locally for the etale topology, and hence by descent, that any collection of such
subalgebras which is given locally in etale neighborhoods of the p^ defines a subalgebra
globally.
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The group law on A, and the action of A on a torsor T, will not usually extend to compac-
tifications. But any map W —> W of quasi-finite schemes will extend to W —> W if W is
chosen "big" enough. So, the group law will extend to a map

A x A -> A,

where the left term is some compactification of AxyA, and so on.
Now let { TY } be a family of torsors under A on { Y^ }. To prove surjectivity we

have to find a torsor T on Y inducing { T^ }. Consider the problem locally along
P = U Py. By Hensel's lemma, we have an exact sequence (3.1) with A,, replaced by A,
and where again FA is finite flat, while G is an etale group scheme having stalk zero at
each/?,. So, G is completely acyclic (locally), and hence every torsor T under A is induced
in a canonical way from a torsor Z under FA. This means that our torsors Ty are induced
locally by a compatible family Z^ of torsors under F.

vs

Let Y denote the formal w-adic completion of the semi-local henselian schem®
Spec (Y[ ^y,pp, so that Yy is the localization of Y^ at p == (J pj. Each torsor Z^ is finite

and flat over Y^. So we obtain an F-torsor Z on Y as Z = Spec (lim (9^). Let T be
y\

the induced A-torsor. We choose compactifications extending the action on T:
- P l" P i /N "

(3.3) A^-AxTZ^T.
a

This gives us local compactifications at p for each T^, and hence global ones:

(3.4) A^AXyT^T,
a

forming a compatible sequence.
Grothendieck's existence theorem [19] (Chap. Ill) applies to this formal diagram,

and shows that (3.4) is induced from a diagram of schemes

u^v^w
finite over Y. Since the left side A of (3.3) was an arbitrary compactification, we may
induce it from a chosen one A of A, and then U = A. Next, the open set T c: T is the
complement of a closed set C finite over P, and hence over S. Therefore it is induced
by an isomorphic closed subscheme ofW, and we set W = W-C. An open set V <= V

,/\ y^ ,/\

is defined similarly. Then Vy w A^ x W^ for each v, and also V w A x W. Therefore
V w A x W by flat descent [16]. This defines an action of A on W, which makes W
into the required A-torsor.

It remains to prove injectivity of the map of (3.2) when/is flat. Let T be an A-torsor
on Y. Then we can view the functor f^^om^{.,T) as a closed subfunctor of
J^ilbs (T) [16]. Hence it is represented over S by some algebraic space Z. Now since T
is quasi-finite over Y, one sees easily that the fibres of Z over S are all of finite type.
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Therefore Z is of finite type. Suppose Ty trivial for every v. The trivializations are
given by points of Z with values in S^. By [2], the existence of these points for all v
implies the existence of a section over S. Thus T is trivial.

We now proceed with the proof of Lemma (2.4). Since the fibres of X/Y have ordi-
nary double points at most, the jacobian family A is divisible. Therefore (1.7) we may
work with H^ (Y, A [n']) instead of H^i (Y, A^). By construction,

Pic X/S w Pic Y/S ® TT^ Pic X/Y w Z2 + ̂  A.

Since P^ X/S is smooth, n^ A is smooth along every torsion section. Therefore
R17r*A [oo] is pro-represented by R1 TT^A, which is immediately seen to be Br X/S = B.
By assumption. Bo is a /^-divisible group. So B is, too.

Let ao e H1 (Yo, A [oo]) be a section of order n. Let Z denote the hull ofR1 n^ A [oo]
at (XQ [30]. This is a formally smooth formal scheme which is a torsor under B. The
torsor can be trivialized by a choice of section of Z/S.

Multiplication by n in R1 n^ A [oo] yields a map Z-^> Z00, where Z^ the denotes
hull of R17t*A [oo] at the point n (XQ, which is canonically isomorphic to the n-fo\d torsor
under B. Since n OQ = 0, Z^ w B canonically, and the inverse image (p~1 (9) of the/\
zero section 6 in B is the locus of formal deformations of oco of order n,yv /\

Now since Z is a trivial torsor the map (p is isomorphic to multiplication by n in B,
which is an isogeny. So (p~1 (9) is a finite flat covering of 9 w S. Therefore there is
a finite extension S' —> S and a point F of Z with values in S', which maps to zero in B,
via (p. This point gives a formal lifting a = { o^ } of ao to Y' = S' x s Y, of order n.
We now check that this formal lifting is represented by a class of order n in H^Y', A [oo]).

Consider the exact sequence
(3.5) 0 -^ n^ A [oo]/n -> R1 n^ A [n] -> (R1 n^ A [oo]),. -> 0.

Since S^ is strictly local, H° (S,, R171^ A [n']) == H1 (Y^, A [w]). We know the structure
of TT^A [oo]; it is the torsion subsheaf of PK^ X/S, and is formally smooth. The sheaf
n^ A \n\ is represented by the scheme (P^ (X/S)),,, and so its sections over {Sy }
satisfy the Mittag-Leffler condition. The exact sequence
(3.6) 0 -> 7C^ A [n] -> n ̂  A [oo] -> n^ A [oo] -> TT^ A [oo]/n -^ 0,

now shows that TI* A [oo]/^ is formally smooth; moreover the inverse system formed
by the sections of (3.6) over { S^ } has an exact limit.

Let us call e = e (^r) the map

H°(S', ̂ -^limH^S^).
v

Then e is a bijection for the first three terms of (3.6), hence for the last one, which is the
left-hand term of (3.5). Proposition (3.2) and (1.7) imply that e is bijective for the middle
term of (3.5). Thus it is bijective for the right-hand term too, as was claimed. We have
therefore.
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LEMMA 3.7. - Given a class (Xo e H1 (Yo, A [oo]) of order n, there is a finite ramified
cover S' -> S so that ao extends to a class a of order n in H1 (Y', A [oo]). The set of
such a is a torsor under the group (B (S'))^ of sections of order nofB over S'.

Passing to the limit over S' gives us an exact sequence

(3-8) O^CB^-H^^A^OO^-^H^YO^EOO^^O,

where B = B (S). Now it is easy to identify the group

H° (Y, A [oo])/n = H° (S, n „ A [oo]/n).

For, the group of torsion sections of Pic° X/S over S is divisible, and so the group in
question is just the group of section of T^ = (Pic' X/S)/n (Pic" X/S). This is a finite smooth
group scheme. So

H°(S, 7^A[oo]/n = T(S) == T(So) = H°(So, 7i^A[oo]/n).

Lemma (2.4) now follows from the sequences (3.5) and (3.8).

4. ANALYSABILITY BY ^-DIVISIBLE GROUPS. — Let K/Qp be a finite field extension,
R <= K its ring of integers, and k = R/m its residue field. Let X/K be a proper smooth
surface and H = TH^ (X/k\ ̂ ) ®^ Q^ the Gal (K/K) module associated to its
2-dimensional etale cohomology. The cup-product pairing induces an autoduality ( , )
on the Qp-vector space H with respect to which we have the following compatibility
formula for the action of Gal (K/K): (gx, gy) = (x, y).

DEFINITION. - We shall say that the Gal (K/K) representation H is analysable hyp-divi-
sible groups if there is a filtration

0*r) O C V c W c H

stable under the action of Gal (K/K) such that:
(a) W is a Gal (K/K) representation "coming from a ^-divisible group" W over R

in the sense that W ^ TW ®^ Qp;
(b) V is the Gal (K/K) representation coming from the connected part W° of the

/^-divisible group W/R(V = TW° ®^ Qp);
(c) the filtration (^) is self-dual with respect to the auto-duality of H. This means

that W1 = V, and V1 = W.

Remarks:

1. If such a filtration (^) satisfying (a), (6) and (c) exists, then it is unique. This may
be seen using the following fact: If U is a Gal (K/K) representation which comes from
a/^-divisible over R, and its dual U* also comes from a ̂ -divisible group over R, then U
is an unramified Gal (K/K) representation.

Also, by Tate's theorem [34], V and W are unique.
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We may identify W and V as the largest "^-divisible subrepresentation", and "connected
/^-divisible subrepresentation" in H, in the following sense. If W <= H is a Qp-sub-
stable under Gal (K/K) which comes from a ^-divisible group over R, then W c: W; if
V <= H is a Qp-subspace stable under Gal (K/K) which comes from a connected/^-divisible
group over R, then V <= V.

2. Given a filtration (^) of H which satisfies (a) and (b) above, then it satisfies (c) if
(and only if) dim H = dim V+dim W. For, using the fact quoted in remark 1 above,
an (a), (b) one has that V and W are orthogonal with respect to the auto-duality of H.
Thus V <= W1 and W c: V1, and to check that the inclusions are equalities one is reduced
to counting dimensions.

3. If H is analysable by ^-divisible groups, then its (Gal (K/K)) semi-simplification
possesses a Hodge-Tate decomposition ([32]), [34]). Forsince W comes from a jp-divi-
sible group, it possesses a Hodge-Tate decomposition by Corollary 2, paragraph 4 of [34]
and H/W is the dual of V and therefore also has one. If W° is a multiplicative type
/^-divisible group (i. e. the dual of an etale ^-divisible group) then one can say more:
H itself admits a Hodge-Tate decomposition. This follows from a theorem of Tate

(§ 3, Th. 2 [34]) which implies that any extension of Gal (K/K) modules

o->cec)^^coc')^o
splits, if % ̂  %' (notation as in [34]).

4. It is not true that H is analysable for all surfaces X/K, (even those admitting a good
reduction in characteristic/?). Consider an elliptic curve E/K with complex multiplication
possessing good, supersingular reduction in characteristic p. We may suppose, further,
that K contains the field of complex multiplication of E. Take X = E x E. One has
good control of the Gal (K/K) representation on H, using the theory of complex multi-
plication. In particular, one can find a Qp-subspace of H of dimension 2, irreducible
under the action of Gal (K/K), such that neither it, nor its dual comes from a /^-divisible
group over R. Thus H is not "analysable by ^-divisible groups".

THEOREM 4 . 1 . — Suppose p > 2. Let X/R be a proper smooth surface satisfying hypo-
/\

thesis A (PK^ (X/R) is smooth, and Br is of finite height). Then its 1-dimensional coho-
mology H is analysable.

Proof. - We use (1.8) and (2.1). Define the filtration (^) by setting W = image of
of TH^i (Xg, p,poo) ®zp Qpin H under the natural mapping [which is injective by (2.1) (&)].
By (2.1) (a) W is a Gal (K/K) subrepresentation coming from the ^-divisible group ¥.
The subspace V <= W is then the subrepresentation associated to the connected part ofx?

/\
which is Br (1.8). By remark 2, our theorem would follow from the equality

&2 = height (Br)+height (^ But,
/\
3r(i) height (Br) = rank^) H^ (Xo/W (k))^ ,) = rank^) H,2^ (Xo/W (k)\,^
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using (l.c). The second equality above comes from Poincare duality for crystalline
cohomology [5] (Chap. VII).

00 height CF) = rankw ̂  H^ (Xo/W (k))^ ̂

using (1.9).
Therefore

height (Br) + height (^) = rank ̂ ) Hc'rys (Xo/W (k))

and our equality follows from the fact that the etale and the crystalline (second) Betti
numbers agree [23] ([5], VII, § 3).

As mentioned in the introduction, we may take as examples of application of our
theorem a K 3 surface over R admitting good, nonsupersingular reduction to the residue
field k, supposed of odd characteristic or any proper surface over R whose reduction to k
is the Fermat surface of degree d (where d = 1 modp = char k). In the latter case the
formal Brauer group is of multiplicative type, and therefore the H associated to that surface
admits a Hodge-Tate decomposition.

Note also that if X/R is a proper smooth surface satisfying hypothesis A, by virtue of
the embedding of the Neron-Severi group of Xo in TH^i (Xo, Hpco) one has that p, the
rank of the Neron-Severi group is majorized by the height of ̂ \ If the characteristic
of k is odd one then immediately deduces the inequality: p ^b^—lh.

In characteristic 2 one may conclude the same inequality if one imposes the appropriate
hypothesis so as to be able to apply (3.3).
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