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AN EXTENSION TO FIELDS
OF POSITIVE CHARACTERISTIC OF MATHER'S CONSTRUCTION
OF THE THOM-BOARDMAN SEQUENCE (")

By OrLANDO E. VILLAMAYOR (h)

0. Introduction

In [3] J. Mather gives the relation between the numbers introduced by Thom in [7]
and certain numbers that he obtains for an ideal in the power series ring on n indeter-
minates over a field k£ of characteristic zero.

The main tool in this direction is the concept of Jacobian extension of ideals.

Also Mount and Villamayor have introduced this concept in [6] making use of the
Fitting invariant theory ([2], [4]).

The object of this work is to extend the numbers associated by Mather for a given
ideal I < k [[xy, ..., x,]] where k is now a field of positive characteristic.

So the first concept to extend was the one of Jacobian extension of ideals and this was
possible making use of the Fitting ideals [6] corresponding to the higher order differen-
tials *°, and certain operators introduced by Dieudonné in [1].

1. Modules of differentials [8]

In this work ring or k-algebra will mean unitary and commutative.

1.1. Given a k-algebra A we define ®:AxA—AD (a, b) = a.b which is k-bilinear
so there is a well defined linear morphism ® such that the diagram

AxA — A

commutes.

(*) This work was partially supported by a fellowship of the Consejo Nacional de Investigaciones
Cientificas Técnicas (Argentina).
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2 0. E. VILLAMAYOR

Let 1 (A/k) be the kernel of ®. If we give to A ® A the naturél structure of a left
k
A-module the ideal I (A/k) is generated (as a submodule) by {1 ® a—a @ l/lac A }.
In fact given x eI (A/k) :
X = Zai®b, and (I)(x)= Zagbi=0,
i=1

i=1

x=x—0= Zi,(ai® bi)_(ziaibi)® 1

=2,6;®b—a;b;@1=2a,(1Q b;—b;®1).
i i
Q.E.D.
We define now T, : A—I(A/k) by T, (@) =1 ® a—a ® 1 which has the following
properties:

(@) T, (1) =0;

(ii) T, is k-linear;

(iii) Tk (a.b) =a Tk (b) +b Tk (a) +Tk (a) Tk (b).

The application T, will be called the universal Taylor k-map. If B is an A-algebra
a map L: A — B which has properties (i), (ii) and (iii) will be called a Taylor k-map.

PrOPERTY 1.1. — Given A, B k-algebras and L: A — B a Taylor k-map, then there
is one and only one A-algebra morphism F: I (A/k) — B such that Fo T, = L ([5]).

LemMMA 1.2. — If ®: A — M is a k-linear morphism from a k-algebra A to an A-module
M such that ® (1) = 0, then there is one and only one A-morphism 0: I (A/k) > M such
that 0o T, = @.

Proof. — First of all let us show that A® A =A (1 ® 1) @ I(A/k) direct sum of
: k A

left A-modules.

The map T, : A — I (A/k) can be extended to an A-linearmap 1, @ T,: A ® A — 1 (A/k)
where (1, ® T)) (¢ ® b) = a T, (b). And 1, ® T, is a natural projection of A-modules,
in fact I (A/k) is generated as an A-module by the set {1 ® a—a ® 1/ac A } and

,®TY)AR®b-b®1) = 1T, (b)—b T (1) = T (b).
On the other hand whenever ye A ® A:
y= a;®b; =Zi:ai(1 ®b—b;®1)+) a;b;®1
i=1 i
= ZaiTk(bi)"'(Z a;b)(1®1)

as it was to be shown.
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THOM-BOARDMAN SEQUENCE 3
Given ®: A — M k-linear we extend to 1,  ®: A A—M
(1, D) (a®d) =a @(O).

The conditiohv D (1) = 0 assures that (1®d)(1®1) =0then 1 ® ® is A-linear and
factorizes through I (A/k).

Q.E.D.

Let R be a ring, {4y, ..., a, } a set of elements of R we will denote

a, ...a;, ... 4 ... a,,=k$H 4.
11 eoolp

DerFmniTiON 1.3. — Given R and k rings, R a k-algebi'é and M an R-module. An
n-derivation or derivation of order n, k-linear from R to M will be a k-linear L, which
verifies:

(i) for any set { «, ..., 0, } = R:

n
i+1 - ~ .
L"(ao..-a")= Z(—1)+ ( Z Otj‘...otj‘L,,(oto..‘. Otjx.,.aj‘...,ot,,)),
i=1 J1< e <Ji

@) L,(1) =0.
Given the map T,: R — I (R/k) defined in 1.1 we will denote

D" (R/k) = I (R/K)/I (R/ky*!
and by T}, or simply T" the map p o T,, p the natural projection from I (R/k) to D"(R/k).

THEOREM 1.4. — Let R, k be rings, M a R-module R a k-algebra and L:R —- M a
k-linear derivation of order n. The k-linear map T*: R — D" (R/k) (def. 1.3) is a k-linear
derivation of order n and there is a unique R-linear morphism h: D" (R/k) — M such that
hoT" =L. :

Conversely, if h: D" (R/k) — M is an R-linear morphis)n then h o T": R — M is a k-linear
derivation of order n.

. Proof. — First of all let us show by induction on » that given a set { x, ..., x, } in R
and { T, (xo), ..., T, (x,) } in I (R/k) we have

Tk(xo)...T,‘(x,,)=.22)(—1)’ Y X X T(Xo « o Xy e Xgy e X)
1= Ji

J1<..<

if n=1; Ty (xg 1) —x0 T (x1)—x;1 Ty (x0) = T (x4). Ty (x0) by definition.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



O. E. VILLAMAYOR

If the formula is valid for n:
Te(xo) -« - Tie(%s)- T (Xp4 1)
= Z(_l)i Z le...xj‘T(xo, ey ;le...xj‘...x,,)T(x,,.,.l)

i=0 <<t
-

= Z(—l)i 2 le...xji[Tk(xo....;jl...Xj‘...xnxn+1)

i=0 J1<geee <Ji
—(Xo - Xjy e Xy X)) T (Xt 1) =Xt T (g oo X5, oo X, o X)]
nt1 ; R
= 2(_1) Z le...xj‘Tk(xO...x.h...xj'...x"+1)
i=0 J1< o0 <ji
n
- Z (-1 Z Xg ++ o Xy Tg(Xp4 1)
i=0 J1< «o0 <ji
n+1 ; N n
= z(_l) Z le...xj‘T(xo...le...xj“..xn.}.l)
i=0 J1< o <gi

since:

io(—l)ij L= 20(—1)‘(';) =(1-1y=0

and T (xp) ... T (x,) = 0in D*(R/k) so

n

i+1 z ol

T:(xo...x")= Z(—1)+ Z le...thZ(xo...le...xj‘...x,,).
i=1 J1< o <Ji

Let L: R — M be a k-linear derivation of order n. By Lemma 1.2 there is one and only
one morphism A*: I (R/k) = M of R-modules such that A* o T, = L. To complete

the proof we note that 4* is zero on I (R/k)"*1:
h*(T(x,) ... T(x,)
= h*(izo(—-l)’ _ Y X e X, T e Xy oo Xy, e x,,))
= Ji

< ... <ji

=_Zo(_1)l 2 le...th(xo...J'Zh...gji...xn)=0,

because L is a k-linear derivation of order n (Def. 1.3).
COROLLARY 1.4. — The pair (T}, D" (R/k)) is well defined (up to isomorphisms) with

the properties of Theorem 1.4.
1.5. If R is a local ring with radical M then the R-module

DR/ () M"D"®/K) = D" (R/K)

is separated in the M-adic topology.
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THOM-BOARDMAN SEQUENCE 5

Let 6: D* (R/k) — Dr (R/k) be the natural projection 6 T} = ”f: is obviously a k-linear
derivation of order n and a pair (’f‘;c', Dr (R/k)) is universal with the properties of
Theorem 1.4 if we restrict ourselves to the subcategory of separated modules in the M-adic
topology [8].

NotE 1.6. — Let A, B be k-algebras, a k-algebra morphism A: A — B gives B a struc-
ture of A-algebra and D* (B/k) becomes an A-module.

Since T}, is a k-linear derivation of order » there is a unique A-module morphism d ()
such that the diagram

A————)'—+B

g s

am
D"(A/k) — D"(B/k)
commutes.
An analogous proof will show that given A, B local k-algebras and A: A — B a local
morphism of k-algebras there will be a morphism d M): Dr (Alk) — Dr (B/k) such that
the diagram

A—-——x——»B

o s
D" (A/K) =5 D" (B/K)
commutes.
PROPOSITION 1.7. — In the conditions of Note 1.6, given the diagram

A—-—l——>B

| |

B®D"(A/k) » D"(B/k)—>C— 0
A

with a commutative square and a lower exact row, then (p o Ty, C) ~ (T}, D" (B/A)) in
the sense of Corollary 1.4.

Proof. — Let A: B— M an A-linear derivation of order » in a B-module M, since A
is a k-algebra morphism A becomes k-linear because it is A-linear, so there is one and
only one morphism of B-modules y such that the diagram

B M

™ // ;

D" (B/k)
commutes.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE 2



6 0. E. VILLAMAYOR

By hypothesis
AA(@) =0, VaeA, y@MTi(@)=7(Ti(A(a))=AR(a)=0, VaeA,

so Image d (A) < kernel y and y factorizes by C.

The unicity becomes because p is an epimorphism, in fact if ¥ and y’ are B-module
morphisms form C to M and:

YopoT; =¥ opeoT; = A and by the universal property of D* (B/k);
Yop =% op soy =7 because p is an epimorphism.

PROPOSITION 1.8. — Given a multiplicative system S of a k-algebra R, then:

D"(R,/k) ~ R, ® D"(R/k).
R

2. Modules of higher order differentials for the ring
of power series in n-variables over a field k

2.1. Dieudonné has pointed out in [1] that given the ring k [[x]] of series on one inde-
terminate over a field k and f (x) € k [[x]] then: f(x+Y) = T f(x) where T f(x) is the
Taylor expansion on the variable Y. Let us say that if we develop f (x+Y) we obtain

fe+V) =3 A @)Y

If the characteristic of k is zero then it is well known that

1 8 f(x)

il é'x

!
A () =

But whenever the characteristic of £k = p = 0 then i! = 0 for any i = p and the operator
0'/0* x is also trivial.

However these operators A’} are always well defined and if we take A, = A} for
t=p°e =0, given neN:
n=oy+o; p+...+o,p, 0o, <p,
for some r, we have
A, = A . L AT AR,
the product denoting the composition of operators [1].
The operator A, has the following properties (e = 0):

(i) In the restriction to the subring k [[F® (x)]] of formal series it acts as 9/0F° (x);
(i) If fek [[F°(x)]] and g€k [[x]]:

A.(f.8)=fA.(&)+gA.(f).

4° SERIE — TOME 11 — 1978 — N° 1



THOM-BOARDMAN SEQUENCE 7

F denotes here the Frobenious morphism F (x) = x? and F° means the composition
of the operator e-times.

Given a local regular k-algebra R with maximal ideal M we will denote R* the comple-
tion of R in the M-adic topology.

Suppose A: R — N is a k-linear derivation of order n (1.3) on a complete separated
R-module N.

PROPOSITION 2.2. — Under the above conditions the derivation A of order n can be
extended to a k-linear derivation of order n A: R* — N.

Proof. —:The k-linear derivation A of order » is continuous in the M-adic topology, in
fact given {mg, ..., m, } = M:

A(mo...m,,)=zl(—1)i+1 Y jmjl...mjiA(mo...r'hjl...r'hj,...m,,)
i= J1< .. <jy
so A(mg ... m,) = MN and A (M"*1) =« MN.

Let r* be an element of R* and {r, } = R, r,— r*, we will define

A(r) = lim A(r,),

neN

which is well defined because A is continuous and N is a complete separated R-module.
Given a set {r, ...,r¥*} cR* and {ri/k 20} <R,i=0,...,n such that
ri — rf then:

A(r¥...rH=A(imr) ... 1)
k

n
=lim Y (=1t Y rft L AAGY D)
kK i=1 J1< <t

v

i+1 A A
(-1 Y rh . TRAGE.. TR LT,
1 J1< oo <Ji

so A: R* — N becomes obviously a k-linear derivation of order n.

PROPOSITION 2.3. — The natural inclusion i: R — R* gives the following commutative
diagram (Note 1.6):

R— > R*

Tnl lm

R* ® D" (R/k) —3 D" (R*/K).

If D (R/k) is a finitely generated R-module then 1 ® d (i) splits.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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8 O. E. VILLAMAYOR

Proof. — Since Dr (R/k) is a finitely generated R-module then R* ® Dr (R/k) will be
R
a completely separated R-module so there is D: R* — R* @ D*(R/k) such that
n R
Doi =T" Now by the universal property of D" (R*/k) there is a R*-linear morphism

v: D'(R*/k)->R*® D"(R/k),
such that D = vy T}.
We will show that vy (1 ® d (i)) = identity of R* ® D (R/k).
R

v and 1 ® d(i) are R*-linear and R* ® D" (R/k) is generated over R* by the set
{1®T"(HeR}. We can show that [y(1 @ d())](1 @ T* (")) = 1 @ T"(r) in fact:

1®d@).T"=Ti yA@dM)ART' N =yTi(() =D>()=1Q@T"(r).

Q.E.D.

2.4. Let us take A = k [x,, ..., x,], a polynomial ring with » indeterminates over a
ring k and go back to the definition of I (A/k) and T,: A—>I(A/k) of 1.1:

ARA~K[Xy, ..cs Xns Vis « -5 Yubs
k

where x; ® 1 corresponds to x; and 1 ® x; to y; so T, (x;) = x;—y;.

PropoSITION 2.5. — (i) If x belongs to A, a k-algebra and T,: A —1(A/k) is the
universal Taylor map (1.1) then: T, (x") = (x+T; (x))"—x" in A ® A (where x means
R

x® 1.

Proof. — In fact a— a+T (@) =1 ® a is a ring homomorphism, so
a"+T@)=(@+T(@)" and T(a")=(a+T(a))"—a"

(i) On the conditions of the last proposition if { x;, ..., x, } are r elements of A then
for nonnegative integers o, ..., o,:

TP ... x")=0;+Tx)™ ... (x,+Tx)" —x3...x"
Proof. — Again, since a — a+T (a) is a ring homomorphism
T ox)+xt X =0+ Tx )™, .. (x,+Tx)™
as was to be shown.

COROLLARY 2.6. — Taking A = k[x,, ..., x,] the ring of polynomials in n-indeter-
minates over a field k then the universal Taylor map:

Te: Ao k[xg, oo Xy V15 +ovs Val

4¢ SERIE — TOME 11 — 1978 — ~N° 1



THOM-BOARDMAN SEQUENCE 9

satisfies
Tk(f(xb ceey xn)) = f(xl +Txl’ cevy xn+Txn)_f(x1’ K xn)
in
A?Azk[xl, cees Xy Vis oo es Vu-

2.7. Since T(x;) = x;—y;i =1, ...,n is an algebraically independent set over the
subring k [xy, ..., x,] of k[xy, ..., X4s Y1, - - -» V] then by the last corollary and 1.1
we can assure that the module I(A/k) is freely generated by the monomials in
{Txy...,Tx,}and if N* =Nu {0}.

Te(f %15 - - -5 Xn))

= > A (D), ..., a(m).().(Tx)* P (Tx)* ™,
@(1).....x(m)) e (N

where A (@ (1), ..., a(n)) (f) is obviously zero for almost all (a (1), ..., a (n)) € (N*)".
(This was introduced in 2.1 [1].)

COROLLARY 2.7. — Given A in the above conditions then D" (A/k) = 1 (A/k)/TI (AJk)"*?
is the A-module freely generated by the image of the set

{Tx® ... TP+, +am) 7}
with dual base

{vy@@)...am)a)+...+am =r}
and

y(@(), ..., @) T =A(x(1), ..., a(n)).

Ifwetake R =k [xy, ..., x,] , M = (x4, ..., X,) the localization of the ring of polyno-
mials in n variables over k on the complement of M, the completion of R in the M-adic
topology will be

R*=k[[xy, ..., x,]]
the formal power series in n variables over k.
ProposiTION 2.8 ([9] Lemma 4.7). — Under the above conditions
D" (R*/k) ~ R* @ D" (R/k).

Proof. — D" (R/k) is finitely generated by Corollary 2.7 and Proposition 1.8 so
D" (R/k) = D" (R/k).

Applying now Proposition 2.3: D (R¥*/k) ~ R* @, D* (R/k) ® N for some R*-sub-
module N.

If y: D (R*/k) »P is a R*linear morphism of separated modules and if
R* ®g D" (R/k) < ker vy then y corresponds to a k-linear derivation of order n, A:
R*—> P for A =yoT; so A(i(r)) =0if reR,i: R— R* the natural inclusion.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



10 0. E. VILLAMAYOR

Since A is continuous then A is the zero operator and so is y. Let d(i):

R* ® D" (R/k) — D" (R¥/k)
be the natural inclusion and
p: D'R¥k)->N,
the natural projection.
We showed above that given any separated R*-module P and a R*-linear map

y: D"(R*k)—P

such that yod (i) = 0, then y = 0.
Since pod (i) =0, then p =0, so N = 0 as was to be shown.

3. Jacobian extensions

3.1. Let us consider a finitely generated A-module M and the following exact sequence

0— R — A" % M — 0 where R is the set of n-tuples such that their image by ¢ is zero.
We can form a matrix whose rows are vectors that generate R as A-module, and for any
natural number s; 1 £ 5 < n we define f; (M) = { det (M,) > ideal generated by deter-
minants of M,, where M, runs over all (n—s+1) x (n—s+1) sub-matrices we can obtain
from that matrix. And f,(M) = A if ¢t > n.

Fitting [2] shows that these ideals are independent of the solution given before.

3.1.1. Let {vy, ..., 0, } = A" such that ), Av; =A"and {v;,...,0} = R.
i=1

If
n B
p: Ao ) Ap A"
i=r+1
is the natural projection then 0 —p (R) > A"™"— M — 0 is also an exact sequence.
Given a prime ideal P = A the rank of M, is s if and only if fs(M) < P and
for1 (M) & P, it can be immediately proved that

fs(M) < f,(M) whenever s < t.

The ideals f, (M) will be called Fitting ideals.
If A is a local ring we will denote by f (M) the biggest proper Fitting ideal. .

3.1.2. If A is a local ring I = rad (A) and R < IA” then f (M) is the ideal generated
by the coefficients of the n-tuples that belong to R, i. e. f (M) = f, (M).

In what follows A = k [[x;, ..., x,]] will be the formal power series in n independent
variables over a perfect field k of characteristic p > 0, F as before will be the Frobemous
morphism, F (@) = a”. .

M = rad (A) and R.S.P. will mean a regular system of parameters.

4° SERIE — TOME 11 — 1978 — N° 1



THOM-BOARDMAN SEQUENCE 11

An ideal will always mean a proper ideal and rank of an ideal I will mean
dim, (I1+M?)/M?2.

LeMMA 3.2. — Given an ideal 1 < k [[yy, ..., ¥,]] = A generated by a set

{yl’ RS ] ys}UB’ 0§s§n, Bck[[yj]]j>s(k[[ys+la RIS ) yn]])’

Ink [[yj]]j>s =Bk [[yj]]i>r

Proof. — If we consider the isomorphism o = 6 i

then:

K[y lss—= A k[[Ves - or 2Tl <D1s -+ or Vs

Since <y, ..., ys» =1 we can identify I nk[[y;]];>s with 6 (D) = B.k [[¥;]];>s
as was to be shown. :

LeMMA 3.3. — Ifanideall = A admits a set of generators B < k [[F (x,), ..., F (x)]]
then:

IAK[[FGxy), ..., FG)]] = B-k[[F(xp), ... FG]]-

Proof. — Suppose Y, h;fiek[[F(xy), ..., F(x)]], 7;€B, fjeA. Since A is a
i=1 ‘ o
free finitely generated k [[F (x,), ..., F (x,)]]-module with basis:

{x*=xt...xma=(a, ..., )00, < p}
let ' ' ‘

fi= zu:aix“.aiek[[F(xl), ..o Fx]] ;hif,- = g,(; h;al)x*
$0
Yhat=0 of a#(,...,00=0 and Y hfi=) hab.
' QE.D.
COROLLARY 3.4. — Let A =k [[ys, ..., ¥,]] and an ideal

I=<__y1’ RS ys(0)>+<F(YI)’ L] F(ys(1)>+-“+<Fe(y1)’ R Fe(ys(e) )>

+(B),s(O<s()<...<s(e) and B k[[F Gl
then:

Lak[[FOp]liss@ =B-k[[F GnIs o
Proof. — By induction on e. o | ,
For e = 0 it was proved in Lemma 3.2. k= k+1.
Let B
I=Cyp oo Vst H<CF D), -, FE )
+(F (), .., Fk+1(ys(k+1))>'+<B>,

s@Qss()=...<s()<sk+1)  and B k[[F* 5)]]issaer1)

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUEPRIEURE



12 O. E. VILLAMAYOR

By hypothesis

Ink[[Foplissam
={F" Grg+1), - F Os e 1) } U BYE[[F OD]]i5 0 00
by Lemma 3.3:

A nk[[F O] sa) 0 k[[F 01550
= {{ Ft+1 (ys(k)+1)9 e F*! (ys(k+1))} vB } -k [[Fk+1 (yj)]]j>s(k)'

Now by Lemma 3.2

[{{ Fr*! (ys(k)+1)’ s Frrt (ys(k+l))} U B} k [[F“l (yj)]]j>s(k)]
Ak[[F ] seer 1y = Bk [[FF )]s v 1)

as it was to be shown.

LemMA 3.5. — If I < A is an ideal in the conditions of Corollary 3.4 then

Lak[[F(y), -, FFO]] =<F°O1), ..., F*(¥s@) > +<{(B)

(the ideals generated in the subring k [[F° (), ..., FF ()1D.
Proof. — Clearly

<Fe(yl)’ ) Fe(ys(e))> cl r\k[[Fe(yl)’ LR ] Fe(yn)]]
if
f:e:IZn k[[Fe(yl)’ o -’- Fe(yn)]]
then

f=f’+f”’ f'€<Fe()’1), ~"9Fe(Y.v(e))>’ f”eInk[[Feyj]]j>s(e)=Bk[[Feyj]]j>s(e)
by Corollary 3.4.

We will say that an ideal I =« A =k [[x,, ..., x,]] is closed by the action of the deri-
vations if it has the following property: 0 f/ox; eIV fel,i=1, ..., n.

LEMMA 3.6. — An ideal 1 = A is closed by the action of the derivations if and only if
it admits a family of generators in the subring k [[F (x,), ..., F (x))]]

Proof. — Since the sufficient condition is trivial we will show the necessity.
Let PcZ, P={a=(,...,0)0S0;<p,i=1,...,n} we have already
pointed out that A is a free k [[F (xy), ..., F (x,)]]-module with basis

{x“=x‘;‘.x°2"...x:", a=(uls ...,G")EP}

if fel, f= )Y a,x*a,ek[[F(xy), ..., F(x,)]], there is a, € F such that

aeF
@ |a]|=Za; < |0 if a, # 0;
(ii) a, # 0,

4° SERIE — TOME 11 — 1978 — N° 1



THOM-BOARDMAN SEQUENCE 13

if g = (B4, - - -, B,) it can be shown that

a B1 a Bn
[a oo ax f= pl!.a.pn!aao SO aaoeI, )
1 n

and since F is finite we can assure that g, e IVa€F,

PROPOSITION 3.7.. — Given any ideal 1 = A there-is a regular system of parameters
(RS.P) {y1, ..., Y } such that

I=<{y o0 Vs F<F1), ., Fsa) >+ -
+<Fe(y1)9 B Fe(ys(e))>+<B>s(O) éS(i)é és(e)’v
B < rad (k [[F* )15 @)

Proof. — It is enough to show that for any ideal the proposition is true taking e = 0.

Let {y1, ..., ¥s(0) } = I such that {y;, ..., ¥, o)} is a base of the k-vector space
I+M?)/M?3, M =rad (A). {y1, ..., Vs (o) } can now be extended to a set of generators
of I taking a set B < (k [[¥;]]j>s 0y)- Since rank I = s,, we can take

B < rad (k [[yj']]j>s (0))2-

Given an ideal I in the conditions of Proposition 3.7 we will denote

Y={{ys- 1} {s©,....,50} B}

DEFINITION. — Given an ideal I and Y in the above conditions
8 = <I, % gem,j> s(e)>-
OF (.Vj) ) :

PROPOSITION 3.8. — In the above conditions if 1 =8} (I) then B can be chosen in

rad (k [[F*** (7)1];5s - |
Proof. — If I = &2 (1) then: for any ge B, r > s(e):

og
oF*(y,)

el nk[[F*(pllj>s@ =BK[[F (yj)]],>, 5) (Cor. 3.4)

but B.k [[F°(¥;)]];>s (¢ closed by the derivations means that B’ can be taken in
rad (k [[F°*! ()]])>s () Such that

B .k[[F)]li>s@ =BE[[F W)]li>s0 =T nk[[F°O)]];>scer
(Lemma 3.6). ‘ .

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE : ’ R 2



14 0. E. VILLAMAYOR
COROLLARY 3.9. — If 1 =2082(I) then there is a new set Y ={{y,, ...,y };
{s),....,5€+D)}; B}, {y, ....»,} an RS.P.;

s0) =...=s5(+1),B crad(k [[FeH (yj)]])j>s (e+1))2
such that '

I={y1 - 0 Vaoy ) +HEFQD, - Fea) D+ ...
HCFDs - Fa@) > HSF 0D, - P (G eny) D H(BD.

Proof. — In fact since B can be chosen in rad (k [[Fe*! O)1]j>s¢) (Prop. 3.8)
then there is a number s (e+1) = s (e) such that

Bk[[Fe+1(yj)]]j>s(e) = {Fe+1(ys(e)+1)7 RS Fe+1(ys(e+1))} k[[Fe+1 (yj)]]j>s(e)
+BE[[F )]s e+ 1)
and B’ < rad (k [[F*™! (»)1])>s +1))>- (Prop, 3.7 applied to
| | BE[[F )]l j>s @<= k[[F " 0p1)i>s eor
NOTATION. — Let Q (e) be D" (AJk) if n = p (e = 0) (1.5),

THEOREM 3.10. — Given I < A an ideal and a system of parameters {yy, ..., Y, }
such that

I=ypse - s V50) > FHCED)s- - SF ) D+ HCFE s - FUge)
+(B), s =s()=... =s(9Bcrad(k [[Fe1]iss @)
then:

G0 6 F (A1® Q(e)/AD) = <I, of

OF° (}’j)

el j>s(e)>;
(i) £ (ATL® Q(e)/AI) = <1, % geB, j> s(e)>.

Where Al is the submodule generated by the elements {1 ® Tf / f el} and T:
A—Dr (A/k) is the natural derivation.

Proof, — By induction on ecZ, e =70

Given an ideal @ = A and a regular system of parameters {yy, ..., y, } such that
a=C Yy Vs (0)>+< B)>B crad(k [[yj]])j>s (0y then

{Tyy ... Ty 00} < Aa = D! (A/k) = Q(0)

the hypothesis assures that (9 f/dy;) (0, ..., 0) = O for any fea, j > 5(0), So we know
that . .

f(A/a®Q(O)/Aa)=<a;;l,feaj>s(0)> (3.1.1, 3.1.2).

Vi
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THOM-BOARDMAN SEQUENCE 15

On the other hand, given gea, feA, T (fog) =fTg+gTf where T: A— Q(0)
is the natural derivation, so given any family G of generators for a then

G = {1®Tg,2eG}

is a family of generators for the submodule Aain A/a ® Q (0) and using Fitting theory (3.1):

f(Ala ® Q(0)jAa) = <a, 5‘7§gij > s(0)> .

Vi

k=k+1.

Since the natural derivation T: A — D" (A/k) satisfies
T(f.g)=fTg+gTf+Tf.Tgifnz=2,

then given an ideal I = A the A-submodule of A/I ® D" (A/k) generated by the family
{1 ® Th/hel} is also an ideal in the n-truncated algebra D" (A/k). In fact given g el
and feA, T(@).T(f) =—gTf.—f.Tg+T(f.g) so

1®Tg).(1®Tf)=—f ®Tg+1@T(f.g) in A/I®D"(A/K),

where both g and g.f belong to I,
Now let I = A be an ideal such that

Ié<y1’ RS ys(0)>+<F(y1), ~-~9F(Ys(l))>+"'+<Fk+l(y1)’ ey Fk+l(ys(k+1))>
+{(B), s =s(H=... =s(k)=s(k+1),Bc rad(k[[FHl(yj)]]j>s(k+l))2.

For every t, 0 <t < k+1 we have
I=<(yy, ""ys(0)>+<F(yl)’ ceey F()’s(1))>+---+< F'(yl)’ oo (g (:))>+ {(B,>

where B, = rad (k [[F**! (¥)]];>s () s0 combining (i) and (ii) of the inductive hypothesis
we have

(A) o e1, Vfel, j>s, t=0, ...,k
oF'y;

On the other hand we have an ideal, E of the p**! +1-truncated algebra Q (k +1),

E={Tyy ..o, Ty 2 +{TF (1), - -s TF(Ys1y) >

4. +<{TF* Y (yy), ..., TFk+1(ys(k+1))> < AL

We will consider as a base of Q (e) the monomials on {Tys ..., Ty, } of degree at most
p°, since v

TFi(}’j) = Fi(T.Vj)

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



16 0. E. VILLAMAYOR

for the Fitting theory we will restrict our attention to the coordinates of the elements of Al
which do not belong to the ideal E, let us say to the coordinates on the monomials of the
form

(TYj(o.n-TJ’j(o.z) cee T)’j(o.,(o»)-(TF}’ju. 1)« .- Tij(l.;(l)))x oo
X(TF  yigeanny - TR Y naeny)s J(s B ZGs, 0),

if h<i,s=0,...,k+1,j(m1)>smm=0,...,k+1 and where none of the
TF* (¥; 1, &) is reepeated p-times (3.1.1),

By the result (A) we know that the coordinates of an element T f when feI on this
coordinates are again elements of I [zero on the module A/1 ® Q (e)] except, may be,
the coordinates on the elements TF**!y; ;> s (k+1).

If we can show then that (0 f/0F**'y)) (0, ..., 0) =0 whenever fel j > s(k+1)
then by Fitting theory (3.1.2):

f(A/I® Q(k+1)/AL) = <1, Eﬁ‘ljf_ly/fel,j > s(k+1)>.

In fact suppose fel such that (0f/oF**'y)(0,...,0) #0 for some fixed
j>sk+1), if n<p*t, n=a@)+a()+...+ak)p* 0 < a(i) <p, using once
again the result (A):

a o« (0) a a (k) I ¢ I
=] — .. €l, i el,
d [0y;] [6F"yf] / 4

then f "(04 0) = 0. Since this can be done for any n < p**!, the order of the series
fO, ...,0,y,0,:..,0 ek [[¥]] is p*.
By Weierstrass preparatlon theorem there is u € A and

uch that '“{'g"l=0’ '“’pkﬂ_l}ck[[yl’ cees Vi—15 Vi+1s ...,.Vn]]
such that -

1oy

ERpe o W =FTy 3oe)
and since I is closed by-the action of (9/0F'y;), t =0, ..., k(A) we have
{gJt =0, ...,p"";l—l }el
y T which can not be since: '
In k[[Fk+1 -Vr]']f’, t+1 =Bk [[F "yl sar

(Cor. 3.4) and B < rad (k [[F** 3,1, (,‘,,1,)2’.‘

Fk+l

k+1s()

feL,f=Y za,F*y,+ Zb,h,,{a,} {b:;} <A, {h}<B.

=0 j=1
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THOM-BOARDMAN SEQUENCE 17

Hence only the last summand will affect the coordinates of Tf on the monomials
TF* Yy, j > s (k+1).
NOW, T (E bl' h,) =X bi T h,+z hi T (bi) +Z T bi T hi Since:
hieBc k[[F** 'y, ..., F*" 'y ] T(h)e@(k+ 1) p*** then Th,T(b) =0
i -
n the p**1 41 truncated algebra Q (k+1) so in A/I ® Q (k+1) we have

and using once again Fitting theory (3.1):

£ (A/D ® Q(k+1)jAL) = <1, aFEThlheB, j> s(k+1)>.
’ J

COROLLARY 3.11. — Given an ideal I = A as in Proposition 3.7 the ideal 5. (I) does
not depend on the system of parameters but only on e. And 1 = & () if and only if there
is a family B’ < rad (k [[F*** ;1];>s () Such that ‘

I nk[[F yf]]}>s @ =BE[[F*y1]i>sc0)
= B'k[[F* yj]]j>s (e)

and in this case we can find a number i(e, 1) = s {e) and a family

B’ = rad (k [[Fe“- J’;]])§>i (e, 1)
such that

I= (3o oo VDt AL o F0u)
+CF (g, s P (e, 19) D HCBT .
Proof. — This is a consequence of Theorem 3.10 (ii) and Lemma 3.6.
NOTATION. — Given an ideal I as is Proposition 3.7 let 3, (I) = 82 (I).

COROLLARY 3.12. — The numbers s(t)0 < t < e of Proposition 3.7 are well defined
as: s, =tank A N k[[F*(yy)s ..., F'(3)]]) as an ideal of k[[F' (yy, ..., F*(y)]1]-
Proof. — See Lemma 3.5.

COROLLARY 3.13. — Given I = I’ ideals of A such that

rank(I nk[[F°(3y), ..., F°(y)]]) =rank (X' nk[[F’y,, ..., Fy,]]),

s=0,...,e and I=08,I),I'=58,I) for 0<s=<e—1,
then: : )
() there is a system of parameters {y;, ...;¥,}s0) = ... <s(e) and a set
B c rad (k [[F® ;1D7>s (o) Such that

I = <yl9 ;...,ys(o)v>+..-+<Fey1, ...,,F,eys'(a) >+<B> .

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



18 0. E. VILLAMAYOR

and there is a set B' < rad (k [[F®y;1];>s ()* such that
(ii) II = <y1, ceey ys(o)>+. . +< Feyl, e ey Feys(e) >+< B’ > andB c B’,

Proof. — (i) by successive applications of Theorem 3.10 (ii), Corollary k3‘.4 and
Lemma 3.6. .

(ii) This is a consequence of Corollary 3.12 and Corollary 3.4, in fact B’ must be such that

Bk [[F* 0]l
=T nk[[FOp]li>s0 2 Tk [[F*O)]li>s @ = BE[[FG)Ilis 0

so we can take B’ o B.

4. Thom-Boardman singularities

4.1, Let us make some remarks on Mather’s construction of the Thom-Boardman
sequence [3],

Given an ideal I = C[[xy, ..., x,]] a set {y;, ..., »,} = I can be found such that
{»1, ..., ¥, } is a base of

I1+M?

Y

M =rad (C[[xy, ..., X,]]-

Extending the set { y;, ..., y, } to a regular system of parameters { y,, ..., y, } he shows
that the Jacobian extension of I is :

80(1)=<I, ﬂfelj>s>.
0y;

What we do in Proposition 3.7 and the definition that follows is to extend the cbncept
in such a way to obtain a good definition in series over fields of positive characteristic of
the operator B also introduced in [3]

B =TI+@Go(M)*+...+GEMF* +...

For which there is a RS.P. {y, ..., ¥»} and a sequence of non-negative numbers
C<s0)=s()=...<s(k) = ... < nsuch that

ﬁ(I) = ‘go (yla ceey ys(j))j+1’{y1’ B ] ys(j)} < 8'6([),
Jj

G (M +M?)

s(j) =dim, Ve i.e.s(j) = rank of & (I).

This is not true in general when the field k is of positive characteristic p > 0, take
I=(xE ..., x> 8 () =1 and there will be no R.S.P. such that B (I) =1I has the
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THOM-BOARDMAN SEQUENCE 19

form described above. If we take a principal ideal 1 = ( F ) Fe M? F = F!4+F!!
such that F'!l e (x%, ..., xP): o L ’

80(1)=<I,aa—kj=1, ...,n>

Xj

since (x%, ..., x2) is closed by the action of the partial derivations (it is also the biggest
ideal with this property as shown in Lemma 3.6), then F” and his partial derivations will
always be in (x%, ..., x?) = M? so will never affect the numbers s (k) obtained in [3].

Another important difference of the operator 8, in positive characteristic is the following,
If characteristic of k is zero, let s (k) = rank (8% (D) if m is such that

s(m) =s(j)Vj= m then 85 (1) = &) (D).
It is enough to prove that &, (87 (I)) = 8% (I) in fact
M =<y s Vsmy»+{B ), Bcrad(k [[yj]]j>s (m))2

(Prop. 3.7 for charac k = 0) s (m) = s(m+r) ¥V r = 0 means that
0* L T
{B’ — 8 gEB,](l) > s(m), N é r} < rad(k[[yj]]j>s(m))2’
Y19 . o ER
Vr =0 fixed.

If charac k = 0 this assures that B = 0. Again this is not true in general if characteristic
is p > 0. Take the ideal

I=(x3" >y adxs, ..., x2>cM?, M, ..., x)=M?,  VYk=0,

s0s(k) =0,Vk=1but (I =(x2> #1

We have to define the operators 3, B and the Thom-Boardman numbers in order to solve
these problems when characteristic of k is not zero. '

NoTE 4.1. — Given an ideal D = A such that D =8, (D) = ... = 8,_, (D) there
will be a R.S.P. {y, ..., ¥» } and nonnegative numbers s(0) < s(1) £ ... < s(e—1)
such that

e—1
D= Z’o CF'y, oo F Yoy >+ <(BYB crad (k[[F°y;]]j>s e-1))

(applying Prop. 3.8 several times). Now modifying the set { y : }j > s (e—1) if necessary
we can take '

B = {Feys(e_1)+ 19 + o Feys(e)} v B/, B’ c rad(k [[Feyj]]j’>s(e))2

8.(D) = D+<a§g geB,j> s(e)>.

e b
Vi
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Since
% k[[F® if 4
—€k[[F y]]>s0 geB',v>s(e)
oF°y,
then:
3.(D)=8@0B.D)=...=235,_,(5.(D)).

Even if we have to modify the subset { ; };»s -1, since the chains
8 (D) < 8+*1 (D) < .

are stationary we can define D, = &% (D) for k big enough, now D, = §, (D,) so we are
in the conditions of Corollary 3.11 and we can define 3, .., (D,) and obtain an increasing
chain:

DeCDe+1c RS

a R.S.P. can be taken so we can define:

DEFINITION 4.1. — If & = §.8% 1 let:

(i) I, =T and given ee Ne = 0:
I,=38%1,_,) for k big enough.

(ii) s(I,e): Z 2 0— Z = 0 non decreasing applications s (I, e) (k) =p (e) £ n for k
big enough and ’ ‘ ) :

e—1
8fe(Ie—l) = 20<Fvy1’ A Fvyp(u)>+<Fey1’ S Feyw>+<B>9
Bcrad(k[[Fy]]j>w)> w=s{ e)®.
For some RS.P. {y, ..., », } (Note 4.1). So s(I, ) (¢) is the rank of

8:.’(Ie—l) hk[[Feyl’ LR ] Feyn]:l

as an ideal of kK [[F*y,, ..., F®»,]] (Lemma 3.5). If the ideal I is fixed we will write:
i(e, k) =s(, e) (k).

NoTE 4.2. — By successive application of result (i) of Theorem 3.10 we have

8;(19_1)=<I,[ o .09 ][ 0 __? ]f/fel>
V0,00  9Yj0,n0y FYie,00  OF°Yjte,nen

JjGs, ) Zj(s, i) if h<i,s=0,...,e and Jj(u, v) > s, u)(v).

Notg4.3. — Ifl=I,=... =1_,thens(,¢) =506, (I),2)t=0,...,e—1 and
s@. (@D, e) k) =5, e) (k+1). In fact by hypothesis I=81) = ... =8§,_, (I) and
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as we noted out before (Def. 4.1) there is a RS.P. {y,...,5,} of A and
0=p@®=... £p(e—1) £ s5(e) £ n such that

e—1 .
1= _ZO(F'yl, o F Y+ lF s, o Foy >+ (B,

Bcrad(k[[F"yj]]P,('e))z ‘and 3. () =1+ O geB, j>s(e) ),
0F%y;
since

0 e
eg erad (k[[F J’j]]j>s<e))
oF°y;

then:
rank(I nk[[F yg, ..., Fy,]D

=rank(S,(I) nk[[F'yy, ..., F'pJD, 0=St=<e—1.
I=35,(I)and 5,(T) = 5,5, (D)t =0, ..., e—1s0s(L¢) (k) =p(t), Yk and
s@. (M), 1) (k) =p@),Vk.

Ift=e:
5(8.(I), e) (k) -
= rank (853, (D) Nk[[F°yy, - .-, Fy,]D
=rank (31 (D) NEk[[Feyy, ..., Fy,]] =5, e)(k+1).
PROPOSITION 4.4, — Suppose 1cl, I=I,=...=0_, I'=0,=... =I,_,

st)=sT,1)0<t=<e—1and s(I',e) (0) =s, e (0) then: 5.(.-,) =5, (I.-,).

Proof. — Since we are in the conditions of Corollary 3.13, then there is a R.S.P.
{1, ..} s = ... Ss(e) and B = B’ = rad (k [[F°y;1];>s )* such that

I= Zo<Fry1’ ""F'ys(r)>+<B>; II= Zo<Fryla '-~’Frys(r)>+<B/>)
r= r=

s() =p()(Def. 4.1)r =0, ...,e—1,5(e) = s, &) (0) = s (I, &) (0)
and

’

8e(1)=1+< O geB, j>s(e)>c:I’+< % g’eB’j>s(e)>=8e(I)
0F°y; ) 0F°y;

(Th. 3.10). If characteristic of k is zero only s (I, 0) will have sense. Mather in [3]
assigns to an ideal I a non increasing sequence of natural numbers M (I):

M@)(r) =i, = n—s{l, 0)(r—1)

then it is found that M (8, (I)) (r) = i,,,, which we generalize in Note 4.3.

This concept together with Proposition 4.4 assures us that if I and I’ are as in Propo-
sition 4.4 and s (I, ) = s (I, ¢) then: '
Lel
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in fact I, = &5 (I). for k big enough and so is I,. Applying once more Proposition 4.4
we have: : o C

CoROLLARY 4.5. — Suppose 1 < 1’ ideals of A such that

sL)y=sT,D0=st<e-1 and s g(k)=s(T',e)(k), O0=k=ky—1,

then:
8'e‘o (Ie-1) < 820 Te-1)-

NOTE 4.6. — Let {1, ..., y,} be a RSP, of A,

s@WsOH=s...=ss(nN= ...

IIA

n -and .ﬂ=;)<)’1,‘---’ys(r)>'CA-

&/ is an ideal generated by monomials then given fek [[yy, ..., ¥.]] = A, f¢ «:

f= Z kaMa’ a=(al’ ---,an)aigoy Mu=yt;‘9 ) y;"-

aeZn

There must be o € Z" such that k, # 0 and M, ¢ «:
M, = Yian Vi) e yj(r)j(l) éj(z) <. éij(")
by direct computation if M, ¢ & = j(1) > s(1),j(2) >5Q), ..., j(r) > s(r).

THEOREM 4.6. — Given an ideal 1 = A and a regular system of parameters (R.S.P.)
{y1> ---» yn } in the conditions of Definition 4.1 then:

0) Icot =3 (X <FYy, o s FYien)™,  ile k)=s(, e)(k).

eZ0 hZ0
(ii) For each e 2 0s(1, e) = s (, e).
(iii) of is maximal among the ideals B such that s (B, e)=s(A,e)Ve =0.

Proof. — (i) Bvery fe€ A may be written

f=Y koMuM=y2®D, | y2®: | ek

aeZn
and
N
a@)= Y a(, )p,0<a(, ) <p
t=0 .

(p-adic notation). Let fel and

f’ a o (1, 0) a a (n, 0) a « (1, N) a o (n, NY
g L5 B RS =l B o
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then: (0,0, ...,0) = ([Ja G, j)!) &, and
k¥ i

N ' ' :
t j(t,1),1 t ' t,h),t
M, = HM;, Ma'—'(FtYJ(:,n)a(l( ) )(F yj(t,h))u(j( ) )’
t=0 N \

1<jit,i)<jit, hsn if 0Si<ks<n-1
Now ‘ ‘ .
Mé¢d =Mi¢ Y <Fy, ... Fpapds t=01...,N
) k>0 -

So j(t,h)>i@t h =s(,¢) 0. for évery’ h (Note 4.6). But then going back to
Note 4.2 we have

f'el, crad(A), then f'(0,...,0)=0 so k,=0 and fed.

(ii) Mather shows in [3] that given

ll[\/]g

(yl, vt SO SsWS. S5O =n,

8’(‘)(B) = Zk (yla teey ys(r))'—k+1

if we make use of this fact together with the definition of the operators 3., since

r
OF"y; =0 if r>e,
oF°y,
we have
© ' .
5’5(”) = Z (7P .Vi(o,:+ic))'+1+ Z (Z CF4 o s F¥Yie,n Y
t=0 ez1 r20
SO

Lo =Y15 -+ s Yoy >+ Z (Y, <F°yy, ..., Feyi(e,r)>r+l)'

rz0

Applying now thé operator 8; we have
Sli(do) = Y15 o 0» yp(0)>+ 220<FJ’1, ey Fyi(l,t+k)>t+1
. t>

-+ Z Z (Fyqoony Feyi(e,r)>r+l'

ex2 rz0
In general

Aot ={V1s -+ Vp)?T{EFVss - s Fypy2+.. .+

+<{F lyy, o, BT Ype-n>+ Z > (F Y1 '-"1'-"’lfvi(l!,r)>'Jrl

2e rz0
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and
e—1
85 (Ao-y) =‘Z(.) (F'y, ., Fy,>+ Z (Fpq onny Feyi(e,r+k)>r+1

+ Z Z (FhJ’n .. i(h r)>1+r

hze+1 r20

then rank (8% (o/._) nk[[F°ys, ..., F°y,]1]) =i(e, k) in fact it will be given by:
CF o s Fo i -
(iii) Suppose anideal B > o such that s (<, ¢) = s (B, ) ¢ = 0, then by Corollary 4.5:

. 85 (B.-1) © 85(H.-1)
and by Corollary 3.13:
BEBom) = Y1s s Ypy2 e +(F'(yp, -.-» Fe—l(yp(e—1)>
+<{F®y, .. s Fie. iy +<{B'>
B crad(k[[F°y;]]j>ice.)’s  i(e k) =s(, e)(k)

$0 { ¥4, ..., ¥ } is also a R.S.P. in the conditions of Definition 4.1 for the ideal B. Then
using (i) of this theorem
Bcw

as it was to be shown.

PROPOSITION 4.7. — Let {y,, ..., y,} be a RS.P. of A, I, =< F°y,, ..., F°y»,)
0 < e fixed:
0<sO)ss()<...<s()<...<n,

i+1—-k\k+1 i+1
(X Ko c Y LY.
izk iz0

then:

In fact

(X LG
izk

k+
J()+1-k j(l)+1 k

_ - T+ 1~ky (1) (k+1)+ 1~k
= ) I Gy Lo ™ =( H Jsuay YA GaRH ™
kSj(1)S .0 Sjk+1) =1
since Iy iy < Iy if i £ j; and j () = k: _
, D=k _ Tk
j(D+1-kz21 = and | CATASILECS PP

1515k
N

+
H P ®+1-k _ [jk+1)+1
L3 LGt 1)

and this proves the proposition.
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NoTE 4.7. — We will now extend what Mather defines in [3] as the ideal B (I), if
characteristic of k is zero B(I) = Y. (8% (I))**! and the ideal B (I) is what we called &/
k=0 .

in Theorem 4.6 (taking p = charac. k = 0).

We will show that the ideal & depends only on I and not on the RS.P. {y;, ..., ¥, }
in the copditions of Definition 4. 1.

ProPOSITION 4.8. — Given 1 and < ideals of A as in Theorem 4.6.

Ie,k = 8’:(12_1) N k[[Fexl, ceey Fex”]],

=3 ¥ (I

€20 k20

then:

Proof. — Since the R.S.P. {yy, ..., y, } Was taken such that

{FZJ’p cees Feys(i,e)(k)} S FP
then obviously

e ) AL
€20 kZ0
We proved in Theorem 4.6 that I c o and s(l, e) =s(«, e)Ve =0 then by
Corollary 4.5:
' S(l-) = 85(Homy), Ve, k20,

sol, yc, Ve k=0(H,, defined as I, ;):

z <Ie.k>k+1 < Z Z <de,k>k+19
0o ez0 k20

e20 k=

it will be enough to prove that

Z 2 <de,k>k+1cd’ 82(d —1)=

e=0 k20

e—1

= i—zo <F'y1’ ceey Fiyp(i)>+ §0<Fey1, .. .y Feyi(e’,..‘_‘k)>'+l
+ 2 TPy, Pyt it ) =s(e, () [Th 4.6 ()],
hZze+1 r20 X
SO
A= §O(F’y1, cees Fe)’i(e,r%k'))'“
+ X YAF'y, Py s>t (Lemma 3.5).
hZe+1 rz0 : ’ A

Let us show that { &, , Y*! c o since:

Z Z <Fh.l’1’ <y FhJ’i(h.r))'“ cof

h2e+1 r20
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it is enough to verify:

(X <(Fyy, ..., FtYi(e,r+k)>'+1)k+% cof

rz0
in fact

(2 (Fpgyonns Feyi(e,r+k)>’+1)k+l < Z (Fygyonns Fe.l’i(e,r)>hLl c

rz0 rz0

by Proposition 4.7.

DEFINITION 4.8. — Given I and & ideal of A as in Theorem 4.6 we will define: -
B = .

DEFINITION 4.9. — For a given ideal I = A we have defined the ideals {L}e >_1
(Def. 4.1), let: h (e) be the smallest k such that 8* (I,_,) = 8** (I,_,). We will define
non-increasing applications.

TB(Le): {0,1,...,h(e)}>Nu{0},
TB(, e)(k)=n—s(, e)(k)e=0

that we will call the Thom-Boardman numbersl associated to the ideal I. Since
I, cI,,, = ... then for e big enough I, =I,,, = ... and

Ie = 8e+1 (Ie); Ie+k = 6e+k.+1 (Ie+k)

so h(e) = 0 for e big enough.

Example 1. — Let A = k[[t]], k of characteristic p, the ideals I, = { ¢?*!) and
{tP*?2%y =1, (p = charac k) are such that s(e, L ) =5 ) Vez 0 but there
Thom-Boardman numbers are different, in fact »

So(l) =< P> =8(1), Vnzl,
So(I) =< FP*1), B3I =<r>=080(,), Vnz2
also 8, ((t?)) = (t?) for e = 1 s0: )
s(I3, 0)(k) =s(I,, 0)(k) =0, Yk=0,

sy )®) =50 9 =1, VE20, e21,

v

but TB (I, 0) = (1, 1); TB(I, 1) = (0); TB (I, €) = (0),e = 2and TB (I, 0) = (1, 1, 1);
TB (I, I) = (0); TB (I,, €) = (0) ¢ = 2, so the monomials #**! and ¢?*? will have the
same sequences s (e, I), but different Thom-Boardman numbers.’

Bly) =Bl = <t" >-
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Example 2. — 1 = { xy+z") < k[[x, y, z]] characteristic of k = p:
3o (M) =<x, y; Py = 6’5(15 = 1;, k=2 (Def. 4.1)
| 8;Iy)=1I, and §.,I)=1,, e=1,
-5(1,0)(0) =0; s(I,.O)(k)=2ngl; s(I, e)(k) =3, Vk=0, ex1,
) TB(, 0) = (3, 1); TB(I, 1) =(0)=TB (I, e), e=2,
B =<x, y>2+{x" P, ).
Example 3. — k[[x, y, z]] as before I = { x?, y?, 27 :
I=1,Vez=0; s(I, 0)(k)=0, Vk=0; s(I, e)(k) =3, Vk, ex1,
TB(, 0) =(3); TB(I, 1) = (0) = TB(, e), e=2,
B(D) =1

Note. — The only information that we have of these 3 examples in characteristic
p # 0 using the same method that in characteristic zero is the one given by TB (I, 0)
with the last integer repeated infinite times.

In examples 2 and 3 if we define the ideal B (I) as in characteristic zero:

BO = X (o)

there will be no R.S.P. { y, ¥, 3 } of k [[x, y, z]] such that
Bpd = Z D15 oo Vs (i))i+1
i=0

for any non decreasing sequence 0 < s(0) < s(1) £ ... <3 asin [3]

REFERENCES

[1] J. DIEUDONNE, Le calcul différentiel dans les corps de caractéristique p = 0 (Proc. International
Congress of Math., Amsterdam, 1954).

[2] R. FITTING, Die determinanten ideale eines modules (Jahresbericht der Deut. Math. Vereinigung, V, 1936,
pp. 195-221).

[3] J. MATHER, On Thom-Boardman Singularities (Dynamical Systems, ed. M. M. Peixoto, Academic
Press, New York, 1973, pp. 233-247).

[4] K. R. MouUNT, Some remarks on Fitting’s invariants (Pacific Journal of Math., Vol. 13, 1963,
pp. 1353-1357).

[5] K. R. MounTt and O. E. VILLAMAYOR, Taylor Series and Higher Derivations (Publ. Dept. Matematicas,
Facultad Ciencias Exactas, Univ. Buenos Aires).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



28 " 0. E. VILLAMAYOR

[6] K. R. MounT and O. E. VILLAMAYOR, An Algebraic Construction of the Generic Singularities of
Boardman-Thom (Publ. Math. L.LH.E.S., Vol. 43, 1974, pp. 205-244).

[71 R. THOM, Les singularités des applications différentiables (Ann. Inst. Fourier, Vol. 6, 1956, pp. 17-86).

[8] Y. Nakar and S. Suzuki, On M-adic differentials, (J. Sci. Hiroshima Univ., Serie a, 24, 1960).

[9] J. ROBERTS, Singularity subschemes and generic projections (Trans. Amer. Math. Soc., Vol. 212, 1975,
pp. 229-268).

(Manuscrit regu le 10 février 1977,
révisé le 20 octobre 1977.)
Orlando E. ViLLAMAYOR (h) - -
Department of Mathematics,
Northwestern University,
Evanston, Ill. 60 201,
U.S.A.

4¢ SERIE — TOME 11 — 1978 — N° 1



