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Introduction

Let X c P" be a smooth, projective variety of dimension r. For each integer k
satisfying 0 ^ k ^ r consider a Qz—r+^—2)-dimensional linear subspace L,^ of P".
The tangent r-space T^ to X at a point x intersects L^ in a space of at least k-2 dimensions.
The set of points x e X such that this intersection space has dimension at least k-\ is
called a k-th polar locus of X and denoted Mj^ (L/^).

For example, take X ^ P3 to be a surface. Let L^ = [ p } be a point and L,^ = L
a line in P3. The 1st polar locus Mi (p) of X consists of points such that the tangent
plane at the point contains p, while the 2nd polar locus M^ (L) consists of the points
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ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE 33



248 R. PIENE

whose tangent plane contains the line L. For most choices of p, M^ (p) is a curve,
while for most choices of L, M^ (L) consists of a finite number of points.

In the general situation X <= P", dim X == r, the locus M^ (L(^) will have codimension k
in X, for most choices of L^y Moreover, for such L^), the rational equivalence class
of the cycle defined by M^ (L^)) does not depend on L^y We let [M^] = [M^ (L^))]
denote this class and call it the k-th polar class of X. The degree ^ of M^ is called
the k-th class. The top class p,. is called the class of X. The [MjJ's are invariant
under generic projections, i. e., they are projective invariants. For k < r, ^ is also
equal to the k-ih class of a general hyperplane section of X.

The general study of polar loci goes back to Severi ([S]), though the cases of curves
and surfaces had been treated earlier. The ideas of Severi were taken up by Todd([To]),
who called the polar loci Mj, polar varieties and used them to define canonical classes
on the variety.

Porteous ([Pt]) showed how to recover Todd's definition of canonical classes in terms
of singularities of maps. This point of view was taken by Lascoux ([Lx]) who considered
also the polar varieties in this way.

Pohl ([Ph 2]) studied a more general situation: Let X be a smooth variety and/: X—> P"
a map which is an immersion on an open dense subset of X (but/need not be a generic
projection). He defined a homology class y^ (what we here call the 1st polar class [M^]
of X with respect to/) on X and proved a formula for Yi in terms of the 1st Chem class
of X, the class of a hyperplane section, and the "cuspidal edges" (i. e., the divisorial
part of the ramification locus of /).

When /: X —> P2 is a curve, the degree of yi is the number of tangents (at smooth
points of the image) that pass through a given point, i. e., it is the class of the curve.
Hence Pohl's formula is a generalization of one of the Plucker formulas for a plane
curve. He asked for (1) a similar generalization of the other basic Plucker formula
(which gives the class in terms of the degree of the curve and the number of nodes and
cusps). Moreover, he asked for (2) formulas for the higher codimension polar classes,
generalizing those that exist when / is an immersion (or a generic projection of an
immersion).

Teissier ([Te]) found a formula for the class of a hypersurface with isolated singularities
which answers (1) in that case. So one could ask for (3) a generalization of Teissier's
formula to hypersurfaces with arbitrary singularities.

The questions (1), (2), and (3) were the starting points of the present work. We
succeed in answering (3). In fact we find formulas for all the polar classes of a hyper-
surface, so that we also answer (1) and (2) in this particular case.

Partial answers to (1) and (2) are obtained in the case of local complete intersections;
we then get a formula for [M^]. When the local complete intersection comes with a
desingularization, this formula and Pohl's formula for [Mi] yield a formula for a certain
"double point class".

Our methods are heavily influenced by Pohl's ([Ph I], [Ph2]). We define the polar
classes of a singular variety X with respect to a generic immersion /: X —> P". We
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POLAR CLASSES OF SINGULAR VARIETIES 249

show that there is a bundle P on a blow up X of X such that the polar classes of X are
the pushdowns of the Chern classes of P.

When/is an embedding and X is a local complete intersection, or when/is arbitrary
but X is smooth, we can compute c^ (P). The problem of finding Cj, (P), k > 1, remains
open, except for the hypersurface case, where c,, (P) = c^ (P/ holds.

We show that the polar loci and polar classes are invariant under generic projections,
as in the classical case of an embedded, smooth variety. If we consider a generic
projection p . 'X—^P^1 of the given map/ :X—>P", where r = dimX, we are thus
reduced to the hypersurface case and can compute the polar classes of X in terms of
characters of p. When X is smooth and / is an embedding, the singularities of p are
ordinary and have been studied ([To], [LI], [Rb 1]). In the general case, however,
in addition to the aquired ordinary singularities, the singularities of X change character
when projected (e. g., the singularities of p (X) are hypersurface singularities, while X
need not even be a Gorenstein variety). This approach to computing the polar classes
of X thus seems to require a study of the behavior of singularities under projections and
it will not be pursued here.

Acknowledgment

Most of the results presented here are contained in the author's doctoral dissertation
(M.I.T., 1975), written under the direction of Steven Kleiman. To him many thanks
are due, for introducing the subject and for helpful discussions. Moreover, the present
version was influenced by Kleiman's treatment in The Enumerative Theory a/Singularities
([Kl 2]). In particular this caused a shift in emphasis away from numerical formulas
and towards formulas for rational equivalence classes of cycles. Thus the polar classes
became the focus of this article.

Notations

We fix an algebraically closed ground field k, of arbitrary characteristic. All schemes
are assumed to be algebraic, i. e., separated and of finite type over k. A reduced (but
possibly reducible) equidimensional, proper scheme is called a variety.

We shall use the intersection theory for singular schemes as developed by Fulton
([Fu] for quasi projective schemes; [F-M] for the general case). If X is a scheme, we
denote by A.X its Chow group, i. e., the group of cycles on X modulo rational equivalence,
graded by dimension. There is a unique theory of Chern classes on X, which to each
bundle (i. e., locally free coherent sheaf) E associates an element c (E) = ̂  c» (E) e A'X,
where A* X denotes the ring of Chern operators on X ([V], [F-M]).

Let g : X — » Y be a proper map. We let n : A'Y (x) A.X—^ A.X denote the cap
product; it makes A'X into a graded A'Y-module. For oceA'Y, peA.X, there is
the projection formula g^ (g* a n P) = a n g^ P.

We write s(E) == c(E^)~1, where v denotes dual, and call it the Segre class of the
bundle E. We shall also use the following notation: Let F c x be a closed subscheme
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and letp :X—>X denote the blow up of F, with relatively ample line bundle 0(1).
Then the Segre covariant class of F in X is defined to be the element

s ( r ,X)=-E p^-,(0(l))n[X])
J=0

in A.X. Hence

5,(F, X) = -p^(ci (0(1)7-^ [X])eA,X

holds, for 7 = 0, 1, . . . , r-1. Moreover (by the projection formula) Sj (F, X) has support
contained in the support of F, so that we get Sj (F, X) == 0 for j > dim F.

We write a for the degree of the 0-dimensional component of an aeA'X.

If (3 e A*X, we write also P for P n [X]. For a proper map/: X -> Y, /^ a = a

holds for all aeA.X.
By /: X —> P" we shall always mean a proper map from a variety X of dimension r

to projective /z-space such that / is an immersion (i. e., / is unramified) at all generic
points of X. Such a map / will be called a generic immersion. We let L = /* Opn (1)
denote the pullback to X of the tautological line bundle on P".

Often we write P" in the "coordinate free" way as P (V), with V a (/z+1)—dimensional
vector space. The dual projective space P^ of hyperplanes in P" is then P^^. By
Grass^+i(V) we denote the Grassmann variety parametrizing m+1-quotients of V
(i. e., w-planes in P"). There is a canonical isomorphism P^V^) ^ Grass,, (V).

Given integers 0 < ^ i . . . < ^ _ ^ ^ T Z + I , then to each flag

F={VoC:ViC:. . .c=V^,}

in V, with dim V» = a^ we let £ (a', F) denote the corresponding Schubert variety of
G = Grass^+i (V) . ' I f O — ^ K — ^ V G — ^ Q — ^ O denotes the tautological sequence on G,
£ (a; F) is the subscheme of G where the induced maps

A^-^V.G^A^-^Q

are 0. Equivalently, 2 (a; F) parametrizes w-planes P" c P" such that

dim (P"1 n P (V/V,)) ̂  m - a, + i
holds, for i = 1, ..., n—m.

In particular we shall consider the 1st special Schubert variety 5^ (V') of r-planes
intersecting a given (/z—r+A:—2)-plane P(V/V) in a space of at least k—1 dimensions.
We note that

^(V^S^F)

holds, where a^ = r—k-{-2, a^ = r+l+i for i > 1, and where F = { V; } is any flag
satisfying Vi = V and dim V, = a^.
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Finally, we recall that the ith Fitting ideal F1 (M) of a coherent module M on a
scheme X is defined as the sheaf of ideals generated at each point x e X by the (q — 0-minors
of the matrix of any presentation

Ot.-0^->M^O

of M at x. For the general properties of these ideals we refer to ([F]; [G-R], pp. 28-41;
[Ka], p. 145; [SGA7I], p. 114).

1. Polar loci and the bundle P

Let X be a variety of dimension r and/: X —> P" = P (V) a generic immersion. Denote
by U the largest open subscheme of X where X is smooth and where / is an immersion.
For a given linear (^—r+A:—2)-dimensional subspace L^) of P", we let M^(U) denote
the locus of points x e U such that the tangent r-space to /(X) at / (x) intersects L^)
in a space of at least k— 1 dimensions. The closure Mj^ of M^ (U) in X is called a polar
locus of X (with respect to/) ([Ph2], p. 19; [K12], IV. C).

We shall see below that Mj, has a natural scheme structure and that, for a general L^,
Mfe has codimension k in X and has no embedded components. Moreover, if char k = 0,
M^ is also reduced.

First, recall that there is a natural map a : V^ —> P1 (L), where Px (L) denotes the
sheaf of principal parts of the line bundle L =/* Opn (1), such that a represents the
(projectivized) tangent spaces to X, as explained below. (See [Pi], § 2, § 6.) There is
a canonical isomorphism a : VP(V) -^ PP(V) (PP(V) (1)) anc^ a ls ^e map obtained by
composing /* a with the map /* PP(V) (OP(V) (1)) —> Px (L)- Therefore the cokemel of
a is isomorphic to the cokemel of the map

/*DP(V)®L-^OX®L»

hence to Qy (x) L, where Qy = QX/P(V) denotes the sheaf of relative differentials.)
Choose a basis eo, . . . , ^ of V = H° (P", Opn (1)). Let xeX be a closed, smooth

point, put A = Ox, x a11^ fix an isomorphism L^ ^ A. Let ^ denote the image of e^
in L^ via the map Vx —^ L, and x, e A the image of ^ via the fixed isomorphism. Choose
a regular system of parameters (^i, . . . , ty) for A. For a e A we let da e P\ denote the
class of the element a (x) 1 — 1 ® a. Then P^ is a free A-module with basis { 1, dt^,..., dty }.
Let { 1, d\ . . . , ^ } c: Diff^ = P^ denote the dual basis ([EGA F^], 16.11).

With the above notations and choices of bases the diagram

Vx.^P^(L).
Ih Ih

^n+l M ^r+1

commutes, where M is the matrix ( d J Xi) o^i^n,o^j^r' The map a is surjective at a
point x if and only if / is unramified at x, since Coker (a) ^ Qy ® L holds.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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In view of the above discussion, if x e U, the (r+ l)-quotient a (x) = a^ 00 k gives an
embedding P(Px(L)(x)) q; P(V) of the tangent r-space to X (or/(X)) at/(x).

The map (p : U -> G == Grass,.+1 (V) defined by the quotient a |u is called the tangent
map (or Gauss map, or 1st associated map) off. Let L^) = P (W) be a (^ - r + k — 2)-dimen-
sional subspace of P (V) and S^ c G the corresponding 1st special Schubert variety,
i.e., Sfe corresponds to r-spaces of P(V) intersecting L(^ in a space of at least k-\
dimensions. Hence the points of M^ (U) are the points of (p~11^, and we give Mj, (U)
the scheme structure of (p"1^. Therefore Mfe(U) is the scheme of zeros of the
induced map

A r—k+2\rf . A r — f c + 2 p l / T \ |
V U - ^ A ixW |U?

where we set V = ker (V —» W). We shall consider the polar locus Mj, as the schematic
closure of M^ (U).

Next we show that for general L^), the cycles M^ have codimension k and are all
rationally equivalent. We do this by constructing a proper, birational map n : X —> X
and a quotient Vx —^ P extending ^ |u, such that the equality

[Mj=^(c,(P)n[X])

holds.
The obstructions to extending a |u on X are, (i) if X is not smooth, Px (L) is not

everywhere locally free with rank r+1, (ii) a is surjective only where/is an immersion.
First we will deal with (i). The singular subscheme of X is defined by its Jacobian

ideal, the r-th Fitting ideal P1' (Ox)' Because there is an exact sequence ([EGA IV],
16.3.1, 16.7.2):

(^) 0 -> Qx ® L -> P^(L) -> L -» 0,

F1' (Qx ® L) = FT+1 (^ (L)) holds' and Fr (^ ® L) = Fr (^x) holds since the formation
of Fitting ideals is invariant under tensor product with line bundles. Raynaud proved
([G-R],5.4.3) that if M is a coherent sheaf which generically is a (r+l)-bundle and
if F^1 (M) is invertible, then the quotient of M by the annihilator in M of F^^M)
is a (r+l)-bundle. So let

n: X->X

denote the blow up of ¥ ' (Qx)» and aPP^ Raynaud's result to %* Px (L). Then
pr+i ̂  p^(L)) is invertible since it is equal to F^1 (P^(L)) Ox (by general properties
of Fitting ideals). Set A = Ann^ (L) ̂ r+l (^ PX (L))) and P = %* P^ (L)/A. Then P
is a (r+l)-bundle. Let a : V ^ — > P denote the induced map.

Next we want to make a surjective. We need the following general result.

LEMMA (1.1). - Let a : E —> F be a map of bundles on a scheme Y, of ranks n and m,
and put I = F° (Coker (a)). Then I is invertible if and only if Im (a) is a m-bundle,
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Proof. - Put F' = Im (a). If F' is a w-bundle, then I is the ideal generated (locally)
by the determinant of the map F' <^ F between w-bundles, hence is invertible.

Conversely, suppose I is invertible. The map a induces a surjection a : A" E —> A"* F ® I.
This 1-quotient defines a map g : Y -> P (A ̂  Let i : Grass^ (E) q: P (A"1 E) denote
the Plucker embedding and put U = Y-V(I). Since oc|U is surjective, g\U factors
through f, so that U c g-1 (Grass^(E)). But U is schematically dense in Y and ; is
closed, hence Y = g~1 (Grass^(E)) holds. Thus there exists a m-bundle F" and sur-
jection P : E -> F" such that P | U is isomorphic to a | U. We claim that F" = F' holds.
To see this, set K' = ker a and K = ker P and consider the diagram

0-> K-^E-^F"-^0

0 -> K' -^ E -> F' -> 0.

The dotted arrow on the left exists because the induced map K —> F' of bundles is zero
on U, hence on all of Y. The resulting map F" —> F' is surjective, but also injective
since it is so on U and since F" is a bundle. Hence the vertical arrows are isomorphisms.

Q.E.D.
Let n : X —> X denote the blow up of F° (Coker a). Applying the Lemma to

7i* a : Vx -> TC* P and setting P = Im (TC* a), we obtain a (r+ l)-quotient

a: Vx->P
on X.

PROPOSITION (1.2). - F o r a general (n - r + k - 2)-space L(^ the class [MJ of Mj, in A. X
is independent ofL^y Ifn : Z —> X is any proper, birational map such that the (r+ ̂ -quo-
tient a | u extends to a (r + V)-quotient b : Vz —> P, there is an equality

[Mj=^(c,(P)n[Z]).

Proof. — The first statement follows from the second. The proof of the second
statement relies on the freedom to move Schubert varieties on a Grassmann variety.
The general result is the following.

TRANSVERSALITY LEMMA (1.3). - Let Z be a reduced, equi-dimensional scheme,
g : Z—> G = Grass^+i (V) a morphism. Fix a Schubert condition (a^, . . . , a^-m)- Then
for a general flag F = { Vi <= . . . c v«_^ <= V }, with dim V, = a,, the corresponding
Schubert variety

£=Z(a;F)

satisfies the following conditions:
(i) g~1 S is either empty, or equi-dimensional with codim(^~1 E, Z) = codim(S, G);

(ii) g~1 S satisfies (S^) (i. e., g ~ 1 £ has no embedded components). If char k = 0,
g~1 £ is reduced,

(iii) given an open, dense subscheme U £ Z, g~1 £ L is dense in g~1 £;

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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(iv) the cycle g* [S] ?'j defined and is equal to \_g~1 £].
Proof. — (i) follows from ([Kl I], 2 (i)), with the group being the general linear group

acting on V (see also the proof of [Pi], 4.1).
(ii) is a version of ([Kl I], 2 (ii)) (for other versions, see ([Kl I], 7)), and it is proved

by proving the corresponding version of ([Kl I], 1 (ii)). We use general results on
schemes and morphisms satisfying (Si), in particular ([EGA FV^], 6.4.1 (ii); [EGA IV3],
9.7.6), as well as the fact that £ satisfies (Si). To prove that g~1 £ is reduced (in char 0)
we use also that £ is reduced. In fact, it is known that Schubert varieties are not only
reduced, but that they are Cohen-Macaulay and normal ([Ho], [Lk]).

(iii) Put T = Z—U. We may clearly assume Z' is equi-dimensional (by arguing on
each equi-dimensional component). Then (i) applied to g \^ : Z' —> G, together with (ii),
shows Ass(g~1 £) c g~1 £ |u? since the associated points are all minimal, and the
statement follows.

(iv) By (i), g* [£] is defined, and its support is g~1^. Hence it suffices to show
that g^ [£] and \_g~1 S] are equal on the generic points Ass(g~1 £). By (iii), applied
to U = smooth locus of Z, we may assume that these points are all smooth on Z, hence
we conclude by ([K-L], Lemma 9), using the fact that £ is Cohen-Macaulay.

Let us return to the proof of the Proposition. Let g : Z—> G = Grass,.+1 (V) denote
the map defined by b. We apply the Transversality Lemma to the (1st special) Schubert
varieties 2^ parametrizing r-planes meeting a given (n—r+A:—2)-plane in a space of at
least k—\ dimensions. Let 2^ be general, defined as the scheme of zeros of

^-fe+2y^^-fe+2Q

(here VQ —> Q denotes the tautological quotient). Since "scheme of zeros" is compatible
with pullbacks, g~1 5^ is the scheme of zeros of

A'-^Vz-^-^P.

By Porteous' formula (on G, which is non singular) ([K-L], Cor. 11),

[£j=c,(Q)n[G].

By(iv), [g-1!,] =^*PJ, hence:

[^^g^Q^G^^P^Z].

i.e., Porteous' formula holds also for \_g~1 S^] on (the singular) Z.
By (iii), we may assume Ass(g~1 2^) c 7i~1 U, and since TC \^-i\j is an isomorphism,

we obtain

^[g-^J^M.OJ^^Mj,

as desired.
Q.E.D.
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The proposition shows that the general polar loci M^ belong to the same rational
equivalence class [MJ. We call [MJ the k-th polar class of X (with respect to /).

The map n : X —> X and the quotient a : Vx —> P constructed above gives one way of
extending a [u, and hence also the tangent map (p : U —> G = GrasSy+1 (V). Let <D : X —> G
denote the map defined by a. Now there is another way of extending (p, as follows.

Let r c: X x G denote the closure of the graph of (p, and let y : F —> X and 0^ : ̂  "̂  ̂
denote the projections. Then the quotient on F corresponding to Op extends a |u, and F
is the minimal scheme on which a L extends: Let n : Z —> X and b be as in Proposition (1.2).
The map (n, g) : Z — > X x G induces an isomorphism Z^- iu-^y '^U, hence Z maps
onto r = y~1 U, so that n factors through y : F —> X and g factors through 0^ ^ r —^ G.

When / is an immersion the map y is usually called the Nash blowing up of X.
It is known ([N], Remark 2, p. 300) that the Nash blowing up of a local complete

intersection is the same as the blow up of the Jacobian ideal. We give a proof of this
in (1.4) which differs from ([N], loc. cit.). An example ([N]) when these maps are not
equal is the case of two planes in P4 intersecting in a point. The Nash blow up separates
the planes. The Jacobian ideal is equal to the ideal defining the point of intersection,
so its blow up introduces a new curve on the planes in addition to separating these.

PROPOSITION (1.4). — Iffis an immersion and K^ = Ker (a) is a bundle, then the maps n
and y are isomorphic. This holds in particular iff is an embedding and X is a local
complete intersection in P".

Proof. — Given the existence of the map X —> F it suffices to show that the Jacobian
ideal F^Qx) = ^r+l (P^(L)) becomes invertible on F. We shall show this by applying
Lemma (1.1) to the dual of the map b : y* K^ —> Vr.

Since P^ (L) is generically a bundle the sequence on F,

0-.y*K^Vr-^y*P^(L)-^0,

is generically exact. By assumption y* K^ is a bundle, therefore it has no torsion, and
the sequence is everywhere exact.

Next we observe that F1^1 (Coker b) = F° (Coker (^v)) holds, because a matrix and its
transpose have the same minors. Let Vp —> Q denote the (r+ l)-quotient on F defining 0,
with kernel K^. I claim that b^ factors through the surjection V^ —> K^. To see this,
consider the diagram

0->y*K^Vr-^y*P^(L)^0
i II I

0——.Kr——^Vr—^ 9 ——>0.

The dotted arrow on the left exists because the map of bundles y* K^ —> 9 is 0 on y~1 U,
hence on all of F. Hence the dotted arrow on the right exists. Dualizing we see
that Im (^v) is isomorphic to the image of the (necessarily injective) map K^ —> y* K^.
By Lemma (1.1) we conclude that F° (Coker b " ) is invertible, i. e., that F^1 (y* P^ (L)) Op
is invertible.
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Suppose X q? P" is a local complete intersection, with conormal bundle N. Then
Ko = N ® L holds, because there is a sequence

0->N®L-^Vx->P^(L)-^0

which is generically exact, hence exact everywhere since N (g) L is a bundle.
Q.E.D.

2. Formulas for the polar classes

Let /: X —> P" be a generic immersion. In the previous section we constructed a
map 7i : X —> X, equal to the composition of two blow up's, and a (r+ l)-quotient a : Vx —> P
on X such that the polar classes of X are given by

[Mj=7i^(P)n[X]),
for k = 0, 1, ..., r.

Therefore we can find formulas for the polar classes whenever we know the Chem
classes of P. In two cases we find expressions for c^ (P), this is (I) when/is an embedding
and X is a local complete intersection (II) when X is smooth. In either of these cases,
if/(X) is a hyper surf ace (i.e., r = n—\ holds), c^ (P) = c^ (P)^ holds for all k, hence
we obtain formulas for all the polar classes of X.

I. X is A LOCAL COMPLETE INTERSECTION IN P". — When/is an immersion, a : Vx —> Px (L)
is surjective, so that n = n is equal to the blow up of the Jacobian ideal P (Qx)
(TT = id, X = X, P = P). Set K = Ker (a).

When / is an embedding and X is a local complete intersection in P", with conormal
bundle N, we saw in the proof of Proposition (1.4) that the (blown up) Jacobian ideal
ideal J = F1' (Qx) Ox ls ^qual to the 0-th Fitting ideal of the cokemel of the map

K^Tr^N^Lr.

Hence we obtain an isomorphism

A^K^ ^ (A^Tr^N ® Lf) ® J.

The exact sequence of bundles

0-^K^V^->P->0

gives an isomorphism ([A-K], VII, 3.12):

A^P^A^Kf,
hence:

^+1 p ̂  (A"-^* (N (g) Lf) ® J

since A"-'^) and (A^ICT are isomorphic.
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The above isomorphism gives an equality between 1-st Chem classes

Cl(P)=7^*(Cl(NV)-(n-r)Cl(L))+Cl(J).

Let S c x denote the singular subscheme of X defined by the Jacobian ideal F1' (Px)»
and consider its associated cycle [S]eZ.X. Write [S]^_i = ^^[S^_i^] as a sum

a
of its integral (codimension 1) components. Let e^ denote the multiplicity of the Jacobian
ideal in the local ring of X at the generic point of S^_i^. Then we get ([Kl 2], II.D):

^c^^l)^[X])=^e^.^•].
a

We have proved the following proposition:
PROPOSITION (2.1). - Let X q^ P" be a local complete intersection. With the above

notations, the 1-st polar class of X is given by

[Mj=(ci(NV(n-r)ci(L))n[X]-S^S,-^].
a

Remark. — If X is smooth in codimension 1, the last term is 0. An example when
it is not: suppose X is a surface in P3 with an ordinary y-multiple curve Cy. Then one
shows [S]i = (y-1) [C,] and ^ {c, (J-1) n [X]) =7(7-!) [C,].

COROLLARY (2.2). — Suppose X is equal to the intersection of n—r hyper surf aces, of
degrees d^ i = 1, . . . , n—r. Then:

[Mj="S(ri,-l)c,(L)n[X]-S^[S,.,.J.
1 = 1

n—r
Proof. — In this case the normal bundle N^ is equal to ® \f\

1=1
Q.E.D.

Suppose now that X is a hyper surf ace in P", of degree d. Then K is invertible, hence
we get

s^)=c(K)-l= fc^K^,
fc=0

and hence:
c,(P)=Ci(P)\

As a result we get a formula for all the polar classes (as stated in [Kl 2], IV, 48).

THEOREM (2.3). — The k-th polar class of a hypersurface of degree d in P" is given by

[MJ=[(^-l)Cl(L)]fcn[X]-fctYk)[^-l)c,(L)]ln5,_^,(S,X),
1=0 V/

where ^..-^^S^)^—^^^^"1?!!^.]) denotes the Segre covariant classes of the
singular subscheme S of X.
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