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INDUCED AND AMENABLE ERGODIC ACTIONS
OF LIE GROUPS

By RoBerT J. ZIMMER

SuMMARY. — As with unitary representations, one can induce an ergodic action of a closed subgroup
of a locally compact group G to obtain an ergodic action of G. We show that every amenable ergodic
action of a real algebraic group or a connected semi-simple Lie group with finite center is induced from
an action of an amenable subgroup (which is not true for amenable actions of general locally compact
groups). The proof depends on the result, of independent interest, that the orbit of any probability
measure on real projective space under the action of the general linear group is locally closed in the
weak-k-topology. Combined with recent results on the group-measure space construction of von Neumann
algebras, this enables us to deduce that any free ergodic action of a real algebraic group or connected
semi-simple Lie group with finite center determines a hyperfinite von Neumann algebra via this construc-
tion if and only if it is induced from a free ergodic action of an amenable subgroup. Another implication
of this result is that a cocycle of an ergodic amenable group action with values in a real algebraic group
or connected semi-simple Lie group with finite center is cohomologous to a cocycle taking values in an
amenable subgroup.

I. — Introduction

One of the most important methods of constructing unitary representations of groups
is that of inducing: to each unitary representation of a closed subgroup of a locally
compact group G, there is a naturally associated “induced’’ unitary representation of G.
As pointed out by G. W. Mackey ([12], [13]), one can define induced ergodic actions
in an analogous manner. Thus, if G is a locally compact second countable group and H
is a closed subgroup, then to each ergodic action of H there is a naturally associated
“induced”’ ergodic action of G. As with unitary representations, the construction is of
a very concrete and explicit nature, and one can thus hope to answer many questions
about the induced action by examining the action of the smaller and hopefully simpler
group H. For a given ergodic action, it is therefore of considerable interest to know
when it can be expressed as an action induced from some (perhaps given) subgroup.
This is, of course, parallel to a basic theme in the theory of unitary representations. This
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point of view turns out to be quite relevant to the study of a broad class of ergodic actions
recently introduced by the author in [20], namely amenable ergodic actions.

Amenable ergodic actions play a role in ergodic theory parallel in many respects to
the role played by amenable groups in group theory and arise naturally in a variety of
situations. For example, with each ergodic group action there is a naturally associated
von Neumann algebra first introduced by Murray and von Neumann and subsequently
generalized by a variety of authors, by the group-measure space construction. For
free ergodic actions, this von Neumann algebra will be approximately finite dimensional
(i. e., hyperfinite) if and only if the action is amenable. This was shown by the author
for actions of countable discrete groups in [22] and for actions of general locally compact
groups by J. Feldman, P. Hahn, and C. C. Moore in [6], Th. 8.10, using a reduction to
the countable case. Other results concerning amenable ergodic actions with applications
to problems in ergodic theory and its relation to probability and von Neumann algebras
can be found in the author’s papers [19]-[23], and the paper of P. Hahn [25].

It follows from the results of [20] that every ergodic action of a group that is induced
from an action of an amenable subgroup is an amenable action. Not surprisingly, the
converse assertion is false in general as we show by example in section 6 below. However,
one of the main points of this paper is to prove the converse for ergodic actions of a suitable
class of groups, thus for many purposes reducing the study of amenable actions of such
groups to the study of the ergodic actions of amenable subgroups. Specifically, we
have:

THEOREMS 5.7, 5.10. — If G is a real algebraic group or a connected semi-simple Lie
group with finite center, then every amenable ergodic action of G is induced from an ergodic
action of an amenable subgroup.

This theorem has immediate applications to von Neumann algebras and to the coho-
mology theory of ergodic actions. We also present theorems concerning the structure
of amenable ergodic actions of more general Lie groups.

The outline of this paper is a follows. In section 2 we discuss the inducing process
for ergodic actions and some of its general properties. In section 3 we recall the definition
of amenability for ergodic actions and make some further observations of a general nature
concerning these actions. Section 4 is devoted to an examination of the orbits of proba-
bility measures on a real projective space under the action of the general linear group.
Specifically, we show that every orbit is locally closed in the weak-+-topology. This
result is an important step in proving Theorems 5.7 and 5.10, and seems to be of inde-
pendent interest as well. The proof of this result in turn depends upon a technique of
H. Furstenberg for examining the asymptotic behavior of measures on projective space under
the general linear group action. Section 5 contains the remainder of the proof of the
main theorems, applications of the theorem, and theorems concerning the amenable
ergodic actions of more general groups. In section 6 we present an example of an ame-
nable ergodic action that is not induced from an action of an amenable subgroup. Speci-
fically, the action of a lattice subgroup of SL (2, C) on the projective space of a 2-dimen-
sional complex vector space has this property.
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II. — Induced ergodic actions

In this section we develop the material we shall need concerning induced ergodic actions.
A good deal of this material is implicit in the discussions of Mackey ([12], [13]), but
we shall here formulate the notion so as to emphasize the similarity with inducing for
unitary representations.

Let G be a locally compact group. Throughout this paper, all locally compact groups
will be assumed to be second countable. By a Borel G-space we mean a standard Borel
space S together with a jointly Borel action Sx G — Sof Gon S. If pis a o-finite measure
on S, quasi-invariant under the action of G, then p is called ergodic if A < S is a measu-
rable set with p (A g A A) = 0 for all ge G implies A is null or conull. We shall then
call (S, w), or sometimes just S, an ergodic G-space. If (S, p) and (T, v) are ergodic
G-spaces, they are called equivalent, or isomorphic, if there is a G-isomorphism
B (T, v) — B (S, p) of the associated Boolean c-algebras of Borel sets modulo null sets.
Equivalently [11], there is a conull G-invariant Borel set S, = S and a measure class
preserving G-map (So, p) — (T, v). In particular, changing the measure p to a measure
in the same measure class (i. e., same null sets) does not change the equivalence class of
the action. We may thus assume the measures at hand to be probability measures if
we wish. An ergodic G-space is called essentially transitive if there is a conull orbit,
or equivalently, if it is isomorphic to the action on a homogeneous space G/ H. (We
write G/H (o be cosets of the form Hg, and H\ G to be cosets of the form gH). An
ergodic G-space is called properly ergodic if every orbit is a null set. By ergodicity
every ergodic action is either essentially transitive or properly ergodic.

Suppose now that H < G is a closed subgroup and that (S, p) is an ergodic H-space.
We wish to construct in a natural fashion an associated ergodic G-space. We present
two different constructions of this action, both originally described by Mackey. These
are in fact analogues of two ways of constructing induced representations: the first as
translations on a space of functions on G that transform according to the H-representation
(Mackey’s original description of induced representations [10]); the second as functions
on the quotient G/ H where the representation is then defined via a cocycle that corres-
ponds to the representation of H (See [17] for a discussion of induced representations
from the latter point of view.)

The first construction of the induced ergodic action is as follows. Let (S, p) be an
ergodic H-space. Then H acts on Sx G by (s, g) & = (sh, gh) and the product of p with
(a probability measure in the class of) Haar measure is quasi-invariant. Let (X, v) be
the space of H-orbits with the quotient Borel structure and quotient measure. As we
shall see in a moment, X is a standard Borel space. There is also a G-action on SxG
given by (s, g).go = (s, g5 ! g) and this commutes with the H-action. There is thus an
action of G induced on the orbit space X which clearly leaves v quasi-invariant. Any
G-invariant set in X corresponds to a set S, x G where S, = S is H-invariant, and so
the action of G on X is clearly ergodic.
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DEeriNITION 2.1. — The space (X, v) constructed above is called the ergodic G-space
induced from the ergodic H-space (S, p).

To see that X is actually a standard Borel space, it suffices to show that there is a Borel
subset of Sx G that meets each H-orbit exactly once. Let 6 : H\G — G be a Borel
section of the natural projection and let W = 6 (H\ G), which is a Borel set. Then it
is straightforward that Sx W meets each orbit exactly once.

The second construction we present depends on the notion of a cocycle, which the
above definition does not require. However, this second approach is also geometrically
appealing and often of considerable technical use. Suppose Y is an ergodic G-space
and M is a standard Borel group. A Borel function o : Y X G — M is called a cocycle
if for all g4, 2,€G, a (¥, g1 g2) = a (¥, g1) « (vg,, g,) for almost all ye Y. The cocycle
is called strict if this identity holds for all (y, g, g,). Two cocycles a, B : YXG—> M
are called equivalent or cohomologous if there is a Borel function ¢ : Y — M such that
foreachg, ¢ () o (y, g8) 0 (¥g) ! = B (3, g) for almost all y. If o and P are strict cocycles,
they are called strictly equivalent if there exists ¢ so that this last identity holds for all
(», . If Gis transitive on Y, so that we can write Y = GG, for some closed subgroup
G, < G, then the strict equivalence classes of strict cocycles G /G, x G — M correspond
to the conjugacy classes of homomorphisms G, — M. This correspondence is defined
by taking a strict cocycle o and observing that the restriction to { [¢] } x G, is a homomor-
phism. Full details of the correspondence can be found in [17]. If H = G is a closed
subgroup, one has the identity homomorphism H — H and this will correspond to (an
equivalence class of) a strict cocycle o : G/HxG — H. This cocycle can be defined
explicitly as follows: Choose a Borel section 8 : G/H — G of the natural projection with
0 ([e]) = e, and define o (x,g) = 0(x) g0 (xg)~ L.

If « : YXG— M is a strict cocycle and Z is a Borel M-space, then one can define an
action of Gon YXZ by (3, z).g = (g, za (), g)). It is exactly the cocycle identity of a
that implies that this in fact defines an action. We shall sometimes denote this G-space
by Y x,Z. Ifaand B are strictly equivalent strict cocycles, then the corresponding actions
are easily seen to be equivalent. Applying this procedure to the cocycle defined at the
end of the preceding paragraph, we obtain our second description of an induced ergodic
action. More precisely, suppose S is an ergodic H-space, where H is a closed subgroup
of G. Let a: G, "HxG— H be a strict cocycle corresponding to the identity homo-
morphism. Form the G-action G/Hx,S, i.e., ([g:].5)g = (g, 18 sa(gi], 2)s
which preserves the product measure class. One can easily check that this action is ergodic,
but this also follows from the following.

PROPOSITION 2.2. — G /H X S is equivalent to the ergodic action of G induced from
the ergodic H-space S.

Proof. — Let 8 : G/H — G be a Borel section of the natural projection and define
®:G/HxS—X by ®(,s)=p(s,0()" ') where p:SxG—(SxG)/H=X is
the natural map. One can readily check that @ is a measure class preserving Borel isomor-
phism. To see that ® is a G-map, it suffices to see that

D(yg, s0(»)gb(yg) H=p(s, g7 0(»™H,
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i.e. that (s0(»)g0(yg)~%, 0(¥g)™") and (s, g~ ' 0 (y)~!) are in the same H-orbit. But
acting upon the latter by 0(»)g0(yg)"! e H we obtain the former.

There is of course a great similarity between the construction of G/H xS and the
construction via cocycles of the unitary representations of G induced from S (See [17]).
We also remark that the first construction we have given of induced ergodic actions is
a special case of Mackey’s “range-closure’’ (or Poincaré flow [5]) construction for arbi-
trary cocycles into locally compact groups, which generalizes the flow built under a func-
tion [12]. The inducing process is exactly the Poincaré flow construction applied to
the cocycle a : SxH— G defined by a (s, /) = A. We shall on occasion make further
mention of the range-closure construction and some of its properties, and we refer the
reader to [12] and [15] as general references for this material.

Example 2.3. — (a) If S is the H-space H /K where K is a closed subgroup, then the
induced G-space is G,”K. One can see this immediately from Proposition 2.2, since G
will clearly be transitive on G,/Hx H_ 7K and K is a stability group. In particular,
the action induced from the trivial action of H (on a point) is just the action of G on G /H,
and the action induced from translation of H on H is translation of G on G. We note
that this is analogous to facts in representacion theory concerning the induced representa-
tion of a trivial or regular representation.

(b) If G = R and H = Z, then for a Z-space S the induced R-action is just the flow
built under the constant function 1 ([1], [12]). If H = Zc¢ for some fixed ¢ € R, then
the induced action is just the flow built under the constant function c.

We now present two useful facts concerning induced actions that are direct parallels
of results in the theory of unitary representations, namely “inducing in stages’’ and a
parallel of the imprimitivity theorem.

PROPOSITION 2.4. — Suppose K =« H < G are closed subgroups of G, and that S is ae
ergodic K-space. Let T be the ergodic H-space induced from S. Then the G-spaces
obtained by inducing the H-action on T to G and inducing the K-action on S to G aru
isomorphic.

Proof. — Let a :G/HxG—H and B:H KxH— K be strict cocycles corres-
ponding to the identity homomorphism. Then the action of G induced from T is
G/Hx,T = G/Hx,(H/KxgS). The G-action on G/HxH, KxS is given by
x5 5)g=(xgya(x,g),sp» alx,g)). Wecanidentify G/Hx ,H K with G /K
in such a way that ([e], [e]) corresponds to [e]. Then we can consider

v: (G/Hx H /K)xG—>K

defined by v ((x, »), g) = B (¥, a (x, g)) to be a strict cocycle G/K x G — K, and this
will correspond to the identity homomorphism K — K. It follows that G/ Hx,T
is equivalent to G, /K xS, with proves the proposition.

To describe the analogue of the imprimitivity theorem, we must first recall the notions
of extensions and factors of ergodic actions. If (X, ) and (Y, v) are ergodic G-spaces,
then X is called an extension of Y, and Y a factor of X, if there is a conull G-invariant
Borel set X, = X and a measure-class preserving G-map X,— Y. Equivalently
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([18], Prop. 2.1), there is a G-embedding of Boolean c-algebras B (Y, v) — B (X, p).
The following analogue of the imprimitivity theorem provides a criterion for deter-
mining when a given action is induced.

THEOREM 2.5. — If X is an ergodic G-space and H < G is a closed subgroup, then X
is induced from an ergodic action of H if and only if G,/H is a factor of X.

Proof. — We provide an indication of the proof, leaving some measure theoretic details
to the reader. One of the implications in the theorem is taken care of by Proposition 2.2,
so we assume G /H is a factor of X. Passing to a G-invariant conull Borel set if neces-
sary, we have a measure class preserving G-map ¢ : X — G, H. Let p be the given
probability measure on X and v the probability measure on G H. By the transitivity
of G on G /H, we can assume X = G/H x I, p = v xm, where (I, m) is the unit interval
with some probability measure. For each g and almost all x, the map { x } xI— { xg } xI
defined by the G-action will be measure class preserving and letting a (x, g) be the induced
transformation on the Boolean algebra, a(x,g) :B({xg}xL m)—B ({ x }xI, m),
one readily verifies that o is a cocycle on G, H x G with values in Aut (B (I, m)), the
group of automorphisms of the Boolean c-algebra B (I, m). It is not difficult to see
that Aut (B (I, m)) is a standard Borel group (in fact, it is a weakly closed subgroup of
the unitary group on L2 (I, m)) and that « is Borel. It follows from the discussion of
cocycles on transitive G-spaces in [17] that a is equivalent to a strict cocycle into
Aut (B (I, m)) which is in turn equivalent to a strict cocycle B with

B(G/HxG) = B([e] x H).

Each cocycle G/H x G — Aut (B (I, m)) defines a Boolean action of G on B(G/H xI)
and hence an action of G that is equivalent to the action on X since o and f are cohomo-
logous. But using Proposition 2.2, this action defined by B is equivalent to the action
induced from the H-action defined by the Boolean H-action on B (I, m) given by
B |[e]xH.

Next we present another useful criterion that an action be induced.

COROLLARY 2.6. — If X is an ergodic G-space, let a.(x, g) = g so that o : XxXG— G
is a cocycle. Then X is induced from an ergodic H-space if and only if o is equivalent to
a cocycle taking values in H.

Proof. — Since the range of the cocycle a is the G-space X, the corollary follows from
Theorem 2.5 and the fact that G “H is a factor of the range-closure of « if and only if o
is equivalent to a cocycle into H ([18], Th. 3.5).

We now present some other results of a general nature concerning induced actions.
We suppose throughout the remainder of this section that H < G is a closed subgroup.

PrROPOSITION 2.7. — If S is an ergodic H-space, then:
() S is properly ergodic if and only if the induced action of G is properly ergodic,

(ii) S is essentially free (i. e. almost all stability groups are trivial) if and only if the
induced action of G is essentially free.
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Proof. — Straightforward.

PROPOSITION 2.8. — Suppose S and T are ergodic H-spaces and that X and Y are the
corresponding induced G-actions. If S is an extension of T, then X is an extension of Y.

Proof. — Let o : G,/HxG — H correspond to the identity homomorphism H — H.
If ¢ :S— T is a measure class preserving H-map, then ¥ : G/Hx,S—G/Hx,T
defined by V¥ (x, s) = (x, ¢ (s)) is a measure class preserving G-map and the result follows
by Proposition 2.2.

It follows from Theorem 2.5 that any extension of an ergodic G-space which is induced
from an H-action is also induced from an H-action. The following statement is somewhat
sharper. However, as we shall make no use of it below, we omit the proof.

PROPOSITION 2.9. — Suppose Y is an ergodic G-space induced from the H-space T.
If X is an extension of Y, then X is induced from an extension of T.

PROPOSITION 2.10. — Suppose that X is an ergodic G-space, and let Xy be the H-space
which has X as the underlying set and the restriction of the G-action to H as the H-action.
Suppose H is ergodic on Xy. Then the action of G induced from the H-action on Xy is
the product G-space G,/H xX.

Proof. — LetB:G/HxG—> GbeB(y,g) =g Then the product G-space G, H x X
is just the action defined by B, i.e., G/ Hx g X. But B is strictly equivalent to a strict
cocycle a with o (G, H x G) = H corresponding to the identity homomorphism H — H,
and so G/Hx;X = G/Hx,X. But the latter is just the action induced from Xy.

We conclude this section with a remark on the ergodic equivalence relation of induced
actions. We refer the reader to [5], [6], [16] for the notion of an approximately finite
(i. e., hyperfinite) ergodic equivalence relation.

ProposITION 2.11. — If (X, G) is induced from (S, H), then the ergodic equivalence
relation on X defined by G is approximately finite if and only if the ergodic equivalence
relation on S defined by H is approximately finite.

Proof. — Writing X = G/Hx,S, the result is clear once we observe that for
x; = (V15 81), X2 = (¥2, 5,), we have x; ~ x, if and only if s, ~ s,.

III. — Amepable actions

In this section we recall the definition and some properties of amenable ergodic actions
and present some further results we shall subsequently require. We refer the reader
to [20] for a more detailed and motivated account of amenable actions.

Let E be a separable Banach space, E* the dual Banach space, and E} the unit ball
in E*, which is a compact convex set with the o (E*, E) topology. The group of isometric
isomorphisms of E, which we denote by Iso (E), is a separable metrizable group in the
strong operator topology, and the associated Borel structure is standard ([20], Lemma 1.1]).
If S is a Borel space, by a Borel field of compact convex sets in Ef we mean an assignment
s— A, where A, < E} is compact and convex such that { (s, A } = SxE} is Borel.
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If S is an ergodic G-space and a : Sx G — Iso (E) is a cocycle, A, is called a-invariant
if for all g, o*(s,g) A, = A, for almost all s, where a* is the adjoint cocycle
a* (s, g) = [a(s, g ']*. The following “fixed point property’’ then defines amena-
bility. We call S an amenable ergodic G-space if for all such (E, a, { A, }), there is a
Borel function ¢ : S — E} such that ¢ (s) € A; a. e. and a* (5, g) ¢ (sg) = ¢ (s) a.e. for
each g€ G. Then ¢ is called an o-invariant section. The reader should find drawing
a sketch in SxEF helpful in understanding the definition. We record the following
for later reference.

ProPOSITION 3.1. — (1) Amy ergodic action of an amenable group is amenable
([20], Th. 2.1);

(2) if S is an amenable G-space and there is a G-invariant mean on L™ (S), then G is
amenable ([20], Prop. 4.3, 4.4);

(3) an extension of an amenable action is amenable ([20], Th. 2.4);

(4) a transitive action is amenable if and only if the stability groups are amenable
([20], Th. 1.9).

The following relates amenability to inducing.

PrOPOSITION 3.2. — If (X, G) is induced from (S, H), then X is an amenable G-space
if and only if S is an amenable H-space.

Proof. — Since X is the range of a cocycle Sx H— G, ([20], Th. 3.3) shows that S
amenable implies X amenable. Suppose conversely that X = G, H x, S is an amenable
G-space where o :G,/HxG — H corresponds to the identity H— H. Suppose
v :SxH—1Iso (E) is a cocycle and A, is a y-invariant field. As in the proof of [20],
Th. 2.1, we can define a representation T : H— Iso (L! (S, E)) by

[T F1© =7 2)7(s 2 S (58)
where r is the Radon-Nikodym cocycle of the action, and
B={feL”(S,E¥*) | f(s)eA a.e.}

will be a compact convex subset of the unit ball LY (S, E*) that is invariant under the
adjoint representation T*. It suffices to show that there is a fixed point in B under T*.
Let F = L (S, E). With o as above, we can define a strict cocycle B : G,/H x G — Iso (F)
by B(», g = T(x(y, g)). By the argument in part (ii) of the proof of ([20], Th. 1.9),
it suffices to show that there is a P-invariant section G, H — B — Ff. There is a
natural isomorphism L* (G/HxS, Ef) — L* (G/H,L* (S, E¥)). Suppose
¢:G/H—L*(S,E*) and { : G/HxS — Ef correspond under the isomorphism.
Then it is straightforward that ¢ is a B-invariant section if and only if { is a §-invariant
section, where & : G/Hx S — Iso (E) is the cocycle 3 ((3,s),8) =7, a(y, 2).
Furthermore ¢ (y)e B a.e. if and only if Y (y,s)eA, ;= A; a.e. Amenability of
G_/H x,S ensures the existence of such a function  which completes the proof.
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