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THE CALCULUS OF BOUNDARY PROCESSES

BY Jean-Michel BISMUT

ABSTRACT. — This paper is a systematic study of the transition probabilities of the boundary processes
associated to a class of reflecting diffusions. The main tools are the theory of stochastic flows, the Malliavin
calculus of variations on diffusions, the calculus of variations on jump processes, the Ito theory of excursions
and the stochastic calculus on continuous and non continuous semi-martingales. The smoothness of the
boundary semi-group is related to the degree of degeneracy of the second-order differential operator defining
the diffusion at the boundary.

AMS: 35H05, 60G44, 60G55, 60H10, 60J35, 60J60, 60J75.
Hypoelliptic equations and systems, martingales with continuous parameter. Point processes. Transition

functions, generators and resolvents. Stochastic ordinary differential equations. Diffusion processes, jump
processes.
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The purpose of this paper is to study the semi-groups associated to a class of jump
processes, which are the boundary processes of reflecting diffusions. The main technique
is the stochastic calculus of variations. Since we are using this calculus on diffusions
and on Poisson point processes, we start by giving a brief history of this technique.

Consider the stochastic differential equation:

(0.1) dx = Xo (x) dt + ̂  X, (x). riw1, x (0) = Xo,
1=1

where Xo, X^, . . ., X^ are smooth vector fields, and w=(w1, w2, . . . . w"*) is a Brownian
motion. Here (0.1) is taken in the sense of Stratonovitch [31], so that its infinitesimal
generator is the second order differential operator J^f0 given by:

m

(0.2) ^°=Xo+l/2 ^ X?,

This paper has been presented at the Katata Conference in Probability, July 1982.
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508 J.-M. BISMUT

J^f0 is written in the form of Hormander [15]. If xeR^, the transition probability
pt(x, dy) is a solution (in the sense of distributions) of the forward Fokker-Planck
equation:

^-^p=0, p,=^

where J^f0* is the adjoint of ^° with respect to the Lebesgue measure.
The existence of smooth densities for /?((x, dy) can be obtained by using Hormander'-

theorem on the hypoellipticity of second-order differential operators ([15], [24], [42]).
In [29] and [30], Malliavin described a purely probabilistic method to prove the

smoothness of p^ (x, dy). If (Q, P) is the probability space of the Brownian motion w,
he showed that it was possible to obtain an integration by parts formula
on (Q, P). Malliavin used as a main tool the Ornstein-Uhlenbeck operator ja^, which is
an unbounded self-adjoint operator on 1^(0, P), and the associated Ornstein-Uhlenbeck
process. Still using the Ornstein-Uhlenbeck operator, Shigekawa [34], Stroock ([36], [37],
[38]), Ikeda-Watanabe [17] simplified and extended Malliavin's original approach. In
particular the estimates which give the smoothness of T^OC, dy) were obtained in
Malliavin [30], Ikeda-Watanabe [17] and improved in Kusuoka-Stroock ([26], [38]) where
the full Hormander Theorem was in fact obtained.

Another approach to the Malliavin calculus was suggested by us in [7]. Instead of
relying on the Ornstein-Uhlenbeck operator, it uses the Girsanov transformation on
diffusions [39]. An integration by parts formula is then derived, which is also a conse-
quence of a result of Haussmann [14] concerning the representation of Frechet differentia-
ble functionals of the trajectory x as stochastic integrals with respect to the Brownian
motion w.

The Malliavin calculus on diffusions gave the result that if ^° is well behaved on a
neighborhood of the starting point x, then for t>0, p^(x, dy) is smooth on R^, which is
a result which is not a consequence of Hormander's theorem. By using a localization
procedure, Stroock [36] was able to use this first result to prove that if ^° is well
behaved on a neighborhood of y, then p^(x, dy) is smooth on this neighborhood, this
last result being a consequence of Hormander's theorem. As we shall later see, for
boundary processes—which have non-local generators—smoothness does not propagate
in a similar way from the starting point [see section 1 (/)].

Among the applications of the Malliavin calculus which will be useful to us, let us
mention the work of Bismut-Michel [10] on conditional diffusions. In [10], results on
conditional diffusions are obtained by doing the variation only on certain components
of the Brownian motion w.

In [8], we developed a calculus of variations for jump processes. Namely, we conside-
red in [8] the equation:

(0.3) ^=x+ Xo(x,)d5+^,
Jo
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THE CALCULUS OF BOUNDARY PROCESSES 509

where ^ is an independent increment jump process, whose probability law is modified
using the Girsanov transformation on jump processes in Jacod [19]. An integration by
parts formula on an infinite dimensional non Gaussian probability space is obtained
in [8]. The estimates which are necessary to study the regularity of the semi-groups
associated to such jump processes are very different from the corresponding ones for
classical diffusions. In particular it can take a strictly positive time for the transition
probability p,(x, dy) to get C°, then later C1...

We do four remarks on the results of [8].

(a) Although the law of the process x. given by (0.3) is modified by a Girsanov
transformation in such a way that y. is no longer an independent increment process, still
the basic work is done on a probability space where y. has independent increments. This
makes that the Levy measure M(x, dy) depends in a "weak" way of x.

(b) In [8], advantage is taken of the vector space structure of R^, so that the various
jumps are "added" to each other. This prevents us from working on a manifold, or to
work with a Levy kernel M (x, dy) strongfy depending on x.

(c) In principle it would be possible to use the technique of [8] to study more general
stochastic differential equations with jumps introduced by Skorokhod and studied in
Jacod [19]. However technical difficulties do arise, essentially because the jumps destroy
the local differential structure of R^.

(d) Even working as in (c), it would be difficult to describe non trivial interactions
between a vector field Xo and a non-local operator M so that the Markov process whose
generator is Xo+e^ would be given by densities, while the Levy measure M(x, dy)
associated to M would be concentrated on submanifolds (depending on x).

However there is a large class of jump processes which are naturally associated
to continuous diffusions. Namely let D be an open domain in R^ with a smooth
boundary 9D. Let x^ be a diffusion in R^ which is either non-reflecting or reflecting
on 8D. If Lf is one local time of x on 8D, if A( is its right-continuous inverse, then x^
and (A(, x^) are strong Markov processes, which are in fact jump processes. Such
boundary processes were used by Stroock-Varadhan [39] to prove uniqueness for certain
diffusions with boundary conditions.

In this paper, we study the semi-groups of a class of such boundary processes. Namely
in the first five Sections, we consider the stochastic differential equation:

m

(0.4) dx=Xo(x, z)dt+D(x)dL+ ̂  X,(x, z).d\v\ x(0)=Xo
1=1

where z is a reflecting Brownian motion, w=(w1 . . . ̂ m) is a Brownian motion indepen-
dent of z, L is the local time at 0 of z, D, Xo. . . X^ are smooth vector fields. A
Girsanov transformation is also performed on z so as to introduce a drift on z. If A^ is
the right-continuous inverse of L, we study the semi-group associated to the Markov
process (A,, x^).
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510 J.-M. BISMUT

The typical model for such a problem is the case where Xo. . .X^ do not depend
on z. If ^° is the operator given by (0.2), the formal generator of the boundary process
is given in this case by:

(0.5) "-V-2^^0)-

If instead of (0.4) we had considered the stochastic differential equation:

(0.6) dx=zW^-2Xo(x)dt+D(x)dL+{^z)^-2 f; X.(xMw',
1=1

where 0<P<1, using the results in Ito-McKean [18] (p. 226), the formal generator
associated to the process (A(, x^) is:

0-44-4
where kp is a given >0 Const. However we would have been forced to work with
non-smooth coefficients in the variable z. Although this would not be a serious difficulty,
we have prefered to work in the whole text with smooth vector fields.

Section 1 is devoted to the explicit construction of the diffusion (0.4). For this
construction, we closely follow Ikeda-Watanabe [17]. To (0.4), we associate a conti-
nuous flow of diffeomorphisms such that in (0.4), X(=((\((D, Xo), by using the techniques
in Bismut ([5], [6]), Kunita [25]. In particular it is shown that it is of critical importance
to study the process (Ap x^) and not x^, if we want that smoothness propagates in a
nice way.

In section 2, the calculus of variations is performed on the Brownian motion w, so
that the reflecting Brownian motion z does not vary. The technique is very close to
what is done in Bismut [7], Bismut-Michel [10]. Explicit computations are very similar
to [7]. As in Malliavin ([29], [30]), we make appear a process Q° valued in the set
of (d, d) symmetric nonnegative matrices. Contrary to what happens for the semi-groups
associated to hypoelliptic diffusions, the boundary semi-groups may well be slowly
regularizing, in the same way as the classical jump processes studied in [8]. This last
case is labelled "non locali2;able" for reasons which will clearly appear in section 5. We
consider two cases:

(a) The case where for any r>0, T^O, lA^i-ltCX0]"11 is in all the
Lp(\^p< +00). Theorems 2.4 and 4.9 show then that the boundary semi-group is

. given by C00 densities. This is the "localizable" case.
(b) The case where for a given r>0, for any T^O, XQ, lA^-rll^]"11 is in one given

Lq(q>2). Theorems 2. 5, 4.11 and 4.12 show that the boundary semi-group is slowly
regularizing. This is the "non localizable" case.

The conclusion of section 2 is that we know how to control the derivatives (in the
sense of distributions) in the variable y of the transition probability p^ (da, dy).

46 SERIE — TOME 17 — 1984 — N° 4
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Section 3 is preparing for section 4, where the derivatives of p^(da, dy) in the variable a
are controlled. Section 3 also contains results of independent interest. In fact by the
Ito's theory of excursions (see Ito-McKean [18], Ikeda-Watanabe [17]), we know that the
excursions of z out of 0 and the corresponding trajectory of w define a Poisson point
process. If {F,}^o is the natural filtration of(w, z), {F^}^o ls ^e natural filtration
of this point process. In section 3, we "embed" the stochastic calculus on {F^}^o
martingales—which are purely discontinuous martingales—in the calculus on {F,}^o
martingales — which are continuous. The effect of a Girsanov transformation is conside-
red on the {F,}^o an(^ the {F^J^o stochastic calculus, so that the results in Jacod [19]
on the effect of the Girsanov transformation on point processes, and more classical
results on the Girsanov transformation for the Brownian motion [40] are shown to be
deeply related. Section 3 also sheds some light on the computations of section 4.

In section 4, we develop a calculus of variations on the reflecting Brownian motion z,
in order to control the differentials of pf(da, dy) in the variable a. This calculus is based
on the characterization by Skorokhod of the reflecting Brownian motion. Even if we
still use the Ito stochastic calculus, we show that what we do is in fact a variation on
each excursion of the Poisson point process associated to z, i. e. something very similar
to what we did in our work [8]. Still the possibility of using the continuous time
stochastic calculus considerably simplifies the computations in comparison with an earlier
version of this paper, where the stochastic calculus on jump processes was explicitly
used. The main consequence of section 4 is to show that to each sort of random variable
corresponds one possible calculus of variations, so that several differentiable structures
can be put on the same probability space, in order to study different random variables.

In section 5, we start giving conditions under which Qo is a. s. invertible, which implies
that the boundary semi-group has densities. Non trivial interactions between D and
(Xo. . . XJ are exhibited so that densities exist even if the Levy kernels are fully
degenerate. It is a remarkable feature of the problem that the interaction between D
and the Levy kernel of the boundary process is expressed through the differential operator
which in fact defines the Levy kernel, and not by just looking at the global behavior of
the Levy kernel. This explains the difficulty we had in [8] to exhibit such an interaction
by direct methods, i. e. by constructing from scratch a vector field D and a Levy kernel
M(x, dy) such that such an interaction would appear.

The regularity of the boundary semi-group is also studied. The critical degeneracy of
the diffusion x. on the boundary is found so as to ensure that if on a neighborhood
of x, the diffusion x. is strictly less degenerate than the critical degeneracy, the boundary
semi-group is C°°, while if x. is everywhere degenerate at the critical degeneracy level,
the boundary semi-group is slowly regularizing. The estimates of Malliavin [30],
Ikeda-Watanabe [17] and Kusuoka-Stroock ([26], [38]) for standard diffusions are used
in the whole section.

In section 6, the reflecting Brownian motion is changed into a standard Brownian
motion, so that the diffusion x. is governed by the differential operator ^ in the
region (z>0), by the operator ^f in the region (z<0). If J^f, ^f do not depend on z,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



512 J.-M. BISMUT

the formal generator of the boundary process is exactly:

^[-(Mr^-2^-)]1"
where a, a" are > 0 constants.

The estimates are drastically changed by the introduction of two sorts of excursions
of z. In particular the non local nature of the perturbation introduced by the negative
excursions can destroy the smoothness of the semi-group when only positive excursions
appear. The Arcsine law of P. Levy (Ito-McKean [18], p. 57) gives us a good illustration
of this phenomenon.

When the union of some Hormander-like distributions associated to ^ and ^f span R^
in a uniform way, we still prove that the boundary semi-group is smooth. Apparently,
the classical {F(}^() stochastic calculus is not good enough to obtain the necessary
estimates. We have to rely on estimates on each individual excursion of z, the global
effect of piling up the excursions being analysed using the stochastic calculus on Poisson
point processes.

Some of the problems considered in this paper apparently fall out of the reach of
existing methods in analysis for two reasons:

(a) They are very degenerate.
(b) The generators of the boundary processes which we consider are not necessarily

pseudo-differential operators (see [42]) since they may well be not smooth out of the
diagonal (this is the case in section 6).

The techniques given here would apply without much change to study the harmonic
measures of a diffusion. Let us just say that the regularization effects are more interes-
ting to study on boundary processes. The case where the reflecting diffusion also diffuses
on the boundary has also been left aside.

In the whole text C^ (R^ [resp. C^ (R^] is the space of real functions defined on R^
which are C°° with bounded differentials (resp. which are C°° and have compact
support). The spaces Lp are only considered for 1 ̂ p< + oo (i. e. p== + oo is systemati-
cally excluded). The constants which appear in a priori bounds will be written C, even
when they vary from place to place.

The results of this paper have been announced and commented in [50].

1. The boundary process

In this section, we define the boundary process, which will be the object of our study.
In paragraph (a), the main notations are introduced. In (fc), the theory of stochastic

flows (Bismut [5], Kunita [25]) is applied to the considered reflecting diffusion. In (c), a
Girsanov transformation iis performed on the diffusion; related technical problems are
discussed in (d). In (e), the boundary process is defined, and technical details are

4® SERIE — TOME 17 — 1984 — N° 4



THE CALCULUS OF BOUNDARY PROCESSES 513

discussed in (/). Connections with the theory of hypoelliptic second-order differential
operators are underlined in (g),

(a) NOTATIONS AND ASSUMPTIONS. — m is a > 0 integer.
Q (resp. Q') is the space ^(R""; R"1) [resp. ^(R4"; R4')] of continuous functions defined

on R'^ with values in R7" (resp. R4'). The trajectory ofcoeQ (resp. o/eQ") is written
w,=(w,1, . . ., <)(resp. z,).

The a-field F, in Q (resp. Fy in 0') is defined by Fy=^(wj5^0 [resp.
F(=^(zj5^0]. 0 (resp. Q") is endowed with the filtration {F(}(^O (resp. {F(}^())-

Q is the space tlxQ', whose standard element is o)==(co, o/). F, is the a-field Fy(g)F^,
and {F(}^O is the associated filtration.

All the filtrations considered in this paper will be eventually regularized on the right
and completed as in Dellacherie-Meyer [11] without further mention and with no explicit
notation. Difficulties which may arise in this respect will be underlined when necessary.

For seR^ 65 (resp. 65) is the mapping from Q into Q (resp. from Q" into 0') defined
by:

o)=«» -^co=(w,+,-0

[resp. G/ = (z,) -> 9; o/ = (z,+,)].
Og is the mapping from 0 into Q, given by:

^(^(^(^((O),^)).

P is the Brownian measure on 0, such that P(wo=0)= 1.
For zeR"^ P^ is the probability measure on Q' associated to the reflecting Brownian

motion on [0, +oo[ starting at z, i.e. such that P^(zo=z)=l (Ito-McKean [18], p. 40,
Ikeda-Watanabe [17], p. 119). For notational convenience, when z==0, we shall write P"
instead of Pg.

On (O7, {F;}^o» ̂  4 denotes the local time at 0 of z^. By [17], p. 120, we know
that the process B^ defined by:

(1.1) B,=z,-z-4,

is a Brownian martingale such that Bo = 0.
Moreover it is standard ([17], p. 122) that B^ generates the same filtration as z,. In

particular, on (Q', PQ, we have:

(1.2) 4= sup (-B,).
O^s^t

d is a>0 integer. y=(x, z) is the standard element in Rd+l, with xeR^ zeR. In
the sequel, R^ will be identified to the subspace R^ x { 0 } in R^1, i. e. X e R^ is identified
to (X, 0) in R^1. n is the projection operator (x, z)eRd+l -^xe R<

Xo(x, z), Xi (x, z). . .X^(x, z) are m + 1 vector fields defined on R^1 with values
in R1', which are C°°, bounded, whose all differentials are bounded.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



514 J.-M. BISMUT

D(x) is a vector field defined on R'1 with values in R^, which is C°°, bounded, whose
all differentials are bounded.

b(x, z) is a function defined on R^ with values in R, which belongs to C^ (R^).
If X( is a continuous semi-martingale (defined on any given filtered probability space),

dX denotes its differential in the sense of Stratonovitch, and 8X its differential in the
sense of Ito (see Meyer [31]).

If h is a C°° diffeomorphism of R^ onto R^ and if K(x) is a tensor field on R^,
(h* ~1 K) (x) denotes the tensor-field on R'* obtained by taking the pull-back at x of
K(h(x)) through the differential 8h/8x(x) (for this notation see [5], [7], [10]). In particu-
lar if Y (x) is a vector field:

(1.3) (^-lY)(x)=^a/l(x)^ \(h(x)).
i8x J

(b) The reflecting process and its associated flow.

We now build a reflecting process as in Ikeda [16], Watanabe [43], Ikeda-Watanabe [17],
p. 203.

Fix (xo, Z t^eR^xR^ ^ (Q? ^^o)5 we ^^der the stochastic differential equa-
tion:

m

(1.4) dx=Xo(x, z)A+D(x)dL+^X,(x, z).dw\ x(0)=Xo
i

(where dw1 is the Stratonovitch differential of w1).
(1.4) can be written in the equivalent Ito's form:

(1.4') Ac=fxo+ 1 ^X,^, z))A+D(x)rfL+X,(x, z).8w1, x(0)=Xo
\ 2 8x )

/ ^ \
( from now on, all the summation signs ̂  will be omitted j.
\ i /

Of course, (1.4) has an essentially unique solution. But more can be said. Namely:

THEOREM 1.1. — There, exists a mapping defined on Q x R ' ^ x R ^ with values in
R^ (cb, t, x) -> (P( (co, x) having the following properties.

(a) For every (t, x) e R+ x R^, © -> (p; (co, x) is measurable, and for every o e 0,
(t, x) -> q)( (o, x) is continuous.

(b) For any coeQ, (po(co, .) is the identity mapping o/R^.
(c) For any ooeO, t->^(.^ • ) ls ^family o/C00 diffeomorphisms of^onto R^, which

depends continuously onteR'^ for the topology of uniform convergence o/C00 functions
and their derivatives on the compact sets o/R^.

(d) For any ZO^R^ on (;Q, P®^), for any XoeR^, (p((co, Xo) is the essentially unique
solution of equation (1.4).

46 SERIE — TOME 17 — 1984 — N° 4



THE CALCULUS OF BOUNDARY PROCESSES 515

(e) For any ZoeR-^, any compact set K in R-" xR^, any multi-index m, for any neN
and any p^ 1, ̂  random variables:

(1.5) am^(®^) . IL^H sup^n sup
(t, x )eK | Cb^ ((, x) e K L 9X

'^ (̂©, x)

ar6? m Lp(n, P®P^), and their norms in Lp(D, P®P^) way ̂  ^im^?d independently of
ZoeR-^.

On (D, P®P^), (p. (©, .) i5 essentially uniquely defined by properties (a) and (d).

Proof. - Consider the differential equation in R<-

(1.6) dx'
———DM, ^(O)^
at

and the associated group of diffeomorphisms of R^ \\ XQ -^ h,(xo)=x^ It is trivial to
see that for any n > 0:

S"1^
&C"1

-W,
pW]-1

L ax J
are uniformly bounded on [0, n] x R< Let z,e^(R+; R-"), and L, be a given continuous
increasing process. For ^eR^, consider the stochastic differential equation on (0, P):

(1.7) dx = (^-1 Xo) (x, z) dt + (h^-1 X;) (x, z). dw1, x (0) = XQ.

Using Theorem 1.1.2 and 1.2.1 in Bismut [5] we know that it is possible to associate
to (1.7) a How (pf* ^co, .) of diffeomorphisms of R^ onto R^, depending continuously
on t for the topology of the uniform convergence over compact sets of C00 functions and
their differentials. From [5], it is easy to see that cp2' ^(D, .) may be made to depend
measurably on (z, L, co). Moreover by [5], Theorems T . 1.2 and 1. 2.1, we know that:

(1.8) sup
(t, x)eK\ OX

^. L8^
—(<^)h sup

(t. x) e K

[8^^ ~|-1

parH •
are in Lp(Q, P) and that the norms in Lp(Q, P) of the random variables in (1.8) may
be uniformly bounded in Lp(Q, P) as long as the vector fields
(h^~1 Xo) ( . , Z(). . . (h^~1 X^) (., Z() and their differentials remain uniformly bounded.

We now set for ®=(o), CD'):

(1.9) (p,(cb, xo)=^(o>')[^ ^(o^xo)].

The argument in Bismut-Michel [10], Theorem 1.6 on stochastic differential equations
which depend on a parameter and the formula of Stratonovitch shows that (d) is
verified, (e) is a consequence of (1. 8). D

Remark 1. - The existence of (p (®, .) having the properties (a)-(d) also follows from
the results of Kunita [25].

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



516 J.-M. BISMUT

COROLLARY. - Let S be a stopping time on (0, { Fj). For any ZoeR^ on (S< -h oo),
P®P^a.5.;

(1.10) (PS+((®» .)=(P((SS®» (Ps(^ •)) /^ ̂  ^0.

Proof. — On (S<+oo), the conditional law of Qg® given Fg is equal to
P®P^g. Moreover the local time L^ is an additive functional of the strong Markov
process z,.

From the essential uniqueness of the solution of (1.4), it is then clear that on (S < + oo),
foranyxoeR^, P(g)P^a.s.:

(1.11) (ps + ((co, Xo) = (p, (9s co, (ps (®, Xo)) for any t ̂  0.

The corollary follows from the P(8Pzo a t s ' continuity of both sides of (1.11)
in (r, Xo). D

Remark 2. — It follows from Bismut [5], Kunita [25] that the usual rules of variations
of parameters on ordinary differential equations can be extended to stochastic differential
equations. For example, for:

^(o,xo) and Z;=f^(».Xo)T1

8x |_ 8x J
XoeR^, Z,=^(G),Xo) and Z^=[ ^(^ x,)}~\

8x |_ 8x J

are the solutions of the stochastic differential equations:

dZ=8xo(x, z)Zdt+ffD(x)ZdL+8x^(x, z)Z.dw1, Z(0)=I,
9x 8x 8x(1.12)

dT= -T ^(x, z)dt-T 8D(x)dL-Z/ ^(x, z).d^, Z'(0)=I.
8x 8x 8x

In (1.12), X( is of course the process (P((CD, Xo). We will use these facts without
further mention.

Remark 3. — The situation considered here is very similar to the situation studied in
Bismut-Michel [10]. As in [10], z^ and (Xp z^) are Markov processes. The analogy will
be better illustrated in the; sequel.

(c) The Girsanov transformation.

Take (zo, Zo)eRd x R'^. On (0, P®P^), consider the stochastic differential equation:

dx = Xo (x, z) dt + D (x) dL + X, (x, z). dw1, x (0) = XQ,

(L13) du=-]-[b^b2](x,z)dt^b(x,z).d^ u(0)=0.

It is of course possible to apply to the system (1.13) the same techniques as to the
smaller system (1.4). In particular, there is a function i^(co, x) defined on Q x R'^ x R^
with values in R, having the following properties:

46 SERIE — TOME 17 — 1984 — N° 4



THE CALCULUS OF BOUNDARY PROCESSES 517

(a) For each (r, x), ©-^(co, x) is measurable and for each ro, (r, x)--^(©, x) is
continuous.

(fc) For any o>, M()(^ .)=0.
(c) For any ©, M,(o, x) is C00 in the variable x, and its differentials are jointly

continuous in (t, x).
(d) On (Q, Pg)P^), for any ^eR^, M,(CD, Xo) coincides with the process u in (1.13).
These facts will be used in section 2.
(XQ, Zo) is now kept fixed.

DEFINITION 1.2. - On (fi, P(x)P^), if x, is the process (p,(®, Xo), M, is the >0
continuous martingale:

(1.14) M,=exp{ r&(^ zJSB,-1 [b2^ z,)ds\
I Jo ^ Jo J

Using Ito's calculus, it is clear that M( is the unique solution of the stochastic
differential equation:

(1.15) * ^M=M^(x,,z,)5B, M(0)=l.

Since b is bounded, it is easy to see that M, is in all the Lp(D, Pg)P^). Also note
that:

M(=exp M,(®, Xo).

Proceeding as in Bismut-Michel [10] (and of course as in Ikeda-Watanabe [17]) we
now define a new probability measure on 0.

DEFINITION 1.3. - For (XQ, Zc^R^R^ Qcco.zo) is the Probability measure on 0
whose density relative to P on each F( is M(, i. e.:

(1 .16) ^Q(xo..o) p ^

^(P®P.o)l

By the fundamental property of the Girsanov transformation ([17], p. 178, [40]-6),
under Q(^ ^ the process:

^'=B,-r
Jo

B;=B,- b(x,z,)ds,
Jo

is a Brownian martingale, and (W(1, . . ., w", B;) is a m +1 dimensional Brownian martin-
gale.

(d) The Girsanov transformation at infinity.

The discussion which follows is based on the ideas of Follmer [13] (see also
Azema-Jeulin [2]). Since we do not need the full development of the theory of the
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