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CURVATURE ESTIMATES FOR MINIMAL SURFACES
IN 3-MANIFOLDS

BY MICHAEL T. ANDERSON

This paper is concerned with compactness results for spaces of minimal immersions of
surfaces of a fixed topological type in Riemannian 3-manifolds. Given an appropriate
area bound, there is a well-known compactness theorem for integral currents or varifolds;
this provides a general setting in which to obtain stronger compactness results. However,
a sequence of smoothly immersed minimal surfaces of a given topological type will not
converge, in general, to a smooth minimal surface of the same type.

The compactness of a class C of minimal immersions of bounded area is equivalent to
the existence of an a priori curvature estimate for C. The aim of the paper is to find
natural classes of minimal surfaces admitting such a curvature estimate. Without being
too precise at this time, one may see, using appropriate scaling arguments, that if the
class C has such an estimate, then the only complete minimal surfaces in R3 in C are
planes. Thus, one seeks a characterization of the planes in R3 in terms of a larger class
of minimal surfaces.

The prototype of such a characterization is the Bernstein Theorem [B]: a complete
minimal graph in 1R3 is a plane. The corresponding curvature estimate is due to
Heinz [H] and Osserman [Os]. More recently, Schoen-Simon-Yau [SSY] and
Schoen-Simon [SSJ have obtained curvature estimates for stable minimal hypersurfaces
in IR", n ̂  7. In dimension 3, Schoen [S] has recently obtained optimal bounds for stable
minimal surfaces.

The main result of the paper is an interior curvature estimate for minimal embedded
discs in 3-manifolds (Theorem 2.1); we emphasize that no assumptions on the stability
of the surface are made. This is obtained via the following characterization of the plane
in R3: the only complete embedded minimal surface of finite topological type with one
end and of quadratic area growth is a plane (Corollary 1.5). Note that the approach
is to prove the global theorem first and deduce the local curvature estimate as a
consequence. We also obtain a curvature estimate at the boundary for embedded
minimal discs (Theorem 2.2); the result can be strengthened in case the boundary is
extreme (Theorem 2.3). Also we apply the method above to obtain estimates for
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90 M. T. ANDERSON

immersed minimal discs with boundary of total curvature <6n (Proposition 2.5) and
relate this to a result of Nitsche [N].

The interior curvature estimate (Theorem 2.1) was proved recently by Schoen and
Simon [SSJ; in fact their result is more general, expressed in terms of a quasiconformal
Gauss map. The proofs are different and proceed in 'opposite' directions: they deduce
a special case of our global result (Corollary 1.5) as a consequence of their local
theorem. On the other hand Corollary 1.5 is also related to recent work of
Jorge-Meeks [JM]; building on Osserman's work, they show that a complete embedded
minimal surface of finite total curvature and one end is a plane. Again, our proof is
different, relying on geometric measure theory rather than complex analysis.

The above curvature estimates are not valid for surfaces with more than one end or
genus greater than zero; for example, the space of minimal embeddings of an annulus A
in B3 (1), with <9A c: S2 (1) is not compact in the weak topology. Let M^ be the
space of minimal embeddings of a surface E of Euler characteristic ̂  n in B3 (1) with
3£ c S2 (1). Although Ji^ may be non-compact, we show that its boundary M^-M^ in
the weak topology is contained in ^l^ counted with multiplicity ̂  2 (Theorems 3.1 and
4.2); we use this to obtain some results on the moduli spaces of minimal embeddings of
surfaces in compact Riemannian 3-manifolds; see paragraph 4 for further details.

In paragraph 1, we prove certain global results for complete minimal surfaces in R3

of quadratic area growth. Theorems 1.1 and 1. 3 are of independent interest and admit
generalization to higher dimensions. Lemma 1.2 is used repeatedly throughout the
paper.

I wish to thank R. Gulliver for some helpful remarks on boundary branch points,
Richard Schoen and Frank Morgan for critisism of an earlier draft of the paper and Bill
Dunbar for advice on 3-manifolds.

Our results and proofs make use of geometric measure theory; for background informa-
tion in this field, we suggest [A1J and [LJ.

1. Minimal surfaces in IR3 of quadratic area growth

We consider complete minimal surfaces £ immersed in R3 such that

(1.1) area(I:nB(r))^C-r2,

for all r, where C is a fixed constant depending on £, and B(r) is the ball of radius r
around 0. Surfaces satisfying (1.1) will be said to have quadratic area growth. Using
results of Osserman, it is not difficult to show that any minimal surface of finite total
curvature satisfies (1.1). The converse, however, is not true; one of Scherk's surfaces
gives a counterexample, cf. Remark 4 below. The well-known 'monotonicity theorem'
for minimal surfaces E in R3, see e. g. [L^], states that

area(ZnB(r))
r2
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CURVATURE ESTIMATES 91

is monotone non-decreasing in r, with v(0)=n provided OeZ. It follows easily from
this that minimal surfaces of quadratic area growth are properly immersed.

Consider the family of surfaces £^= l/r(£ nB(r)) contained in the unit ball
B3 (1). Then area (Z^) = v (r) is non-decreasing in r and bounded above by C. It follows
from the compactness theorem for stationary integral varifolds [A1J that any sequence
{Z^} subconverges to a stationary integral 2-varifold £^ supported in B^l). The
limiting varifold may possibly depend on the choice of the sequence {r,J; the varifolds
£^ obtained in this fashion will be called asymptotic varifolds of Z.

In this paper, we study mainly minimal surfaces of finite topological type, i. e. of finite
genus and with a finite number of ends.

THEOREM 1.1. — Let £ be a complete minimal immersion of quadratic area growth in
R3. Then there is an asymptotic varifold 2^ which is the cone on a stationary integral
1-varifold V on S^l). If further £ is of finite topological type, then V is a sum of closed
geodesies.

Remark 1. — Theorem 1.1 has been proved by Jorge-Meeks [JM] in the context of
surfaces of finite total curvature, using the structure theory developed by Osserman. The
proof below generalizes naturally to higher dimensions; in fact the proof of the first part
of the Theorem carries over immediately to complete minimal immersions M*" -> R"
with voUN^nB^^Cr^. Conditions guaranteeing the regularity at infinity of such
submanifolds remain to be found however.

Proof. — Let l(9^r) denote the total length of the boundary 9^ in S^l); choose a
sequence { r j } -> oo so that

lim /(<9£,.)= lim l(9S,)
J r~^

and such that <9£,.. converges to an integral 1-varifold B^ on S2^) in the weak topology
on varifolds. We may assume also that {£,..} converges to a stationary 2-varifold 2^
in B^l) in the weak topology on 2-varifolds. Now we make the following two
observations. First, for any r > 0,

(1.2) area (£,) = ! f < grad r, v > ^ 1/2; (3E,),
^Jsi.r

where v is the unit normal to S^Ly and gradr is the gradient of the distance function to
0. On the other hand, by the co-area formula

(1.3) (\. / (^) ds ̂  area (2 .̂ H B,),
Jo

for re (0,1). Letting j -» oo and taking lim of (1. 3) gives

(1.4) l lim l(S^)^ lim M(2^.nB(0).
•̂  j -> oo j -» oo
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92 M. T. ANDERSON

Set t==\ in (1.4) and use (1.2); one obtains

1M(^)=M(BJ=M(C(BJ),

since the mass M is continuous in the weak topology on varifolds; C(B^) denotes the
cone on B^ from 0. Using (1.4) again, one has

M(2^nB,) i
=—^——— ^M(BJ =M(£J.

By the monotonicity theorem, M(2^ nB^/^rEM^J, for all te[0, 1].

The proof that Z^ is a cone over B^ now follows by well-known methods in the
theory of area-minimizing currents, see e. g. [LJ, p. 74ff.; it also follows that B^ is a
stationary integral 1-varifold on S2 (1). We claim further that supp (B^) is a union of
closed geodesies on S2 in the case that E is of finite topological type. For this, it is
sufficient to show that, for any xesupp(B^), 3r such that

B,LB,(r)=^a,,

where o^ is an arc of a geodesic, of multiplicity 1, and x is in the interior of each o^.
Since B^ is a stationary integral 1-varifold, B^ is a finite union of geodesic segments,

with a finite number of vertices. Let XQ be a vertex and choose r so that B^ 1_ B^(r)
contains no other vertices. Now

B,LB^(r)= lim(y^.LB^(r))
j -* oo

J ^0 ^

where y^.=8^. is a collection of smoothly immersed curves on S^l). Let o^ denote
the components of y^.LB^(r) (the connected components of y,.. lifted to the tangent
bundle TS2). Note that S^ is either empty or lies in 3B^(r). We claim there is a
bound on the number of components c^ c= {oc^} such that ((c^-^O as j -^ oo. For if
not, by choosing r ' slightly smaller than r, it follows that y^.L-B^O*') contains an
unbounded number of circles, the length of each one converging to zero as
j-^oo. However, since E is a properly immersed surface of finite topological type,
E^.\Bo(l/2) for j large consists of a finite number of immersed annuli, each annulus
corresponding to one end of £. In particular there is a bound N on the number of
boundary components of S^. on S2 (1).

We may assume by relabelling that {afj} converges weakly to an integral 1-varifold
with 8^ c: <5B^ (r). Ignoring those components converging to zero, we have

(1.5) B.LB^r)^^.

It is thus sufficient to prove that a^ is stationary w. r. t. compactly supported deforma-
tions in S2 (1) P^B^(r). Fix k and set a,=o^. Let A .̂ be the annulus in £^.\Bo(l/2)
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CURVATURE ESTIMATES 93

such that 8Aj H (S2 (1) Pi B^ (r))= aJ• Then M(A^) is bounded away from zero and Aj
is stationary w. r. t. its boundary; thus the same is true for lim Aj c= C(B^). Since a

j -* oo

domain in a cone is stationary exactly when its boundary on S2 (1) is stationary, it
follows that aoo is stationary. •

Remark 2. — We remark that it is natural to consider the converse to Theorem 1.1:
if £ is a complete, properly immersed minimal surface in (R3 with
lim { supply.} c= C(V) for some sequence rj -> oo and V an integral 1-varifold on S2 (1),

J-^OO

then £ has quadratic area growth. This question is open at this time however.
The following Lemma will be used repeatedly in the work to follow in order to relate

the local and global topology of a minimal surface; the result is well known in R3 and is
a consequence of the convex hull property for minimal surfaces. However, we need a
formulation for a general Riemannian manifold.

Let Q be a smooth bounded domain in a Riemannian manifold N3 such that
0 = { x e N3: / (x) < 0}, where / is a convex function defined in a neighborhood of Q in
N3 with df^O on 3Q; in other words, / is a convex defining function for Q. Let
^/"'(-oo.s).

LEMMA 1 . 2 . — Let £ c Q be a properly immersed minimal surface of finite topological
type, where Q c: N3 has a convex defining function. Then for generic 5<0, S n^s is a
union of properly immersed minimal surfaces of topological type bounded by that ofL. In
particular, if £ 15 simply connected, then £00, is a union of simply connected surfaces.

Proof. — Let v|/: £ -> 0 denote the immersion of £ and let s be a regular value of
/°\|/. Then ^~l(8^s) ls a disjoint union of Jordan curves {y^} on Z. Consider the
compact set K^vl/'^QX^O.) with 8K== [ y ^ } r } 8 ' L . We claim that every component
P of K satisfies 8P 0 <9S ̂  0. For suppose Po does not satisfy this condition: then
v|/(3Po) <= 30,. Now the restriction of a convex function to a minimal surface is a
subharmonic function on the surface; in particular the maximum value occurs on the
boundary. Applying this to P() gives Po c: Q,, a contradiction. Thus every component
of K contains a component of <9£. S\K is then a disjoint union of domains on £;
the genus of each component is bounded by the genus of E. Further, since the curves
{ y ^ } are not nested, the number of ends of each component is bounded by the genus
and number of ends of £. •

n

Let V= ^ k^t be a stationary 1-varifold as in Theorem 1.1; each c^ is a closed
1=1

geodesic with multiplicity 1 on S2 (1) and c^Cj for i^j.
n

THEOREM 1.3. — There is a neighborhood ^U o/V= ^ k;Cf in the weak topology on
1=1

1-varifolds in S2 (1) and a neighborhood i^ ofC(V) in the weak topology on 2-varifolds in
B3 (1) such that ifS is any properly embedded minimal surface in B3 (1) of finite topological
type with <9S=S—Se^, then S^i^ unless n= 1. i^ depends only on the topological type
ofS.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



94 M. T. ANDERSON

Proof. — Since the geodesies of V intersect in a finite number of points on S2 (1), it
follows that there is a ball B c B3 (1) such that C(V) HB is a sum of flat discs with
common diameter L forming a stationary varifold in B. Clearly it is sufficient to prove
the theorem for the surface SOB, since the topological type of S (~} B is bounded by
that of S, by Lemma 1.2, and since S e it^ implies S 0 B e if^ C\ B. Thus we suppose V

n

is a sum ^fe^ of geodesies intersecting exactly in a pair of antipodal points
i

z^- eS2 (1). Let L^ be the line through T^ and z~ and let z be the coordinate function
on IR3 determined by L^.

For a given direction L in R3, let H^ denote the coordinate or height function on R3

determined by L. Then the restrictions 1-1^1$=^ are harmonic functions on S; thus the
critical points of h^ are either of index 1 or degenerate. Note that the critical points of
h^ are precisely the points where T^S is normal to L; a critical point xeS is degenerate
if in addition the Gauss curvature Ks(x)=0. It follows that for a given S, there is an
open and dense set of directions L so that h^ is a Morse function with only critical
points of index 1. By elementary Morse theory (capping off the ends of S by discs),
there is a bound on the number of critical points of h^ in S O B ( I — £ ) , depending only
on the topological type of S; renormalizing, we assume e=0.

Now suppose the theorem were false, i. e. there exists a sequence of embedded minimal
surfaces S, c: B3 (1) of bounded topological type with 3Sf-^V and S^-^C(V) weakly as
varifolds. By the above, there is a dense set Q) of directions L so that h^ is a Morse
function on each S, with a bounded number of critical points. For any fixed direction
Le^, by passing to subsequences, one may assume that the critical points of h^ on S;
converge to a finite collection of points.

We claim there is a ball B^ c= B3^), centered at xeL^, so that the height function
Z=HL on Sj has no critical points in By for some subsequence {j} c: { 1 } —> oo. This
is clear if L^e^. If z\^ has a critical point in B^ for some f, then the lines Le^
sufficiently close to L define functions H^ls; having critical points in 8^; this follows
from the fact that the Gauss map is an open map. Thus, if the claim were false, it
would follow that given any ball S^(r), for all i sufficiently large H^ |s, has a critical
point in B^(r); since each H^ls with Le^ has a uniformly bounded number of critical
points, this is impossible.

Now we consider the embedded surfaces Sj 0 6^; asj -> oo

s,nB,^c(v)n6,
and C(V) is a union of flat discs with common diameter L^. Furthermore, the slices

s,nB,nH^(o,
for te[—\, 1] form a collection of disjoint arcs ^(t) converging weakly to the slices
C (V) 0 8^ 0 HL/ (0. The latter are a collection of line segments { T, }\ intersecting at
the point p^=z~1 (t) n L^ forming a stationary 1-cone (with generating directions indepen-
dent of r). Fix j and consider the collection of curves {y^-(0}f as t varies. One sees
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CURVATURE ESTIMATES 95

that at no value t do any pair of curves intersect; if they did, there would exist two
linearly independent tangent vectors at the intersection XQ, spanning T^ Sj C\ z ~ 1 (r).Thus
XQ would be a critical point of z |s. in B^, a contradiction. It follows that each component
Y^(r) traces out an embedded disc D^ as t runs from — 1 to 1.

For all j sufficiently large, Sj 0 B^ is thus a disjoint union of n embedded discs
{D^-}^i, converging to C(V) weakly as n-^oo. However, passing to subsequences if
necessary, each {D^}j^i converges to a stationary 2-varifold D^ in S^ and

n

C (V) = ̂  D^. Clearly this is possible only if n = 1. •
i

Remark 3. — An examination of the proof shows that Theorem 1.3 is valid for
arbitrary stationary integral 1-varifolds V; such V are composed of a definite number of
geodesic arcs meeting in a finite number of vertices.

As an application of the above, we easily obtain the following.

THEOREM 1.4.. — Let £ be a complete, connected^ embedded minimal surface in R3 of
finite topological type and quadratic area growth. Then the asymptotic varifold 2^ of
Theorem 1.1 is a flat disc with multiplicity k, where k is the number of ends o/£.

Proof. — By Theorem 1.1, there is an asymptotic varifold Z^ which is the cone C(V)
n

on a sum V=^A;^ of closed geodesies on S2^). The sequence of boundaries
i

{9^.} c: S^l) converges weakly to V; since {S^.} is of bounded topological type (by
Lemma 1.2) and converges weakly to C(V), it follows from Theorem 1.3 that n = = l ,
i. e. Zoo is a flat disc with multiplicity k^l.

Now recall from the proof of Theorem 1.1 that each end E1 of Z corresponds to an
annulus A^ in £^.\B(1/2), for j large. It follows easily from the monotonicity formula
that area (A}) is bounded below and thus

l(8A}^}S2W)>c>^ V; large, V f .

For fixed ;, the Jordan curves y}=^A}n S^l) have a non-zero limit and thus converge
to the closed geodesic 9D with multiplicity m, as j -> oo.

Suppose m=m^ =2; then there is an arc a, in y} with endpoints x^ y^ of length 1/10,
such that oc^ converges to a geodesic arc y^ on D of length 1/20, but counted twice. If
v^ and v^ are the endpoints of j^, then x^ and y^ both converge to either v^ or v^ say
v^. By the proof of Theorem 1.1 [see in particular (1.5) and below], y^ must be
stationary with respect to deformations supported in B^(l/10), which is clearly not the
case.

Similar arguments rule out the cases m^>2; thus each end gives rise to a disc of
multiplicity 1. •

Remark 4. — Theorem 1.4 is false if one drops the hypothesis of finite topological
type. In fact, one of the Scherk surfaces, given as sin z = sin hx • sin hy is of infinite
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96 M. T. ANDERSON

genus, with one end and of quadratic area growth. It is embedded and yet is asymptotic
to a union of two orthogonal discs in B^l). See [P] for a sketch and further details.

COROLLARY 1.5. — Let E be a complete embedded minimal surface in R3 of finite
topological type and of quadratic area growth. If £ has one end, then £ is a plane.

Proof. — By Theorem 1.4, there is an asymptotic varifold Z^ which is a disc with
multiplicity 1. Thus

71= area 2^== lim area (£,.)= —area(£ nB(r,))=©(2:,0)=7i,
J y^

J -^ 00 I j

where the inequality follows from the monotonicity formula in R3. Thus area
(I: H B(r))=7ir2, for all r; it follows that 2: is a plane. •

Remark 5. — Jorge-Meeks [JM] have proven a similar theorem in the context of finite
total curvature.

2. Curvature estimates for minimal discs

In this section, we apply the global results of paragraph 1 to obtain estimates on the
Gauss curvature K of embedded minimal discs in Riemannian 3-manifolds. The follo-
wing compactness theorem is well-known.

COMPACTNESS THEOREM. — Let Q be a bounded domain in a complete Riemannian
3-manifold N3 and let M, be a sequence of minimally immersed surfaces in 0. Suppose
there is a constant C such that the Gauss curvature K^(x) satisfies [K^.(x)| <C, for all
i. Then a subsequence of {M,} converges smoothly (in the C^topology, k ̂  2) to an
immersed minimal surface M^ (with multiplicity) in Q and \K^(x)\ =C. If each Mf is
embedded, then M^ is also embedded.

The same result holds more generally for fc-dimensional minimal surfaces in Rieman-
nian n-manifolds. The proof is obtained by combining the compactness theorem for
integral varifolds [A1J with the local regularity given by the curvature bound. The
bound implies all minimal surfaces M .̂ may be locally graphed over their tangent planes;
one then uses standard results from the theory of elliptic P.D.E. to obtain smooth
convergence.

Remark 1. — There is a similar compactness theorem, without curvature bound, for
branched minimal immersions of discs; namely the space of branched minimal immersions
of discs in N3, with uniformly bounded area, is compact. However, limits of smoothly
immersed discs may have branch points (true or false).

Our aim in this section, and those following, is to obtain conditions under which the
curvature hypothesis in the Compactness Theorem is derivable from more natural geome-
tric assumptions. We begin with an interior curvature estimate for embedded minimal
discs in 3-manifolds. Throughout this section, N3 denotes a complete oriented Rieman-
nian 3-manifold Q, c: N3 a bounded domain, with convex defining function p.

46 SERIE - TOME 18 - 1985 - N° 1



CURVATURE ESTIMATES 97

THEOREM 2.1. — Let D <^0 be an embedded minimal disc with 3D 00=0. Then
there is a constant M, depending only on area (D) and the geometry ofO such that

(2.1) l- '̂l̂ -

where R (x) = distN (x, 80).
Proof. — One argues by contradiction; if the theorem were false, there would exist

embedded minimal discs D; c: Q, with area (D;)^A and R;e[0, diam(Q)] such that

(2.2) R?' sup { | K,(x) |: dist^x, 80)^R,}l °̂° oo.

Let K, = sup { | K, (x) [ : dist^ (x, 80) ̂  R^} and suppose | K, (x,) [ = K^. Let 5, be the geode-
sic dilation of x .̂ by the factor /K^; that is, if the metric ds2 of 0 is expressed in geodesic
polar coordinates at x^-, then dsf = (p^ (ds2) is the metric obtained by multiplying the radial
component by ^K^, leaving the angular component unchanged. Passing perhaps to a
subsequence, the Riemannian manifolds (Q, dsf) converge to a domain 0^ in IR3 with a
flat metric; by (2.2), 0^ = R3 with a complete flat metric. Let Bf(0 denote the geodesic
t-ball about x^ in (0, ds2), then one has

(2.3) area(§..(^) U B..(Q) ̂ ^ ̂  B,(̂ ))- ————— ^C- area(D.),
\/ -^i

where the last inequality follows from the monotonicity formula for minimal surfaces in
0 (cf. [L^]); the constant C depends only on the geometry of 0. It now follows by the
Remark above, together with Lemma 1.2, that D; = S^ (D^) subconverges to a complete
embedded minimal disc D^, possibly with multiplicity, in IR3; D^ is of quadratic area
growth by (2.3).

Now within the balls §f(B^.), where B .̂ = { x e 0: distN (x, 80) ̂ RJ, the curvature of
the discs D .̂ is bounded above in absolute value by 1. By the Compactness Theorem
above, D( H ^i(Bi^) converges smoothly to D^ H H, where H= lim §^(BR.). It is easily

i -> co

seen that either H=IR3 or H is a half-space in 1R3. In either case, if x^= lim x,, then
i -»• oo

there is a neighborhood of x^ in H in which D^ has non-zero curvature. This is clear
if H=R3 ; if H is a half-space, we may assume that [VK^[ is bounded away from oo
near x^ since we may dilate further to achieve this. Thus, by smooth convergence, the
same fact holds on D^. In particular, 6^ is not a plane in (R3. This stands in
contradiction to Corollary 1.5. •

Remark 2. — (1) We note that Theorem 2.1 is a special case of recent work of Schoen
and Simon [SSJ on surfaces with quasi-conformal Gauss map; the proofs are different
however.

(2) There is no general curvature estimate for immersed discs. For instance, if E
denotes Enneper's surface in R3, then the surfaces E^= l/r(E nB(r)) are a sequence of
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



98 M. T. ANDERSON

immersed discs in B^l) converging to a flat disc with multiplicity three as
r -> oo. However, the curvature of Ey at the origin becomes unbounded as r -> oo.

(3) It is natural to ask if the hypothesis on the area bound in Theorem 2.1 can be
removed. However, the 'blow-down' of the helicoid to a sequence of surfaces in B^l)
shows this is not possible.

We now turn to a discussion of boundary estimates. First, there is a general estimate
on the curvature near the boundary, which depends however on the geometry of the
boundary. Let / be the space of C2'01 Jordan curves in Q c=N3, parametrized according
to arc length. We endow / with the usual C2'a topology. We note explicitly that each
ye^ is an embedding of a circle S^f) of length I in N3; in particular, a curve of
multiplicity p > 1 is not in / , but rather in / .

THEOREM 2.2. — Let Q be a domain in N3 mth a strictly convex defining function and
let Q) be a compact subset of the space of Jordan curves in Q. Let D be an embedded
minimal disc in Q with ^D=yej^. Then there is a constant M, depending only on Q) and
Q such that

(2.4) KD(X) |^M,

for all x e D.
Proof. — If the theorem were false, it would follow that there exist Jordan curves Y(

converging to y and embedded minimal discs D^ = Im f^ f^: A —> N3 with cT^ = y^ and
such that

(2.5) suplK^.Wl1—^.
xe D;

Let /be the defining function of Q; then D2 f^c' I, for some c>0. Let A denote the
Laplacian on D,: since D, is minimal, one obtains

c'area(D,)= f c ' l ^ \ A/= f 8f,
JDi JDi JffDiSn

where n is the outward unit normal. Since | df | and I (oD^) = I (y .̂) are bounded, it follows
that area (D,) is bounded. Thus Theorem 2.1 and the Compactness Theorem imply
that { D,} subconverges smoothly on compact sets K <= A to a minimal disc D^, =Im /^,
/^A-^N3; f^ is an embedding on A. Further, the functions |K^. are uniformly
bounded on compact sets K c: A.

We claim that (2.5) implies that D^ has a boundary branch point. Supposing this
were not so, it would follow that D^ is a smoothly immersed closed disc, of multiplicity
1, with <9D^=y; D^ is embedded in the interior. By the Allard boundary regularity
theorem [Al^], for any/?ey, there is a small ball B^(r) so that Bp(r)HD^ is contained
in the graph of a C2'a function f^ defined over ̂  0 Bp (r), where ̂  = expp (Tp DJ. (We
graph over domains in ̂  by the exponential map normal to ^.) Since

aera(D, U B,(r)) -^M(D, U B^r)) and M(D, U B^(r))=area(D, 0 B^r))
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