ADRIEN DOUADY
JOHN HAMAL HUBBARD

On the dynamics of polynomial-like mappings

Annales scientifiques de l’É.N.S. 4e série, tome 18, no 2 (1985), p. 287-343

<http://www.numdam.org/item?id=ASENS_1985_4_18_2_287_0>
ON THE DYNAMICS
OF POLYNOMIAL-LIKE MAPPINGS

BY ADRIEN DOUADY AND JOHN HAMAL HUBBARD

TABLE OF CONTENTS

Introduction .. 289

Chapter I. Polynomial-like mappings .. 294
1. Definitions and statement of the straightening theorem 294
2. External equivalence .. 297
3. The Ahlfors-Bers theorem 299
4. Mating a hybrid class with an external class 301
5. Uniqueness of the mating 301
6. Quasi-conformal equivalence in degree 2 304

Chapter II. Analytic families of polynomial-like mappings. 304
1. Definitions .. 304
2. Tubings .. 305
3. Review and statements 306
4. The first Mañé-Sad-Sullivan decomposition. 308
5. Continuity on \mathcal{R} 309
6. The locus of hybrid equivalence 310
7. Continuity of χ in degree 2 313

Chapter III. Negative results 314
1. Non-analyticity of χ 314
2. Non-continuity of $\lambda \to \phi_\lambda$ in degree 2 314
3. A family of polynomials 317
4. Non-continuity of $\lambda \to P_\lambda$ in degree 3 318

Chapter IV. One parameter families of maps of degree 2 321
1. Topological holomorphy 321
2. The Riemann-Hurwitz formula 324
3. Topological holomorphy of χ 326
4. The case M_r compact 328
5. Further resemblance of M_r and M 329
INTRODUCTION

Figure 1 is a picture of the standard Mandelbrot set M. The article [M] by Benoit Mandelbrot, containing the first pictures and analyses of this set aroused great interest.

The set M is defined as follows. Let $P_c : z \mapsto z^2 + c$ and for each c let K_c be the set of $z \in \mathbb{C}$ such that the sequence $z, P_c(z), P_c(P_c(z)), \ldots$ is bounded. A classical Theorem of Fatou [F] and Julia [J] asserts that K_c is connected if $0 \in K_c$ and a Cantor set otherwise (0 plays a distinguished role because it is the critical point of P_c). More recent introductions to the subject are [Br] and [Bl], where this Theorem in particular is proved. The set M is the set of c for which K_c is connected.

In addition to the main component and the components which derive from it by successive bifurcations, M consists of a mass of filaments (see Figs. 2 and 3) loaded with small droplets, which resemble M itself. The combinatorial description of these filaments is complicated; it is sketched in [D-H] and will be the object of a later publication.

Figure 4 concerns an apparently unrelated problem. Let f_λ be the polynomial $(z-1)(z+1/2+\lambda)(z+1/2-\lambda)$, which we will attempt to solve by Newton’s method, starting at $z_0 = 0$ and setting

$$z_{n+1} = N_{f_\lambda}(z_n) = z_n - f_\lambda(z_n)/f'_\lambda(z_n).$$

As we shall see, 0 is the worst possible initial guess. Color λ blue if $z_n \to 1$, red if $z_n \to -1/2+\lambda$ and green if $z_n \to -1/2-\lambda$; leave λ white if the sequence z_n does not converge to any of the roots. Figure 4 represents a small region in the λ-plane; a sequence of zooms leading to this picture is given in chapter VI. This family has been studied independently by Curry, Garnett and Sullivan [C-G-S] who also obtained similar figures.

If two cubic polynomials have roots which form similar triangles, the affine map sending the roots of one to the roots of the other conjugates their Newton’s methods. Up to this equivalence, the family f_λ contains all cubic polynomials with marked roots except z^3 and $z^3 - z^2$ with 0 as first marked root. The point $z_0 = 0$ is a point of inflexion of f_λ and hence a critical point of the Newton’s method; it is the only critical point besides the roots.
If there is an attractive periodic cycle of the Newton's method other than the roots of \(f \), by a Theorem of Fatou it attracts a critical point, which is necessarily 0; in that sense \(z_0 = 0 \) is the worst possible initial choice.

The white region in Figure 4 looks remarkably like M. Figures 5 and 6 show that the resemblance extends to the finest detail. Here the coloring corresponds to speed of convergence to the roots.

We interpret this fact as follows. For a certain value \(\lambda_0 \) of \(\lambda \), at the "center" of the white region, the sequence \(z_n \) is periodic of some period \(k \) (in this case 3) for Newton's method. Since 0 is critical for Newton's method, the periodic cycle containing 0 is superattractive, and on a neighborhood of 0 the function \(N_k^\lambda \) will behave like \(z \mapsto z^2 \). If \(V \) is a small neighborhood of 0, then \(N_k^\lambda(V) \subset V \), but for a slightly larger neighborhood \(U \) we will have \(N_k^\lambda(U) \supset U \). For \(\lambda \) close to \(\lambda_0 \) we will still have \(N_k^\lambda(U) \supset U \) but now \(N_k^\lambda \) will behave on \(U \) like some polynomial \(z \mapsto z^2 + c \) for some \(c = \chi(\lambda) \).

Figure 8 represents basins of attraction of the roots for the polynomial \(f_5 \), \(\lambda = -0.0100605 + i \cdot 0.220311 \) (that value of \(\lambda \) is indicated with a cross on Figure 6). The shading corresponds to speed of attraction by the appropriate root; the black region is not attracted by any root. Figure 7 is a picture of \(K_c \) for \(c = -714203 + i \cdot 245052 \) (again indicated with a cross on Figure 3). The reader will agree that the words "behave like", although still undefined, are not excessive.

If \(\chi(\lambda) \in M \), then \(z_n \in V \) for all \(n \) and the sequence cannot converge to one of the roots. The remarkable fact is that \(\chi \) induces a homeomorphism of \(\chi^{-1}(M) \) onto \(M \).

The above phenomenon is very general. If \(f_\lambda \) is any family of analytic functions depending analytically on \(\lambda \), then an attempt to classify values of \(\lambda \) according to the dynamical properties of \(f_\lambda \) will often produce copies of M in the \(\lambda \)-plane.

The object of this paper is to explain this phenomenon, by giving a precise meaning to the words "behave like", which appear in the heuristic description above. The notion of polynomial-like mapping was invented for this purpose. It was motivated by the observation that when studying iteration of polynomials, one uses the theory of analytic functions continually, but the rigidity of polynomials only rarely.

In the real case, something analogous happens. Many results extend from quadratic polynomials to convex functions with negative Schwarzian curvature. But there is a major difference: in the real case, one is mainly interested in functions which send an interval into itself. An analytic function which sends a disc into itself is always contracting for the Poincaré metric, and there is not much to say.

In the complex case, the appropriate objects of study are maps \(f: U \to \mathbb{C} \) where \(U \subset \mathbb{C} \) is a simply connected bounded domain. \(f \) extends to the boundary of \(U \) and sends \(\partial U \) into a curve which turns several times around \(U \), staying outside \(U \). Our definition is slightly different from the above, mainly for convenience.

Many dynamic properties of polynomials extend to the framework of polynomial-like mappings. In fact, you can often simply copy the proof in the new setting. For the two following statements, however, that procedure does not go through.
Fig. 7

Fig. 8
(a) The density of periodic points in $J_f = \partial K_f$, proved by Fatou for polynomials (and rational mappings) using Picard's theorem.

(b) The eventual periodicity of components of \hat{K}_f, proved by Sullivan [S1] using the fact that a polynomial (or a rational function) depends only on a finite number of parameters.

The Straightening Theorem (I,1) allows one to deduce various properties of polynomial-like mappings from the analogous properties of polynomials. In particular, this applies to statements (a) and (b) above.

Its proof relies on the “measurable Riemann mapping Theorem” of Morrey-Ahlfors-Bers ([A-B], [L], [A]). A review of this Theorem, as well as a dictionary between the languages of Beltrami forms and of complex structures, will be given in (I,3).

Chapter I is centered on the Straightening Theorem.

Chapters II to IV are devoted to the introduction of parameters in the situation.

Chapters V and VI give two applications. Chapter V explains the appearance of small copies of M in M. The computation is similar to one made by Eckmann and Epstein [E-E] in the real case. They were able, using our characterization of Mandelbrot-like families, to get results similar to those in chapter V in the complex case also.

Chapter VI is a study of Figure 4.

This work owes a great deal to the ideas of D. Sullivan, who initiated the use of quasi-conformal mappings in the study of rational functions. It fits in with Sullivan's papers ([S1], [S2]), and the article by Mañé, Sad and Sullivan [M-S-S].

We thank Pierrette Sentenac for her help with the inequalities, particularly those in IV,5 and V,3.

We also thank Homer Smith. He wrote the programs which drew the pictures in the article, and also provided expert photographic assistance.

A preliminary version of this article appeared in French as a preprint in RCP25, I.R.M.A., Strasbourg.

CHAPTER I

Polynomial-like mappings

1. Definitions and statement of the straightening theorem. — Let $P : \mathbb{C} \to \mathbb{C}$ be a polynomial of degree d and let $U = D_R$ be the disc of radius R. If R is large enough then $U' = P^{-1}(U)$ is relatively compact in U and homeomorphic to a disc, and $P : U' \to U$ is analytic, proper of degree d.

The object above will be our model.

Definition. — A polynomial-like map of degree d is a triple (U, U', f) where U and U' are open subsets of \mathbb{C} isomorphic to discs, with U' relatively compact in U, and $f : U' \to U$ a C-analytic mapping, proper of degree d.

We will only be interested in the case $d \geq 2$.
Examples. — (1) The model above. When we refer to a polynomial f as a polynomial-like mapping, a choice of U and U' such that $U' = f^{-1}(U)$ and that $f : U' \to U$ is polynomial-like will be understood.

(2) Let $f(z) = \cos(z) - 2$ and let $U' = \{ z \mid |\text{Re}(z)| < 2, |\text{Im}(z)| < 3 \}$. Then $U = f(U')$ is the region represented in Figure 9, and $f : U' \to U$ is polynomial-like of degree 2.

![Fig. 9](image)

(3) Let P be a polynomial of degree d and let U be open in \mathbb{C}, such that $P^{-1}(U)$ has several connected components U_1', U_2', \ldots, U_k' with $k \leq d$. If U_1' is contained and relatively compact in U, then the restriction of P to U_1' is polynomial-like of some degree $d_1 < d$.

In this situation, one often gets much better information about the behaviour of P in U_1' by considering it as a polynomial-like map of degree d_1 than as a polynomial of degree d, especially when $d = 128$ and $d_1 = 2$ as will occur in chapter V.

(4) A small analytic perturbation of a polynomial-like mapping of degree d is still polynomial-like of degree d. More precisely, let $f : U' \to U$ be polynomial-like of degree d. Then f has $d-1$ critical points $\omega_1, \ldots, \omega_{d-1}$, counting with multiplicities. Choose $\varepsilon > 0$, $\varepsilon < d(U', \mathbb{C} - U)$ and let U_1 be the component of $\{ z \mid d(z, \mathbb{C} - U) > \varepsilon \}$ containing U'. Suppose that ε is so small that U_1 contains the $f(\omega_i)$. Then if $g : U' \to \mathbb{C}$ is an analytic function such that $|g(z) - f(z)| < \varepsilon$ for all $z \in U'$, the set $U_1' = g^{-1}(U_1)$ is homeomorphic to a disc and $g : U_1' \to U_1$ is polynomial-like of degree d.

If $f : U' \to U$ is a polynomial-like mapping of degree d, we will note

$$K_f = \bigcap_{n \geq 0} f^{-n}(U'),$$

the set of $z \in U'$ such that $f^n(z)$ is defined and belongs to U' for all $n \in \mathbb{N}$. The set K_f is a compact subset of U', which we will call the filled-in Julia set of f. The Julia set J_f of
f is the boundary of K_f. As a dynamical system, f is mainly interesting near K_f; we will neglect what occurs near the boundary of U'.

The following statements are standard for polynomials; they are also valid for polynomial-like mappings. The proofs are simply copies of the classical proofs.

Proposition 1. Every attractive cycle has at least one critical point in its immediate basin.

Proposition 2. The set K_f is connected if and only if all the critical points of f belong to K_f. If none of the critical points belong to K_f then K_f is a Cantor set.

Proposition 3 and Definition. The following conditions are equivalent:

(i) Every critical point of f belonging to K_f is attracted by an attractive cycle.

(ii) There exists a continuous Riemannian metric on a neighborhood of J_f and $\lambda > 1$ such that for any $x \in J_f$ and any tangent vector t at x we have

$$\|d_x f(t)\| f_x(\lambda) \geq \|t\|_x.$$

If the above conditions are satisfied, f is said to be hyperbolic.

Sometimes proofs in the setting of polynomial-like mappings give slightly better results.

For instance, by Proposition 1 a polynomial-like mapping of degree d has at most $d-1$ attractive cycles. One can deduce from this that if a polynomial has n attractive periodic cycles and m indifferent ones, then $n + m/2 \leq d - 1$, by perturbing P so as to make half the indifferent points attractive. That is as well as one can do if the perturbation is constrained to be among polynomials of degree d.

However, if one is allowed to perturb among polynomial-like maps of degree d, it is easy to make all the indifferent points attractive, and to see that $n + m \leq d - 1$.

Let $f : U' \to U$ and $g : V' \to V$ be polynomial-like mappings. We will say that f and g are *topologically equivalent* (denoted $f \sim_{\text{top}} g$) if there is a homeomorphism φ from a neighborhood of K_f onto a neighborhood of K_g such that $\varphi \circ f = g \circ \varphi$ near K_f. If φ is quasi-conformal (resp. holomorphic) we will say that f and g are *quasi-conformally* (resp. *holomorphically*) equivalent (denoted $f \sim_{\text{qc}} g$ and $f \sim_{\text{hol}} g$). We will say that f and g are *hybrid* equivalent (noted $f \sim_{\text{hb}} g$) if they are quasi-conformally equivalent, and φ can be chosen so that $\bar{\partial} \varphi = 0$ on K_f.

We see that

$$ f \sim_{\text{hol}} g \Rightarrow f \sim_{\text{hb}} g \Rightarrow f \sim_{\text{qc}} g \Rightarrow f \sim_{\text{top}} g.$$

If J_f is of measure 0 (no example is known for which this does not hold) the condition $\bar{\partial} \varphi = 0$ on K_f just means that φ is analytic on the interior of K_f.

Theorem 1 (the Straightening Theorem). — (a) *Every polynomial-like mapping* $f : U' \to U$ *of degree* d *is hybrid equivalent to a polynomial* P *of degree* d.

(b) If K_f *is connected*, P *is unique up to conjugation by an affine map*.

Part (a) follows from Propositions 4 and 5 below and part (b) is Corollary 2 of Proposition 6.
2. **EXTERNAL EQUIVALENCE.** — Let \(f : U' \to U \) and \(g : V' \to V \) be two polynomial-like mappings, with \(K_f \) and \(K_g \) connected. Then \(f \) and \(g \) are *externally equivalent* (noted \(f \sim_{\text{ext}} g \)) if there exist connected open sets \(U_1, U_1', V_1, V_1' \) such that

\[
K_f \subset U_1 \subset U_1' \subset U, \\
K_g \subset V_1' \subset V_1 \subset V, \\
f^{-1}(U_1) = U_1', \quad g^{-1}(V_1) = V_1'
\]

and a complex-analytic isomorphism

\[
\varphi : U_1 - K_f \to V_1 - K_g,
\]

such that \(\varphi \circ f = g \circ \varphi \).

We will associate to any polynomial-like map \(f : U' \to U \) of degree \(d \) a real analytic expanding map \(h_f : S^1 \to S^1 \) also of degree \(d \), unique up to conjugation by a rotation. We will call \(h_f \) the *external map* of \(f \).

The construction is simpler if \(K_f \) is connected; we will do it in that case first.

Let \(\alpha \) be an isomorphism of \(U - K_f \) onto \(W_+ = \{z | 1 < |z| < R \} \) (log \(R \) is the modulus of \(U - K_f \)) such that \(|\alpha(z)| \to 1 \) when \(d(z, K_f) \to 0 \). Set \(W'_+ = \alpha(U' - K_f) \) and \(h_+ = \alpha \circ f \circ \alpha^{-1} : W'_+ \to W_+ \). Let \(\tau : z \mapsto 1/z \) be the reflection with respect to the unit circle, and set \(W_- = \tau(W_+), \quad W = W_+ \cup W_- \cup S^1 \) and \(W' = W'_+ \cup W'_- \cup S^1 \).

By the Schwarz reflection principle \([R]\), \(h_+ \) extends to an analytic map \(h : W' \to W \); the restriction of \(h \) to \(S^1 \) is \(h_f \). The mapping is strongly expanding. Indeed, \(h : \tilde{W}' \to \tilde{W} \) is an isomorphism, and \(h_f^{-1} : \tilde{W} \to \tilde{W}' \subset \tilde{W} \) is strongly contracting for the Poincaré metric on \(\tilde{W} \). This metric restricts to a metric of the form \(a |dz| \) with \(a \) constant on \(S^1 \).

In the general case (\(K_f \) not necessarily connected), we begin by constructing a Riemann surface \(T \), an open subset \(T' \) of \(T \) and an analytic map \(F : T' \to T \) as follows.

Let \(L \subset U' \) be a compact connected subset containing \(f^{-1}(\overline{U'}) \) and the critical points of \(f \), and such that \(X_0 = U - L \) is connected. Let \(X_n \) be a covering space of \(X_0 \) of degree \(d^n \), \(\rho_n : X_{n+1} \to X_n \) and \(\pi_n : X_n \to X_0 \) be the projections and let \(X \) be the disjoint union of the \(X_n \). For each \(n \) choose a lifting

\[
\tilde{f}_n : \pi_n^{-1}(U' - L) \to X_{n+1},
\]

of \(f \). Then \(T \) is the quotient of \(X \) by the equivalence relation identifying \(x \) to \(\tilde{f}_n(x) \) for all \(x \in (U' - L) \) and all \(n = 0, 1, \ldots \). The open set \(T' \) is the union of the images of the \(X_n \), \(n = 1, 2, \ldots \), and \(F : T' \to T \) is induced by the \(\rho_n \).

If \(K_f \) is connected, we have just painfully reconstructed \(U - K_f \) and \(f : U' - K_f \to U - K_f \). In all cases, \(T \) is a Riemann surface isomorphic to an annulus of finite modulus, say \(\log R \). We can choose an isomorphism \(\alpha : T \to W = \{z | 1 < |z| < R \} \) and continue the construction as above, to construct an expanding map \(h_f : S^1 \to S^1 \).

If \(L \) is chosen differently, neither \(T, T' \) or \(F \) are changed.
Let \(f_1: U'_1 \to U_1 \) be a polynomial-like restriction of \(f \) such that \(U'_1 = f^{-1}(U_1) \). The surface \(T_1 \) constructed from \(f_1 \) is an open subset of \(T \) and if \(h_1 \) is an external map of \(f_1 \) constructed from an isomorphism \(\alpha_1 \) of \(T_1 \) onto an annulus, then \(\beta = \alpha \circ \alpha_1^{-1} \) gives, using the Schwarz reflection principle again, a real-analytic automorphism of \(S^1 \) conjugating \(h_1 \) to \(h \).

Let \(f: U' \to U \) and \(g: V' \to V \) be two polynomial-like mappings, and \(h_f \) and \(h_g \) be their external maps. If \(K_f \) and \(K_g \) are connected, the same argument as above shows that \(f \) and \(g \) are externally equivalent if and only if \(h_f \) and \(h_g \) are real-analytically conjugate.

If \(K_f \) or \(K_g \) is not connected, we take real-analytic conjugation of their external maps as the definition of external equivalence.

Remarks. — (1) If there exist open sets \(U_1, U'_1, V_1, V'_1 \) and compact sets \(L, M \) such that
\[
U_1 = f^{-1}(U'), \quad V_1 = g^{-1}(V'),
\]
\(L \) (resp. \(M \)) containing the critical points of \(f \) (resp. \(g \)) and an isomorphism \(\varphi: U_1 \to V_1, \varphi: L \to M \) such that \(\varphi \circ f = g \circ \varphi \) on \(U_1 \setminus L \), one can easily construct using \(\varphi \) an isomorphism of \(T_{f,1} \) onto \(T_{g,1} \) and therefore \(f \) and \(g \) are externally equivalent.

Unfortunately, there exist pairs \(f, g \) of externally equivalent polynomial-like maps, whose equivalence cannot be realized by such a \(\varphi \). However, any external equivalence can be obtained from a chain of three such realizable equivalences.

(2) Let \(\widetilde{h}: \mathbb{R} \to \mathbb{R} \) be a lifting of \(h \) to the universal covering space. Then \(h \) has a unique fixed point \(a \) with \(h'(a) = \delta > 1 \) and there exists a diffeomorphism \(\gamma: \mathbb{R} \to \mathbb{R} \) such that \(\gamma \circ \widetilde{h} \circ \gamma^{-1} \) is \(t \mapsto \delta \cdot t \). The map \(S: t \mapsto \gamma(\gamma^{-1}(t) + 1) \) satisfies the functional equation \(S'(t) = \delta S(t/\delta) \), which is formally identical to the Cvitanovic-Feigenbaum equation. The trivial map \(z \mapsto z^d \) leads to \(h(z) = z^d \), \(\delta = d \) and \(S(t) = t + 1 \). Up to conjugation by an affine map, the class of \(S \) uniquely determines the class of \(h \). We do not know how to express the property that \(h \) is expanding in terms of \(S \).

(3) Let \(h_1 \) and \(h_2 \) be two expanding maps \(S^1 \to S^1 \) of degree \(d \). If \(h_1 \) and \(h_2 \) are real-analytically conjugate, then the eigenvalues along corresponding cycles are equal. It is an open question whether the converse holds. Recently, P. Collet [C] found a partial positive answer. (*)

Proposition 4. — Let \(f \) be a polynomial-like mapping of degree \(d \). Then \(f \) is holomorphically equivalent to a polynomial if and only if \(f \) is externally equivalent to \(z \mapsto z^d \).

Proof. — Let \(P \) be a polynomial. Then \(P \) is analytically conjugate to \(z \mapsto z^d \) in a neighborhood of infinity. Therefore if \(U \) is chosen sufficiently large, and \(L \) is chosen sufficiently large in \(U' = P^{-1}(U) \), the Riemann surface \(T \) constructed will be isomorphic to the one for \(z \mapsto z^d \), by an isomorphism which conjugates \(P \) to \(z \mapsto z^d \). This proves "only if".

(*) Added in proof: The answer is yes (Sullivan, unpublished).
Now let \(f: U' \to U \) be a polynomial-like mapping, and \(F: T' \to T \) be constructed from \(f \) as above. If \(f \) is externally equivalent to \(P_0: z \to z^n \), there exists an open subset \(T_1 \) of \(T \) containing \(X_n \) for \(n \) sufficiently large, and an isomorphism \(\varphi \) of \(T_1 \) onto \(W_1 = V_1 \setminus D \), where \(V_1 \) is an open neighborhood of \(D \) in \(C \), such that \(\varphi \circ F = P_0 \circ \varphi \) on \(T' \). \(T_1' = F^{-1}(T_1) \).

Lemma. — The mapping \(\varphi \) extends to an analytic embedding of \(T \) into \(C - D \), satisfying \(\varphi \circ F = P_0 \circ \varphi \) on \(T' \).

Proof of lemma. — The map \(F: T' \to T \) is a covering map of degree \(d \). Let \(\sigma: T' \to T' \) be the automorphism induced by the canonical generator of \(\pi_1(T) = \mathbb{Z} \), and let \(\sigma_0 \) be the automorphism \(z \mapsto e^{2 \pi i d \cdot z} \) of \(C - D \). Then \(\varphi \circ \sigma = \sigma_0 \circ \varphi \) on \(X_n \) for \(n \) sufficiently large, hence on any connected subset of \(X \) to which \(\varphi \) extends analytically. Therefore, if \(\varphi \) is defined on \(X_n \) for some \(n > 0 \), it can be extended to \(X_{n-1} \) by the formula \(\varphi(x) = P_0(\varphi(F^{-1}(x))) \).

End of proof of the Proposition. — Consider the Riemann surface \(S \) obtained by gluing \(U \) and \(\bar{C} - \sigma_0(L) \) using \(\varphi|_{\sigma_0} \) and the map \(g: S \to S \) given by \(f \) on \(U' \) and \(P_0 \) on \(\bar{C} - \sigma_0(L) \). The surface \(S \) is homeomorphic to the Riemann sphere, and is therefore analytically isomorphic to it by the uniformization Theorem. Let \(\Phi: \bar{C} \to \bar{C} \) be an isomorphism such that \(\Phi(\infty) = \infty \), and let \(P = \Phi \circ g \circ \Phi^{-1} \). The map \(\Phi: \bar{C} \to \bar{C} \) is analytic, therefore a rational function. Since \(P^{-1}(\infty) = \infty \), \(P \) is a polynomial. The map \(\Phi \) extends to

Q.E.D.

3. **The Ahlfors-Bers Theorem.** — We will use the "measurable Riemann mapping Theorem", which can be stated as follows:

If \(\mu = u(z) \frac{d\varepsilon}{dz} \) is a Beltrami form on \(C \) with \(\sup |u(z)| < 1 \), then there exists a quasiconformal homeomorphism \(\varphi: C \to \bar{C} \) such that \(\partial \varphi / \partial \bar{\varphi} = \mu \).

This Theorem can also be stated as follows:

Any measurable almost complex structure \(\sigma \) on a Riemann surface \(X \) which has bounded dilatation ratio with respect to the initial complex structure \(\sigma_0 \) is integrable.

As the two statements above show, Beltrami forms and almost complex structures are two ways of speaking of the same objects. In this paper we use both, according to convenience, with a preference for the language of almost complex structures, which is more geometric. A dictionary is as follows.

To provide an oriented surface \(X \) with an almost complex structure \(\sigma \) means to choose, for each \(x \in X \) (sometimes almost every \(x \in X \)), a multiplication by \(i \) in \(T_x X \) which makes \(T_x X \) into a complex vector space, in a way compatible with the orientation.

An \(\mathbb{R} \)-differentiable map \(f: X \to \bar{C} \) is holomorphic at \(x \) for \(\sigma \) if \(T_x f: T_x X \to \bar{C} \) is \(\bar{C} \)-linear for the complex structure \(\sigma_x \) on \(T_x X \) and the standard structure on \(\bar{C} \).

An almost complex structure \(\sigma \) defined almost everywhere on \(X \) is called integrable if, for any \(x \in X \), there is an open neighborhood \(U \) of \(x \) in \(X \) and a homeomorphism \(\varphi: U \to V \) with \(V \) open in \(\bar{C} \), which is in the Sobolev space \(H^1(U) \) [i.e. such that the distributional derivatives are in \(L^2(U) \)], and holomorphic for \(\sigma \) at almost every point of \(U \). Such maps can then be used as charts for an atlas which makes \(X \) into a \(\bar{C} \)-analytic manifold.
An almost complex structure is best visualized as a field of infinitesimal ellipses: to each \(x \in X \), assign an ellipse \(u^{-1}(S^1) \subset T_xX \) where \(u : T_xX \rightarrow \mathbb{C} \) is \(\mathbb{C} \)-linear for the structure \(\sigma_x \).

Any field of infinitesimal ellipses defines an almost complex structure; two fields \((E_x)^x \in X \) and \((E'_x)^x \in X \) define the same almost complex structure if and only if \(E'_x \) is \(\mathbb{R} \)-homothetic to \(E_x \) for almost all \(x \).

If \(X \) and \(X' \) are oriented surfaces and \(\varphi : X' \rightarrow X \) is \(C^1 \), an almost complex structure \(\sigma \) on \(X \) can be pulled back into an almost complex structure \(\varphi^* \sigma \) on the open set \(W' \subset X' \) on which \(\text{Jac}(\varphi) > 0 \), as follows. If \(\sigma \) is defined by a field of infinitesimal ellipses \((E_x)^x \in X' \), then \(\varphi^* \sigma \) is defined by \((E_x)^x \in W' \), where \(E_x = (T_x\varphi)^{-1} E_x(\varphi(x)) \).

If \(f \) is holomorphic at \(x = \varphi(x') \) for \(\sigma \), then \(f \circ \varphi \) is holomorphic at \(x' \) for \(\varphi^* \sigma \).

Let \(U \) be an open set in \(\mathbb{C} \) and denote \(\sigma_0 \) its initial complex structure. A new almost complex structure on \(\sigma \) on \(U \) can be defined by its Beltrami form \(\mu = u \frac{dz}{dz} \). For each \(x \), one has

\[
u(x) = \frac{(\partial f/\partial \bar{z})(x)}{(\partial f/\partial z)(x)},
\]

where \(f \) is any function holomorphic at \(x \) for \(\sigma \). The correspondence between Beltrami forms and ellipses is as follows: the argument of \(u(x) \) is twice the argument of the major axis of \(E_x \), and \(|u(x)| = (K-1)/(K+1) \), where \(K \geq 1 \) is the ratio of the lengths of the axes. This ratio \(K \) is the dilatation ratio of \(\sigma \) at \(x \) with respect to the standard structure \(\sigma_0 \).

Let \(U \) and \(U' \) be two open sets in \(\mathbb{C} \) and \(\varphi : U' \rightarrow U \) be a \(C^1 \)-diffeomorphism. If \(\sigma \) is the almost complex structure defined on \(U \) by a Beltrami form \(\mu = u \frac{dz}{dz} \), the structure \(\sigma' = \varphi^* \sigma \) is defined by \(\varphi' \mu = \mu' = v \frac{d\bar{w}}{dw} \), where \(v = \lambda(u + a)/(1 + au) \), with

\[
\lambda = \frac{\partial \varphi/\partial w}{\partial \varphi/\partial \bar{w}} \quad \text{and} \quad a = \frac{\partial \varphi/\partial \bar{w}}{\partial \varphi/\partial w}.
\]

If \(\varphi \) is holomorphic for the original structure, then \(\sigma \) and \(\sigma' \) have the same dilatation ratio.

Concerning the dependence on parameters, we shall use the two following results: Let \(U \) be a bounded open set in \(\mathbb{C} \).

(a) Let \((\mu_n) = (u_n \frac{dz}{dz}) \) be a sequence of Beltrami forms on \(U \) and \(\mu = u \frac{dz}{dz} \) be another Beltrami form. Suppose that there is a \(m < 1 \) such that \(\|u\|_\infty \leq m \) and \(\|u_n\|_\infty \leq m \) for each \(n \), and that \(u_n \rightarrow u \) in the \(L^1 \) norm. Let \(\varphi : U \rightarrow D \) be a quasi-conformal homeomorphism such that \(\partial \varphi/\partial \bar{\varphi} = \mu \). Then there exists a sequence \((\varphi_n)\) of quasi-conformal homeomorphisms \(U \rightarrow D \) such that \(\partial \varphi_n/\partial \bar{\varphi}_n \) for each \(n \) and that \(\varphi_n \rightarrow \varphi \) uniformly on \(U([1], [L - V]) \).

(b) Let \(\Lambda \) be an open set in \(\mathbb{C}^* \) and \((\mu_\lambda = u_\lambda \frac{dz}{dz})_{\lambda \in \Lambda} \) be a family of Beltrami forms. Suppose \(\lambda \mapsto u_\lambda(z) \) is holomorphic for almost each \(z \in U \), and that there is a \(m < 1 \) such that \(\|u_\lambda\|_\infty \leq m \) for each \(\lambda \in \Lambda \). For each \(\lambda \), extend \(u_\lambda \) to \(\mathbb{C} \) by \(u_\lambda = 0 \) on \(\mathbb{C} - U \), and let \(\varphi_\lambda : \mathbb{C} \rightarrow \mathbb{C} \) be the unique quasi-conformal homeomorphism such that \(\partial \varphi_\lambda/\partial \bar{\varphi}_\lambda = \mu_\lambda \) and \(\varphi(z) - z \rightarrow 0 \) when \(|z| \rightarrow \infty \). Then \((\lambda, z) \mapsto (\lambda, \varphi_\lambda(z)) \) is a homeomorphism of \(\Lambda \times \mathbb{C} \) onto itself, and for each \(z \in \mathbb{C} \) the map \(\lambda \mapsto \varphi_\lambda(z) \) is \(\mathbb{C} \)-analytic.
4. MATING A HYBRID CLASS WITH AN EXTERNAL CLASS.

PROPOSITION 5. — Let \(f : U' \rightarrow U \) be a polynomial-like mapping, and \(h : S^1 \rightarrow S^1 \) be an \(\mathbb{R} \)-analytic expanding map of the same degree \(d \). There then exists a polynomial-like mapping \(g : V' \rightarrow V \) which is hybrid equivalent to \(f \) and whose exterior class is \(h \).

Proof. — Let \(A \subset U \) be a compact manifold with \(C^1 \)-boundary, homeomorphic to \(D \), and containing \(K_f \) in its interior. Moreover, we require that \(A' = f^{-1}(A) \) be homeomorphic to \(D \) and that \(A' \subset \mathbb{R}^+ \). Set \(Q_f = A - A' \).

The mapping \(h \) extends to an analytic map \(V' \rightarrow V \) where \(V' \) and \(V \) are neighborhoods of \(S^1 \) in \(\mathbb{C} \). If \(V' \) is chosen sufficiently small, there exists \(R > 1 \) such that \(B = \{ z \mid 1 < |z| \leq R \} \) is contained in \(V \) and \(B' = h^{-1}(B) \) is homeomorphic to \(B \) and contained in \(B \). Set \(Q_h = B - B' \).

Let \(\psi_0 \) be an orientation-preserving \(C^1 \)-diffeomorphism of \(\partial A \) onto \(\partial B \). Since \(\partial A' \) and \(\partial B' \) are \(d \)-fold covers of \(\partial A \) and \(\partial B \) respectively, there exists a diffeomorphism \(\psi_1 : A' \rightarrow B' \) such that \(\psi_0 \circ f = h \circ \psi_1 \). Let \(\psi : Q_f \rightarrow Q_h \) be a diffeomorphism inducing \(\psi_0 \) on \(\partial A \) and \(\psi_1 \) on \(\partial A' \).

Call \(\sigma_0 \) the standard complex structure of \(\mathbb{C} \) and \(\sigma_1 \) the complex structure \(\psi^* \sigma_0 \) on \(Q_f \). Define the complex structure \(\sigma \) on \(A \) by taking \((f')^* \sigma_1 \) on \(f^{-1}(\partial A') \) and \(\sigma_0 \) on \(K_f \). This complex structure is not defined at inverse images of the critical points \(\omega_i \) (if \(\omega_i \in K_f \)); it is discontinuous along the curves \(f^{-1}(\partial A') \) although these discontinuities could be avoided by a more careful choice of \(\psi \). However, the much nastier discontinuities along \(\partial K_f \) cannot be avoided.

Since \(f \) is holomorphic, the dilatation of \(\sigma \) is equal to that of \(\sigma_1 \), hence bounded since \(\psi \) was chosen of class \(C^1 \). By the measurable Riemann mapping Theorem, \(\sigma \) defines a complex structure on \(A \), and there exists a homeomorphism \(\phi : \mathbb{A} \rightarrow D \) which is holomorphic for \(\sigma \) on \(\mathbb{A} \) and \(\sigma_0 \) on \(D \).

Set \(g = \phi \circ f \circ \phi^{-1} : \phi(\mathbb{A}) \rightarrow D \). Clearly \(g \) is holomorphic, hence polynomial-like of degree \(d \). The mapping \(\phi \) is a hybrid equivalence of \(f \) with \(g \) and \(\psi \circ \phi^{-1} \) is an exterior equivalence of \(h \) and \(g \).

Q.E.D.

5. UNIQUENESS OF THE MATING. — Let \(f : U' \rightarrow U \) and \(g : V' \rightarrow V \) be two polynomial-like mappings of degree \(d > 1 \), with \(K_f \) and \(K_g \) connected. Let \(\varphi : U_1 \rightarrow V_1 \) be a hybrid equivalence and \(\psi : U_2 - K_f \rightarrow V_2 - K_g \) an external equivalence. Define \(\Phi : U_2 \rightarrow V_2 \) by \(\Phi = \psi \) on \(U_2 - K_f \) and \(\Phi = \varphi \) on \(K_f \).

We will give a topological condition making \(\Phi \) continuous, and show that if this condition is satisfied, then \(\Phi \) is in fact holomorphic.

One way to state the condition is to require that \(\varphi \) and \(\psi \) operate the same way on the \(d - 1 \) prime ends of \(K_f \) that are fixed by \(f \). We shall restate the condition so as to avoid the theory of prime ends.

Note that the condition is void if \(d = 2 \).

Let \(Q \) be a space having the homotopy type of an oriented circle; let \(f : Q \rightarrow Q \) and \(\alpha : Q \rightarrow Q \) have degree \(d \) and \(1 \) respectively and satisfy \(\alpha \circ f = f \circ \alpha \). Define
\[\{x; f\} \in \mathbb{Z}/(d-1) \] as follows. Let \(\tilde{f} : \tilde{Q} \to \tilde{Q} \) and \(\tilde{x} : \tilde{Q} \to \tilde{Q} \) be liftings to the universal covering space, and \(\tau : \tilde{Q} \to \tilde{Q} \) be the automorphism giving the generator of \(\pi_1(Q) \) specified by the orientation.

Clearly, \(\tilde{f} \circ \tilde{x} = \tau^i \circ \tilde{x} \) for some \(i \); if we replace \(\tilde{f} \) by \(\tau \circ \tilde{f} \) then \(i \) does not change, whereas replacing \(\tilde{x} \) by \(\tau \circ \tilde{x} \) changes \(i \) to \(i + d - 1 \).

Therefore the class \(\{x, f\} \) of \(i \) in \(\mathbb{Z}/(d-1) \) is independent of the choices.

We will require the above invariant in a slightly more general context. Let \(Q_1 \) and \(Q_2 \) be two spaces having the homotopy type of an oriented circle, and \(Q_1^\prime, Q_2^\prime \) subsets such the inclusions are homotopy equivalences.

Let \(f : Q_1^\prime \to Q_1 \) and \(g : Q_2^\prime \to Q_2 \) be maps of degree \(d \) and \(\varphi, \psi : Q_1 \to Q_2 \) be maps of degree \(1 \), mapping \(Q_1^\prime \) into \(Q_2^\prime \), and satisfying \(g \circ \varphi = \varphi \circ f \) and \(g \circ \psi = \psi \circ f \).

Define \(\{\varphi, \psi; f, g\} \in \mathbb{Z}/(d-1) \) as follows: construct \(\tilde{\varphi}, \tilde{\psi}, \tilde{f}, \tilde{g} \) by lifting to the universal covering spaces. Then

\[\tilde{\varphi} \circ f = \tau^i \circ \tilde{g} \circ \tilde{\varphi} \]

and

\[\tilde{\psi} \circ f = \tau^j \circ \tilde{g} \circ \tilde{\psi} \]

for some \(i \) and \(j \). The class of \(j - i \) in \(\mathbb{Z}/(d-1) \) is independent of the choices and will be noted \(\{\varphi, \psi; f, g\} \).

If \(Q_1^\prime = Q_1 \) and \(\varphi \) is a homeomorphism, then \(\{\varphi, \psi; f, g\} = \{\varphi^{-1} \psi; f\} \).

Proposition 6. — Let \(f : U^\prime \to U \) and \(g : V^\prime \to V \) be two polynomial-like mappings of degree \(d > 1 \), with \(K_f \) and \(K_g \) connected. Let \(\varphi : U_1 \to V_1 \) be a hybrid equivalence and \(\psi : U_2 - K_f \to V_2 - K_g \) be an external equivalence. If \(\{\varphi, \psi; f, g\} = 0 \) then the map \(\Phi \) which agrees with \(\varphi \) on \(K_f \) and with \(\psi \) on \(U_2 - K_f \) is a holomorphic equivalence between \(f \) and \(g \).

Lemma 1. — The map \(\Phi \) is a homeomorphism.

Proof. — Let \(\alpha = \psi^{-1} \circ \varphi \); we must show that \(\alpha \) is close to the identity near \(K_f \).

Let \(\rho(z) |dz| \) be the Poincaré metric of \(U - K_f \) and let \(d_\rho \) be the associated distance; \(d \) will denote the Euclidian distance. There is a constant \(M \) such that \(\rho(z) \geq M/d(z, K_f) \).

The mapping \(\tilde{f} : U' - K_f \to U - K_f \) on covering spaces is bijective; let \(h \) be its inverse. Then \(h \) is contracting for \(d_\rho \).

Choose a compact set \(C \subset U - K_f \) such that the union

\[\bigcup_{i>0} \bigcup_{j} h^i(\tau^j(C)) \]

is the inverse image in \(U - K_f \) of a neighborhood of \(K_f \); let \(m = \sup_{x \in C} d_\rho(\bar{x}(x), x) \).

4e série — Tome 18 — 1985 — No 2
The map h commutes with $\tilde{\alpha}$ because of the hypothesis $[\varphi, \psi; f, g] = 0$; and τ is an isometry. It follows that
\[
d_p (\tilde{\alpha} (h^i (\tau^j (x))), h^i (\tau^j (x))) = d_p (h^i (\tilde{\alpha} (\tau^j (x))), \tau^j (x)) < m
\]
for $x \in \mathbb{C}$.

Therefore $d (\tilde{\alpha} (x), x) \to 0$ as $x \to K_f$. This shows that Φ is continuous; to show that Φ^{-1} is continuous, you repeat the proof above exchanging φ and ψ.

Q.E.D.

Lemma 2 (S. Rickman [Ri]). — Let $U \subset \mathbb{C}$ be open, $K \subset U$ be compact, φ and Φ be two mappings $U \to \mathbb{C}$ which are homeomorphisms onto their images. Suppose that φ is quasi-conformal, that Φ is quasi-conformal on $U - K$ and that $\varphi = \Phi$ on K. Then Φ is quasi-conformal, and $D\Phi = D\varphi$ almost everywhere on K.

Proof. — We may assume that $\Phi(U)$ and $\varphi(U)$ are bounded. We need to show that Φ is in the Sobolev space $H^1 (U)$, and find bounds for the eccentricity of its derivative.

Since φ is in $H^1 (U)$ it is enough to show that $u = \text{Re} (\Phi - \varphi) \in H^1 (U)$ [and similarly for $\text{Im} (\Phi - \varphi)$].

Let $\eta_n : \mathbb{R} \to \mathbb{R}$ be a C^1-function such that
\[
\eta_n (x) = x - 1/n \quad \text{for} \quad x > 2/n,
\]
\[
\eta_n (x) = x + 1/n \quad \text{for} \quad x < -2/n,
\]
\[
\eta_n (x) = 0 \quad \text{for} \quad -1/2n < x < 1/2n,
\]
\[
\eta'_n (x) < 1 \quad \text{for} \quad x \in \mathbb{R}.
\]

The sequence $u_n = \eta_n \cdot u$ is a Cauchy sequence in H^1, with limit u. Since $u_n = 0$ on a neighborhood of K for all n, $Du = 0$ almost everywhere on K.

Q.E.D.

Proposition 6 is now immediate: we have to show that Φ satisfies the Cauchy-Riemann equations almost everywhere. On K_f, $D\Phi = D\varphi$ almost everywhere, and on $U_2 - K_f$, Φ is holomorphic.

Q.E.D.

Corollary 1. — Let f and g be two polynomial-like mappings of degree 2 with K_f and K_g connected. If f and g are hybrid equivalent and externally equivalent, then they are holomorphically equivalent.

Corollary 2. — Let P and Q be two polynomials with K_f and K_g connected. If P and Q are hybrid equivalent, then they are conjugate by an affine map.

Proof. — If P is a polynomial of degree d, there is an external equivalence $\psi_P : \mathbb{C} - K_P \to \mathbb{C} - D$ between P and $z \mapsto z^d$ defined on $\mathbb{C} - K_P$. Then $\psi_{P, Q} = \psi_Q^{-1} \cdot \psi_P$ is an isomorphism of $\mathbb{C} - K_P$ onto $\mathbb{C} - K_Q$, and the map Φ constructed in Proposition 4 is an isomorphism of \mathbb{C} onto itself, therefore affine.
6. QUASI-CONFORMAL EQUIVALENCE IN DEGREE 2.

PROPOSITION 7. — Suppose c_1 and c_2 are in \mathbb{C}, with c_1 in ∂M. If the polynomials $P_1 : z \mapsto z^2 + c_1$ and $P_2 : z \mapsto z^2 + c_2$ are quasi-conformally equivalent, then $c_1 = c_2$.

Proof. — Let $\varphi : U \to V$ be a quasi-conformal equivalence of P_1 with P_2. If K_{P_1} is of measure zero, then φ is a hybrid equivalence, and the result follows from Corollary 3 to Proposition 6.

In the general case, consider the Beltrami form $\mu = \frac{\partial \varphi}{\partial \bar{z}}\frac{\partial \bar{\varphi}}{\partial z}$ and let μ_0 be the form which agrees with μ on K_{P_1} and with 0 on $\mathbb{C} - K_{P_1}$. Set $k = \|\mu_0\|_0$; certainly $k < 1$. For any $t \in D_{1/k}$ there exists a unique quasi-conformal homeomorphism $\Phi_t : \mathbb{C} \to \mathbb{C}$ such that

$$\frac{\partial \Phi_t}{\partial z} = t \mu_0,$$

$\Phi_t(0) = 0$ and $\Phi_t(z)/z \to 1$ as $z \to 0$.

Then $\Phi_t \circ P_1 \circ \Phi_t^{-1}$ is a polynomial of the form $z \mapsto z^2 + u(t)$, where $u : D_{1/k} \to \mathbb{C}$ is holomorphic. Since $u(0) = c_1 \in \partial M$ and $u(t)$ is in M for all t, the function u is constant, in particular $u(1) = c_1$. Then $\varphi \circ \Phi_t^{-1}$ is a hybrid equivalence of P_1 and P_2, and the Proposition follows from Corollary 3 of Proposition 6.

Q.E.D.

CHAPTER II

Analytic families of polynomial-like mappings

1. DEFINITIONS.

DEFINITION. — Let Λ be a complex analytic manifold and $f = (f_\lambda : U_\lambda \to U_\lambda)_{\lambda \in \Lambda}$ be a family of polynomial-like mappings. Set $\mathcal{U} = \{(\lambda, z) \mid z \in U_\lambda\}$, $\mathcal{U}' = \{(\lambda, z) \mid z \in U'_\lambda\}$ and $f(\lambda, z) = (f_\lambda(z))$. Then f is an analytic family if the following conditions are satisfied:

1. \mathcal{U} and \mathcal{U}' are homeomorphic over Λ to $\Lambda \times D$.
2. The projection from the closure of \mathcal{U}' in \mathcal{U} to Λ is proper.
3. The mapping $f : \mathcal{U}' \to \mathcal{U}$ is complex-analytic and proper.

For such a family the degree of f_λ is independent of λ if Λ is connected; we will call it the degree of f. Set $K_\lambda = K_{f_\lambda}$, $J_\lambda = J_{f_\lambda}$ and $\mathcal{K}_f = \{(\lambda, z) \mid z \in K_\lambda\}$. The set \mathcal{K}_f is closed in \mathcal{U} and the projection of \mathcal{K}_f onto Λ is proper, since $\mathcal{K}_f = \bigcap \mathcal{f}^{-n}(\mathcal{U}')$. Let M_f denote the set of λ for which K_λ is connected.

By the straightening Theorem, if f is an analytic family of polynomial-like mappings of degree d, we can find for each λ a polynomial P_λ of degree d and a homeomorphism $\varphi_\lambda : V_\lambda \to W_\lambda$, where V_λ and W_λ are neighborhoods of K_λ and K_{P_λ} respectively, which
POLYNOMIAL-LIKE MAPPINGS

defines a hybrid equivalence between \(f_\lambda \) and \(P_\lambda \). In this chapter, we will investigate whether \(P_\lambda \) and \(\varphi_\lambda \) can be chosen continuous, or even analytic in \(\lambda \).

2. Tubings. — Choose \(R > 1 \); set \(R' = R^{1/d} \) and \(Q_\lambda = \{ z \mid R' \leq |z| \leq R \} \).

PROPOSITION 8 AND DEFINITION. — Let \(f = (f_\lambda : U_\lambda \to U_\mu) \) be an analytic family of polynomial-like mappings of degree \(d \), with \(\Lambda \) contractible. Then there exists a \(C^1 \)-embedding \(T : (\lambda, x) \mapsto (\lambda, T_\lambda(x)) \) of \(\Lambda \times Q_\lambda \) into \(\mathcal{U} \) such that \(T(\Lambda \times Q_\lambda) \) is of the form \(\mathcal{A} \to \mathcal{A}' \) with \(\mathcal{A} \) and \(\mathcal{A}' \) homeomorphic over \(\Lambda \) to \(\Lambda \times D \), \(\mathcal{X}_f \subset \mathcal{A}' \subset \mathcal{A} \) and \(T_\lambda(x^d) = f_\lambda(T_\lambda(x)) \) for \(|x| = R' \).

Such a mapping will be called a tubing for \(f \).

Proof. — Let \(\Xi' \) be the set of \((\lambda, z) \in \mathcal{U}' \) for which \(z \) is a critical point of \(f_\lambda \) and let \(\Xi = f(\Xi') \). The projections of \(\Xi \) and \(\Xi' \) onto \(\Lambda \) are proper. Let \(\varphi : (\lambda, x) \mapsto (\lambda, \varphi_\lambda(x)) \) be a diffeomorphism of \(\Lambda \times D \) onto \(\mathcal{U} \) and \(\eta : \Lambda \to]0, 1[\) a \(C^1 \)-function such that \(\varphi_\lambda(D_\eta(0)) \) contains \(U_\lambda \) and the critical values of \(f_\lambda \) for all \(\lambda \in \Lambda \).

Define the embedding \(T^0 : (\lambda, x) \mapsto (\lambda, T^0_\lambda(x)) \) of \(\Lambda \times S^1_\lambda \) into \(\mathcal{U} \) by

\[
T^0_\lambda(x) = \varphi_\lambda \left(\frac{\eta(\lambda)}{r} \cdot x \right).
\]

For each \(\lambda \), the curve \(\Gamma_\lambda = T^0_\lambda(S^1_\lambda) \) encloses the critical values of \(f_\lambda \) and therefore \(\Gamma_\lambda' = f_\lambda^{-1}(\Gamma_\lambda) \) is homeomorphic to a circle. Then there exists a diffeomorphism \(T^1_\lambda : S^1_\lambda \to \Gamma_\lambda' \) such that \(f_\lambda(T^1_\lambda(x)) = T^0_\lambda(x^d) \) for \(|x| = R' \); the region bounded by \(\Gamma_\lambda' \) is an annulus and there exists an embedding \(T_\lambda \) of \(Q_\lambda \) into \(U_\lambda \) inducing \(T^0_\lambda \) and \(T^1_\lambda \).

In order to find \(T^0_\lambda \) and \(T^1_\lambda \) depending continuously or differentiably on \(\lambda \), one must find a continuous or a \(C^1 \)-section of a principal fibration over \(\Lambda \), with fiber principal under the group \(\mathcal{D} \) of diffeomorphisms of \(Q_\lambda \) inducing the identity on \(S^1_\lambda \) and a rotation \(x \mapsto e^{2\pi i \varphi(x)} x \) on \(S^1_\lambda \). Since \(\Lambda \) is assumed contractible, there is such a section.

Q.E.D.

Remark. — According to a Theorem of Cerf, \(\mathcal{D} \) can be written \(\mathbb{Z} \times \mathcal{D}_0 \), with \(\mathcal{D}_0 \) contractible. Therefore the hypothesis "\(\Lambda \) contractible" can be replaced by "\(\Lambda \) simply connected". One can even do better. If instead of

\[
T^0_\lambda(x) = \varphi_\lambda \left(\frac{\eta(\lambda)}{r} \cdot x \right)
\]

we require only that \(T \) be of the form

\[
\varphi_\lambda \left(u(\lambda) \cdot \frac{\eta(\lambda)}{r} \cdot x \right)
\]

with \(u : \Lambda \to S^1 \) of class \(C^1 \), then the space of possible \((T^0_\lambda, T^1_\lambda, T_\lambda) \) is homeomorphic to the space \(\mathcal{D}' \) of diffeomorphisms of \(Q_\lambda \) inducing

\[
x \mapsto u \cdot x \quad \text{on} \quad S^1_\lambda,
\]
\[
x \mapsto v \cdot x \quad \text{on} \quad S^1_\lambda,'
\]

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPERIEURE
with \(v \in S^1 \) and \(u = v^d \). The space \(D' \) can be written \(\mathbb{Z}/(d-1) \times D'_0 \) with \(D'_0 \) contractible. Therefore the only obstruction to finding a section to the corresponding fiber bundle is in \(H^1(\Lambda; \mathbb{Z}/(d-1)) \).

The hypothesis "\(\Lambda \) contractible" can be replaced by "\(H^1(\Lambda; \mathbb{Z}/(d-1)) = 0 \)" and in particular be omitted altogether if \(d = 2 \).

We will be primarily interested in cases where \(\Lambda \) is homeomorphic to \(D \).

A tubing \(T \) of \(f \) will be called horizontally analytic if the map \(\lambda \mapsto T_\lambda(x) \) is complex-analytic for all \(x \in \mathbb{Q}_\mathbb{R} \).

Proposition 9. For any \(\lambda_0 \in \Lambda \), there exists a neighborhood \(\Lambda' \) of \(\lambda_0 \) in \(\Lambda \) and a horizontally analytic tubing of \((f_\lambda)_{\lambda \in \Lambda} \).

Proof. Let \(\tau^0 \) be a \(C^1 \)-embedding of a neighborhood \(V_1 \) of \(S^1_k \) into \(U_{\lambda_0} - \overline{U}_{\lambda_0} \). There exists an embedding \(\tau^1 \) from a neighborhood \(V'_1 \) of \(S^1_k \) into \(U_{\lambda_0} \) such that \(f_{\lambda_0}(\tau^1(x)) = \tau^0(x^d) \) for \(x \in V'_1 \), and a \(C^1 \)-embedding \(\tau \) of a neighborhood \(V \) of \(\mathbb{Q}_k \) into \(U_{\lambda_0} \) that agrees with \(\tau^0 \) near \(S^1_k \) and with \(\tau^1 \) near \(S^1_k \).

Define \(\tilde{\tau} : \Lambda' \times V_1 \rightarrow \mathbb{U}' \) by \(\tilde{\tau}_E(x) = f_{\lambda_0}^{-1}(\tau(x^d)) \), the choice in this finite set being imposed by continuity, the requirement that \(\tilde{\tau}_{\lambda_0} = \tau \mid V_1 \), and that \(\Lambda' \) be a neighborhood of \(\lambda_0 \) in \(\Lambda \).

Let \(h : V \rightarrow \mathbb{R}_+ \) be a \(C^1 \)-function, with support in \(V_1 \) and equal to 1 on a neighborhood of \(S^1_k \). Set \(T(\lambda, x) = (\lambda, (1 - h(x)) \cdot \tau(x) + h(x) \cdot \tilde{\tau}_E(x)) \). Then \(T \) is a \(C^1 \)-mapping above \(\Lambda' \), inducing \(\tau \) over \(\lambda_0 \) and therefore an embedding of \(\Lambda' \times \mathbb{Q}_k \) for some neighborhood \(\Lambda' \) of \(\lambda_0 \). The mapping \(T \) is horizontally analytic and satisfies \(T(\lambda, x^d) = f(T(\lambda, x)) \) for all \((\lambda, x) \in \Lambda' \times S^1_k \). So \(T \) is a horizontally analytic tubing.

Q.E.D.

Remark. Let \(R \) and \(R_1 \) be any two numbers \(> 1 \) and \(T : \Lambda \times \mathbb{Q}_k \rightarrow \mathbb{U} \) a tubing of \(f \). Define \(\alpha : \mathbb{Q}_k \rightarrow \mathbb{Q}_k \) by \(\alpha(re^i) = r^{l}e^i \), where \(l = \log R / \log R_1 \). Then \(T_1 = T \circ (1_{\Lambda} \times \alpha) \) is a tubing of \(f \) using \(\mathbb{Q}_k \). If \(T \) is horizontally analytic, so is \(T_1 \). Therefore the choice of \(R \) is unimportant.

3. Review and statements. — In the remainder of this chapter we will assume we have an analytic family \(f = (f_\lambda : U'_\lambda \rightarrow U_{\lambda})_{\lambda \in \Lambda} \) of polynomial-like mappings of degree \(d \). We will suppose \(\Lambda \) contractible, and that a tubing \(T \) of \(f \) has been chosen.

Define \(\mathcal{A} = T(\Lambda \times D_k) \), \(\mathcal{A}' = T(\Lambda \times D_{k_0}) \) and \(Q = \mathcal{A} - \mathcal{A}' = T(\Lambda \times \mathbb{Q}_k) \); set \(\Psi = T^{-1} \). By repeating the constructions which prove Propositions 4 and 5, we find for each \(\lambda \) a polynomial \(P_\lambda \) of degree \(d \), monic and without a term of degree \(d - 1 \), and a hybrid equivalence \(\varphi_\lambda \) of \(f_\lambda \) with \(P_\lambda \), defined on \(\lambda \).

If \(d = 2 \), the polynomial \(P_\lambda \) is of the form \(z \mapsto z^2 + \chi(\lambda) \), and this defines a mapping \(\chi : \Lambda \rightarrow \mathbb{C} \).

Let us go through the steps of the construction:

(1) Consider the Beltrami form

\[\mu_{\lambda_0} = \partial \psi_\lambda / \partial \overline{\psi}_\lambda, \]
defined on Q_{λ}.

(2) Let
\[\mu_{k, n} = (f^n)^* \mu_{k, 0}, \]
be the corresponding Beltrami form on
\[Q_{k, n} = f_k^{-n}(Q_\lambda). \]

(3) Define the Beltrami form μ_λ on \tilde{A}_λ by setting
\[\mu_\lambda(z) = \mu_{k, n}(z) \quad \text{if} \quad z \in Q_{k, n}, \]
and
\[\mu_\lambda(z) = 0 \quad \text{if} \quad z \in K_{\lambda}. \]

(4) Using the measurable Riemann mapping Theorem, the form μ_λ defines a complex structure σ_λ on A_λ; the mapping $\psi_\lambda: Q_\lambda \to Q_R$ is holomorphic for σ_λ in the domain and σ_0 in the range.

(5) Glue \tilde{A}_λ with the structure σ_λ to $\mathbb{C} - D_R$ using ψ_λ; you get a Riemann surface Σ_λ homeomorphic to S^2. The maps f_λ and $P_\lambda: z \mapsto z^d$ patch together to give an analytic map $g_\lambda: \Sigma_\lambda \to \Sigma_\lambda$.

(6) Using the uniformization Theorem, there exists a unique isomorphism $\Phi_\lambda: \Sigma_\lambda \to \mathbb{C}$ tangent to the identity at infinity and such that the polynomial
\[P_\lambda = \Phi_\lambda \circ g_\lambda \circ \Phi_\lambda^{-1}, \]
has no term of degree $d - 1$; φ_λ is the restriction of Φ_λ to \tilde{A}_λ.

The step which causes problems is step 3. The mapping $\lambda \mapsto \mu_\lambda$ is not necessarily continuous, even for the weak topology on L^∞. In general, the map is discontinuous at points where f_λ has a rationally indifferent non-persistent cycle. This is closely related to the fact that the mapping $\lambda \mapsto K_\lambda$ is not continuous at such points for the Hausdorff topology. We will analyse a counter-example in chapter III.

For people who dislike cut and paste techniques, steps 4, 5 and 6 can be restated as follows. Extends ψ_λ to a diffeomorphism ψ_λ of \tilde{A}_λ onto D_R. Let θ_λ be the complex structure on D_R gotten by transporting μ_λ by Ψ_λ. Let ν_λ be the Beltrami form on \mathbb{C} defining θ_λ on D_R, and extended by 0. There exists a unique quasi-conformal homeomorphism $\Phi_\lambda: \mathbb{C} \to \mathbb{C}$ such that
\[\partial \Phi_\lambda / \partial \nu_\lambda = v_\lambda \]
and
\[\Phi_\lambda(z) - z \to z \to 0 \quad \text{as} \quad |z| \to 0. \]

Define $g_\lambda: \mathbb{C} \to \mathbb{C}$ by
\[g_\lambda = \Psi_\lambda \circ f_\lambda \circ \Psi_\lambda^{-1} \quad \text{on} \quad D_R, \]
and
\[g_\lambda(z) = z^d \quad \text{on} \quad \mathbb{C} - D_R. \]
Then
\[\varphi_\lambda = \Phi_\lambda \circ \Psi_\lambda \]
and
\[P_\lambda = \Phi_\lambda \circ g_\lambda \circ \Phi_\lambda^{-1}, \]
up to conjugation by a translation.

In this chapter we will prove the following Theorems.

Theorem 1. — Let \(\mathcal{R} \) be the open subset of the first Mañé-Sad-Sullivan decomposition of \(\Lambda \) (cf. II, 4). Then \(\varphi_\lambda \) and \(P_\lambda \) depend continuously on \(\lambda \) for \(\lambda \in \mathcal{R} \), and \(P_\lambda \) depends analytically on \(\lambda \) for \(\lambda \in \mathcal{R} \cap \hat{M}_f \).

The first part is Proposition 12 and the second is Corollary 1 to Proposition 13.

Theorem 2. — If \(d = 2 \), the mapping \(\chi : \Lambda \to \mathbb{C} \) is continuous on \(\Lambda \), and analytic on \(\hat{M}_f \).

Continuity is Proposition 14 and analyticity is Corollary 1 of Proposition 13.

4. The First Mañé-Sad-Sullivan Decomposition. — Let \((P_\lambda)_{\lambda \in \Lambda}\) be an analytic family of polynomials (or rational functions). In [M-S-S], Mañé, Sad and Sullivan describe two decomposition of \(\Lambda \) into a dense open set and a closed complement. For the first decomposition, the open set is the set of \(\lambda \) for which \(P_\lambda \) is structurally stable on a neighborhood of the Julia set; for the second decomposition structural stability of \(P_\lambda \) is required on the whole Riemann sphere.

In this paragraph we will review the first decomposition in the framework of polynomial-like mappings.

Let \(f=(f_\lambda : U_\lambda \to U_\lambda)_{\lambda \in \Lambda} \) be an analytic family of polynomial-like mappings.

An indifferent periodic point \(z_0 \) of \(f_{\lambda_0} \) is called persistent if for each neighborhood \(V \) of \(z_0 \) there is a neighborhood \(W \) of \(\lambda_0 \) such that, for each \(\lambda \in W \), the function \(f_\lambda \) has in \(V \) an indifferent periodic point of the same period.

Let \(\mathcal{I} \) be the set of \(\lambda \) for which \(f_\lambda \) has a non-persistent indifferent periodic point, \(\mathcal{I} = \hat{I} \), and \(\mathcal{R} = \Lambda - \mathcal{I} \) the complementary open set.

Proposition 10. — (a) The open set \(\mathcal{R} \) is dense in \(\Lambda \).

(b) For any \(\lambda_0 \), there exists a neighborhood \(W \) of \(\lambda_0 \) in \(\mathcal{R} \), a neighborhood \(V \) of \(J_{\lambda_0} \) in \(U_{\lambda_0} \) and an embedding \(\tau : (\lambda, z) \mapsto (\lambda, \tau_\lambda(z)) \) of \(W \times \mathbb{C} \) into \(\mathbb{C} \) such that:

(i) \(\tau(\lambda, z) \) is holomorphic in \(\lambda \) and quasi-conformal in \(z \), with dilatation ratio bounded by a constant independant of \(\lambda \).

(ii) The image of \(\tau \) is a neighborhood of \(\mathcal{I}_W = \{ (\lambda, z) | \lambda \in W, z \in J_{\lambda} \} \), which is closed in \(\mathcal{U} \cap (W \times \mathbb{C}) \).

(iii) The map \(\tau_{\lambda_0} \) is the identity of \(V \), and for all \(\lambda \in W \) we have \(f_\lambda \circ \tau_{\lambda} = \tau_{\lambda} \circ f_{\lambda_0} \).

The proofs of [M-S-S], completed by [S-T] (see also [B-R]) for the case of persistent Siegel discs, can simply be copied in the setting of polynomial-like mappings.

Corollary. — Let \(W \) be a connected component of \(\mathcal{R} \). If \(\lambda_1, \lambda_2 \in W \), then \(K_{\lambda_1} \) and \(K_{\lambda_2} \) are homeomorphic. In particular, either \(W \subset M_f \) or \(W \cap M_f = \emptyset \).
PROPOSITION 11. — (a) $\tilde{M}_I \subset \mathcal{R}$.
(b) If $d=2$, then $\mathcal{R} = \Lambda - \partial M_I$.

Proof. — (a) Choose $\lambda_0 \in \tilde{M}_I$. By contradiction, suppose f_{λ_0} has a non-persistent indifferent periodic point α_0 of period k. There then exists a neighborhood V of 0 in \mathbb{C}, an analytic map $t \mapsto \lambda(t)$ of V into Λ and analytic maps

$$\alpha, \omega_1, \ldots, \omega_{d-1},$$

of V into \mathbb{C} with $\lambda(0) = \lambda_0$, $\alpha(0) = \alpha_0$, such that $\alpha(t)$ is a periodic point of $f_{\lambda(t)}$ of period k and eigenvalue $\rho(t)$, where $\rho : V \to \mathbb{C}^*$ is a non-constant holomorphic function, and such that

$$\omega_1(t), \ldots, \omega_{d-1}(t),$$

are the $(d-1)$ critical points of $f_{\lambda(t)}$ for $t \in V$.

Let (t_n) be a sequence in V converging to 0, such that $|\rho(t_n)| < 1$ for all n. For each n, $\alpha(t_n)$ is an attracting periodic point, so there exist i, j such that

$$f_{\lambda(t_n)}^{k_i}(\omega_j(t_n))$$

converges to $\alpha(t_n)$ without reaching it as $p \to \infty$. By choosing a subsequence we can assume i and j independent of n.

Since $\lambda(t) \in M_I$ for all $t \in V$, we can define a sequence (u_p) of analytic functions on V by

$$u_p(t) = f_{\lambda(t)}^{k_p+i}(\omega_j(t)).$$

This sequence is bounded on any compact subset of V since $u_p(t) \in U_{\lambda(t)}$. If a subsequence converges to a function $h : V \to \mathbb{C}$, then $h(t_0) = \alpha(t_0)$ for all n, so $h = \alpha$. Therefore $u_p(t) \to \alpha(t)$ for all $t \in V$.

But in V there are points t^* such that $|\rho(t^*)| > 1$ and $u_p(t^*) \neq \alpha(t^*)$ for all p. The point $\alpha(t^*)$ is a repulsive periodic point and cannot attract the sequence $u_p(t^*)$.

(b) By the Corollary to Proposition 10, $\mathcal{R} \subset \Lambda - \partial M_I$, and $M_I \subset \mathcal{R}$ by (a). We will use the hypothesis $d=2$ to prove $\Lambda - M_I \subset \mathcal{R}$. For any $\lambda \in \Lambda$, the map f_λ has a unique critical point $\omega(\lambda)$. If $\lambda \in \Lambda - M_I$, then $\omega(\lambda) \in U' - K_\lambda$, so f_λ is hyperbolic and all periodic points are repulsive. Therefore $(\Lambda - \partial M_I) \cap \mathcal{R}$ is empty, and since $\Lambda - M_I$ is open, $\Lambda - M_I \subset \mathcal{R}$.

Q.E.D.

5. CONTINUITY ON \mathcal{R}.

PROPOSITION 12. — On the open set \mathcal{R} both φ_λ and P_λ depend continuously on λ.

Proof. — Using the notations of 3, clearly $\|\mu_\infty\|_\infty = \|\mu_{\lambda,0}\|_\infty$ is bounded on any compact subset of Λ by a constant < 1. According to 1,3, we need to show that $\mu_\infty \to \mu_{\lambda,0}$ as $\lambda \to \lambda_0$ in the L^1-norm.
Since $\mu_\lambda = \lim \check{\mu}_{\lambda,n}$ pointwise, where
\[
\check{\mu}_{\lambda,n} = \mu_{\lambda,i} \quad \text{on } f^{-1}(Q_i) \quad \text{for } i \leq n
\]
\[
= 0 \quad \text{on } A_{\lambda,n} = f_{\lambda,n}^{-1}(A_{\lambda,n}),
\]
and since for each n the form $\check{\mu}_{\lambda,n}$ depends continuously on λ for the L^1-norm, it is enough to show that $\|\check{\mu}_{\lambda,n} - \mu_\lambda\|_1$ tends to 0 uniformly on any compact subset of \mathcal{R}.

This will follow from the statement that the area of $A_{\lambda,n} - K_\lambda$ tends to zero uniformly on every compact subset of \mathcal{R}.

Note that this is false on any open subset of Λ which meets \mathcal{F}. Indeed, for every n the area of $A_{\lambda,n}$ depends continuously on λ, but the area of K_λ is discontinuous for every value of λ for which f_λ has a non-persistent rationally indifferent fixed point.

Choose $\lambda_0 \in \mathcal{R}$, and using the notations of Proposition 10 set $\tau_\lambda(z) = \tau(\lambda, z)$, $V_\lambda = \tau_\lambda(V)$, $B_\lambda = V_\lambda \cup K_\lambda$ and $B_{\lambda,n} = f_{\lambda,n}^{-1}(B_\lambda)$. There exists a neighborhood W of λ_0 with compact closure in W and $p \in \mathbb{N}$ such that $A_{\lambda,n+p} \subseteq B_\lambda$ for all $\lambda \in W$. Then $A_{\lambda,n+p} \subseteq B_{\lambda,n}$ so it is enough to show that the area $m_\lambda(\lambda)$ of $B_{\lambda,n} - K_\lambda$ tends to 0 uniformly on any compact subset of W.

Clearly
\[
m_\lambda(\lambda) = \int_{B_{\lambda,0},n - K_{\lambda,0}} \text{Jac}(\tau_\lambda).
\]

Set
\[
n_\lambda(\lambda) = \int_{B_{\lambda,0},n - K_{\lambda,0}} \|D\tau\|^2.
\]

The functions n_λ form a decreasing sequence of plurisubharmonic functions. There exist numbers a, b, with $0 < a < b < \infty$ such that on W
\[
a n_\lambda(\lambda) < m_\lambda(\lambda) < b n_\lambda(\lambda),
\]
since the τ_λ are quasi-conformal with bounded dilatation ratio.

Since $m_\lambda(\lambda) \to 0$ pointwise, $n_\lambda(\lambda) \to 0$ pointwise, hence $n_\lambda(\lambda) \to 0$ uniformly on any compact subset of W, so $m_\lambda(\lambda) \to 0$ uniformly on any compact subset of W'.

Q.E.D.

6. THE LOCUS OF HYBRID EQUIVALENCE.

Proposition 13. — Let $f = (f_\lambda : U_\lambda \to U_\lambda)$ and $g = (g_\lambda : V_\lambda \to V_\lambda)$ be two analytic families of polynomial-like mappings of degree d parametrized by the same manifold Λ. Let \mathcal{R} be the open subset of Λ given by the first Mane-Sad-Sullivan decomposition for f and let W be a connected component of \mathcal{R} contained in M_τ. Then the set $\Gamma \subseteq W$ of those λ for which f_λ and g_λ are hybrid equivalent is a complex-analytic subset of W.

Addendum if $d > 2$. — Let T_f and T_g be tubings of f and g respectively, defined on $W \times Q_R$, and with images $Q_f = \mathcal{M} - \mathcal{M}'$ and $Q_g = \mathcal{M} - \mathcal{M}'$ respectively. Since K_{f_λ} is connect-
ted for all $\lambda \in W$, T_f can be extended to a homeomorphism $\tilde{T}_f: W \times (D_{g_k} - D) \to \mathcal{A} - \mathcal{H}$. Choose $\lambda \in \Gamma$ and let α be a hybrid equivalence of f_λ and $g_{\lambda'}$. Since this requires that $K_{g_{\lambda'}}$ be connected, $T_{g_{\lambda'}}$ can be extended to $\tilde{T}_{g_{\lambda'}}: D_{g_{\lambda'}} - D \to B_{g_{\lambda'}} - K_{g_{\lambda'}}$.

Set $i(\alpha) = [\tilde{T}_{g_{\lambda'}} \circ \tilde{T}_f^{-1}, \alpha; f_\lambda, g_{\lambda'}] \in \mathbb{Z}/(d - 1)$ (cf. 1,4).

Then Γ is the union of subsets Γ_i for $i \in \mathbb{Z}/(d - 1)$, where Γ_i is the set of $\lambda \in W$ for which there exists a hybrid equivalence α of f_λ and $g_{\lambda'}$ with $i(\alpha) = i$.

We shall show that for each $i \in \mathbb{Z}/(d - 1)$ the set Γ_i is an analytic subset of W. By changing T_f or T_g, $i(\alpha)$ is can be changed to any element of $\mathbb{Z}/(d - 1)$, so we only need to show that Γ_0 is analytic.

Proof. — Choose $\lambda_0 \in W$ and let Λ' be a neighborhood of λ_0 in W. Choose $T_g: \Lambda' \times Q_{g_{\lambda_0}} \to \mathcal{A}$ a horizontally analytic tubing of g and $\tau: \Lambda' \times \tilde{U} \to \mathcal{B}$ an M-S-S trivialisation of f (cf. Proposition 10).

Let $T_{f_{\lambda_0}}: Q_{g_{\lambda_0}} \to U_{\lambda_0}$ be a tubing of f_{λ_0}, whose image is contained in \tilde{U} (since $K_{f_{\lambda_0}}$ is connected, there are no critical values of f_{λ_0} in $U_{\lambda_0} - K_{\lambda_0}$). Now define a horizontally analytic tubing T_f of f over Λ' by $T_{f, \lambda} = \tau_\lambda \circ T_{f_{\lambda_0}}$. The images Q_f and Q_g of T_f and T_g are respectively of the form $\mathcal{A} - \mathcal{A}'$ and $\mathcal{B} - \mathcal{B}'$, where \mathcal{A} and \mathcal{B} are homeomorphic to $\Lambda' \times D$.

For any $\lambda \in \Lambda'$, set

$$\gamma_\lambda = T_{f, \lambda} \circ T_{f, \lambda_0}^{-1}: Q_{f, \lambda_0} \to Q_{f, \lambda},$$

and

$$\tilde{\gamma}_\lambda = \tau_\lambda \circ \gamma_\lambda: Q_{f, \lambda_0} \to Q_{f, \lambda},$$

and define the Beltrami forms

$$v_{\lambda_0} = \frac{\partial \gamma_\lambda}{\partial \tilde{\gamma}_\lambda} \text{ on } Q_{f, \lambda},$$

and

$$\tilde{v}_{\lambda_0} = \frac{\partial \tilde{\gamma}_\lambda}{\partial \gamma_\lambda} \text{ on } Q_{f, \lambda_0}.$$

Further define v_λ on A_λ and \tilde{v}_λ on A_{λ_0} by

$$v_\lambda = (f^n)_* v_{\lambda_0} \text{ on } Q_{f_{\lambda_0}}, \quad v = 0 \text{ on } K_{f_{\lambda_0}},$$

$$\tilde{v}_\lambda = (f^n)_* \tilde{v}_{\lambda_0} \text{ on } Q_{f_{\lambda_0}}, \quad \tilde{v} = 0 \text{ on } K_{f_{\lambda_0}}.$$

Call θ_λ and $\bar{\theta}_\lambda$ the complex structures on A_λ and A_{λ_0} defined by v_λ and \tilde{v}_λ respectively. The map $\lambda \mapsto \tilde{v}_\lambda$ is a complex analytic map of Λ' into $L^\infty(A_{\lambda_0})$, so there exists a unique complex structure $\bar{\theta}$ on $\Lambda' \times A_0$ inducing $\bar{\theta}$ on $\{\lambda\} \times A_{\lambda_0}$ for each $\lambda \in \Lambda'$ and such that $\Lambda' \times \{x\}$ is an analytic submanifold for each $x \in A_{\lambda_0}$ (cf. 1,3).

Let $\theta = \tau_\lambda (\bar{\theta})$ be the corresponding complex structure on $\tilde{\mathcal{U}} = \tau(\Lambda' \times \tilde{U})$; it induces θ_λ on $\tau_\lambda(\tilde{U})$ for each λ and the $\tau(\Lambda' \times \{x\})$ are complex analytic submanifolds of $\tilde{\mathcal{U}}$. ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPERIEURE
Since \(\theta=\sigma_0 \) on \(\mathcal{K} \cap \mathcal{M} \), it can be extended to \(\mathcal{K} \cup \mathcal{M} \) by setting \(\theta=\sigma_0 \) on \(\mathcal{K} \).

Proposition 13 now follows from the following two Lemmas.

Lemma 1. — For any \(\lambda \in \Lambda' \), the following conditions are equivalent:

(i) \(\lambda \in \Gamma_0 \).

(ii) There exists an isomorphism

\[
\alpha: (\hat{A}_\lambda, \theta_\lambda) \to (\hat{B}_\lambda, \sigma_0)
\]

extending \(\gamma_{\lambda'} \) and such that \(\alpha \circ f_\lambda = g_\lambda \circ \alpha \) on \(\Lambda' \).

(iii) There exists a map \(\alpha: \hat{A}_\lambda \to \mathbb{C} \), holomorphic with respect to \(\theta_\lambda \) and extending \(\gamma_{\lambda'} \).

Lemma 2. — Let \(\Omega \) be a complex analytic manifold, \(\pi: \Omega \to \Lambda \) be a submersion, and \(\Omega' \) be open in \(\Omega \). Suppose both \(\Omega \) and \(\Omega' \) are homeomorphic over \(\Lambda \) to \(\Lambda \times D \), and that \(\hat{Q}=\Omega-\Omega' \) is homeomorphic over \(\Lambda \) to \(\Lambda \times \hat{Q}_R \). Let \(h: \hat{Q} \to \mathbb{C} \) be a holomorphic function, and call \(h_\lambda \) the restriction of \(h \) to \(\hat{Q}_\lambda = \Omega \cap \pi^{-1}(\lambda) \). Then the set of \(\lambda \) for which \(h_\lambda \) extends to a holomorphic function on \(\Omega_\lambda = \pi^{-1}(\lambda) \) is a closed analytic subset of \(\Lambda \).

Proof of Lemma 1. — Clearly (ii) implies both (i) and (iii). To see that (i) implies (ii), let \(P \) be a hybrid equivalence of \(\hat{f}_\lambda \) and \(\hat{g}_\lambda \) such that

\[
i(P)=[\mathbb{T}_{\lambda} \circ \mathbb{T}_{f_\lambda}^{-1}, \beta; f_\lambda, g_\lambda]=0.
\]

Define \(\alpha: \hat{A}_\lambda \to \hat{B}_\lambda \) by \(\alpha=\mathbb{T}_{\lambda} \circ \mathbb{T}_{f_\lambda}^{-1} \) on \(\hat{A}_\lambda-K_{f_\lambda} \) and \(\alpha=\beta \) on \(K_{f_\lambda} \). By Proposition 6 (1,4), \(\alpha \) is an isomorphism of \(\hat{A}_\lambda \) with the complex structure \(\theta_\lambda \) onto \(\hat{B}_\lambda \) with the complex structure \(\sigma_0 \).

Next we show that (iii) implies (ii). For any \(z \in \mathcal{B}_\lambda \), the cardinal of \(\alpha^{-1}(z) \), counted with multiplicity, is the winding number of a loop \(\alpha \) around \(z \), where \(\Gamma \) is a loop in \(\hat{A}_\lambda \) near \(\partial \mathcal{A}_\lambda \); it is 1. If we had chosen \(z \) in \(\mathcal{C}-\mathcal{B}_\lambda \), we would have found 0. Therefore \(\alpha \) is bijective from \(\hat{A}_\lambda \) onto \(\hat{B}_\lambda \), and hence an isomorphism of \((\hat{A}_\lambda, \theta_\lambda) \) onto \((\hat{B}_\lambda, \sigma_0) \).

The function \(\alpha \circ f_\lambda - g_\lambda \circ \alpha \) is continuous on \(\mathcal{A}_\lambda \), analytic on \(\hat{A}_\lambda \) for the structure \(\theta_\lambda \) and vanishes on the boundary, so it vanishes on \(\mathcal{A}_\lambda \).

Q.E.D. Lemma 1.

Proof of Lemma 2. — Let \(\lambda_0 \) be a point of \(\Lambda \), \(\zeta_0 \) be an isomorphism of \(\Omega_{\lambda_0} = \pi^{-1}(\lambda_0) \) onto \(D \) and let \(A \) be a closed disc embedded in \(\Omega_{\lambda_0} \) containing \(\Omega_{\lambda_0} \). According to a Theorem of Grauert, there exists a Stein neighborhood \(U \) of \(A \) in \(\Omega \) and a holomorphic function \(\zeta: U \to \mathbb{C} \) extending \(\zeta_0 \).

We can find neighborhoods \(\Lambda' \) of \(\lambda_0 \) in \(\Lambda \) and \(W \) of \(A \) in \(U \), and an open subset \(V \subset \mathbb{C} \) such that

\[
\varphi: x \mapsto (\pi(x), \zeta(x))
\]

is an isomorphism of \(W \) onto \(\Lambda' \times V \). Set \(\Gamma=\zeta_0(\partial A) \) and \(\Gamma_\lambda=\varphi^{-1}(\{\lambda\} \times \Gamma) \).
By restriction \(W \) if necessary, we may assume that \(\Gamma_\lambda \subset \hat{Q}_\lambda \) for all \(\lambda \in W \). The function \(h_\lambda \) extends to an analytic function on \(Q_\lambda \) if and only if the integrals
\[
\int_{\Gamma_\lambda} h_\lambda \zeta_N d\zeta_\lambda
\]
vanish for all \(n \geq 0 \). Since these integrals are analytic functions of \(\lambda \), the set defined by these conditions is analytic.

Q.E.D.

Corollary 1. — Using the notations of II.3, \(P_\lambda \) depends analytically on \(\lambda \) for \(\lambda \in M_f \).

Proof. — By Proposition 11 (a) and Proposition 12, the map \(\lambda \mapsto P_\lambda \) from \(M_f \) into the affine space \(E \) of monic polynomials of degree \(d \) with no term of degree \(d-1 \) is continuous. According to Proposition 6, its graph is the set of \((\lambda, P) \in \Lambda \times E \) for which there is a hybrid equivalence \(\alpha \) of \(f_\lambda \) with \(P_\lambda \) such that \(i(\lambda) = 0 \). This is an analytic subspace.

Corollary 2. — Suppose \(d = 2 \) and let \(c \) be a point of the standard Mandelbrot set \(M \). The set \(\chi^{-1}(c) \) is analytic.

Proof. — Let \(p \) be the constant family \(p_\lambda = P_\lambda : z \mapsto z^2 + c \). The set \(\mathcal{R} \) for \(p \) is all of \(\Lambda \). Corollary 2 follows by applying Proposition 13 to \(p \) and \(f \).

7. **Continuity of \(\chi \) in degree 2.**

Lemma (valid for any degree). — Choose \(\lambda_0 \in \Lambda \) and let \((\lambda_n) \) be a sequence in \(\Lambda \) converging to \(\lambda_0 \). Then there exists a subsequence \((\lambda_n^*) = (\lambda_{n_k}) \) such that the \(P_{\lambda_n^*} \) converge to a polynomial \(\bar{P} \) and such that the \(\phi_{\lambda_n^*} \) converge uniformly on every compact subset of \(A_{\lambda_0} \) to a quasi-conformal equivalence \(\tilde{\phi} \) of \(f_{\lambda_0} \) with \(\bar{P} \).

Remarks. — (1) If \(\lambda_0 \in \mathcal{R} \), then the Lemma follows from Proposition 12, with \(\bar{P} = P_{\lambda_0} \).

(2) If \(\lambda_0 \in \mathcal{F} \), then \(\tilde{\phi} \) may fail to vanish on \(K_{\lambda_0} \) even if \(d = 2 \). If \(d \geq 3 \), the polynomial \(\bar{P} \) is not necessarily hybrid equivalent to \(f_{\lambda_0} \) and may depend on the choice of the subsequence. We will show examples of all these pathologies in chapter III.

Proof of Lemma. — Since all the \(\phi_{\lambda_n} \) are quasi-conformal with the same dilatation ratio, they form an equicontinuous family. Moreover, any compact subset of \(A_{\lambda_0} \) is contained in all but finitely many of the \(A_{\lambda_n} \). The Lemma follows by Ascoli's Theorem.

Proposition 14. — If \(d = 2 \), the map \(\chi : \Lambda \rightarrow \mathbb{C} \) is continuous.

Proof. — By Proposition 12, \(\chi \) is continuous on \(\mathcal{F} \). It is therefore enough to show that for any sequence \((\lambda_n) \) in \(\Lambda \) converging to a point \(\lambda_0 \in \mathcal{F} \) you can choose a subsequence \(\lambda_n^* = \lambda_{n_k} \) such that the \(\chi(\lambda_n^*) \) converge to \(\chi(\lambda_0) \).

First let us show that \(c_0 = \chi(\lambda_0) \) belongs to \(\partial M \). Let \((\mu_n) \) be a sequence in \(\mathcal{F} \) converging to \(\lambda_0 \). By the preceding Lemma, you can choose a subsequence \(\mu_n^* \) such that \(\chi(\mu_n^*) \) converge to a point \(\tilde{c'} \) for which \(\bar{P'} : z \mapsto z^2 + \tilde{c'} \) is quasi-conformally equivalent to \(P_0 : z \mapsto z^2 + c_0 \).

Annales Scientifiques de l'École Normale Supérieure
For any n, the point $c_n' = \chi(\mu_n)$ belongs to ∂M since $P'_n: z \mapsto z^2 + c_n'$ has an indifferent periodic point, like f'_n. Therefore $c'=\lim c'_n$ belongs to ∂M, and $c_0 = \tilde{c}$ by Proposition 7 (I,5).

Now let (λ_n) be an arbitrary sequence of points of Λ converging to λ_0. According to the Lemma, a subsequence (λ_n^*) can be chosen so that $\chi(\lambda_n^*)$ converges to a point \tilde{c} such that $\tilde{P}: z \mapsto z^2 + \tilde{c}$ is quasi-conformally equivalent to P_0. By Proposition 7, $\tilde{c} = c_0$, so $c_0 = \lim \chi(\lambda_n^*)$.

Q.E.D.

CHAPTER III

Negative results

1. NON-ANALYTICITY OF χ. — Let $f=(f_\lambda)_{\lambda \in \Lambda}$ be an analytic family of polynomial-like mappings of degree 2, and $\chi: \Lambda \to \mathbb{C}$ be the map defined in section II,3. The following example shows that χ is not generally analytic on a neighborhood of ∂M_r.

Let $f: (f_\lambda)_{\lambda \in \Lambda}$ be an analytic family of polynomial-like mappings of degree 2. Let ω_0 be the critical point of f_0; we will assume that Λ is a neighborhood of 0 in \mathbb{C}, and that there is an analytic map $\lambda \mapsto \alpha_\lambda$ such that α_λ is a repulsive fixed point of f_λ for all $\lambda \in \Lambda$, and that $f_0^k(\omega_0) = \alpha_0$. Set $\rho(\lambda) = f'_1(\alpha_\lambda)$.

Let g_λ be a branch of f_λ^{-1} defined near α_λ, and such that $g_\lambda(\alpha_\lambda) = \alpha_\lambda$. Choose a sequence of analytic functions $\lambda \mapsto \alpha_\lambda, \nu$, restricting Λ if necessary, so that:

(i) $\alpha_\lambda, 0 = \alpha_\lambda$ and $\alpha_\lambda, 1 \neq \alpha_\lambda$.
(ii) $f(\alpha_\lambda, n+1) = \alpha_\lambda, n$.
(iii) $g(\alpha_\lambda, n) = \alpha_\lambda, n$ for n sufficiently large.

If $\lambda \mapsto f_\lambda^k(\omega_0) - \alpha_\lambda$ has a simple zero at $\lambda = 0$, there exists a sequence $(\lambda_n)_{n \geq n_0}$ converging to 0, such that $f_\lambda^k(\omega_0) = \alpha_\lambda, n$; and the ratios λ_{n+1}/λ_n converge to $1/\rho(0)$.

Using the notations of II,4, set $c_0 = \chi(0)$, $a_{c_0} = \phi_0(\alpha_0)$ and $a_{c_0, n} = \phi_0(\alpha_0, n)$. For c near c_0, the polynomial $P_c: z \mapsto z^2 + c$ has a repulsive fixed point α_c near a_{c_0}, and we may define analytic functions $a_{c, n}$ of c such that $a_{c, 0} = \alpha_c$ and $a_{c, n+1} = P_c^{-1}(a_{c, n})$.

If the zero of $c \mapsto P_c^k(0) - a_c$ at c_0 is simple (which in fact it always is), there exists a sequence $(c_n)_{n \geq n_0}$ converging to c_0 such that $P_{c_n}^k(0) = a_{c_n, n}$; the ratios

$$\frac{c_{n+1} - c_0}{c_n - c_0},$$

converge to $1/P_{c_0}(a_{c_0})$.

There exists a neighborhood V of c_0 such that for $n \geq n_1$, c_n is the only point of V such that $P_{c_n}^k(0) = a_{c_n, n}$; therefore $\chi(\lambda_n) = c_n$ for all n sufficiently large. If $\rho(0) = f'_0(\alpha_0) \neq P_{c_0}^k(a_{c_0})$, the ratios λ_{n+1}/λ_n and

$$\frac{c_{n+1} - c_0}{c_n - c_0},$$

will have different limits. Therefore χ is not analytic near 0.

4e SÉRIE — TOME 18 — 1985 — N° 2
Remark. — The reader who examines Figures 3 and 6 carefully will observe that the "trunk of the elephant" is more open in Figure 6. This can be understood as an example of the above computation. In both pictures, the tip of the trunk corresponds to a mapping for which the critical point lands on the 12th move on a repulsive cycle of length 2. Moreover, the tree which describes the combinatorics of the mappings [D-H] is the same. However, the eigenvalues of the cycles in the two drawings are different.

2. NON-CONTINUITY OF $\lambda \mapsto \phi_\lambda$ IN DEGREE 2. — Let $(f_\lambda)_{\lambda \in \Lambda}$ be an analytic family of polynomial-like mappings of degree 2. We will take Λ a neighborhood of 0 in C, U_λ and U_0 symmetrical with respect to R and we will assume that $f_\lambda(z) = f_\lambda(z)$ for all $\lambda \in \mathbb{R}$. Choose for each λ a hybrid equivalence $\phi_\lambda : V_\lambda \to C$ of f_λ with a polynomial $P_\lambda : z \to z^2 + \chi(\lambda)$, with the ϕ_λ all quasi-conformal, of dilatation ratio bounded by a constant independent of λ. Suppose that all V_λ contain a fixed neighborhood of K_0, are symmetric with respect to R and that $\phi_\lambda(z) = \phi_\lambda(z)$ for $\lambda \in \mathbb{R}$. (We are not assuming that the ϕ_λ are obtained from a tubing.)

If (λ_n) is a sequence converging to 0, there is a subsequence (λ_{n_k}) such that the $(\phi_{\lambda_{n_k}})$ converge to a limit φ, which is a quasi-conformal equivalence of f_0 with a polynomial $P : z \to z^2 + \tilde{c}$.

Suppose that f_0 has a fixed point x_0 with $f'(x_0) = 1$, and that for $\lambda > 0$ the map f has two conjugate fixed points x_λ and \tilde{x}_λ which are then necessarily repulsive. Then $\chi(0) = 1/4$, and $\chi(\lambda) > 1/4$ for $\lambda > 0$.

Proposition 15. — If $\lambda_n > 0$ for all n, then $\varphi = \phi_0$ only if f_0 is holomorphically equivalent to $z \to z^2 + 1/4$.

Proof. — If $G \subset U$ is open, G/f_λ will be the quotient of G by the equivalence relation generated by setting x equivalent to $f_\lambda(x)$ whenever both x and $f_\lambda(x)$ are in G. Pick $u > 0$ and for $\lambda \geq 0$ let G_λ (resp. H_λ) denote the disc centered at $\text{Re}(x_\lambda) - u$ [resp. $\text{Re}(x_\lambda) + u$], the edge of which contains x_λ and \tilde{x}_λ. Set $X_\lambda = G_\lambda/f_\lambda$ and $Y_\lambda = H_\lambda/f_\lambda$. If u and λ are sufficiently small, then both X_λ and Y_λ are isomorphic to the cylinder C/Z. For $\lambda > 0$ both X_λ and Y_λ can be identified to $(G_\lambda \cup H_\lambda)/f_\lambda$, and this induces an isomorphism $E_\lambda : X_\lambda \to Y_\lambda$. There is no mapping E_0 but if (λ_n) is a sequence of positive numbers converging to zero, then a subsequence (λ_{n_k}) can be chosen so that the E_{n_k} converge to $E : X_0 \to Y_0$.

The Beltrami form $\mu_\lambda = \partial \phi_\lambda / \partial \overline{\phi_\lambda}$ is f-invariant for all λ, so for all $\lambda > 0$ we find Beltrami forms μ_λ^x and μ_λ^y on X_λ and Y_λ, respectively. For $\lambda > 0$ we have $\mu_\lambda^x = E_\lambda^* \mu_\lambda^y$. Therefore if (λ_n) is a sequence for which the (ϕ_{λ_n}) and the E_{λ_n} have limits φ and E, set $\tilde{\mu} = \overline{\partial \varphi / \partial \overline{\varphi}}$, and we get $\tilde{\mu}^x = E^* \mu_0^y$. If $\varphi = \phi_0$, we get $\mu_0^x = E^* \mu_0^y$, but $\mu_0^x = 0$, at least if $\omega_0 < x_0$ and if u is sufficiently small, for then $G_0 \subset R_0$. So $\mu_0^x = 0$, and $\mu_0 = 0$ on H_0.

Since $K_0 \cup H_0$ is a neighborhood of x_0 which is in the Julia set, and since μ_0 is f_0-invariant, we find that μ_0 vanishes on a neighborhood of K_0. This is just another way of saying that ϕ_0 is a holomorphic equivalence of f_0 and P_0 (Fig. 10).

Q.E.D.
3. A FAMILY OF POLYNOMIALS. — In this paragraph we will study a family of polynomials of degree 3, the properties of which will be used in section 4 to construct a third counterexample.

For any $a \in \mathbb{R}_+$, define $Q = Q_a$ by

$$Q_a(z) = az^2 - z^3.$$

This polynomial has two real critical points ω and ω' with $\omega < 0 < \omega'$, and the point $a=0$ is an indifferent fixed point with $Q'(a) = 1$. Set $\omega_t = Q'(\omega)$ and $\omega'_t = Q'(\omega')$; the ω_t are for each a an increasing sequence tending to 0, and each ω_t is an increasing function of a.

There is a value a_∞ of a for which $\omega'_2 = 0$; for $a \geq a_\infty$ the point ω'_2 is a decreasing function of a. Thus there is a decreasing sequence (a_n) tending to a_∞ such that $\omega'_2 = \omega_n$ for $a = a_n$. Set $I = [a_0, a_\infty]$ and $I_n = [a_n, a_{n+1}]$.

For $a \in I$, the graph of $Q|_I$ and the Julia set of Q look as Figures 11-12.

There exists a neighborhood of 0 on which Q is polynomial-like of degree 2, hybrid equivalent to $z \to z^2 + 1/4$. If a and b are both in $I_n = [a_n, a_{n+1}]$, the polynomials Q_a and Q_b are quasi-conformally conjugate; if a and b are simply in I, by [M-S-S] and Proposition 4 there exists a quasi-conformal homeomorphism $\psi_{a,b}: \mathbb{C} \to \mathbb{C}$, holomorphic on $\mathbb{C} - K_a$, conjugating Q_a to Q_b on a neighborhood of J_a and on $\mathbb{C} - K_a$. The $\psi_{a,b}$ can be chosen to depend continuously on a, b and with dilatation ratio bounded on compact subsets of $I \times I$; let κ_n be a bound for $(a, b) \in I_n \times I_n$.

We shall now describe an invariant of the Q_a as a varies in I_n.

A polynomial-like mapping $f: U' \to U$ will be of real type if U and U' are symmetrical with respect to the real axis, and $f(\overline{z}) = \overline{f(z)}$. Let $f: U' \to U$ be a polynomial-like mapping of real type, quasi-conformally equivalent to some Q_a with $a \in I$. We will define an invariant $\theta(f) \in \mathbb{T} = \mathbb{R}/\mathbb{Z}$.

The map f has an indifferent fixed point a with $f'(a) = 1$, and two critical points $\omega = \omega_f$ and $\omega' = \omega'_f$. By a change of variables we may assume $a = 0$, $f''(a) > 0$ and $\omega < 0 < \omega'$.

Let G and H be open discs of radius a small number u, centered at $-u$ and u respectively. Set $X = G/f$ and $Y = H/f$, and let ω^X and ω'^X be the points of X given by the orbits of ω_f and ω'_f respectively. More generally, if F is an f-invariant subset of U we will call F^X (resp. F^Y) the image of $F \cap G$ in X (resp. the image of $F \cap H$ in Y).

The manifolds X and Y are isomorphic to the cylinder \mathbb{C}/\mathbb{Z}. If x and y are two points of X, let $x - y$ be the point $h(x) - h(y)$ of \mathbb{C}/\mathbb{Z}, where h is an isomorphism of X onto \mathbb{C}/\mathbb{Z} respecting the orientation of the equator. Clearly $x - y$ does not depend on the choice of h. If x and y are in Y, we may similarly define $x - y$. More generally, if μ is an f-invariant Beltrami form on U and $x, y \in X$, we set

$$[x - y]_\mu = h_\mu(x) - h_\mu(y),$$

where $h: X \to \mathbb{C}/\mathbb{Z}$ is a quasi-conformal homeomorphism such that $\partial h/\partial h = \mu^X$.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE
Set $\theta(f) = \omega^X - \omega^X$. If $f \sim_h g$, then $\theta(f) = \theta(g)$. Indeed, $G \subseteq K_f$, and therefore a hybrid equivalence of f with g gives an analytic isomorphism of X_f onto X_g.

If μ is an f-invariant Beltrami form on U (or even on K_f), set $\theta_\mu(f) = \left[\omega^X - \omega^X\right]_\mu$.

4. NON-CONTINUITY OF $\lambda \mapsto P_\lambda$ IN DEGREE 3.

PROPOSITION 16. — There exists an analytic family $(f_\lambda)_{\lambda \in \Lambda}$ of polynomial-like mappings of degree 3, and a sequence $(\lambda_n)_{n \in \mathbb{N}}$ of points of $M_f < \Lambda$, converging to a point λ_0 such that the polynomials P_{λ_n} constructed in 11.3 have a limit \bar{P} which is not affine conjugate to P_{λ_0}.

Our construction will give polynomials \bar{P} and P_{λ_0} which will be affine conjugate to elements of the family $(Q_\lambda)_{\lambda \in \Lambda}$ studied in paragraph 2. (In order to have actual elements of that family, we would have to change the convention that they be monic.) We will see that P_{λ_0} and \bar{P} are not affine conjugate by showing that $\theta(P_{\lambda_0}) \neq \theta(\bar{P})$.

We will use the counter-example of section 2. Our Λ will be a neighborhood of 0 in \mathbb{C}, $\lambda_0 = 0$, and all constructions will be equivariant under $z \mapsto \bar{z}$.

We will start from a polynomial $Q = Q_\lambda$ with $\lambda \in I$, an isomorphism $E : X_Q \to T_Q$ and a Beltrami form ν defined on a neighborhood U_Q of K_Q. We will assume that U_Q is homeomorphic to D, that $U_Q = Q^{-1}(U_Q)$ (necessarily homeomorphic to D) is relatively compact in U_Q, and that $Q^*\nu = \nu|U_Q$ and $E^*\nu^Y = \nu^X$ (we will say that ν is invariant by Q and E).

We will require more of Q and E. Set $J_Q = \partial K_Q$; in this case $J_Q^Y \cap \mathbb{R}$ is infinite, in fact a Cantor set.

LEMMA 1. — Q and E can be chosen so that ω^X and ω^X are different points of $E^{-1}(J_Q^Y)$.

Proof of Lemma. — When λ varies in I, the set J_Q remains homeomorphic to itself, as do J^Y_Q and $J^Y_Q \cap \mathbb{R}^Y$; the J_{λ_n} (and the $J^Y_{\lambda_n}$ and the $J^Y_{\lambda_n} \cap \mathbb{R}^Y$) are the fibers of a trivial fibration over I.

Thus there exist two continuous maps $a \mapsto x(a)$ and $a \mapsto y(a)$ such that $x(a)$ and $y(a)$ are distinct points of $J^Y_{\lambda_n} \cap \mathbb{R}^Y$. For any $a \in I$, choose E_a so that $E_a(\omega^X) = x(a)$. Then for any $n \in \mathbb{N}$, there exists $a_n \in I$ such that $Q^2(\omega^X) = Q^2(\omega^X)$ when $a = a_n$. As a varies from a_n to a_{n+1}, the angle $\omega^X - \omega^X$ makes one complete revolution. Therefore there exists $a \in J_{\lambda_n} \cap \mathbb{R}$ for which $E_a(\omega^X) = y(a)$.

Q.E.D.

Proof of the Proposition. — We will assume that Q and E have been chosen so as to satisfy Lemma 1. Choose a neighborhood U_Q of K_Q as above, and a Beltrami form ν on U_Q, invariant by Q and E.

We shall take f_0 to be the mapping $Q : U_Q' \to U_Q$, with U_Q and U_Q carrying the complex structure defined by ν. More precisely, let ψ be a quasi-conformal diffeomorphism of U_Q onto an open subset $U_Q \subset \mathbb{C}$, such that $\partial \psi/\partial \psi = \nu$ and $\psi(0) = 0$. Set $f_0 = \psi \circ Q \circ \psi^{-1} : U_Q' \to U_Q$, where $U_Q = \psi(U_Q')$. We may normalize ψ so that $f_0(z) = z + z^2 + O(|z|^3)$ near 0.

For any $\lambda \in \mathbb{C}$ set $f_\lambda(z) = f_0(z) + \lambda$. In a neighborhood Λ of 0 the mapping f_λ is polynomial-like of degree 3 from U_0 onto $U = U_0 + \lambda$. For $\lambda \in \mathbb{R}_+ \cap \Lambda$, the mapping f_λ
POLYNOMIAL-LIKE MAPPINGS

has two conjugate repulsive fixed points \(\alpha \) and \(\bar{\alpha} \) close to 0. The interval \([\omega, f_\alpha(\omega)]\) is sent into itself, so \(\omega \) and \(\omega_\alpha \) both belong to \(K_\alpha \), hence \(K_\alpha \) is connected and the polynomial \(P_\alpha \) obtained by straightening \(f_\alpha \) does not depend on the choice of a tubing.

Clearly \(\theta(P_o) = \theta(f_0) = \theta_v(Q) \). We will show that for appropriate choices of \(\nu \) and of the sequence \((\lambda_n)\) in \(\Lambda \setminus \mathbb{R}_+^* \), the \(P_n \) have a limit \(\tilde{P} \) such that \(\theta(\tilde{P}) \neq \theta_v(Q) \).

As in section III.3, define for each \(\lambda \in \Lambda \setminus \mathbb{R}_+^* \) cylinders \(X_\lambda \) and \(Y_\lambda \), and an isomorphism \(E_\lambda : X_\lambda \to Y_\lambda \). As before there is no \(E_0 \), but \(E^\nu = \psi^\nu \circ E \circ (\psi^\nu)^{-1} \) is an isomorphism of \(X_0 \) onto \(Y_0 \).

Lemma 2. There exists a sequence \((\lambda_n)\) in \(\Lambda \setminus \mathbb{R}_+^* \) converging to 0, such that the \(E_{\lambda_n} \) converge to \(E^\nu \).

Proof. Let \(u \) and \(v \) be two points of \(U_0 \cap \mathbb{R} \) close to 0, such that \(u < 0 < v \) and \(E^\nu(u) = v \). For any integer \(n \geq 1 \), the mapping \(g_n : \lambda \mapsto f_\lambda^n(u) \) is increasing for \(\lambda \) in some interval \([0, \lambda_n^+]\), with \(g_n(0) < 0 \) and \(g_n(\lambda_n^+) > v \), therefore there exists \(\lambda_n \in]0, \lambda_n^+[\) such that \(g_n(\lambda_n) = v \) (Fig. 13).

Then \(E_{\lambda_n}(u) = v \), and so the \(E_{\lambda_n} \) have the limit \(E^\nu \). For all \(\lambda > 0 \), there exists an \(n \) for which \(g_n(\lambda) > v \), so the sequence \((\lambda_n)\) converges to 0.

Q.E.D.

Proposition 16 now follows from Lemmas 3 and 4.

Lemma 3. If \((\lambda_n)\) satisfies the conditions of Lemma 2 and if a subsequence \((\lambda_n^*)\) is chosen so that the \(P_{\lambda_n^*} \) have a limit \(\tilde{P} \), there exists a Beltrami form \(\delta \) on \(C \), invariant under \(Q \) and \(E \), vanishing on \(C - K_Q \), and such that \(\theta(\tilde{P}) = \theta_b(Q) \).

Proof. The mapping \(\psi \) is a quasi-conformal equivalence of \(Q \) with \(f_0 \) and \(\nu = \partial \psi / \partial \bar{\psi} \). Let

\[
T_Q : \mathcal{D}_0 - \mathcal{D}_0 \to \Lambda_Q - \Lambda'_Q,
\]

be an analytic tubing of \(Q \) (since \(K_Q \) is connected, this is possible by Proposition 4), and choose a tubing \(T = (T_\lambda) \) of \(f \) such that \(T_0 = \psi \circ T_Q \). Construct \((\varphi_k)\) and \((P_k)\) from \(T \) as in II.3. By the Lemma of II.7 there is a subsequence \((\lambda_n^*)\) such that the \(\varphi_k \) converge to a quasi-conformal equivalence \(\tilde{\varphi} \) of \(f_0 \) with \(\tilde{P}_0 \).

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPERIEURE
Then $\tilde{\mu} = \partial \Phi / \partial \Phi$ is a Beltrami form on U_0, invariant under f_0 and E, which agrees on $\mathbb{A} - \mathbb{A}'$ with $\partial^2 \psi^{-1} / \partial \psi^{-1}$. The mapping $\Phi = \Phi \circ \psi$ is a quasi-conformal equivalence of Q with \tilde{P}, and $\gamma = \partial \Phi / \partial \Phi$ is a Beltrami form on a neighborhood of K_Q, invariant under Q and E and vanishing on $A_Q - K_Q$. Set $\mu = 0$ on $\mathbb{C} - K_Q$ to get a Beltrami form on \mathbb{C}. Then $\theta(\tilde{P}) = \theta_4(Q)$.

Q.E.D.

Lemma 4. Let Q and E satisfy the conditions of Lemma 1.

(a) For any $\varepsilon > 0$, there exists a Beltrami form γ on a neighborhood of K_Q, invariant under Q and E, such that $0 < \theta_4(Q) < \varepsilon$.

(b) There exists $m > 0$ such that any Beltrami form δ on \mathbb{C}, invariant under Q and E and vanishing on $\mathbb{C} - K_Q$, satisfies $\theta_4(Q) \in [m, 1 - m]$.

Proof of (a). The polynomial Q is Q_a for a in some I_n. Choose $\varepsilon > 0$, and let ε' be such that for any quasi-conformal homeomorphism $h: \mathbb{C} / \mathbb{Z} \rightarrow \mathbb{C} / \mathbb{Z}$ of dilatation ratio $\leq \kappa_n$ (κ_n is defined in II.2), $d(h(u), h(v)) < \varepsilon$ if $d(u, v) < \varepsilon'$.

Choose a quasi-conformal homeomorphism Ψ of Y_Q onto itself, holomorphic on a neighborhood of K_Q, and such that

$$0 < \Psi(E(\omega')) - \Psi(E(\omega)) < \varepsilon'.$$

Set $\mu_0 = \partial \Psi / \partial \Psi$, and let μ be the corresponding Beltrami form on $K_Q \cup H$, vanishing on K_Q and invariant under Q^{-1} on H. Let V_0 be a neighborhood of K_Q with $V_1 = Q^{-1}(V_0)$ relatively compact in V_0.

There then exists a unique Beltrami form γ_0, invariant under Q, agreeing with μ on $(V_0 - V_1) \cap H$, and vanishing on $(V_0 - V_1) - H$ and on K_Q. In general, $\gamma_0 \neq \mu_0$, but if γ_n is the Beltrami form on $V_n = Q^{-n}(V_0)$ defined in the same way, then $\| \gamma_n \|_{\infty} < \| \mu_0 \|_{\infty}$ for all n, and $\gamma_n \rightarrow 0$ in L^1. So $0 < [E(\omega') - E(\omega)]_{\infty} < \varepsilon'$ for sufficiently large n.

Let γ be the Beltrami form on V_n, invariant under Q and E and agreeing with γ_n on $V_n - K_Q$. There is a quasi-conformal equivalence Φ of $Q = Q_a$ with a polynomial $Q_{a, b}$, $b \in I_n$ such that

$$\partial \Phi / \partial \Phi = \gamma \quad \text{on} \quad K_Q$$

and

$$= 0 \quad \text{on} \quad \mathbb{C} - K_Q$$

and Φ agrees with $\psi_{a, b}$ on I_Q.

Let γ^* be the form which agrees with γ (and hence with γ_n) on $V_n - K_Q$ and with $\partial \psi_{a, b} / \partial \psi_{a, b}$ on K_Q. Then

$$\theta_4(Q) = [E(\omega') - E(\omega)]_{\infty} = [E(\omega') - E(\omega)]^*.$$

However, the identity of Y, taken with the structure defined by γ_n in the domain and that defined by γ^* in the range, is quasi-conformal with dilatation ratio bounded by κ_n. Considering how ε' was chosen, we see that $\theta_4(Q) < \varepsilon$.

4e série — tome 18 — 1985 — n° 2
Proof of part (b). — The polynomial Q is Q_a for some $a \in I_a$ and some $n \in \mathbb{N}$. Let Φ be a quasi-conformal homeomorphism of \mathbb{C} such that $\overline{\partial}\Phi/\partial z = \delta$, $\Phi(z)/z \to 1$ as $z \to \infty$ and $\Phi(0) = 0$.

Then $\Phi \circ Q \circ \Phi^{-1}$ is Q_b for some $b \in I_a$, and there exists $\Psi_{a,b}$ quasi-conformal of dilatation ratio $\leq \kappa_n$ holomorphic on $\mathbb{C} - K_n$ and conjugating Q_a to Q_b there. On $\mathbb{C} - K_n$, Φ and $\psi_{a,b}$ agree, since they are both holomorphic and conjugate Q_a to Q_b. By continuity, they also agree on J_n.

Using Φ we define $\Phi^X: X_a \to X_b$ and $\Phi^Y: Y_a \to Y_b$; then $E_b = \Phi^Y \circ E \circ (\Phi^X)^{-1}$ is an isomorphism of X_a onto Y_b since δ is E-invariant.

Let ω and ω' be the critical points of $Q = Q_a$, then

$$\theta_b(Q) = \Phi^X(\omega^X) - \Phi^X(\omega^X) - E_b(\Phi^X(\omega^X)) - E_b(\Phi^X(\omega^X)) = \Phi^Y(E(\omega^X)) - \Phi^Y(E(\omega^X)).$$

The mapping $\Psi_{a,b}$ conjugates Q_a to Q_b on J_n so we can consider

$$\Psi^Y_b = \psi_{a,b} |^Y_{J_n}: J_a^Y \to J_b^Y.$$

Similarly we can define

$$\psi^Y_b = \psi_{a,b} |^Y_{J_n}$$

for any $b' \in I_a$, and these mappings form an equicontinuous family. Therefore if u and v are two distinct points of J_b^Y, we have

$$m_{u,v} = \inf_{b' \in I_a} | \psi^Y_b(u) - \psi^Y_b(v) | > 0.$$

But we had assumed that ω and ω' satisfied the conditions of Lemma 1, so $E(\omega^X)$ and $E(\omega^X)$ are in J_a^Y, and so Φ^Y and Ψ^X_b agree on these points. Therefore

$$\theta_b(Q) = | \Phi^Y(E(\omega^X)) - \Phi^Y(E(\omega^X)) | > m,$$

where $m = m_{E(\omega^X), E(\omega^X)}$ depends only on $Q = Q_a$ and E.

Q.E.D.

This ends the proof of Lemma 4 and of Proposition 16.

CHAPTER IV

One parameter families of maps of degree 2

1. Topological holomorphy. — In this chapter, we will consider an analytic family $f = (f_\lambda)_{\lambda \in \Lambda}$ of polynomial-like mappings of degree 2, where dim $\Lambda = 1$, i.e. Λ is a Riemann surface. We will particularly study the straightening map $\chi: \Lambda \to \mathbb{C}$ (defined using some tubing) and the set $M_f = \chi^{-1}(M)$.

Recall that M_f and the restriction of χ to M_f do not depend on the tubing; we have also shown that χ is not in general analytic.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE
We will show in this chapter that χ has the same topological properties it would have if it were analytic, and we will give conditions for χ to induce a homeomorphism, sometimes even quasi-conformal, of M_τ onto M.

The point of these conditions is that they are preserved by small perturbations.

The first two sections are devoted to generalities about "topologically holomorphic" mappings.

Reminder. Let X and Y be oriented topological surfaces and $\varphi: Y \to X$ a continuous map. If $y \in Y$ is isolated in its fiber, the local degree $i_y(\varphi)$ of φ at y is defined as follows:

set $x = \varphi(y)$ and choose neighborhoods U and V of x and y respectively, homeomorphic to D and such that $\varphi(V) \subset U$ and $\{y\} = V \cap \varphi^{-1}(x)$. If γ is a loop in $V - \{y\}$ with winding number 1 around y then $i_y(\varphi)$ is the winding number of $\varphi \circ \gamma$ around x.

If φ is proper and X and Y are connected, then φ has a degree. Indeed, the cohomology groups with compact support $H^2_c(X)$ and $H^2_c(Y)$ are canonically isomorphic to \mathbb{Z} and $\varphi^*: H^2_c(Y) \to H^2_c(X)$ is multiplication by the integer $\deg \varphi$.

If φ is proper, X and Y are connected and $y \in Y$ has $\varphi^{-1}(y)$ discrete hence finite, then

$$\deg \varphi = \sum_{x \in \varphi^{-1}(y)} i_x(\varphi).$$

Definition. Let X and Y be oriented surfaces as above, and $\varphi: Y \to X$ be a continuous map. Let M be closed in X and $P = \varphi^{-1}(M)$. We will say that φ is topologically holomorphic over M if for all $y \in P$, y is isolated in its fiber and $i_y(\varphi) > 0$.

Proposition 17. Suppose that $\varphi: Y \to X$ is topologically holomorphic over M and let $P = \varphi^{-1}(M)$.

(a) for all $p \in P$ there exist open connected neighborhoods U and V of $m = \varphi(p)$ and p respectively, with compact closure, such that φ induces a proper map $V \to U$ of degree $d = i_p(\varphi)$;

(b) if $d = 1$ then φ induces a homeomorphism of $P \cap V$ onto $M \cap U$. More generally, $\varphi|_V$ can be written $\pi \circ \tilde{J}$, here $\pi: \tilde{U} \to U$ is the projection of the d-fold cover of U ramified m, and $\tilde{J}: V \to \tilde{U}$ is a proper mapping of degree 1. The mapping \tilde{J} induces a homeomorphism $\tilde{P} \cap \tilde{V}$ onto $\pi^{-1}(M \cap U)$.

Proof. (a) Let B be a compact neighborhood of p, containing no other point of $\varphi^{-1}(m)$. Since $m \notin \varphi(\partial B)$, there is an open neighborhood U of m homeomorphic to D and such that $U \cap \varphi(\partial B) = \emptyset$. Let V be the connected component of $\varphi^{-1}(U)$ containing p; since $V \subset \hat{B}$, clearly $\varphi: V \to U$ is proper. By the reminder above, $\deg(\varphi|_V) = i_p(\varphi)$.

(b) Just apply the lifting criterion of covering space theory. More specifically, we need to know that $\varphi_*((\pi_1(V - p)))$ is contained in (in fact equal to) the subgroup of $\pi_1(U - m)$ generated by d, which is the very definition of local degree.

Q.E.D.

Corollary. With the hypotheses of the above Proposition, the points of P where $i_p(\varphi) > 1$ form a closed discrete subset of P.

4e série — tome 18 — 1985 — N° 2
Indeed, if \(q \in V \cap P \) and \(q \neq p \) then \(i_q(\varphi) = i_q(\widetilde{\varphi}) \), and since \(\deg(\varphi) = 1 \) the Corollary follows.

The next statement can be viewed as a maximum principle for topologically holomorphic mappings.

Proposition 18. — Let \(X \) and \(Y \) be oriented surfaces, with \(Y \) connected and noncompact, \(\varphi : Y \to X \) a continuous mapping and \(M \subset X \) a closed subset, such that \(\varphi \) is topologically holomorphic over \(M \). Set \(P = \varphi^{-1}(M) \). If \(W \) is a relatively compact component of \(Y - P \) then \(\varphi(W) \) is a relatively compact component of \(X - M \) and \(\varphi \) induces a proper mapping \(W \to \varphi(W) \) of degree \(> 0 \).

Lemma. — Let \(p \in Y \) satisfy \(i_p(\varphi) = 1 \); let \(m = \varphi(p) \) and \(U, V \) be as in Proposition 17. Then \(\varphi \) induces a bijection of the set \(\pi_0(V - P) \) of connected components of \(V - P \) onto \(\pi_0(U = M) \), and for each component \(V' \) of \(V - P \), \(\varphi \) induces a proper mapping \(V' \to \varphi(V') \) of degree 1.

Proof. — Consider the diagram

\[
\begin{array}{ccc}
H^2_1(P \cap V) & \to & H^2_2(V - P) \\
\uparrow \varphi^* & & \uparrow \varphi^* \\
H^2_2(U) & \to & H^2_2(U - M) \\
\end{array}
\]

Since \(\varphi \) induces a homeomorphism of \(P \cap V \) onto \(M \cap U \) (Prop. 17, b), \(\varphi^*_M \) is an isomorphism. Since \(U \) and \(V \) are connected oriented surfaces

\[H^2_2(U) = H^2_2(V) = \mathbb{Z}\]

and \(\varphi^*_M \) is multiplication by \(i_p(\varphi) = 1 \), so it is also an isomorphism. Finally, \(H^2_1(U) = 0 \) since \(U \) is homeomorphic to \(D \).

Therefore \(\varphi^*_M \) is surjective. But

\[H^2_1(U - M) = \mathbb{Z} \oplus (V - P) = \bigoplus_{i \in \pi_0(U - M)} Z_i \]

where \(Z_i = \mathbb{Z} \oplus (V - \varphi^{-1}(U_i)) \) and \(U_i \) ranges over the connected components of \(U - M \).

For all \(i \in \pi_0(U - M) \) the mapping \(\varphi^*_i : Z = H^2_1(U_i) \to Z_i \) is therefore surjective. So \(\pi^{-1}(U_i) \) has at most one component, and the commutativity of the righthand square of the diagram shows that there is precisely one, and that the degree is 1.

Q.E.D.

Proof of Proposition 18. — Let \(W_1 \) be the component of \(X - M \) containing \(\varphi(W) \). Since \(W \) is relatively compact in \(Y \), \(\varphi \) induces a proper mapping \(W \to W_1 \), which we must show to have degree \(> 0 \).

Clearly \(\partial W \) is compact and infinite; since \(\varphi \) has only finitely many ramification points in \(\partial W \), there exists \(m \in \varphi(\partial W) \) with \(i_p(\varphi) = 1 \) for all \(p \in \varphi^{-1}(m) \cap \partial W \). Let \(p_1, \ldots, p_k \) be these points, and let \(U, V_1, \ldots, V_k \) be as in Proposition 17.
Since \(W \) is compact, there exists a neighborhood \(U^* \) of \(m \) in \(U \) such that
\[
\varphi^{-1}(U^*) \cap W \subset V_1 \cup \ldots \cup V_k.
\]

Let \(V_i \) be a connected component of \(W \cap V_i \) which intersects \(\varphi^{-1}(U^*) \cap V_i \) (there is one since \(p_i \in \partial W \)).

The open set \(V_i \) is a component of \(V_i - P \), and \(U' = \varphi(V_i) \) is a connected component of \(U - M \).

By the Lemma there is a unique component \(V_i' \) of \(V_i - P \) such that \(\varphi(V_i') = U' \) for each \(i = 1, \ldots, k \). Let \(i_1, i_2, \ldots, i_k \) be the values of \(i \) for which \(V_i \subset W \). There may be other components of \(\varphi^{-1}(U') \cap W \), but if \(V'' \) is such a component, then \(\varphi(V'') \neq U' \) since \(\varphi(V'') \cap U^* = \emptyset \), so the degree of \(\varphi: V'' \to U' \) is zero. The degree of \(\varphi: W \to W_1 \) is equal to the degree of \(\varphi: \varphi^{-1}(U') \to U' \), which is \(1 \geq 1 \).

Q.E.D.

2. THE RIEMANN-HURWITZ FORMULA. — The results of this paragraph will not be used in an essential way in the remainder of the paper. We have included them to illustrate the strength of topological holomorphy.

For any topological space \(T \) we will note \(h^i(T) \) the \(\mathbb{Z} \)-rank of the Čech cohomology group \(H^i(T; \mathbb{Z}) \), which will be an element of \(\mathbb{Z} = \mathbb{N} \cup \{\infty\} \).

For the spaces which we will consider, all subsets of orientable surfaces, \(h^i(T) \) is also the dimension of the vector space \(H^i(T; k) \) for any field \(k \).

Proposition 19. — Let \(X \) and \(Y \) be oriented connected non-compact surfaces, \(M \) a closed connected subset of \(X \), \(\varphi: Y \to X \) a continuous mapping, topologically holomorphic over \(M \) and \(P = \varphi^{-1}(M) \). Suppose that \(\varphi \) induces a proper map \(P \to M \). Then:

(a) For any \(m \in M \) set \(d_m = \sum_{\varphi^{-1}(m)} i_\varphi(\varphi) \). The number \(d = d_m \) is independant of the choice of \(m \) in \(M \).

(b) There exist neighborhoods \(U \) of \(M \) in \(X \) and \(V \) of \(P \) in \(Y \) such that \(\varphi \) restricts to a proper mapping \(V \to U \) of degree \(d \).

(c) The inequalities \(h^0(P) \leq d \) and \(h^1(P) < dh^1(M) + h^1(Y) \) are satisfied.

(d) If \(h^1(M) \) and \(h^1(Y) \) are finite, then the set \(C \) of ramification points of \(\varphi \) in \(P \) is finite, and

\[
\begin{align*}
\sum_{\varphi^{-1}(n)} (i_\varphi(\varphi) - 1) &=\ h_1(P) - h_0(P) = d(h^1(M) - 1) + \sum_{\varphi \in C} (i_\varphi(\varphi) - 1).
\end{align*}
\]

Under the hypotheses of this Proposition, the mapping \(\varphi: P \to M \) deserves to be called a ramified covering space; part (d) is the Riemann-Hurwitz formula in this setting.

Proof. — (b) There exists a closed neighborhood \(N \) of \(P \) in \(Y \) such that \(\varphi \) induces a proper mapping of \(N \) into \(X \). Indeed, if \(h: Y \to \mathbb{R}_+ \) is a proper continuous function, then the function \(h_1: x \mapsto \sup_{\varphi^{-1}(x)} h(y) \) is locally bounded on \(M \), and so there is a continuous function \(g: X \to \mathbb{R}_+ \) such that \(g(x) > h_1(x) \) for all \(x \in M \). Then \(N = \{ y \in Y \mid h(y) \leq g(\varphi(y)) \} \) satisfies the requirement.
The set \(\varphi(\partial N) \) is closed in \(X \), and does not intersect \(M \). Let \(U \) be the connected component of \(X - \varphi(\partial N) \) containing \(M \) and set \(V = \varphi^{-1}(U) \cap N = \varphi^{-1}(U) \cap \bar{N} \). The sets \(U \) and \(V \) are open and \(\varphi \) restricts to a proper mapping \(V \rightarrow U \).

(a) Let \(d \) be the degree of \(\varphi: V \rightarrow U \). For any \(m \in M \), the sum \(\sum_{p \in \varphi^{-1}(m)} i_p \varphi \) is equal to \(d \) since \(\varphi^{-1}(m) \subset P \subset V \).

(c) Since \(\varphi: P \rightarrow M \) is open and closed, we have that \(\varphi(W) = M \) for each connected component \(W \) of \(P \). Since a fiber of \(\varphi \) has at most \(d \) points, there are at most \(d \) components, i.e. \(h^0(P) \leq d \).

Consider the diagram

\[
\begin{array}{cccc}
H^1(Y) & \rightarrow & H^1(P) & \rightarrow & H^2(Y, P) \\
\uparrow & & \uparrow & & \uparrow \\
H^1(X) & \rightarrow & H^1(M) & \rightarrow & H^2(X, M) & \rightarrow & 0.
\end{array}
\]

Clearly \(h^1(P) \leq h^1(Y) + h^2(Y, P) \). But \(h^2(Y, P) \) is equal to the number of connected relatively compact components of \(Y - p \). By Proposition 18, \(h^2(Y, P) \leq dh^2(X, M) \). Since \(h^2(X, M) \leq h^1(M) \), we have that \(h^1(P) \leq h^1(Y) + dh^1(M) \).

(d) We do not known that \(\varphi \) is topologically holomorphic over a neighborhood of \(M \). The following Lemma deals with this difficulty.

Lemma. — There exists a neighborhood \(U \) of \(M \) and a closed surface \(Z \subset Y \times U \) such that \(Z \cap (Y \times M) \) is the graph of \(\varphi|_p \), and that the projection \(\pi_2: Y \times U \rightarrow U \) restricts to \(q: Z \rightarrow U \) which makes \(Z \) a ramified covering space of \(U \) of degree \(d \). Moreover \(i_{p, \varphi(p)} q = i_p \varphi \) for all \(p \in P \).

Proof of Lemma. — For any open subset \(U' \) of \(X \), let \(Z(U') \) be the set of closed surfaces \(Z' \subset Y \times U' \) such that \(Z' \cap Y \times M \) is the graph of \(\varphi|_p \cap \varphi^{-1}(U') \) and that \(q_{Z'}: Z' \rightarrow U' \) (induced by \(\pi_2 \)) is a ramified covering space, and moreover that \(i_{p, \varphi(p)} q_{Z'} = i_p \varphi \) for \(p \in P \cap \varphi^{-1}(U') \).

This defines a sheaf of sets \(Z \) on \(X \) which induces a sheaf \(Z_M \) on \(M \). The stalk of \(Z \) (or of \(Z_M \)) at \(m \in M \) is \(Z_m = \lim_{U' \ni m} Z(U') \) and for any open set \(A \subset M \) we have \(Z_M(A) = \lim_{U' \subset A} Z(U') \), with the direct limit taken over open subsets \(U' \) of \(X \) with \(U' \cap M = A \) [G]. The problem is to construct an element of \(Z_M(M) \).

First we will show how to construct an element of \(Z_m \) for \(m \in M \). Let \(U_m \) be a neighborhood of \(m \) homeomorphic to \(D \) and for each \(p \in \varphi^{-1}(m) \) let \(V_p \) be a neighborhood of \(p \) satisfying the conditions of Proposition 17. For each \(p \) choose a continuous mapping \(\psi_p: \tilde{U}_p \rightarrow Y \), where \(\tilde{U}_p \) is the covering of \(U_m \) of degree \(d_p = i_p \varphi \), and where \(\psi_p \) is chosen to extend the inverse of the homeomorphism \(P \cap V \rightarrow \pi_p^{-1}(M \cap U_m) \) induced by \(\varphi \). This is possible by the Tietze extension Theorem, if \(V_p \) was chosen contained in an open subset homeomorphic to a disc.

Let \(\tilde{Z}_p \) be the graph of \(\psi_p \) and \(Z_p \) its image in \(Y \times U_m \) by \(\sigma \circ (\pi_p \times 1_Y) \), where \(\sigma(x, y) = (y, x) \).
The projection $\text{pr}_1: \bigcup \bar{U}_p \times Y \to \bigcup \bar{U}_p$ induces a homeomorphism of \mathbb{Z}_p onto $\bigcup \bar{U}_p$, therefore pr_2 makes \mathbb{Z}_p into a ramified covering space of U_m of degree d_p, and $Z_m = \bigcup_{p \in \varphi^{-1}(m)} Z_p$ defines an element of \mathbb{Z}_m.

The key point is that the sheaf \mathbb{Z}_m is soft on $M^* = M - \varphi(C)$. This means that if $F \subseteq A \subseteq B \subseteq M^*$ with A and B open in M^* and F closed, for any $Z' \in Z_m(A)$ there exists $Z'' \in Z_m(B)$ and a neighborhood A' of F in A such that $Z''|_{A'} = Z'|_{A'}$. Indeed, this is a local property, and Z_m is locally on M^* isomorphic to \mathbb{S}_M, where \mathbb{S} is the sheaf on X defined by

$$\mathbb{S}(U) = \{ f \in C(U; \mathbb{R}) \mid f|_{U \cap M} = 0 \}$$

and \mathbb{S}_M is the sheaf induced by \mathbb{S} on M. It is clear, and classical, that sections of \mathbb{S} and \mathbb{S}_M can be spliced using partitions of unity, and so those sheaves are soft.

Since $\varphi(C)$ is closed and discrete, there exists an open neighborhood A of $\varphi(C)$ in M and a section Z_0 of Z_m over A. Let F be a closed neighborhood of $\varphi(C)$ in M contained in A and Z_1 be an element of $Z_m(M^*)$ agreeing with Z_0 on $A' - \varphi(C)$, where $F \subseteq A' \subseteq A$. We get a section Z of $Z_m(M)$ by splicing Z_0 and Z_1.

\[\text{Q.E.D.} \]

Proof of Proposition 19 (d). — If $h^1(M)$ is finite, there is a basis (U_α) of open neighborhoods of M in X such that the maps $H^1(U_\alpha) \to H^1(M)$ are isomorphisms.

Let Z satisfy the conditions of the Lemma, and set $V_\alpha = q^{-1}(U_\alpha)$. The V_α form a basis of neighborhoods of P in Z, so for some α_0, V_{α_0} contains no ramification points of q except those in P; we will only consider $\alpha > \alpha_0$.

Then, according to the Riemann-Hurwitz formula which is classical for ramified covering maps of surfaces,

$$h^1(V_\alpha) - h^0(V_\alpha) = d \left(h^1(U_\alpha) - 1 \right) + \sum_{p \in P} (i_p \varphi - 1).$$

It is easy to show that $H^1(V_\alpha) \to H^1(V_\beta)$ is an isomorphism for $\beta \geq \alpha$. Since $H^1(P) = \lim_{\to} H^1(V_\alpha)$, we see that $h^1(P) = h^1(V_\alpha)$, so

$$h^1(P) - h^0(P) = d \left(h^1(M) - 1 \right) + \sum_{p \in P} (i_p \varphi - 1).$$

Since $h^1(P)$ is finite, as was shown in (c), we see that $\sum_{p \in P} (i_p \varphi - 1)$ is finite, i.e. C is finite.

\[\text{Q.E.D.} \]

3. Topological holomorphy of χ.

Theorem 4. — Let $f = (f_\lambda)_{\lambda \in \Lambda}$ be an analytic family of polynomial-like mappings of degree 2, with Λ connected of complex dimension 1. Then if the mapping $\chi: \Lambda \to \mathbb{C}$ defined using some tubing T of f is not constant, it is topologically holomorphic over M.

\[4^e \text{ s\'erie — tome 18 — 1985 — n° 2} \]
Proof. — If \(\chi \) is not constant, then \(\chi^{-1}(c) \) is discreet for all \(c \in \mathcal{M} \) by Corollary 2 of Proposition 13. So we need to know that \(i_i(\chi) > 0 \) for all \(\lambda \in \mathcal{M}_r \).

Let \(\mathcal{R} \) and \(\mathcal{F} \) be the complementary open and closed subsets of \(\Lambda \) given by the M-S-S decomposition. We will distinguish three cases.

(a) \(\lambda \in \mathcal{R}, \ c \in \mathcal{M} \). Then \(\chi \) is holomorphic on a neighborhood of \(\lambda \) by Theorem 2.

(b) \(\lambda \in \mathcal{R}, \ c \in \mathcal{M} \). According to Proposition 7, \(f_\lambda \) is quasi-conformally equivalent to \(f_\xi \) for \(\lambda' \) sufficiently close to \(\lambda \). But by Proposition 4, \(f_\xi \) is therefore hybrid equivalent to \(f_\lambda \), and so \(\chi \) is constant on a neighborhood of \(\lambda' \), and so constant.

(c) \(\lambda \in \mathcal{F}, \ c \in \partial \mathcal{M} \). Let \(\Delta \) be a disc in \(\Lambda \) containing \(\lambda \) and no other point of \(\chi^{-1}(c) \); set \(\gamma = \partial \Delta \) and \(\iota = i_i(\chi) \). By the definition of \(\mathcal{F} \) there is \(\lambda \in \Delta \) such that \(\chi(\gamma) \) has winding number \(\iota \) around \(\gamma' = \chi'(\lambda') \), and that \(f_\iota \) has a non-persistent indifferent periodic point.

There then exists \(\lambda'' \in \Delta \) so that \(\chi(\gamma) \) has winding number \(\iota \) around \(\lambda'' \) and \(\lambda'' \) has an attractive periodic point, so \(c'' \in \mathcal{M} \).

Now \(i = \sum_{m \in \Delta \cap \chi^{-1}(c'')} i_m \chi \); but each term of the sum is \(> 0 \) since \(\chi \) is holomorphic at such a \(\mu \) (Thm. 3) and there is at least one term in the sum, for \(\mu = \lambda'' \).

Q.E.D.

Proposition 20. — Under the hypotheses of Theorem 4, if the tubing \(T \) is horizontally analytic, then \(\chi \) is quasi-conformal on \(\Lambda' - \mathcal{M}_r \) for any relatively compact open subset \(\Lambda' \) of \(\Lambda \).

Remark. — Here the definition of quasi-conformal is not quite the ordinary one, since \(\chi \) may not be injective. Saying that \(\chi \) is quasi-conformal on \(W \subset \Lambda - \mathcal{M}_r \) means that \(\chi|_W \) is in the Sobolev space \(H^1_{bc}(W) \) and that there exists a Beltrami form \(\mu \) on \(W \) with \(L^\infty \)-norm \(= \kappa < 1 \), such that \(\partial \varphi = \mu \partial \varphi \). In other words, \(\chi \) is analytic for the structure defined by \(\mu \).

Lemma. — Let \(V \) and \(W \) be open subsets of \(\mathbb{C} \), \(k \in]0, 1[\), \((T_\lambda)_\lambda \in W \) a family of quasi-conformal embeddings of \(V \) into \(\mathbb{C} \), all with dilatation bounded by \(k \), and such that \(\lambda \mapsto T_\lambda(x) \) is analytic for all \(x \in V \).

Let \(\sigma : W \to \mathbb{C} \) be an analytic mapping, and let \(W' \subset W \) be the open subset of all \(\lambda \) such that \(\sigma(\lambda') \in T_\lambda(W) \). Then the mapping \(h : \lambda \mapsto T_\lambda^{-1}(\sigma(\lambda')) \) of \(W' \) into \(\mathbb{C} \) is quasi-conformal with dilatation \(\leq k \).

Proof. — Suppose first that \((\lambda, x) \mapsto T_\lambda(x) \) is of class \(C^1 \). Then \(h \) is also of class \(C^1 \), and

\[
\frac{\partial h}{\partial \lambda}(\lambda) = \frac{\partial T}{\partial \lambda}(\lambda, h(\lambda)) \left(\sigma'(\lambda) - \frac{\partial T}{\partial \lambda}(\lambda, h(\lambda)) \right),
\]

\[
\frac{\partial h}{\partial x}(\lambda) = \frac{\partial T}{\partial x}(\lambda, h(\lambda)) \left(\sigma'(\lambda) - \frac{\partial T}{\partial \lambda}(\lambda, h(\lambda)) \right).
\]

Therefore \(h \) is quasi-conformal with dilatation bounded by \(k \).
In the general case, the family \((T_\lambda)\) can be uniformly approximated by families \(T^\ast_\lambda\) of class \(C^1\), still analytic in \(\lambda\) and all \(k\)-quasi-conformal. Then the corresponding \(h_n\) are \(k\)-quasi-conformal, and converge uniformly to \(h\). So \(h\) is \(k\)-quasi-conformal.

Q.E.D.

Proof of Proposition 20. — The tubing \(T\) is an embedding of \(A \times (D_R - D_{R'})\) into \(\mathcal{H} \subset A \times \mathbb{C}\), with \(R' = R^{1/2}\). It can be extended to an embedding \(\tilde{T}\) of \(A (D_R - D_{R' - \varepsilon})\) with \(\tilde{T}_n(x) \in f_n^{-1}(x^2)\) for \(R' - \varepsilon \leq |x| \leq R'\).

Then \(\tilde{T}\) is holomorphic in \(\lambda\), and \(k\)-quasi-conformal over \(\Lambda'\) for some \(k' < 1\).

Call \(\omega_0\) the critical point of \(f_\lambda\), and let \(W_n \subset A\) be the open set of those \(\lambda\) such that \(f_\lambda^n(\omega_0)\) is defined and belongs to \(\tilde{T}(A \times (D_R - D_{R' - \varepsilon}))\). On \(W_n \cap \Lambda'\), the mapping \(h_n: \lambda \mapsto \tilde{T}_n^{-1}(f_\lambda^n(\omega_0))\) is \(k\)-quasi-conformal according to the Lemma, but \(h_n(\lambda) = \Phi(\chi(\lambda))^{2^m}\), where \(\Phi: \mathbb{C} - M \cong \mathbb{C} - D\) is the mapping described in [D-H] and [D]. Therefore \(\chi\) is \(k'\)-quasi-conformal on \(W_n \cap \Lambda'\).

For all \(\lambda \in \Lambda - M_f\), the point \(f_\lambda(\omega_0)\) belongs to the open set \(A_{\lambda}\) bounded by the curve \(T_\lambda(\partial D_R)\) since the inverse image of this curve is connected.

For the last \(n\) for which \(f_\lambda^n(\omega_0)\) is defined and belongs to \(A_{\lambda}\), \(\lambda \in W_n\), so \(\bigcup W_n = \Lambda - M_f\). So \(\chi\) is \(k'\)-quasi-conformal on \(\Lambda' - M_f\).

Q.E.D.

4. THE CASE \(M_f\) COMPACT. — Suppose that the hypotheses of Theorem 4 are satisfied, and that \(M_f\) is compact. Then \(\chi: M_f \to M\) is a ramified covering space, and since \(M\) is connected [D-H], \(\chi\) has a degree \(\delta\), which we will call the parametric degree of the family \(f\), as opposed to the degree of the family, which is 2 in this case.

If \(\delta = 0\) then \(M_f\) is empty.

If \(\delta = 1\) then \(\chi\) restricts to a homeomorphism \(M_f \to M\); in that case we say that \(f\) is Mandelbrot-like.

Call \(\omega_0\) the critical point of \(f_\lambda\). A sufficient condition for \(M_f\) to be compact is that there exist \(\Lambda \subset A\) such that \(f_\lambda(\omega_0) \in U_\lambda - U_{\lambda}\) for \(\lambda \in \Lambda - A\).

Proposition 21. — Suppose \(\lambda\) homeomorphic to \(D\) and \(M_f\) compact. Let \(A \subset \Lambda\) a subset homeomorphic to \(\tilde{D}\) such that \(M_f \subset \tilde{A}\). The parametric degree \(\delta\) of \(f\) is equal to the number of times \(f_\lambda(\omega_0)\) - \(\omega_0\) turns around 0 as \(\lambda\) describes \(\partial A\).

Proof. — Let \(\lambda_0 \in \Lambda\) be a point such that \(f_{\lambda_0}(\omega_0) = \omega_0\). Then \(\chi(\lambda_0) = 0\), and \(\chi\) is holomorphic on a neighborhood of \(\lambda_0\). Moreover, the multiplicity \(i_{\lambda_0}(\chi)\) of \(\lambda_0\) as a zero of \(\chi\) is equal to its multiplicity as a zero of \(\lambda \mapsto f_\lambda(\omega_0) - \omega_0\).

Indeed, the hybrid equivalence \(\varphi_{\lambda}\) of \(f_\lambda\) with \(z \mapsto z^2 + \chi(\lambda)\) is an analytic function of \((\lambda, z)\), and

\[
\chi(\lambda) = \varphi_{\lambda}(f_{\lambda_0}(\omega_0))
\]

with \(\varphi_{\lambda}(\omega_0) = 0\) and \(d\varphi_{\lambda}/dz(\omega_0) \neq 0\).
Therefore, \(\delta = \sum_{\lambda \in \Lambda} i_\lambda(\chi) \) is the number of zeroes of \(\lambda \mapsto f_\lambda(\omega_\lambda) - \omega_\lambda \), counted with multiplicities.

Q.E.D.

5. Further Resemblance of \(M_f \) and \(M \). — Set \(I = [0,1] \), let \(\Lambda \) be a Riemann surface and

\[
f = (f_{s,\lambda} : U_{s,\lambda} \to U_{s,\lambda}(\lambda, \sigma) \in I \times \Lambda)
\]

be a family of polynomial-like mappings of degree 2. We will assume that the conditions (1) and (2) of Definition 11.1 are satisfied. We will also assume that \(f : \mathcal{U} \to \mathcal{W} \) is continuous, holomorphic in \((\lambda, z)\), and proper.

Suppose that for each \(s \in I \), the analytic family \(f_s = (f_{s,\lambda})_{\lambda \in \Lambda} \) is Mandelbrot-like, and that the \(M_f \) are all contained in a common compact set \(A \subset \Lambda \).

We will then say that \(f_0 \) and \(f_1 \) are connected by a continuous path of Mandelbrot-like families.

Proposition 22. — Let \(f = (f_{s,\lambda})_{\lambda \in \Lambda} \) and \(g = (g_{s,\lambda})_{\lambda \in \Lambda} \) be two Mandelbrot-like families parametrized by the same Riemann surface \(\Lambda \). If \(f \) and \(g \) can be connected by a continuous path of Mandelbrot-like families, then the homeomorphism \(\chi_{f,s} = \chi_{s}^{-1} \circ \chi_{f} : M_f \to M_g \) is quasi-conformal in the sense of Mañe-Sad-Sullivan.

Proof. — It is enough to prove the property for \(g \) sufficiently close to \(f \). Set \(\eta_s = g_s - f_s \). If \(g \) is sufficiently close to \(f \), there exists \(R > 1 \) and \(\Lambda' \) relatively compact in \(\Lambda \), containing \(M_f \), such that for any \(t \in \mathbb{C} \) with \(|t| < R \), the family \(f_t = (f_{t,\lambda} = f_{s,\lambda} + t \cdot \eta_s)_{\lambda \in \Lambda'} \), appropriately restricted, is Mandelbrot-like.

Then \((\chi_{f,t}^{-1})_{t \in \mathbb{D}} \) is a complex analytic family of topological embeddings of \(M \) into \(\Lambda \).

The Proposition follows from the \(\lambda \)-Lemma [M-S-S] (note that in our case, the parameter is \(s \) and the variable is \(\lambda \)).

Q.E.D.

Example 1. — Let \(\Lambda \) and \(V \) be open in \(\mathbb{C} \), both containing the disc \(D_4 \) of radius 4, and

\[
(\lambda, z) \mapsto f_\lambda(z) = z^2 + \lambda + \eta_\lambda(z)
\]

be a complex analytic mapping of \(\Lambda \times V \) into \(\mathbb{C} \) with \(\eta_\lambda'(0) = 0 \) and \(|\eta_\lambda(z)| \leq 1 \) for all \((\lambda, z) \in \Lambda \times V \).

Set \(U_\lambda = D_{10} \) for all \(\lambda \), and \(U'_\lambda = f_\lambda^{-1}(U_\lambda) \). Then \(f_\lambda : U'_\lambda \to U_\lambda \) is a polynomial-like mapping of degree 2 for \(|\lambda| \leq 4 \), and \(f = (f_\lambda : U'_\lambda \to U_\lambda)_{\lambda \in D_4} \) is a Mandelbrot-like family.

Indeed, if \(|\lambda| \leq 4 \) and \(|z| = 4 \) then

\[
|f_\lambda(z)| \geq 16 - 4 - 1 > 10,
\]

so the equation \(f_\lambda(z) = w \) has two solutions \(z_1, z_2 \in D_4 \) if \(|w| < 10 \), and \(f_\lambda : U'_\lambda \to U_\lambda \) is proper of degree 2.
By the maximum principle, U_λ is topologically a union of discs, and since there is at least one critical point, namely 0, the Riemann-Hurwitz formula implies that $U_\lambda \approx \mathbb{D}$ and $U_\lambda \subset \mathbb{D}_4 \subset \mathbb{D}_{10}$.

Moreover, if $|\lambda|=4$ then $|f_\lambda'(0)| \geq 4-1=3$ and $|f_\lambda'(0)| \geq 9-4-1=4$, so $f_\lambda''(0) \notin U_\lambda$ and $\lambda \notin M_r$.

Finally, the parametric degree is 1 by Proposition 21.

Remark. — For such a family, the mapping $\chi: M_r \to M$ is quasi-conformal in the sense of M-S-S according to Proposition 22.

Proposition 23. — Choose $\varepsilon < 1$, and suppose that the conditions of example 1 above are satisfied. Suppose that $|\eta(z)| \leq \varepsilon$ for $|\lambda| < 4$, $|z| < 4$. Then:

(a) $|\chi(\lambda) - \lambda| \leq 6 \varepsilon$ for all $\lambda \in M_r$.

(b) If $\lambda_1, \lambda_2 \in M_r$, then

$$
\frac{1}{k_-(\varepsilon)} |\lambda_1 - \lambda_2|^{1/\beta(\varepsilon)} \leq |\chi(\lambda_1) - \chi(\lambda_2)| \leq k_+(\varepsilon) |\lambda_1 - \lambda_2|^{\beta(\varepsilon)},
$$

with

$$
k_-(\varepsilon) = 8^{2 \varepsilon(1 + \varepsilon)}, \quad k_+(\varepsilon) = 8^{2 \varepsilon(1 - \varepsilon)}
$$

and

$$
\beta(\varepsilon) = (1 - \varepsilon)/(1 + \varepsilon).
$$

Proof. — Set $\eta = \varepsilon h$, so that $|h(z)| \leq 1$ for $|\lambda| < 4$, $|z| < 4$. Set $F_{s,\lambda}(z) = z^2 + \lambda + sh(z)$. For each $s \in \mathbb{D}$, $F_s = (F_{s,\lambda})_{\lambda \in \mathbb{D}_4}$ is a Mandelbrot-like family, and if χ_s is defined using F_s, the mapping χ_s^{-1} is an embedding of M into \mathbb{D}_4. For every $c \in M$, the mapping $\gamma_c: s \mapsto \chi_s^{-1}(c)$ of \mathbb{D} into \mathbb{D}_4 is analytic, since its graph is an analytic subset of $\mathbb{D} \times \mathbb{D}_4$ by Proposition 13, Corollary 2.

(a) If $s \in \mathbb{D}$, then $|\gamma_c(s)| \leq 4$ and $|c| \leq 2$, so $|\gamma_c(s) - c| \leq 6$. Since $\gamma_c(0) = c$, we see that $|\gamma_c(s) - c| \leq 6|s|$ by Schwarz's Lemma. If we take $s = \varepsilon$, we find $|\chi^{-1}(\varepsilon) - c| \leq 6 \varepsilon$.

(b) If $c_1 \neq c_2$, then the mappings γ_{c_1} and γ_{c_2} have disjoint graphs. The inequality in the Proposition follows from the following Lemma.

Lemma. — Let $u, v: \mathbb{D} \to \mathbb{D}_R$ be two holomorphic functions with disjoint graphs. Then

$$
\left| \frac{u(0) - v(0)}{2R} \right|^{1/\beta(\varepsilon)} \leq \left| \frac{u(z) - v(z)}{2R} \right| \leq \left| \frac{u(0) - v(0)}{2R} \right|^{\beta(\varepsilon)},
$$

with

$$
\beta(z) = \frac{1 - |z|}{1 + |z|}.
$$
Proof. — Set \(w = \log (u - v) / 2 R \), where some branch of the logarithm is chosen, which is possible since \(u - v \) does not vanish and \(D \) is simply connected. Let \(w_0 = w(0) \). The function \(w \) takes its values in the left half-plane \(\text{Re}(w) < 0 \), and the mapping

\[
\frac{w - w_0}{w + w_0}
\]

is an isomorphism of that half-plane onto \(D \). Then

\[
\frac{\text{Re}(w - w_0)}{\text{Re}(w + w_0)} \leq \frac{|w - w_0|}{|w + w_0|} \leq |z|,
\]

where the first inequality is true because the level curves of

\[
w \mapsto \frac{|w - w_0|}{|w + w_0|}
\]

are circles, and the second follows from Schwarz's Lemma.

So we find that

\[
\beta(z) \leq \frac{\text{Re}(w)}{\text{Re}(w_0)} \leq \frac{1}{\beta(z)}.
\]

This finishes the proof of Proposition 23.

Example 2. — Let \((f_\lambda : U'_\lambda \to U_\lambda)_{\lambda \in \Lambda} \) be an analytic family of polynomial-like mappings of degree 2, parametrized by an open subset of \(\mathbb{C} \) homeomorphic to \(D \). We will assume that \(U_\lambda \) is convex for every \(\lambda \), and that there is a compact subset \(A \subset \Lambda \) such that \(f_\lambda(\omega_\lambda) \) is not in the convex hull of \(U_\lambda' \) for \(\lambda \in \Lambda \setminus A \). This implies that \(M_\tau \) is compact. We suppose that the parametric degree \(\delta = 1 \).

Proposition 24. — Under these conditions, the homeomorphism \(\chi : M_\tau \to M \) is quasiconformal in the sense of M-S-S.

Proof. — By an affine change of coordinates depending on \(\lambda \) we may assume that \(\omega_\lambda = 0 \) and \(f''(\omega_\lambda) = 2 \) for all \(\lambda \), i.e. that

\[
f_\lambda(z) = z^2 + \lambda + O(z^3).
\]

The function \(c : \Lambda \to \mathbb{C} \) has a simple zero at some \(\lambda_0 \in \Lambda \), and we can identify \(\Lambda \) with an open subset of \(\mathbb{C} \) so that \(\lambda_0 = 0 \) and \(c'(0) = 1 \). Then

\[
f_\lambda(z) = z^2 + \lambda + O(|z|^3 + |\lambda|^2),
\]

and shrinking \(\Lambda \) slightly if necessary, we may assume that the distance of \(U' \) to the complement of \(U \) is bounded below by a number \(m > 0 \) independent of \(\lambda \).

Set \(\Lambda_s = s^{-2} \Lambda \); and for \(\lambda \in \Lambda_s \) set \(U'_{s,\lambda} = s^{-1} U'_\lambda \) and \(U_{s,\lambda} = s^{-2} U_\lambda \). Define \(f_{s,\lambda} : U'_{s,\lambda} \to U_{s,\lambda} \) by \(f_{s,\lambda}(z) = f_\lambda(z) \), and define \(f_{0,\lambda}(z) = z^2 + \lambda \).
The mapping \((s, \lambda, z) \mapsto f_{s, \lambda}(z) \) gives a continuous path of Mandelbrot-like families connecting \((f_{s}) \) to \(z \mapsto z^2 + \lambda \).

We conclude by Proposition 22.

Q.E.D.

CONJECTURE. For any complex analytic family \(f = (f_{\lambda})_{\lambda \in \Lambda} \) of polynomial-like mappings of degree 2 with \(\Lambda \approx \mathbb{D} \), there exists a quasi-conformal mapping \(\varphi_1 : \Lambda \to \mathbb{D} \) and a holomorphic map \(\varphi_2 : \mathbb{D} \to \mathbb{C} \) such that \(\chi_{\lambda} = \varphi_2 \circ \varphi_1 \) on \(M_f \).

CHAPTER V

Small copies of \(M \) in \(M \)

1. **Tunable points of \(M \).** — Let \(P_c : z \mapsto z^2 + c \) and let \(c \in M \) be a point for which 0 is periodic of period \(k \) for \(P_c \). We will call \(c \) tunable if there is a neighborhood \(\Lambda \) of \(c \) in \(\mathbb{C} \) and a Mandelbrot-like family \(f = (f_{\lambda})_{\lambda \in \Lambda} U_{\lambda} \) such that for every \(\lambda \in \Lambda \), the mapping \(f_{\lambda} \) is the restriction of \(P_c \) to \(U_{\lambda} \), and \(0 \in U_{\lambda} \).

Call \(M_c \) the set \(M_{\lambda} \), and \(\chi : M_c \to M \). Then \(M_c \subset M \) and \(\partial M_c \subset \partial M \). Indeed, for any \(\lambda \in \Lambda \),

\[
K_{f_{\lambda}} \subset K_{P_c} \subset K_{P_{U_{\lambda}}} = K_{P_{U_{\lambda}}} \quad \text{and if } K_{f_{\lambda}} \text{ is connected, the connected components of } K_{P_{U_{\lambda}}} \text{ are not points. Any point in } \partial M_c \text{ can be approximated by } \lambda \text{ for which } f_{\lambda} \text{ has an indifferent periodic point; such a point is also an indifferent periodic point of } P_c.
\]

We will say that \(c \) is semi-tunable if there exists an analytic family \(f = (f_{\lambda})_{\lambda \in \Lambda} U_{\lambda} \) of polynomial-like mappings of degree 2, such that as above \(\Lambda \) is a neighborhood of \(c \) in \(\mathbb{C} \) and each \(f_{\lambda} \) is a restriction of \(P_c \) to \(U_{\lambda} \), and that \(\chi \) restricts to a homeomorphism of \(M_c \) onto \(M - \{1/4\} \) whose inverse extends to a continuous map \(M \to \mathbb{C} \).

In fact, every \(c \in M \) for which 0 is periodic under \(P_c \) is semi-tunable, and is tunable if and only if the component of \(M \) of which it is the center is primitive. The proof depends on detailed knowledge of external radii of \(M \), and will be part of another publication. Here we will show by more general arguments that there are infinitely many tunable points in \(M \).

2. **Construction of a sequence \((c_n) \).** — Let \(c_0 \) be a point of \(M \) such that 0 is preperiodic. In this paragraph we will approximate \(c_0 \) by a sequence \((c_n) \) such that for each \(c_n \), 0 is periodic. It is easy, using Picard's Theorem, to show that such a sequence exists, but we will require more specific information about it. Our construction is analogous to that of III,1.

Let \(f \) be the smallest integer for which \(\zeta_0 = P_{c_0}(0) \) is a repulsive periodic point; let \(k \) be its period. There exists a neighborhood \(\Lambda \) of \(c_0 \) and an analytic function \(\zeta : \Lambda \to \mathbb{C} \) such that \(\zeta(c_0) = \zeta_0 \) and that \(\zeta(\lambda) \) is a repulsive periodic point of period \(k \) for all \(P_{c_0} \) with \(\lambda \in \Lambda \).
Set

\[p(\lambda) = (P^{(k)}_\lambda(\zeta(\lambda))), \]

\[p_0 = p(c_0) \quad \text{and} \quad \mu = \inf_{\lambda \in \Lambda} |p(\lambda)|. \]

We may assume that \(\mu > 1 \).

Lemma 1. - *The function \(\lambda \mapsto P^k_\lambda(0) - \zeta(\lambda) \) has a simple zero at \(c_0 \).*

There are several ways of proving this Lemma; we will give an arithmetic one, using an idea of A. Gleason's.

Proof. — It is equivalent to show that

\[\lambda \mapsto P^{k+1}_\lambda(0) - P^k_\lambda(0) \]

has a simple zero. Set \(F^k(c) = P^k_0(0) \); then \(F^k \) is monic of degree \(2^n - 1 \), with integer coefficients, and

\[F^k = 2F^k_{n-1}F^k_{n-1} + 1. \]

Let \(\bar{Q} \) be the algebraic closure of \(Q \), and let \(\bar{c} \) be a solution of \(F_{k+1}(c) = F(c) \) in \(\bar{Q} \). If the smallest \(l \) for which \(c \) is a solution is \(>0 \), then

\[F_{k+1-l}(c) + F_{l-1}(c) = 0, \]

and \(l \geq 2. \) Set

\[G = F_{k+1-l} + F_{l-1}, \]

so that \(G \) is monic of degree \(2^{k+1} - 2 \), and

\[G'/2 = F_{k+1-l}F'_{k+1-l} + F_{l-2}F'_{l-2} + 1 \]

has integer coefficients.

Extend the 2-adic valuation of \(Q \) to a valuation \(v \) on \(\bar{Q} \), and set

\[A = \{ z \in \bar{Q} | v(z) \geq 0 \} \quad \text{and} \quad m = \{ z \in \bar{Q} | v(z) > 0 \}. \]

Since \(c \) is an algebraic integer, we see that \(c \in A \). Moreover,

\[(F_{k+1-l}(c))^2 + (F_{l-2}(c))^2 = -2c \in m, \]

so

\[F_{k+1-l}(c) = F_{l-2}(c) = -F_{l-2}(c) \mod m. \]

The computation of \(F' \) gives

\[F'_{k+1-l}(c) = F'_{l-2} \equiv 1 \mod 2A. \]

so that

\[G'(c)/2 \equiv 1 \mod m, \quad G'(c) \neq 0, \]
and

\[(F_{t+k} - F_t)'(c) = 2 F_t(c) G'(c) \neq 0. \]

Q.E.D.

By restricting \(A \) if necessary, we may assume that \(c_0 \) is the only zero of \(\zeta \) in \(A \), and we can find a neighborhood \(\mathcal{V} \) of \((c_0, \zeta_0) \) in \(\mathbb{C}^2 \), an \(R > 0 \) and an isomorphism \((\lambda, z) \mapsto (\lambda, v_\lambda(z)) \) of \(\mathcal{V} \) onto \(\Lambda \times D_R \) such that

\[v_\lambda (P^\lambda_1(z)) = \rho (\lambda), \quad v_\lambda(z) \]

if \(v_\lambda(z) < R/\rho (\lambda) \). Set \(V_\lambda = \{ z \mid (\lambda, z) \in \mathcal{V} \} \) and \(g(\lambda) = v_\lambda(P_\lambda(0)) \), so \(g'(c_0) \neq 0 \).

All repulsive periodic points are in the Julia set, so \(\zeta_0 \in J_\alpha \); also the inverse images of 0 are dense in \(J_\alpha \). There is therefore a point \(\alpha_0 \in V_0 \) such that \(P^\alpha_0 (\alpha_0) = 0 \); then \((P^\alpha_0)'(\alpha_0) \neq 0 \).

Shrinking \(A \) again if necessary, there exists an analytic mapping \(\lambda \mapsto \alpha_\lambda (\lambda) \) such that \(\alpha_0 (c_0) = \alpha_0 \) and that \(P^\alpha_\lambda (\alpha_\lambda (\lambda)) = 0 \) for all \(\lambda \in \Lambda \). Now shrinking \(\mathcal{V} \) and modifying \(R \) and the \(v_\lambda \) appropriately, we may assume that \(v_\lambda(\alpha(\lambda)) = 1 \) for \(\lambda \in \Lambda \).

We define \(\alpha_\alpha : \Lambda \to \mathcal{V} \) by \(v_\lambda(\alpha_\alpha (\lambda)) = \rho (\lambda)^{-\alpha} \), so that \(P^\alpha_\lambda (\alpha_\alpha (\lambda)) = \alpha_\alpha (\lambda) \).

If \(n \) is large enough, there exists a unique \(\lambda \in \Lambda \) such that \(g(\lambda) = \rho (\lambda)^{-\alpha} \), i.e. that \(P^\alpha_1 (0) = \alpha_\alpha (\lambda) \). Let \(c_\alpha \) denote that value of \(\lambda \). Then for \(P^\alpha_{c_\alpha} \), the critical point 0 is periodic of period \(l + nk + p \).

Proposition 25. — The sequence \(\rho^n_\alpha (c_\alpha - c_0) \) has a finite limit \(C_1 \neq 0 \).

Proof. — Since \(|g(c_\alpha)| \leq \mu^{-n} \), the sequence \((c_\alpha) \) converges to \(c_0 \) (at least exponentially). Since \(f(c_\alpha) = \rho(c_\alpha)^{-\alpha} \), we have that

\[\rho^n_\alpha (c_\alpha) = \left(\frac{\rho_0}{\rho(c_\alpha)} \right)^n \frac{c_\alpha - c_0}{g(c_\alpha) - g(c_0)}. \]

The first factor tends to 1; indeed, \(\rho(c_\alpha) \to \rho_0 \) at least exponentially, so \(n \log (\rho(c_\alpha)/\rho_0) \to 0 \).

The second factor goes to \(1/g'(c_0) \), and the Proposition follows with \(C_1 = 1/g'(c_0) \).

Q.E.D.

3. Tunability of the \(c_\alpha \).

Theorem 5. — (a) For \(n \) sufficiently large, \(c_\alpha \) is tunable.

(b) There exists a constant \(C_2 \) such that the sequence of mappings

\[\varphi_\alpha : x \mapsto C_2 \rho_0^{2\alpha} (c_\alpha \perp x - c_\alpha) \]

converge uniformly on \(\mathcal{M} \) to the canonical injection \(\mathcal{M} \to \mathbb{C} \). The mappings \(\varphi_\alpha \) are biholder, with both exponent and coefficient tending to 1.
Proof. — Call \mathcal{P} the mapping $(\lambda, z) \mapsto (\lambda, P_{\lambda}(z))$. By shrinking Λ, we may find $R' < R - 1$ such that \mathcal{P}^R induces an isomorphism of

$$\mathcal{V}' = \{ (\lambda, z) \in \mathcal{V} \mid |v_{k}(z) - 1| < R \}$$

onto a neighborhood \mathcal{U} of $\Lambda \times \{ 0 \}$ in $\Lambda \times \mathbb{C}$.

Set $U_\lambda = \{ z \mid (\lambda, z) \in \mathcal{U} \}$ and define $u_\lambda : U_\lambda \to D_R$ by

$$u_\lambda (P_{\lambda}(z)) = v_{k}(z) - 1.$$

By decreasing R' and further shrinking Λ we may assume that $\mathcal{P}^R(\mathcal{U}) \subset \mathcal{V}'$ and that

$$\mathcal{P}^R(\mathcal{U}) = \{ (\lambda, z) \mid |v_{k}(z)| < m_1 \}$$

for some m_1.

Let

$$\mathcal{V}'_n = \{ (\lambda, z) \in \mathcal{V}' \mid |v_{k}(z) - \rho(\lambda)^{-n}| < R' \rho(\lambda)^{-n} \},$$

so that \mathcal{P}^{nk} induces an isomorphism of \mathcal{V}'_n onto \mathcal{V}'. Let $\mathcal{U}' = \mathcal{U} \cap \mathcal{P}^{-1}(\mathcal{V}'_n)$. Choose n_0 such that $R/\mu^{n_0} < m_1$. If $n \geq n_0$, \mathcal{P} restricts to a proper map $\mathcal{U}'_n \to \mathcal{V}'_n$ of degree 2, and \mathcal{P}^{nk+n} restricts to a proper mapping $\mathcal{U}'_n \to \mathcal{U}$.

Let $h_{\lambda} = v_\lambda \circ P_{\lambda} \circ u_{\lambda}^{-1} : D_{R'} \to D_R$ be the map $P_{\lambda} : U_\lambda \to V_{\lambda}$ written in the local coordinates u_{λ} and v_{λ}. The function $(\lambda, u) \mapsto h_{\lambda}(u)$ can be written

$$h_{\lambda}(u) = g_{\lambda}(\lambda) + a(\lambda) \ u^2 + \eta_{\lambda}(u),$$

with $a(\lambda) \neq 0$, holomorphic in λ and with $|\eta_{\lambda}(u)| \leq A_1 |u|^3$, where A_1 is a constant independent of $(\lambda, u) \in \Lambda \times D_{R}$. Set $m_2 = \inf |a(\lambda)|$; we may assume $m_2 > 0$.

Let $f_{n, \lambda}$ be the mapping

$$P_{\lambda}^{nk+n} : U_{n, \lambda} \to U_\lambda$$

written in the local coordinate u_λ both in the domain and in the range. Then

$$f_{n, \lambda} : u \mapsto \rho(\lambda)^n h_{\lambda}(u) - 1 = \rho(\lambda)^n a(\lambda) \ u^2 + \rho(\lambda)^n g(\lambda) - 1 + \rho(\lambda)^n \eta_{\lambda}(u);$$

$f_{n, \lambda}$ is defined on

$$u_{\lambda}(U_{n, \lambda}) = \{ u \mid |\rho(\lambda)^n h_{\lambda}(u) - 1| < R' \}.$$

Set

$$\tilde{u}_{\lambda, n}(z) = \rho(\lambda)^n a(\lambda) \ u_\lambda(z),$$

$$c_2 = a(\lambda_0) \ g(c_0),$$

$$\tilde{r}_n = c_2 \ \rho_0^{2n} (\lambda - c_n) \quad \text{and} \quad \Lambda_n = \{ \lambda : |\tilde{r}_n| < 4 \}.$$

Let $f_{n, \lambda}$ be the mapping $P_{\lambda}^{nk+n} : U_{n, \lambda} \to U_\lambda$ written in the local coordinate $\tilde{u}_{\lambda, n}$ and define $\tilde{\eta}_{n, \lambda}$ by

$$f_{n, \lambda}(\tilde{u}) = \tilde{u}^2 + \tilde{r} + \tilde{\eta}_{n, \lambda}(\tilde{u}).$$

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPERIEURE
LEMMA 2. — (a) If \(n \) is sufficiently large, then \(\Lambda_n \subset \Lambda \) and \(\bar{u}_{k,n}(U_{n,k}) \supset D_4 \).
(b) For such an \(n \) let

\[
e_n = \sup_{\lambda \in \Lambda_n} \bar{u}_{n,\lambda}(\bar{u}).
\]

Then the sequence \((e_n) \) converges to 0.

Proof. — Since \(\lambda_n \) is the open disc centered at \(c_n \) and of radius \(4/(c_2 \rho_0^n) \), the first part of (a) is true.

If \(\lambda \in \Lambda \) and

\[
|\bar{u}| < \frac{4}{|\rho(\lambda)|^n |a(\lambda)|},
\]

we can define \(\tilde{u}_{n,\lambda}(\bar{u}) \) using the formula (*) Then

\[
\tilde{u}_{n,\lambda}(\bar{u}) = h - \tilde{\lambda} + \rho(\lambda)^n a(\lambda) \eta_{k}(\bar{u}/(\rho(\lambda)^n a(\lambda))),
\]

where

\[
H = \rho(\lambda)^n a(\lambda) (\rho(\lambda)^n g(\lambda) - 1).
\]

The modulus of the last term is bounded by

\[
\frac{64 A_1}{|\rho(\lambda)|^n |a(\lambda)|^2}
\]

if \(|\bar{u}| < 4 \).

Moreover,

\[
\frac{H}{\tilde{\lambda}} = \frac{\rho(\lambda)^n a(\lambda) g(\lambda) - \rho(\lambda)^n}{\rho_0} \frac{a(c_0)}{g'(c_0)(\lambda - c_0)}.
\]

When \(\lambda \in \Lambda_n \) and \(n \to \theta \), \(|\lambda - c_0| \) converges to 0 at least exponentially, so the first two factors tend to 1.

The last factor can be written

\[
\frac{g(\lambda) - g(c_n)}{g'(c_0)(\lambda - c_n)} = \frac{1 - (\rho(\lambda)/\rho(c_n))^n}{g'(c_0)(\lambda - c_n) \rho(\lambda)^n}.
\]

The first term tends to 1, and the second is equivalent to

\[
n \frac{\rho'(c_n)}{\rho(c_n) g'(c_0) \rho(\lambda)^n}
\]

which tends to 0.
Finally, H/X converges to 1, and since $|\lambda| < 4$, we have that $H - \lambda \to 0$. This gives the bound in (b).

Since $\tilde{u} \in \tilde{u}_n(U')$ precisely when $f_{n,1}(\tilde{u})$, as defined by formula (*), satisfies

$$|f_{n,1}(\tilde{u})| < \rho(\lambda)^n |a(\lambda)| R'$$

and since whenever $\lambda \in \Lambda_{\alpha}$, $|\tilde{u}| < 4$ and n is sufficiently large, the above inequality is satisfied, the second part of (b) is true.

Q.E.D. for the Lemma.

End of proof of Theorem.

We have verified the conditions of Proposition IV,23, which gives the required result. Q.E.D. for Theorem 5.

CHAPTER VI

Carrots for dessert

1. A DESCRIPTION OF FIGURE 4. — Let

$$P_\lambda(z) = (z - 1)(z + 1/2 - \lambda)(z + 1/2 + \lambda)$$

and let

$$N_\lambda: \ z \mapsto z - P_\lambda(z)/P_\lambda'(z)$$

be the associated Newton's method. Since

$$N_\lambda' = P_\lambda P_\lambda''/P_\lambda^2,$$

the critical points of N_λ are the zeroes 1, $-1/2 + \lambda$ and $-1/2 - \lambda$ of P_λ, and 0 where P_λ'' vanishes.

Color λ in blue, red, or green if $N_\lambda(0) \to 1$, $-1/2 + \lambda$, $-1/2 - \lambda$, and leave it in white if none of the above.

You obtain (Figs. 14 to 16).

Figure 4 is an enlargement of Figure 16. For $\lambda = \lambda_0 = -0.019134 + 0.296783 i$, the center of the copy of the Mandelbrot set appearing in white, 0 is periodic of period 3 for N_λ. Set $F_\lambda = N_\lambda^3$.

Setting $\Lambda = D(\lambda_0, .001), U_\lambda = D(.55)$ and $U'_\lambda = U_\lambda \cap F_\lambda^{-1}(U_\lambda)$, one can verify that, after a change of variables, the hypotheses of Proposition 23 are satisfied. Therefore the family

$$F = (F_\lambda: U'_\lambda \to U_\lambda)_{\lambda \in \Lambda}$$

is a Mandelbrot-like family.

For $\lambda \in M_P$, the point 0 is trapped in U'_λ for F_λ, and therefore does not converge to one of the roots of P_λ under N_λ; so such a λ will appear in white. This explains the white copy of M in the picture.
Fig. 14

Fig. 15.

Fig. 16
In [1] we studied the standard Mandelbrot set M, and in particular we described the conformal representation $\Phi: \mathbb{C} - \tilde{M} \to \mathbb{C} - D$ tangent to the identity at infinity.

Let $\mathcal{R}(M, \theta) = \{ c | \arg\Phi(\theta) = \theta \}$ (angles are counted in whole turns, not radians) be the external ray of angle θ. Then each external ray of rational angle θ ends in a point $\gamma_M(\theta)$ of M [D-H]; we say that it is the point of external argument θ.

In Figure 2, we see a collection of blue carrots which point precisely to the points of M_F which are the inverse images under g_F of the points of M with argument of the form $p/2^k$. If k is large, the corresponding carrot is small.

If we focus on the red and green region, we see a tree-like structure, on which we can read the dyadic expansion of the external arguments of points of ∂M_F.

In this chapter, we give an interpretation of this phenomenon.

2. CARROTS FOR $z \mapsto z^2$. Fix $R > 1$ and let Q be the closed annulus $\{ z | R' \leq |z| \leq R \}$, where $R' = R^{1/2}$.

Let I be an open arc in S^1_R, and let I' be the preimage of I under $f_0: z \mapsto z^2$. Then $I' = I_0 \cup I_1$, where I_0 and I_1 are arcs in S^1_R.

Let A be an open set in Q such that

$$ A \cap \partial Q = I \cup I'. $$

Suppose that A has two connected components A_0 and A_1, such that

$$ A_0 \cap \partial Q = I \cup I_0 \quad \text{and} \quad A_1 \cap \partial Q = I_1. $$

Suppose moreover that $Q - A$ is connected (Fig. 17).

Consider now the semi-closed annulus

$$ \Omega = \{ z \mid 1 < |z| \leq R \}. $$

For any $z \in \Omega$, there is an n such that $f_n^k(z) \in Q$ [unique unless $f_n^k(z) \in S^1_R$ and $f_n^{k+1}(z) \in S^1_R$ for some n]. Define $C \subset \Omega$ as the set of values of z such that $f_n^k(z) \in A$ for this n. (If there are two values of n, they give the same condition.)

Proposition 26 and Definition. The open set C has an infinite number of connected components. For each $\tau \in Q/\mathbb{Z}$ of the form $p/2^k$, there is a unique connected component C_τ of C such that $e^{2\pi i \tau} \in C$. We call it the carrot of argument τ. For $\tau = p/2^k$ (p odd), the carrot C_τ is contained in D_τ and not in D_τ.

Proof. There exists a homeomorphism $\varphi: \Omega \to \Omega$ such that $\varphi(z^2) = (\varphi(z))^2$ and $\varphi(A_0) \supset Q \cap R_+$. We can construct such a φ by first choosing an arc $\gamma: [0, 1] \to A_0$, connecting I_0 to I with $\gamma(1) = \gamma(0)^2$, then choosing φ on $S^1_R \cup \gamma$, then extending to S^1_R so as to commute with squaring. Now extend to Q as a homeomorphism, and to Ω by the homotopy lifting property as in chapter 1.

Clearly such a φ extends to a homeomorphism of Ω with $\varphi|_{S^1} = \text{id}$. Replacing A by $\varphi(A)$, we may assume that $A \supset Q \cap \mathcal{R}_+$.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE
Let $h_{p,k}$ be the branch of $z \mapsto z^{1/2^k}$ on A_0 such that

$$h_{p,k}(A_0 \cap \mathbb{R}_+) \subset e^{2\pi i p/2^k} \mathbb{R}_+.$$

Let $C_0 = \bigcup_{k \geq 0} h_{0,k}(\varphi(A_0))$.

Clearly C_0 is a connected component of C, and $C_0 \cap S^1 = \{1\}$. The other components of C are the $h_{p,k}(C_0)$, topped with a hat corresponding to the inverse image of A_1, so that

$$C_t \cap S^1 = \{e^{2\pi i t}\}.$$

Q.E.D.

3. Carrots in a Mandelbrot-like family. — Let $f = (f_\lambda : U_\lambda \to U_\lambda)_{\lambda \in \Lambda}$ be a Mandelbrot-like family of polynomial-like mappings of degree 2 and let $\chi : M_T \to M$ be the straightening homeomorphism.

Set

$$\mathcal{U} = \{ (\lambda, z) \mid z \in U_\lambda \},$$

$$\mathcal{K} = \{ (\lambda, z) \mid z \in K_\lambda \},$$

and let $\mathcal{C} \subset \mathcal{U} - \mathcal{K}$ be an open set such that

$$f^{-1}(\mathcal{C}) = \mathcal{C} \cap \mathcal{U}'.$$

For each $\lambda \in \Lambda$, denote ω_λ the critical point of f_λ, and set

$$C_\Lambda = \{ \lambda \in \Lambda \mid (\lambda, \omega_\lambda) \in \mathcal{C} \}.$$
PROPOSITION 27. — Suppose that there is a set \(A \subset \mathbb{Q} \) as in section 2, and a tubing
\[
T: \Lambda \times \mathbb{Q} \to \mathbb{U} - \mathbb{X}
\]
such that \(T^{-1}(\emptyset) = \Lambda \times A \). Then:
(a) \(C_{\Lambda} \) has an infinity of connected components.
(b) For each \(\tau \in \mathbb{Q}/\mathbb{Z} \) of the form \(p/2^k \), there is a component \(C_{\Lambda, \tau} \) of \(C_{\Lambda} \) such that
\[
\chi^{-1}(\gamma_M(\tau)) \in C_{\Lambda, \tau} \cap \partial \mathbb{M}_\tau.
\]
These sets are disjoint.

LEMMA 1. — Extend \(\chi \) to a map \(\chi_T: \Lambda \to \mathbb{C} \) using \(T \), and define \(C \) from \(A \) as in section 2. Then
\[
C_{\Lambda} = \chi_T^{-1}(\Phi_M^{-1}(C)).
\]

Proof. — For each \(\lambda \in \Lambda \), let \(\varphi_\lambda: U_\lambda \to \mathbb{C} \) be the map which conjugates \(f_\lambda \) to \(P_\lambda: z \mapsto z^2 + \chi(\lambda) \), constructed using \(T_\lambda \).

By construction, the map \(\varphi_\lambda \circ T_\lambda \) is induced by the map \(\psi_\lambda: C - D_\lambda \to \mathbb{C} \) which conjugates \(z \mapsto z^2 \) to \(z \mapsto \chi(\lambda) \). For each \(c \in C \), the map \(\psi_\lambda \) conjugating \(z \mapsto z^2 \) to \(z \mapsto z^2 + c \) in a neighborhood of \(\infty \) extends analytically to \(C - D_\lambda \) with \(r(c) = 1 \) if \(c \in M \) and \(r(c) > 1 \) if \(c \notin M \), but still small enough so that \(c \) is in the image of \(\psi_\lambda \). The isomorphism \(\Phi: C - M \to C - \mathbb{D} \) is given by \(\Phi_\lambda(c) = \psi_\lambda^{-1}(c) \) ([D-H], [D]).

For \(\lambda \in \Lambda \), and sufficiently close to \(M_\tau \) to have \(\omega(\lambda) \) and \(f_\lambda(\omega_\lambda) \) in the region enclosed by \(T_\lambda(Q) \), the following conditions are equivalent:
\[
\lambda \in C_{\Lambda},
\]
\[
(\exists n) \quad f_\lambda^n(\omega_\lambda) \in T_\lambda(A),
\]
\[
(\exists n) \quad P_\lambda^n(0) \in \psi_\lambda(A),
\]
\[
(\exists m) \quad P_\lambda^m(\chi(\lambda)) \in \psi_\lambda(A),
\]
\[
(\exists m) \quad (\psi_\lambda^{-1}(\chi(\lambda)))^{2m} \in A,
\]
\[
\Phi_\lambda(\chi(\lambda)) \in C.
\]
Q.E.D.

LEMMA 2. — Let \(W \) and \(W' \) be open sets in \(C \), \(M \) a closed set in \(W \) and \(\chi: W' \to W \) a continuous map which is topologically holomorphic above \(M \). Let \(x \in M \) and \(x' \in \chi^{-1}(x) \). Let \(C \) be a connected open set in \(W \) such that \(x \) is accessible by an arc in \(C \). Then there is a connected component \(C' \) of \(\chi^{-1}(C) \) such that \(x' \in \overline{C'} \).

Proof. — Let \(\eta \) be an arc in \(C \cup \{ x \} \), ending at \(x \) and not reduced to \(\{ x \} \). Let \(\Delta' \) be a topological closed disc in \(W' \), such that
\[
\Delta' \cap \chi^{-1}(x) = \{ x' \}
\]
and that \(\chi(\Delta') \cap \eta \). Set \(\gamma' = \partial \Delta' \).
Let \(\eta' \) be the connected component of \(\chi^{-1}(\eta) \) containing \(x' \). Then \(\eta' \) intersects \(\gamma' \); indeed, if it did not, one could find a loop \(\tilde{\gamma}' \) enclosing \(\eta' \) and avoiding \(\chi^{-1}(\eta) \). Then \(\tilde{\gamma} = \chi \circ \tilde{\gamma}' \) would have a positive winding number around \(x \) and winding number 0 around some point of \(\eta \), without meeting \(\eta \) and that is impossible. Then the component \(C' \) of \(\chi^{-1}(C) \) containing \(\eta' - \{ x' \} \) satisfies the condition.

Q.E.D.

Remark. — The hypothesis of topological holomorphy is necessary to avoid the counter-example shown in Fig. 18.

Proof of Proposition 27. — Replacing \(T \) by \(T \circ \varphi \), where \(\varphi \) is constructed as in section 2, we may assume that \(R_+ \cap Q \subset A \). Then \(R_+ \cap \Omega \subset C \), and for \(\tau = p/2^k \), setting \(\Omega_k = D_{2k} - D \), the segment \(e^{2 \pi i \tau} R_+ \cap \Omega_k \) is contained in a component \(C_\tau \) of \(C \).

Now \(\gamma_M(\tau) \) is accessible by an arc in

\[C_{M, \tau} = \Phi_{M, \tau}(C_\tau) \]

and by Lemma 2 there exists a connected component \(C_{A, \tau} \) of \(C_A = \chi^{-1}(C_{M, \tau}) \) such that

\[\chi^{-1}(\gamma_M(\tau)) \in \bar{C}_{A, \tau} \]

Q.E.D.

Remarks. — One can prove that \(\bar{C}_{A, \tau} \cap M_\tau \) is reduced to \(\chi^{-1}(\gamma_M(\tau)) \).

(2) If \(T \) is horizontally analytic, then \(\chi \) is quasi-conformal, and then one can prove that for each \(\tau = p/2^k \), the component \(C_{A, \tau} \) is unique.

REFERENCES

POLYNOMIAL-LIKE MAPPINGS

[S1] D. SULLIVAN, Conformal Dynamical Systems, preprint, I.H.E.S.; Geometric Dynamics (Springer Lecture Notes).
[S2] D. SULLIVAN, Quasi-Conformal Homeomorphisms and Dynamics, I, II, III, preprint I.H.E.S.

(Manuscrit reçu le 16 avril 1984.)

A. DOUADY,

E.N.S.,
Centre de Mathématiques,
45, rue d’Ulm,
75230 Paris Cedex 05;
J. H. HUBBARD,
Cornell University,
Department of Mathematics,
Ithaca,
New York 14850.
U.S.A.