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ON NORMAL HOMOGENEOUS EINSTEIN MANIFOLDS

BY McKENZiE Y. WANG (1) AND WOLFGANG ZILLER (2)

A Riemannian metric g is called Einstein if its Ricci tensor satisfies Ric(g)==cg for
some constant c. For c>0, most known examples of Einstein manifolds are compact
homogeneous spaces; see, for example, [25], [20], [12], [7], [21], [27], [28], [2]. Not
every simply connected compact homogeneous space admits a homogeneous Einstein
metric [24], but a general classification of homogeneous Einstein metrics seems to be
difficult. In this paper we study the Einstein condition for a "natural" metric that exists
on every simply connected compact homogeneous space.

Let G/H be compact and simply connected. Then G is compact, and the semisimple
part of G acts transitively on G/H. Hence we will assume that G is a compact,
connected, semisimple Lie group, and H is a closed subgroup. We let g, () denote the
respective Lie algebras. Any bi-invariant metric on 9 induces an orthogonal splitting
9=1) -L m, and if we identify m with Tgn(G/H), the restriction of the bi-invariant metric
to m induces a G-invariant metric on G/H by left translation. Such a metric is called a
normal homogeneous metric. A canonical choice for a bi-invariant metric on g is the
negative of the Killing form, denoted by B. The induced metric on G/H, denoted by
^B, will be called the standard homogeneous metric on G/H.

The Einstein condition for g^ can be described as follows. Let / be the isotropy
representation of H°, the identity component of H, on T^H(G/H)=m. We also denote
by % the corresponding representation of I) on m. For any (orthogonal) representation
7i of I) and any bi-invariant metric Q on t) we let C^ Q be the Casimir operator defined
by —^tr(7t(X()7c(Xf)), where {X,.} is a Q-orthonormal basis oft). Then we have

i
(see( 1.7), (1.12)).

THEOREM 1. — The standard homogeneous metric g^ on G/H is Einstein iff
C^ a | ^ = a Id for some constant a.

Equivalently, if m=mo ©m^ © . . . ©m,, is the decomposition of m into non-trivial
[R-irreducible summands m^, . . ., m^ and a space mo on which / is trivial, then g^ is
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564 M. Y. WANG AND W. ZILLER

Einstein iff nto = 0 and B* (?i,, ̂  + 2 8) = B* ( .̂, ̂ . +28) for all i, j. Here ?i, is the domi-
nant weight of ^ on m^, 2 8 is the sum of the positive roots of I), and B* is the metric on
1)* induced by B 11).

If the isotropy representation of H on m is irreducible over R, then g^ is obviously
Einstein. Such spaces are called isotropy irreducible. If the representation of H° on m
is also IR-irreducible, the spaces are called strongly isotropy irreducible. The irreducible
compact symmetric spaces are of course strongly isotropy irreducible. The non-symme-
tric strongly isotropy irreducible spaces were classified by J. Wolf [25]. This classification
is not quite complete, see the correction to [25] and the paper [23].

If the isotropy representation is reducible. Theorem 1 becomes rather restrictive, and
it enables us to classify all the standard homogeneous metrics which are Einstein in the
case when G is simple. Note that in such a case the only normal homogeneous metric
on G/H, up to scaling, is the standard homogeneous metric. It is natural to assume
that G/H is simply connected (hence H is connected) since if g^ is Einstein on G/H, then
g^ on its universal cover is also Einstein.

Our main result is

THEOREM 2. — Let G be a compact, connected, simple Lie group and H a closed,
connected subgroup such that G acts almost effectively on G/H and G/H is simply
connected. If g^ is Einstein and G/H is not strongly isotropy irreducible, then the Lie
algebras (9, % are given in Table I of Chapter 1.

We will see in Chapter 5 that there are de Rham irreducible spaces with G semi-simple
but not simple whose standard homogeneous metric is Einstein. However, it would be
more natural in such a case to classify all normal homogeneous Einstein metrics.

Chapter 1 contains a general discussion of the Einstein condition for g^. More
generally, in (1.9) we study the Ricci tensor of any naturally reductive metric on G/H in
terms of the Casimir operator of its isotropy representation. We then describe some of
the more interesting examples in our classification. A table of our full classification
follows.

In Chapter 2 we develop the necessary tools for computing Einstein constants and
describe some facts we need from representation theory and from [23]. The details of
our classification are given in Chapter 3 (for the quotients of the classical groups) and
in Chapter 4 (for the quotients of the exceptional groups).

Applications of Theorems 1 and 2 are given in Chapter 5. We first determine the
connected isometry groups of the manifolds in Theorem 2 and show that none of the
manifolds are isometric. Second, we use Theorem 2 to classify all the left invariant
Einstein metrics on compact simple Lie groups that are obtained from the bi-invariant
metric by scaling in the direction of a subgroup. Third, we examine fibrations of the
Einstein manifolds in Theorem 2 where the fibres and base are again normal homogeneous
Einstein. For such a fibration we can scale the metric on the total space in the direction
of the fibres, and in most cases we obtain another Einstein metric which is not normal
homogeneous.

4° SERIE - TOME 18 - 1985 - N° 4



ON NORMAL HOMOGENEOUS EINSTEIN MANIFOLDS 565

Chapters 1 and 5 can be read independently of the rest of the paper by any reader
who is more interested in the classification results and their applications. However, the
classification for quotients of the classical Lie group in Chapter 3 is conceptual, and
contains results of independent interest. In particular, we mention.

THEOREM 3. — Let n be an n-dimensional almost faithful orthogonal representation of a
compact connected Lie group H, and let % be the isotropy representation of SO(n)/7i(H),
i.e., A27l=adH®5C. Then C^ p=a Id for some constant a and some bi-invariant metric
Q on t) iff K is the isotropy representation of a symmetric space of compact type^ or (a)

1 1 i
H=G2, TT= 0=9 or id©o=e (b) H=Spin(7), 71=0—0=0, (c) H=Spin(7)-S0(m),

i
m ̂ 3, 7i=[o—o=e (8) id] © [id ® pj.

The classification for the quotients of S0(n) follows easily from this result. Similar
theorems are proved in Chapter 3 for quotients of the unitary (resp. symplectic) groups
and compact hermitian (resp. quaternionic) symmetric spaces. These results are in the
same spirit as results in [23].
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CHAPTER ONE

The Einstein condition and description of results

1. PRELIMINARIES AND THE RICCI TENSOR. — Let G be a compact, connected, semisimple
Lie group and H a closed subgroup. We denote by 9 and I) the corresponding Lie
algebras and by n the embedding of H in G. The homogeneous space G/TC(H) will be
denoted by M. We assume that G acts almost effectively on M, i. e., 9 and t) have no
non-trivial ideal in common.

For X, Y in 9, set B(X,Y)= -tr((ad X)°(ad Y)). B is the negative of the Killing
form of 9; it is positive definite, and gives an (Ad H)-invariant orthogonal splitting
9=1) 1m, with respect to which (9, 1)) is a reductive pair. We may identify m with the
tangent space of M at the identity coset: for X e m c = 9 , let X* be the vector field
generated by the action of the one-parameter subgroup exp(^X) of G on M and associate
X with X*(^H). Then [X, Y]^= -[X*, Y*],H.

We recall next the isotropy representation % of H on Tgn(M). An element h in H
acts on M by left translation and fixes the identity coset eH. dh is an automorphism
of T^n(M) and the isotropy representation is given by h\-^dh. % induces in turn a
representation of t) on T^(M), which will again be denoted by %. Using the identifica-
tion of m with Tgn(M) these representations get identified with the adjoint representation
onm, i.e, for /ieH, xW=Ad^(/i) and for Xel), Yem, 5c(X)Y=[X,Y]. Since we
assume that G acts almost effectively on M, the isotropy representations of M are almost
faithful and faithful respectively.

From m»T^H(M), we also see immediately that B [ m induces an invariant Riemannian
metric gy on M which will be called the standard homogeneous metric. Notice that every
homogeneous space G/H with G compact, semisimple has such a metric. We are
interested in characterizing when g^ is Einstein, i. e., has constant Ricci curvature.

A preliminary simplification results from observing that the Einstein condition is a
local one, and so we can assume that M is simply connected, which in turn implies that
H is connected. Then the embedding n of H in G is uniquely determined by t) <= 9. In
the remainder of this paper we shall therefore mainly work with the Lie algebras 9 and
t). We shall say that the pair (9, t)) is Einstein or that t) is Einstein in 9, meaning that
gg is Einstein for M.

For the convenience of the reader, we derive below an expression for the Ricci tensor
of the standard homogeneous metric ̂  which is implied by (12 a) and (18) on pp. 608-9
of [12].

Let X, Y e m. Define A (X, Y) = - tr^ (pr^ o ad Xo ad Y), where pr^ is the projection of
9 onto ^ with respect to the orthogonal splitting 9=!) 1m and tr^ is the trace of linear
operators on 9 restricted to I). If { Z^} is an orthonormal basis of I) with respect to B,
then

(1.1) A (X, Y) = -^ B ([X, [Y, Z,]], Z,) = -^ B ([Z, [Z, X]], Y)
i i
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since B is ad g-invariant. Moreover, A is ad ^-invariant, thus defining a positive semi-
definite invariant tensor on M.

(1.2) PROPOSITION. - Ric fee) = (1/4) B + (1/2) A.
Proof. - Let X e m be a unit vector. By Theorem X. 3. 5 (3) of [15] we obtain

B (R (X, X,) X, X) = ^ B ([X, X,L, [X, X,y + B ([X, X,],, [X, X,],)

= - ̂  B ([X, X,L, [X, X,]J + B ([X, X,], [X, X,]),

where { X , } is an orthonormal basis for m with respect to B such that X=Xi . It
follows that

Ric^(X,X)=.tr^(pr^oadX)2+B(X,X)-A(X,X).

Since [1), m] c m, and B is ad g-in variant, the matrix of ad X with respect to { Z . X.}
has the form ^ ^

( 0 a(X)\
V-a(Xr b(X))

It follows that

tr^(pr ,oadX)2=tr(fc(X)2)=-B(X,X)+2tr(a(X)a(X) t)=-B(X,X)+2A(X,X).

Hence RicgB(X,X)=(l/4)B(X,X)+(l/2) A(X,X), as asserted. •

2. THE EINSTEIN CONDITION AND CASIMIR OPERATORS. - We first deduce some immediate
consequences of Proposition 1.2 and then go on to relate the tensor A to a Casimir
operator of the isotropy representation of M.

Since m is an orthogonal representation of H, let us write it as a sum of a trivial
representation nto (of possibly zero dimension) and irreducible orthogonal representations
m,, i>0, with dominant weights .̂

(1.3) COROLLARY. - If g^ is Einstein, then either H is trivial or mo=0. In the first
case g^ is a bi-invariant metric ofG.

Proof. - Let Ric(^)=C^. Since A [mo=0, nto^O implies that C-l/4. But then
A=0, and the definition of A implies that m=mo. This contradicts the assumption
that G acts almost effectively on M unless H is trivial. •

(1.4) Remark. - Since nto is a subalgebra of g by the Jacobi identity, the condition
mo ̂ 0 is equivalent to the existence of a subalgebra f such that 1) ® f c 9. Hence if ̂
is Einstein, no such subalgebra I can exist unless g=t)®i This already restricts the
possibilities for H.

ANNALES SCIENTIFIQUES DE L'feCOLE NORMALE SUPfeRIEURE



568 M. Y. WANG AND W. ZILLER

(1.5) COROLLARY. - J/H is a torus in G, then g^ is Einstein if f the torus is maximal
and all roots ofG have the same length mth respect to B. Hence G is locally a product
ofSV(n\ S0(2n), E^, E7, or Eg.

proof. - That the torus must have maximal rank follows from (1.3). If H is a
maximal torus, m=©m, is just the root space decomposition of 9. Therefore, by the

i

definition of A, A|m,=-B*(a,,a,)B, where ±a, is the root corresponding to m,, and
B* is the inner product induced by B on g*. The result follows immediately. •

Remark. - A theorem of Matsushima ([17], Theorem 3) implies that up to a holomor-
phic transformation there is a unique Kahler-Einstein metric on G/T. But examining
the Kahler condition for an invariant metric on G/T ([I], p. 1149) one sees that g^ for
G/T is never Kahler.

(1.6) COROLLARY. - Suppose Ric(gB)=CgB on M, then 1/4^C^1/2. M is locally
symmetric iffC=112. C=l/4 iffH={e}, i.e., g^ is a bi-invariant metric ofG.

proof. - In the proof of Proposition (1.2), we established that

A(X,X)= l B(X,X)+ l t r , (pr^oadX) 2 .

Clearly, tr^pr^oadX)2^ and so 1/4 ̂ C^ 1/2. Now C= 1/4 iff A=0 iff H = { ^ } since
the isotropy representation is almost faithful. Lastly, C = 1/2 iff tr^ (pr^ ° ad X)2 = 0 for
all X emiff [m, m] <= I). •

The Einstein constant C can be calculated by taking the trace of (1.2) and using
(1.1). We get C= 1/4+1/2^ (dim H,) (l-a,)/dim(G/H), where H, are the simple

i

factors of H and BH, = a, B^ | l)r

To obtain a necessary and sufficient condition for g^ to be Einstein we need to examine
the tensor A more closely. The main observation is that A is the Casimir operator of
the isotropy representation with respect to B 11). We explain this connection below.

Let ̂  be a compact Lie algebra, (i. e., t)=3©[^ I)] where 3 is the center of b and ft, b]
is semisimple,) and (p be a faithful representation of \). Suppose that <, > is an ad \)-
invariant non-degenerate symmetric bilinear form on \). Then the Casimir operator of
(p with respect to <, > is defined by

C<p,<,>=-I>(X^(p(Y,),
i

where { X,}, { Yj are bases of I) dual with respect to <, >, i. e., < X,, Y .̂ > = 8^. C^ < , > is
independent of the choice of { X,} and { Y,}, and commutes with every cp (X). Hence if
(p is an irreducible complex representation then C^ < ̂  is a scalar operator. If in addition
q> is orthogonal, i. e. (p(X) is skew symmetric for every X, and if < , > is positive definite,
then this scalar is nonnegative.
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ON NORMAL HOMOGENEOUS EINSTEIN MANIFOLDS 569

Now if we let 1) be the Lie algebra of H, (p be the isotropy representation 50 of I) (the
differential of the isotropy representation of H), and <, > =B 11), then (1.1) implies that

A(X,Y)=B(C,,B^X,Y).

Combining this with (1.2) we get

(1.7) COROLLARY. — If we regard the Ricci tensor as a symmetric endomorphism ofm,
then

R i c ( ^ B ) = . I d + _ C ^ B | i r

Hence g^ is Einstein iff C^ a\^ is a multiple of the identity. •
Note that the condition C^ g | ^ = a Id is only a condition on the isotropy representation

^, despite the presence of the restriction of the Killing form B of 9 to I). We only need
to observe that

(1.8) B(X,Y)=B^(X,Y)-tr(x(X)x(Y))

for X, Y el), where B^ is the negative of the Killing form of t).
A formula analogous to (1.7) also holds for the Ricci tensor of naturally reductive

metrics. This is not needed for this paper, but since it is of independent interest, we
include the derivation below. We will assume that G is a connected but not necessarily
compact Lie group. Let g be an invariant Riemannian metric on G/H. Then t) is a
compact Lie algebra (although H need not be compact) and there exists an ad(())-
in variant subspace m with g = () © m. The metric g is naturally reductive with respect to
the transitive group G and the splitting g=I )©m if for all X, Y, Z in m we have
^(X,[Z,Y]J+^([Z,XL,Y)=0.

A theorem of Kostant (see [13], p. 355 Theorem 4 or [7] p. 5) says that given a
naturally reductive metric with respect to a decomposition 9 = 1) ® m there exists a unique
ad (g)-in variant non-degenerate symmetric bilinear form Q on the ideal g=mm+[m,m]
such that Q(m,gni))=0 and Q[m=^. Conversely, if Q is an ad (g)-in variant non-
degenerate symmetric bilinear form such that Q [ ^ is non-degenerate and Q [ ()1 is positive
definite, then with respect to the decomposition g=l) © ̂ , QJ t)1 is a naturally reductive
metric. Since g is an ideal in g that acts transitively on M, we will henceforth assume
that g = g. Notice though that Q and Q [ t) are in general not positive definite.

(1.9) PROPOSITION. — Let g be a naturally reductive metric on M which is the restriction
to t)1 of an Sid(Q)-invariant non-degenerate symmetric bilinear form Q on g. If we define
S by B(X,Y)=Q(SX,Y), then

Ric(^S+JC,Q,,.

Proof. — We define as before

A (X, Y) = - tr^ (pr^ o ad X o ad Y).

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUPfiRIEURE



570 M. Y. WANG AND W. ZILLER

Using the bi-invariance of Q and Q(l),m)=0, we get

A(X,Y)=-SQ([Y,[Z,X]],Y),
i

where Y,, Z, are dual bases of ty. i. e., Q(Y,, Z .̂) =5^.. The proof of (1.2) carries over if
we replace B by Q at appropriate places and shows that

Ric(g)(X^)=lB(X,X)^lA(X^).
4 2

The definition of C^ then implies that

A(X,Y)=Q(q,^X,Y).

(Notice that in this formula we have to use Q instead of the metric B since we do not
necessarily have B(I), m) =0.) •

Unlike the case of C^B|^ ^ .Qlb can have eigenvalues of either sign since Q|t) need
not be positive definite. Hence Ric(g) can also have eigenvalues of either sign. Notice
also that the Einstein condition is not equivalent to C^ Q^=ald anymore. This
concludes our detour to consider the Ricci tensor of naturally reductive metrics.

For I) semisimple and <, > the negative of the Killing form of t), the calculation of
C < > for an irreducible complex representation (p is classical. Exactly the same calcula-
tion holds when t) is compact and <, > is any ad (9)-in variant non-degenerate symmetric
bilinear form. For the convenience of the reader, we include the calculation below.

We pause first to review some basic facts about the structure and representation theory
of compact Lie algebras. Let < , > be an ad (I)) -in variant non-degenerate symmetric
bilinear form on \) and t <= I) be a maximal abelian subalgebra. We may extend < , > to
a non-degenerate symmetric form on t) (X) C which will also be denoted by < , >. Using
< , > , we may write I) =3 It)' and t=3-Lt' , where 3= center of t) and t)' is semisimple.
% = t' ® C is then a Cartan subalgebra for ̂  ® C. Now t) ® C = 3 ® C 1 ̂  ® C. Let

t)o®Z%
a

be the root space decomposition of l^OOC with respect to t)o. Note that <%, t )p>=0
whenever a + P + 0.

For every positive root a we can find vectors E^el),, E_,e^_, such that
< E,, E, > = < E_,, E_, > =0, < E^ E_, > = 1. Then [E,, E_J=H,, the element dual to a
with respect to <, >. As is customary, we let 8 denote one half the sum of the positive
roots of t) ® C.

Every irreducible complex representation (p of I) has a cyclic vector v corresponding to
a dominant integral form ^, which determines the representation up to equivalence, v
is unique up to a scalar multiple, and is characterized by (p(EJu=0 for all positive
roots a.
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ON NORMAL HOMOGENEOUS EINSTEIN MANIFOLDS 571

(1.10) LEMMA. — Let 1) be a compact Lie algebra with an ad (i^-invariant non-degenerate
symmetric bilinear form < , ) and (p an irreducible complex representation oft) with dominant
weight^. Then C^^>= —<X,, X,+28>*Id, where < , > * denotes the bilinear form on
t)*®C induced by < , > .

Proof. — We already noted that C<p < > is scalar. In the notation of the pre-
ceding paragraphs, we choose { h^ . . ., h^ } < = % , { h^+1, . . ., \} <= 3 00 C and
{ ^ , . . . , h ? } c = % , { h ^ i , . . . , h * } c : 3 ® C such that <^*>=8,,, l^i, j^r. Then
/ii, . . ., ̂ ,, E,, E_,, (a>0) and h?, . . ., /i*, E_,, E,, (a>0) are dual bases of () (x) C with
respect to <, >. Hence

r

-C, ,< ,>=E <P(/»,)(PW)+ E (p(E^°(p(E_.)+ ^ (p(E_.)°(p(E^
1 = 1 a > 0 a>0

r

= E <p(/i,)(pW)+ S <P(H.)+2 ̂  (p(E_^°(p(E,)
1 = 1 a>0 a>0

Let v be a dominant weight vector of cp. Then

-C<p,<,>^=f S M^-)W)+ E ^(Hj)r=«^A>*+<^25>*)r. •
\ f = l a>0 /

Combining (1.7) with (1.10) we obtain

(1.11) THEOREM. — Let m=mo © m^ © . . . © m^ be the decomposition of the isotropy
representation into a trivial representation nto and irreducible real representations m?
l ^ f ^ f e , with dominant weights X^. Then g^ is Einstein iff nto=0 and for every i^j,
B* (?L,, ̂  + 2 5) = B* ( .̂, ̂ . +25). (B* 15 the inner product on Q* induced by B.)

Proof. — The definition of C^ g implies that C^ g m .̂ c: m^. m^ (g) C is either V^ or
V),^ © V^ where V,,^ is the complex irreducible representation with dominant weight ^
and ^ denotes the contragredient representation. If m, (X) C = V^ .̂, then
C^ a | m, = - B* (?i,, X, + 2 8) Id by (1.9). If m, ® C = V^ © V^ we observe that the map
which takes ^ to ^-* is an isometry with respect to B* and that 5*= 8. Hence
B* (^,, ̂  + 2 8) = B* (?i*, ̂ f +25) and again we have q, g | m, = - B* (?i,, ?i, +25) Id. •

The above proof yields immediately.

(1.12) COROLLARY. - (M, g^) is Einstein iff B*(X,, ^+2§)=B*(^,^.+28) for all
i^j and mo==0, where {^1} are the dominant weights of the irreducible complex representa-
tions of m ® C. •

An immediate consequence of Corollary (1.7) and Theorem (1.11) is the following
corollary, which will be used as an inductive method for classification in Chapter 4.

(1.13) COROLLARY. — Let G be a compact, connected, semisimple group.
(a) If H c K c: G are closed connected subgroups such that B g [ f = C . B ( for some

constant C and (G/H, gg ) is Einstein, then (K/H, g^) is Einstein.
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(fc) If Hf c= K^ c G ar^ closed connected subgroups mth K^ simple, II H^ c: n K, c G,
anri (G/(II H(), ^g ) is Einstein, then for each f, (K;/H,, g^) is Einstein. •

Many of the examples we will obtain are easily seen to be Einstein by the following.

(1.14) COROLLARY. — Let /=Xi ® • • • ® Xk y^here ^ is an irreducible real representa-
tion mth dominant weight .̂. If for each i^j there exists an automorphism of t) \vhich
takes Xf to ̂  and permutes the {^ }, then g^ is Einstein.

Proof. — If A is such an automorphism, then 'k^oA=fkp ^.oA==^., and 8°A=8.
We only have to show that A is an isometry of B 11) since then
B* (^., X, + 2 8) = B* ( .̂, ̂  +28). But this follows from (1.8) since any automorphism is
an isometry of B^ and tr(^(X) °^(Y))=^tr(^(X)^(Y)) is invariant under A since A
permutes the ^/s. • l

3. SOME EXAMPLES. — In this section we describe some pairs (G, H) for which gy is
easily seen to be Einstein using (1.11) or (1.14).

We begin by establishing some notation and conventions in representation theory. Let
t^w? V2m9 2in(^ Pm denote respectively the standard complex representations of SU(m) (or
U(m)), Sp(m), and S0(m) (or Spin(m)) of dimensions m, 2m, and m. If 'k is the
dominant weight of an irreducible complex representation n^ of a compact simple Lie
algebra I), we often describe n^ by giving the diagram of n^. Suppose a is a simple root,
let ^a=[2B*(^,a)]/[B*(a,a)]. ^a is a non-negative integer and is independent of the
choice of the bi-invariant metric on I). The diagram of n-^ consists of the Dynkin
diagram of I) with ^a placed above the vertex corresponding to a.

A2 7i and S2 n denote respectively the second exterior and symmetric power of n, and
we have

A2 (71 (S) 71') = [A2 71 ® S2 71'] © [S2 71 ® A2 Tl'],

S2 (71 ® 71') = [S2 71 ® S2 71'] ® [A2 71 ® A2 71'].

(® denotes the external tensor product while 00 is used to denote the internal tensor
product.) If 7t is a non-self-contragredient representation, then n ® n* has an orthogonal
and a symplectic structure. The corresponding real/quaternionic representation is deno-
ted by [7iL/[7i]H.

If SO(n)/H is a homogeneous space with isotropy representation ^ and the inclusion
H c= S0(n) is given by the orthogonal representation TC, then A 2 7 c = A d H © X since
A^^Adgo^) and Adso(jH=AdH© X- ^is can be used to compute the isotropy
representation ^. Furthermore, if H c= K c G and if ^ is the isotropy representation
of H in K and 72 that of K in ^ then the isotropy representation of H in G is

2
Xi © X21H - we also observe that S2 p^ = id © o—o—, . . ., S2 v^ „ = Adgp („), and

i
A^^id®^—•—•—. . .—•=o.
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Examples of homogeneous manifolds whose standard metric is Einstein include group
manifolds G with G compact, connected, and semisimple, and symmetric spaces of
compact type. They include also the reductive strongly isotropy irreducible spaces G/H
with H compact, connected and G acting effectively on G/H. In [25] such spaces are
completely classified (see also [23]). It turns out that G must be compact and simple if
(G, H) is not a Riemannian symmetric pair.

As we saw in (1. 5), (G/T, g^) is Einstein iff T is a maximal torus and all roots of G
have the same length with respect to B. We now describe some non-trivial examples.

Example 1. - (a) G=SU(nfe), H=S(U(^) x . . . xU(fc)) (n times), fe^2,
n ̂  3. K: H -> G is given by © [id ® . . . ® ̂  ® . . . ® id]. The isotropy representation
is easily seen to be © [id ® . . . ® ̂  (§). . . ® n? ®. . . ® id]^. By (1.14) (G/H, g^) is
Einstein.

(b) G=Sp(kn), H=Sp(fe)x . . . xSp(k) (n times), f e^ l , n^3. TL-H-^G is given by
© [id ® . . . (§) V2 k (8) . . . (§) id]. The isotropy representation is

© [id ® . . . ® v^ fc (§). . . ® v^ k ® . . . ® id].

Again, by (1.14) (G/H, g^) is Einstein.
(c) G=SO(nk), H=SO(k)x . . . xSO(k) (n times), ^3, n^3. 7t:H->G is given

by © [id (§)...(§) p^ (§). . . (§) id] and the isotropy representation is

© [id (8) . . . ($ ) pfc ® . . . (§) pfc (§)...(§) id].

By (1.14) (G/H, g^) is Einstein. (This example was observed previously in [7], p. 59.)

Example 2. - (a) G=SO(n2), H=SO(n). S0(n), n^3, and n:H->G is given by
p^ ® ?„. By computing A2 (?„(§)?„) we see easily that the isotropy representation of
G/H is [A2 ?„ ® (S2 p»—id)] © [(S2 p^—id) ® A2 pj. (G/H, gy) is normal homogeneous
Einstein by (1.14).

(b) G = SO (4 n2), H = Sp (n) - Sp (n), n ̂  2, n: H -> G is given by v^ „ (§) v^ „. By compu-
ting A2 (v^ „ (8) v^ „), we see that the isotropy representation of G/H is

[S2 V2 „ (8) (A2 v, ,-id)] © [(A2 v^-id) (§) S2 v^,].

By (1.14) (G/H, ^) is Einstein.

Remark. — The normal homogeneous Einstein spaces in Example 2 can be obtained
from symmetric spaces, just as the non-symmetric strongly isotropy irreducible quotients
of S0(n) by connected subgroups can be obtained from Riemannian symmetric spaces
of compact type. (See [25] pp. 147,8, and [23].)

Let us consider the symmetric spaces G/K=SO(2n)/(SO(n)-SO(n)) and
Sp(2 n)/(Sp(n) • Sp(n)). The isotropy representations / are respectively

p^(§)p^:SO(n)xSO(n)^SO(n2) and v^(§)v^: Sp(n) xSp(n) -> S0(4n2).

The spaces in Example 2 are just SO(dimG/K)//(K).
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