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IWASAWA MODULES ATTACHED
TO CONGRUENCES OF CUSP FORMS

BY HARUZO HIDA

§0. Introduction

A general principle in the study of congruences modp between primitive cusp forms is
(not to consider them directly but) to analyse the ring theoretic properties of the associated
Hecke algebras. This approach appears indirect, but in fact, is more accessible. Roughly
speaking, the local rings of the Hecke algebra overZp correspond bijectively to the maximal
classes of primitive cusp forms congruent each other modulo p. If one of its local rings
splits after extending scalar to Qp, then there exists a non-trivial congruence between
distinct Galois conjugacy classes of primitive forms.

In our previous papers [7 ] [8 ] and Ribet [24 ], this principle was applied to primitive
forms of fixed level and fixed weight. The present purpose is to consider all primitive
forms of all weights for a fixed level, simultaneously, and to apply this principle. For a
technical reason, we have to assume p ̂  5 for the prime p throughout this paper. Then, as
a result, the Hecke algebra A of the space of all ordinary forms is proved to be free of finite
rank over the Iwasawa algebra A==Zp[[X]] (for the definition of ordinary forms, see
below). The local rings of A correspond bijectively to the maximal classes of infinitely
many ordinary forms congruent each other modulo p, and if one of them splits after extend-
ing scalar to the quotient field ^ of A, then there exists non-trivial congruences between
systems of infinitely many ordinary forms. Furthermore, to each simple component JT
of ^®A^» a finite torsion A-module ^(Jf) can be naturally associated. In terms of
^(Jf), one can give a fairly complete description of congruences mod;? occurring at each
weight between cusp forms belonging to JT and others.

To give a more explicit illustration, we consider, just for simplicity, the space <9^(r\(/?); Z)
consisting of cusp forms for Fi(/?) of weight k with rational integral Fourier coefficients,
and put ̂  = y\y\{p} \ Z)®zZp. Let 4 be the subalgebra of Endzp(^) generated over Zp
by all the Hecke operators T(n) of level p. For sufficiently large reZ, the ^-adic limit
^= lim TO^^'^ exists and gives an idempotent of ^. Any non-zero common eigen-
form of operators in 4 is called ordinary if /1 c= f and its first Fourier coefficients is
equal to 1. We fix once and for all an embedding of the algebraic closure of Q into the
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232 H. HIDA

p-Sidic completion Q of an algebraic closure of Qp. Then, a non-zero common eigen-
form / with / | T(/?) = a(p, f)f is ordinary if and only if its eigenvalue a(p, f) is a 7?-adic
unit in Q. For any ordinary form /^O, there is a unique simple direct summand K
of ^!?(Qp)=(^fc)®ZpQp» which acts non-trivially on f. Let A be the complementary
direct summand of K, ̂  be the direct sum of the projected images of ̂  = ̂  in K and A,
and define a finite /^-power-torsion module C(/) by A^jA^. The following fact is funda-
mental in the theory of congruences of primitive forms:
(0.1) C(/)^0 if and only if there exists an ordinary form g in <9?fc(Q)=<99fe®zp^ suc^

that g=f mod ^P and g is not conjugate to f under any automorphism of Q over Qp,

where ^ is the maximal ideal of the 7?-adic integer ring of Q.
Now we generalize this to the infinite dimensional spaces of all ordinary forms of all

weights. Let us denote by ^ ] the subspace of © ^j?(Qp) (e^?(Qp)=^k(Qp)) consisting
k=l

of all forms with radically integral Fourier coefficients, and put y = [j y3. Then y
00 J

contains © y^ (y^ = ̂ y\ but is much bigger than that. The usual action of Hecke
k = l

operators respects V and y3 (see § 1). Naturally the Hecke algebra A3 is defined as
the Zp-subalgebra of Endzp(^) generated by all Hecke operators. The restriction of
operators of A3 to the subspace V 3 ' for j>f gives a projection morphism of A3 onto A3',
and their projective limit A=\\mA3 naturally acts on y. Let zeF=l+7?Zp act on

^(Qp) through f\z==zkf; then, this action on © ^?(Qp) leaves V stable by a result
k=0

of Kats (see (1.12)). For any prime \~=\ mod/?, the action of (eF on y coincides with
that of the Hecke operator (^((.l). Thus the Iwasawa algebra A= limZp|T/TJ

^~n~

(Fn= 1 -^-p^p) can be regarded as a subalgebra of ^. Then one of our main results is
(0.2) ^ is free of finite rank over A (Theorem 3.1).

We now identify A with the power series ring Zp[[X]] through F^l+p \—> l+XeZp[[X]],
and put Pj^^X+^—^+T^eA for feeZ. The restriction of operators in A to the
subspace y^ induces an isomorphism:

(0.3) ^/P^< if W (Corollary 3.2).

Let S be the quotient field of A and put S= A®^. Then
(0.4) ^ is a finite dimensional semi-simple algebra over ^ (Corollary 3.3).

Let us take a simple direct summand ^ of ^, and let ^ be its complementary direct
summand. Denote by ^(Jf) and ^(^) the projected images of ^ in Jf and j^, respectively.
Let us further pur ^(Jf)= C}^Wp, ̂ )== H^OP. ̂ '= ̂ W©^Q and ^== ̂ (Jf)©^),

P P
where P runs over all prime ideals of A of height 1, the subscript " P " indicates the loca-
lization at P and the intersection is taken in Jf and ^/, respectively. Then, the module
yT=^/^' has only finitely many elements; i.e., pseudo-null, and

(0.5) ^(Jf^ ̂ A is a finite torsion module over A (Theorem 3.6).
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Furthermore, i ffe^2,

(0.6) 4(Jf)=^(Jr)/P^(Jf) is isomorphically embedded into ^(Qp) (Corollary 3.7).

For simplicity, we now assume that Jf is reduced to J^f. Then (0.6) shows that there
is a unique ordinary form fj, in ̂  for each k ̂  2, on which ^(Jf) acts non-trivially. Then
if fe^2, we have an exact sequence: ^

(0.7) 0 -. C(./fe) -. ̂ (Jr)/P^(Jf) ̂  ^T/Pfe /r -^ 0 (Corollary 3.8),

and we know that ^(JQ^O if and only if C(fk)^0 for at least one k^2 (this condition
is also equivalent to knowing that C(/fc)^0 for all fe^2). Since \^\<co and ^ is
independent of k, ̂ (Jf) may be said to interpolate all the modules C(fk) (as in (0.1)) for
the system { fk} of /^-ordinary forms belonging to jf. The pseudo-null module J^
is expected to vanish, and some sufficient (not too restrictive) conditions for ^=0 will
be given in Proposition 3.9.

In this paper, we shall deal with only the algebraic aspect of the theory of the Iwasawa
modules ̂ (Jf), but as seen in [7, Th. 6.1, Cor. 6.3] and [8, §§ 6, 7 ], the number of elements
of C(fk) can be expressed by the rational part of the special value at s = k of a certain zeta
function L(5, fk) of fk. Thus the characteristic power series of ^(Jf) may be conjectured
to interpolate the values L(fe, fk) radically (Conjecture 3.10). An affirmative but partial
solution of this conjecture will be given in our subsequent paper [11]. Besides this,
another proof of the above facts (0.2-7) by using cohomology groups as in [8, § 3 ] will
be given in [11].

The precise statement of our results valid for any level and over any ground ring will
be given in § 3. The proof of (0.2) heavily relies on the theory ofjp-adic modular functions \
of Katz [18] and the duality between /?-adic modular forms and their Hecke algebras.
An exposition of Katz's theory is given in § 1 and a duality theorem is proved in § 2. \
Another key point is a result ofJochnowitz [13 ] which guarantees the finiteness of ordinary \
forms modulo p. This together with a proof of finiteness of ^ over A will be given in § 4.
Main theorems will be proved in the following sections §§ 5 and 6. In § 7, we discuss
the Hecke algebras obtained from theta series of imaginary quadratic fields and Eisen-
stein series. They provide ample examples of irreducible components Jf and Iwasawa
modules ̂ (Jf). Some other examples, together with a detailed exposition on the relation
between congruences and the module ^(Jf), are discussed in [31].

Notation. — The group GL^(R) of real matrices with positive determinant can be con-
sidered as the holomorphic transformation group of the upper half complex plane

§== { zeC | Im (z)>0}. For any function /(z) on $ and y= I )eGL^(R) and feeZ,
we can define another function / l^y by vc /

(/ Ly)(z)= de^/vfe^Vcz+rf)^ (ze^).
\cz+d/
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234 H. HIDA

For any positive integer N, we define subgroups of SI^Z) by

Fo(N) = \ ( a JeSL2(Z) | c = 0 mod N },
[\c d ) J

Fi(N) = \ ( a b }eW) | d= 1 mod N I,
[\c d j J

r(N)=<^ ,)eri(N)|fo=OmodN}.
(V dj j

Any holomorphic function / on § with f\^=f for all yeUN) has Fourier expansion
of the form:

(0 • 8) ^a(-, /\(nz/N) (e(z) == exp (Iniz)).

Hereafter, we always write the Fourier expansion of / as in (0.8). For any subgroup A
of SL2(Z) containing F(N) for some N, the space ^(A) of modular forms on A consists
of holomorphic functions / on $ with the properties:

(0.9 a) /lt5=/ for all SeA;

(0.9 b) a (—/ka)=0 for all n<0 and any aeSÎ Z).

For any character ^ of A of finite order, we put

^(A,v)/)={/e^(A)|/|,8=<l/(5)/ for any §eA}.

Especially, any Dirichlet character \|/ modulo N induces a character of ro(N) (which is
again denoted by <)/) through

^(a ;))= )̂ for ( a ;)ero(N).
\\c d j } \c d]

Thus the space .J^(To(N), v|/) is defined in this manner. Put

^(A) = {/e^(A) | a(0, / l^a) = 0 for all oceSL^Z)},
^(A, v|/) = { /G^(A, \|/) | a(0, / l^a) = 0 for all aeSI^Z)}.

For any automorphism a of C and /e^(ro(N), v|/) (resp. e9^(ro(N), \|/)), there is a modular
form /^^(^(N), v)/0) (resp. WoW, ̂ )) such that a(n, f°)=a(n, f)° for all n, where
vj/^m) = (^(m))0 for all meZ ([27, Th. 2 ]). The modular form /CT is called a conjugate of /

We denote by Q the /?-adic completion of an algebraic closure of the ;?-adic field Qp.
The normalized norm of xeQ is denoted by | x\p (\p \p==p~1). The algebraic closure
of the rational number field Q is regarded as a subfield of C and Q. Every finite extension
of Qp is considered in the universal domain Q.
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IWASAWA MODULES OF CONGRUENCES OF CUSP FORMS 235

§ 1 . p-adic modular forms and their Hecke algebras

Firstly, we shall define spaces of/?-adic modular forms in an elementary manner; then,
we shall give another definition of them in the context of works of Katz. This enables
us to define Hecke operators acting on these spaces.

Let K be a finite extension of Qp in Q and (9^ be the ring of all /?-adic integers. Let Ko
be a finite extension of Q dense in K under the p-adic topology. Let A be either of the
congruence subgroups ri(N) or r(N) for a positive integer N. Put

^(A;Ko)=^/e^(A)|a(n,/)6Ko for all ne^Z^

^(A;K)=^(A;Ko)®KoK

We define a p-sidic norm | \p on Q^1^]] by

00

( 1 .1 ) ^a(n)q^ = Sup | a(n) |,.
n=0 p "

We write the Fourier expansion of /e^(A;Ko) as
/ n

J^^/)^ for q=e(z).

Then one can define the norm | / \p by (1.1). It is known (cf. [27, Th. 1 ]) that | / \p is
finite for all /e^(A; Ko), and we may regard ^(A; K) as a completion of ^(A; Ko)
under this norm. Thus ^(A; K) can be identified with the closure of the image of

j_
j^(A;Ko) in K[[^]], and thus every element of J^(A;K) has a unique ^-expansion.
The space ^(A; K) is determined independently of the choice of the subfield Ko (see
below (1.5)). Let 0 be either of the congruence subgroups Fo(N) or Fi(N)nFo(//). Any
Dirichlet character \|/modN or mod//" (according as 0=Fo(N) or Fi(N)nro(7/)) gives

a character of ^> by \|/( ( ) )=\|/(d). Then we can define, if v|/ has values in Ko,
\\c d } }

,̂(0, v|/; Ko) = {/e^(<D, v)/) | a(n, /)eKo for all n },
^(<D, ̂ ; K) = .̂ (0, ̂ ; Ko) ®KoK.

Put
^,(A;^)= {/e^,(A;K) 1 1 / |̂ 1} =^^K)^[[qNn

^((D,v|/;^K)=={/e^?^;K)||/|^l}.

The corresponding spaces can be similarly defined for cusp forms, and for the space of
/?-adic cusp forms, we shall use the notations: ^(A;K), ^(O, v|/; ^c)? etc-

For each positive integer y>0, put

^(A; K) = © ^,(A; K), ^(A; K) = © ^,(A; K).
f c = 0 k=l

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



236 H. HIDA

Since ^(A; K) is embedded into K^^]] for each k, we can consider the ^-expansion
j J

of any / = © /^^(A; K) given by a(n, /) == E a{n, /jQ. Then, it is plain that ^(A; K)
k=0 k=0

is embedded into K^^]] by this ^-expansion, and so we can define a /?-adic norm
on ^(A;K) by (1.1). Put

^J(A;^)={/e^(A;K)||/ |^l}=^(A;K)n^K[^ l /N]],
^(A; ̂ -^(A; K)n^(A; ̂ ).

Let A denote either of the ring K or 0^. Now we take the limit:

^(A; A) = U W; A) in A [ [q^ ] ],
j

<^(A;A)=U ^(A;A) in A^^]].

Let ^(A; A) and ^(A; A) be the completion of ^(A; A) and c^(A; A) in A [ [^1/N ] ] under
the norm (1.1). The elements in J^(A; A) will be called j?-adic modular forms. When
A==;Ti(N), we simply write ^(N;A), JT(N;A) and ^(N;A) instead of ^(F^N); A),
^(Fi(N);A) and ^(Fi(N);A). This simplification for the symbols also applies to the
space of cusp forms.

Here we summarize some results of Katz in a manner suited for our later application.
Firstly, we give another definition of the space of modular forms as a solution of certain
moduli problems. The details are found in [18, Chap. II]. Let ^ be the finite flat
group scheme over Z realized as the kernel of the multiplication by N on the multiplicative
group G^. For each commutative ring A with identity, we consider triples (E, co, Q/A
consisting of the following three objects: (i) E is an elliptic curve (i. e., an abelian scheme
of dimension ^1) over A, (ii) co is a nowhere vanishing invariant differential on E rational
over A, and (iii) i is an inclusion over A of HN into the schematic kernel E [N] in E of the
multiplication by N. As an example of such triples, we may offer the Tate curve Tate (q)
over the ring Z((q)) of formal Laurent series (cf. [3, VII ]). If we regard Tate (q) as a quotient
of Gw/z((g)) by the subgroup generated by q, the canonical level N structure
^can : ̂ N ^ Tate (q) [N] is induced by the natural inclusion ̂  into G^. If one identifies G^
with Spec (Z [x, x~1 ]), then the invariant differential d x / x induces a canonical differential
©can on E- Thus we have the triple (Tate (q\ (o^an, ^'can) defined over Z((^)). The space
of modular forms on Fi(N) over A in this context consists of functions / which assigns
the value /(E, co, QeA' to any triple (E, co, i) over any over-ring A' of A and which satisfies
the following conditions:

(1.2 a) /(E, co, i) depends only on the A'-isomorphism class of (E, co, f ) ;
(1.2 b) The function / is compatible with the base change;
(1.2 c) For any unit ^(A')', /(E, a-1®, i)=akf(E, co, i).

The space of these functions is denoted by Rfc(Fi(N);A).
The evaluation of /eRfc(ri(N);A) at (Tate (g), cOcan^'can) ^lves an embedding:

(1.3 a) R,(ri(N);A)c,A((^))

4° S^RIE - TOME 19 - 1986 - N° 2
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and if A' => A, then

(1.3 b) /eRfc(Fi(N); A) if and only if /(Tate (q\ co^, kJeA((q)) and /eR^N); A').

This type of assertion will be called the ^-expansion principle. We mainly deal with
the level N structure ; : ̂  <^ E [N] in this paper, but to prove one of key lemmas for our
later use, we need some other types of level N structure, which concerns the principal
congruence subgroup F(N): Let (Z/NZ)/A denote the constant group scheme of order N
over A and define a standard pairing < , > : ̂  x Z/NZ -> ̂  by < ((;, m), (^, n) > = ̂ A^".
Then we consider the following two other types of level N structure:

(i) P : ̂ IN><Z-/NZ^E[N] such that < , > coincides with the Weil pairing on E[N]
under P;

(ii) a^Z/NZ)2^^].

For the very existence of the structure a as above, N must be invertible in A. We will
use the symbols a, P and i exclusively to indicate which type of level N structure we are
dealing with. Similarly to Rfc(r\(N); A), we define the space of modular form s R^(F(N); A)
(resp. ̂ (r(N); A)) which classifies triples (E, co, P) (resp. (E, co, a)). Assume that N~ ̂ A,
and we consider naive level N structures (E, co, a) over A. Let e^ be the Weil pairing
on E[N]. We define a primitive N-th root of unity det(a) by

det(a)=^(a(l,0),a(0,l)).

Then we can define an arithmetic r(N)-structure ?„ : |^NXZ/NZ^E[N] out of the given
naive r(N)-structure a by

P^deW.^^m,^.

The correspondence: (E, co, a) -> ((E, co, Pa), det (a)) gives a bijection (cf. [18, 2.0.8 ])

(1.4 a) {naive r(N)-structures } ̂  {^^(A) | ^ : primitive } x { arithmetic r(N)-structures }.

This yields an important isomorphism

(1.4 b) W(N); A)^R,(F(N); A)(g)zZr^, J

where ^ is a primitive N-th root of unity. On the Tate curve, a canonical arithmetic
r(N)-structure ̂ : ̂ xZ/NZ^ Tate(^)[N] over Z^q^)) is given by PcanK,^^.
Then, the ̂ -expansion principle holds for Rfe(r(N); A) for the evaluation at (Tate(^), co^n? Pcan)-

In order to compare these new definitions of modular forms with those given in the
beginning of this section, we consider the space of modular forms over C. To any point
ze§, one can associate a lattice in C given by L^=27u(Z+Zz). By means of p-function

relative to this lattice L^, we can regard the triple (C/L^, du, i) with i ( e ( — ) ) = ( — mod L^ ]
\ \ N // \N /

as an arithmetic level N structure, where u is the variable on C. For any /e^(Fi(N)),
the correspondence:

(C/L,,^,0^(27iO-V(z) for each ze$

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



238 H. HIDA

defines an element of Rfe(ri(N); C). Since the evaluation of /e^(ri(N)) as an element
of Rfe(ri(N); C) at (Tate (q\ ©can? ^can) coincides with the analytic ^-expansion of / via
the identification q=e(z\ we can regard ^(ri(N)) as a subspace of Rfc(ri(N); C). The
correspondence: (E, CD, P) \—> (E, co, P |^) yields an inclusion Rfe(r\(N); A) into R^(r(N); A),
which preserves ^-expansion. Then through the identification (1.4fc), we can evaluate

\_
an element /eRfe(ri(N); A) at Tate (q) over A KK^)) with an arbitrary naive r(N)-struc-
ture oc :(Z/NZ)2^Tate(^)[N]. Then we have that

j_
^(ri(N))= {/eRfc(ri(N),-C)| /(Tate^co^oc^Ct^]] for every oc}.

This combined with the ^-expansion principle shows that, for each subring A of C or Q,

(1.5) ^(W); A) = { /eR,(r\(N); A) | / (Tate (q\ co ,̂ oc)eA ̂ , ̂ pH for all a ̂

as a subspace ofA[[^]] . By this fact, ^(ri(N);K) does not depend on the choice of
the dense subfield Ko.

Now we shall review the 7?-adic theory. Main source of the results is [18, Chap. V]
and [16, 17]. We mean by a j?-adic ring A an algebra which coincides naturally with
the projecture limit lim A//?"A. Thus it is radically complete, but for example, the

^~n~

/?-adic field Qp is not an object of the category of^-adic rings. Let E be an elliptic curve
over a ^-adic ring A. By a trivialization ^ on E, we mean an isomorphism <|) : E ̂  G^
between the formal completion E of E along the origin and the formal multiplicative
group G^. Write N=N0^'" with (No,/?)= 1. We consider triples (E, (j), f), (E, ((), P) and
(E, ()), a) over /?-adic rings and we impose the following additional compatibility condition
between <^> and the level N structures:

(1.6) The composition: [ipr <4 E^ G^ is a natural inclusion.

As for the naive r(N)-structure a, one can discuss it only when N is invertible in A (there-
fore, necessarily, p is prime to N), and thus no additional compatibility condition is neces-
sary. We denote by V(N; A) (resp. V(F(N); A) and ^(F(No); A)) the space of functions
which assign an element of A' to each A'-isomorphism class of a compatible triple (E, ([), i)
(resp. (E, ()), P) and (E, ((), a) for a naive r(No)-structure a) over any /7-adic A-algebra A'
and which are compatible with any base change in the category of/?-adic A-algebras. Then,
in the same fashion as in (1.4^,b), one has an isomorphism

(1.7) ^(r(No), A)^V(r(No), A)(x)zzf— ^o
l_No _

where (30 is a primitive No-th root of unity.
Let 'Z^p((q)) be the p-adic completion of Zp((^)). Since the Tate curve Tate (q)/Zp((q))

is a quotient of G^ by the subgroup generated by q, we have a canonical trivialization
^:Tate^)^G,. By definition, the triples (Tate(^), ̂  icJ/^M) and

46 SERIE - TOME 19 - 1986 - N° 2
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(Tate {q\ ̂ , PcaJ/Zpto1^)) are compatible. It is known (for the proof, see [16, 1.4])
that the evaluation at the canonical Tate curves as above gives

(1.8^) V(N;A)c.A((5), V(F(N),A)c,A((^),
(1.8fc) // A'^A, V(N;A')nA((^))=V(N;A), V(^(N);A')nA((^N))=V(^(N);A),
(1.8 c) The quotient of A((^)) (resp. A((^N))) by the image of V(N; A) (resp. V(F(N); A))

is A-flat.

Thus the ^-expansion principle also holds in this case. The correspondence:
(E, ((), p)h-^(E, (|), p |^) again yields a ^-expansion preserving embedding

V(N; A) <-> V(F(N); A) for all /?-adic ring A.

By the compatibility condition (1.6), to give a level N-structure i on the trivialized curve
(E, (()) is equivalent to give a level No-structure i | j^o- This correspondence yields an
equivalence between the category of (E, (|), i) of level N and that of level No. Moreover,
this correspondence takes the canonical Tate curve to the corresponding one and thus
preserves ^-expansion. Then, as a subspace of A((^)), one has an identity

V(N;A)=V(No;A).

Thus, by (1.7), we can evaluate any element ofV(N; A) (resp. V(r(No); A)) at any trivialized
Tate curve (Tate(^), (|), a) over ZpK]((q1^0)) with any arbitrary naive F(No)-structure a.
Put for each 7?-adic algebra A,

(1.9a) W(N;A)= {/eV(N;A)|/(Tatete),(|),^)eAKo][tel/NO]] for all ^> and a},
^r(F(No);A)= {/e^H^i^l/^ate^.^^eAKolt^1^0]] for all (() and a},
W(F(No);A)= {/eV(^(No);A)|/(Tate(^^a)eAKo][ta l /NO]] tor all (|> and a},

where ^o is a primitive No-th root of unity. Then we have
(1.9^) W(N;A)=W(No;A),
(1.9^ ^(r(No); A) = W(r(No); A)®zZ [I/No, ̂  ].

Thus, W(F(No); Zp Ko ]) gives one irreducible component of ^T(r(No); Zp Ko ]) which may
be interpreted as the space of functions which classify the triples (E, (|), a) with det (a)=^o
and are finite at cusps. Thus the space W(F(No); Zp Ko ]) coincides with the space V^oo
defined in [16, (1.11)] (see also [16, Appendix I]). Let (E, (|), a) be the trivialized naive
r(No)-structure over A. For any yeGL2(Z/NoZ)= Aut ((Z/NoZ)2), we can let y act
on (E, (|), a) by (E, ̂  a) ̂  (E, ̂  a o y). Thus GL^Z/NoZ) acts on ^(F(No); A) on the
right. One can calculate the effect of this GL2(Z/NoZ)-action on ^-expansion and then
verifies that under the identification (1.7)

(1.10) W(No; Zp) = ̂ (F(No), Z^, W(No; Z^)®zZ Ko ] - ̂ (F(No); Zpf0

where U = { (^ ^eGL^Z/NoZ) I and Uo = { Q ^eGL^Z/NoZ) I. Put

Z=Z;x(Z/NoZ)x.
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Naturally, the finite group (Z/NoZ)" is a quotient group of Z. We define an action of
z^z^e^eZ^Zo^Z/NoZ)') on (E, ̂  i) by (E, ̂  i) ̂  (E.z^zo f). Thus the
compact group Z acts on V(N; A) and W(N; A) radically continuously. Let coo be
the canonical invariant differential on G^ induced by d x / x . With each trivialization
(E, ((>) over a/?-adic ring A, we can associate an invariant differential co/A on E by co= (|)*o)o.
This correspondence: (E, <))) \—> (E, o)) yields ^-expansion preserving embeddings

R,(r,(N);A)^V(N;A),
^(r(No);A)^^(r(No);A),
R,(r(N);A)^V(r(No);A).

The injectivity is guaranteed by the ^-expansion principle. For any /e^(N;A) with
aj9-adic subalgebra A ofQ, the above embedding sends / into (V(N;A)(x)zpQp)^A[[^]],
which is a torsion element ofV(N; A)\A((^)). Then A-flatness assertion (1.8 c) guarantees
that / is contained in V(N; A). By (1.5) and (1.9 a\ f is in fact contained in W(N; A).
Then the /?-adic continuity affirms that, for any p-Sidic subalgebra A of Q,

(1.11 a) W(N, A) ̂  3^(N; A).

Similarly, we have a continuous embedding

(1 .11 b) W(F(No); A) =3 ̂ (r(No); A).

To state one of the results of Katz which will be used repeatedly, we introduce some
notation. Let Ep-1 be an Eisenstein series in Mp- i(SL2(Z); Zp) given by the ^-expansion:

i-^Ed^),.
"p - l n=l Q<d\n

Then Ep_i satisfies the congruence Ep_ i= l mod/?Zp.
For a primitive No-th root of unity ^o? P^ F1=ZpKo]//?ZpKo]• Then F is a finite

extension of Fp. Write ^(r(No); F) for ^(F(No); Zp Ko ])®z^ Put

G(r(No);F)=©^(F(No);F),
k=0

which is a graded algebra. Since .J^(F(No);F) can be embedded into Ft^1^0]] for
each k through ^-expansion, there is a natural F-algebra homomorphism of G(F(No);F)
to F^1^0]], which sends any (pe^(F(No); F) to its ^-expansion for each k. The ideal
(Ep-i—1) in G(r(No);F) is contained in the kernel of this morphism. On the other
hand, the ^-expansion principle says that W(F(No);F) is embedded into F^^0]]. We
know that W(^(No);F)=W(^(No);ZpKo])®z^o]F(^ the construction given in [16]).

THEOREM 1.1 (Katz). — Assume that either No^:3 or p>.5. Let F= 1 -\-pLp as a sub-
group of Z and let W^No)^ be the subspace of r-mvariants of W(F(No);F). Then
\ve have

(i) w(r(No);z,Ko])=^(r(No);z,Ko]) in z,Ko] [^1/N0]];
(ii) W(r(No); F)^^G(^(No); F)/(Ep-i—l) and this isomorphism preserves q-expansion.
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