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L-INDISTINGUISHABILITY AND R-GROUPS
FOR QUASI-SPLIT GROUPS:

UNITARY GROUPS IN EVEN DIMENSION

BY C. DAVID KEYS (1)

Let G be a quasi-split group over a local field F. In this paper, we determine the
structure of L-packets for the minimal unitary principal series representations of G. Let
h: G -> G be a homomorphism with abelian kernel and cokernel, between quasi-split
groups. Restrictions of representations from G to G are studied, and we show that a
type of reciprocity holds.

Reducibility of the minimal principal series is determined by the R-group, which we
show in this case is isomorphic to the group S^p defined in terms of L-group data arising
from a Langlands parameter (p ([13], [17]).

Information concerning the components of the Ind \ is obtained by analysis on the
finite groups S<p.

Let n^ be an L-packet consisting of components of a unitary principal series representa-
tion. We show that representations n in n^ are parametrized by the irreducible representa-
tions p(7i) of the group S . Then we may define a pairing

< , >:s,xn,-.c
so that

trace ̂  (r, 'k) I (g) = ̂  < r, n > trace n (g)

for g e C^ (G) and r in R (^) ̂  S<p, where I = Ind ^. The number of components in an L-
packet, and multiplicities, may be determined by a Mobius inversion formula.

The problem of normalizations of intertwining operators arising in the theory of the
R-group defines a 2-cocycle

T|: R x R - ^ C "

(1) Supported in part by N.S.F. Grant MCS83-01581. Henry Rutgers Research Fellow.
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32 C. D. KEYS

for which the commuting algebra End(Ind)i) is isomorphic to the group algebra C[R]^,
with multiplication twisted by T|. In section 2, we recall the general theory of the R-
group, and show that for 'k one-dimensional, the 2-cocycle T| is a coboundary. More
generally, for P=MN nonminimal and G connected, the cocyle associated to Ind(P, G; a)
has trivial cohomology class if the inducing representation a of M is generic.

Then the commuting algebra is given by the group algebra C [R]. The L-packet n<p
is parametrized by the dual S^, and we define the pairing < , > of S and n .

Define U(n,n\ SU (n, n), and GU(n,n) to be the quasi-split unitary groups associated
to a separable quadratic extension E / F of local fields. The groups S which occur for
the minimal principal series are explicitly classified. Non-abelian S<p, more complicated
than those known previously, occur for the groups SU(n, n\ and multiplicity one fails. -
The non-abelian R^S^ are shown to be extensions of a certain reflection group R of
type AI x . . . x A i by an abelian Galois group Gal (L/£) with exponent dividing the
rank of R.

An explicit classification of the .R-groups occurring for the minimal principal series of
the quasi-split unitary groups is given in section 3. We may construct a list of characters
which have non-trivial J^-groups, such that any character with non-trivial R is conjugate
under the Weyl group to one on the list.

In section 4, we consider the restrictions of representations in an L-packet, and show
that a type of reciprocity relates restriction of representations to induction of parameters.

More precisely, let h: G -> G have abelian kernel and cokernel. Consider representa-
tions Ind(P, G; X) and Ind (P, G;?i), where X and ? i = X ° A have Langlands' parameters
(p and (p=/z*o(p, respectively. Then S^ may be considered as a subgroup of S<p. Let
TieII^ be parametrized by an irreducible representation p of S». Then the components
in the restriction of TC to G are parametrized by the components of the induced representa-
tion Ind (S^, S<p; p) of S<p. Further, the multiplicity of n e Tl^ in the restriction of n to G
equals the multiplicity of p= p(n) in the representation Ind(S^, S^; p) of S<p.

In section 5, we give typical examples of the non-abelian groups S^ which occur for
SU(n, n). The number of irreducible inequivalent components of Ind ^, and multiplicites,
is given by the number of irreducible representations of the groups S , and their
degrees. Formulas for these may be found by Mobius inversion.

In section 6, we give an example with R non-abelian, similar in spirit to an example
of Vogan, with dim ^=2 and G disconnected (and not quasi-split), for which the cocyle
T| is not a coboundary. We may compute the cocyle in this case, and use the theorem
End (Ind X-) ̂  C [R]^ to determine the number of inequivalent components, their multiplici-
ties, and the action of the intertwining operators.

It is a pleasure to thank Diana Shelstad for her encouragement and for many helpful
discussions concerning notions of functoriality.

I would also like to thank the referee for pointing out the simple proof of Theorem
4.1 and for correcting the proof that S^R (^).
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L-INDISTINGUISHABILITY AND R-GROUPS 33

1. Notation and Definitions

Let E / F be a separable quadratic extension of local fields. Define the groups

GU(n, n)= {g e GL(2n,E)\gJtg=xJfor some x e F " },
U(n,n)={geGL(2n,E)\gJtg=J\

and

SU(n,n)={geSL(2n,E)\gJtg=J}.

Here

-1

and x !—»• x is the Galois automorphism of E / F .
These groups are F-points of quasi-split algebraic groups defined as F/F-forms of

GL (In) x GL (1), GL(2n), and SL (In). For an extension K of F, define the groups
of K-points to be GL (2n, K) xK\ GL (2n, K), and SL (2n, K).

Let

a ( g , x ) = ( x J t g ~ l J ~ \ x )

for (g, x) e GL (2 n, E) x E x , and define the F-points of the unitary group of similitudes
GU(n, n) to be the fixed points of a.

Define the F-points of the unitary group U(n, n), and the special unitary group SU (n, n)
to be the fixed points of a(g)=fg~1 J~\ for g in GL (2n, E) or SL (In, E).

Recall the definition of the L-group from [I], [II], or [13]. Realize the Well group
W^iF as

{ x x T l x e F ^ a n d T e G a U F / F ) }

with multiplication defined by

(x x r) (x' x T') = x . T ( x ' ) . a^ ^ x TT'

where a^ ^ '=1 unless T^T^O" is the non-trivial element of Gal ( E / F ) , and ^ ^=a is a
fixed element of F " which is not a norm from E " .

The L-group is an extension LG=LGO x ^ W^/p- Included in L-group data are complex
groups (^^ LBO, L7<)) "dual" to the quasi-split group G with Borel subgroup and maximal
torus, as well as root vectors X^ for the simple roots of LTO in ̂ ^

For G==SU(n,n), G=U(n,n\ and 5=Gl/(n,n), we have LGO=PGL (2n, C),
^ = GL (2 n, C), and ̂  = GL (2 n, C) x GL (1, C).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



34 C. D. KEYS

The Weil group acts through projection onto GSL\(E/F). The action of 1 x a on ^G0,
L^ Lj^ ̂  jg ̂  "algebraic dual" of the Galois action on G.

The action of 1 x CT on LGO and LGO is given by g^f g ~ 1 J ~ 1 , and the action on L50

is given by ( ,̂ x)\->(xJtg~l J ~ 1 , x).
We assemble some explicit formulas which will be useful later.
Take S to be the maximal F-split torus

5={diag(ai ,a2, . . . ,^ ,a_^, . . . , a _ i ) a.^a^eF" }.

Let M, M, and M be the centralizers of S in G =SU (n, n), G= U(n, n\ and 5=GC/(n, n),
respectively. Then M and M are diagonal with ^a_,=l, and M is diagonal with
aia_i=keF><, where a ^ E " . We may take minimal parabolic subgroups

p==MN<P=MN<?=MN.

The root system 0 of (G, S) is of type C^. Extend the coroots oc^F" -^5 to
o^ : £" -^ M as follows.

For a = ̂  — ̂ ., and x e £ x , let

a' (x)=diag(l, . . .,x, . . . ,x~1 , . . ., 1,1, . . .,x, . . . ,x~ 1 , . . . , ! )

with x, x-1 in the f-th and j'-th positions.
For a = e^ + ̂ -, let

a' (x)=diag(l, . . .,x, . . .,x, . . .,1,1, . . . ,x~ 1 , . . . ,x~ 1 , . . . , ! )

with x, x in the f-th and 7-th positions.
For a = 2 ̂ , let

a' (x)=diag(l, . . .,x, . . ., 1,1, . . . ,x~ 1 , . . . , ! )

with x in the f-th position. Take xef to define an element of M, and x e F " to define
an element of M. These formulas will be used in the explicit classification of reducibility.

The coroots corresponding to the simple roots of 0 determine isomorphisms

M^f^y1

and

M^E^^xF^

Let X be a quasi-character of M or M, and define characters \ of E", or F", by

^(x)=W(x)).

These characters behave under multiplication as the av e <S>v.
The Weyl group W^S^x.Z^ acts on M and M as follows. A permutation (ij\ i. e.,

the reflection corresponding to the root e,—ep interchanges the f-th and 7-th entries, as
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L-INDISTINGUISHABILITY AND R-GROUPS 35

well as the -f-th and -7-th entries. A sign change c,., l^i^n, i.e., the renection
corresponding to the root Ie,, interchanges the i-th and -f-th entries. The renection
corresponding to the root ^+^- is (ij) c,.c..

The Weyl group acts on characters of M and M by

w~ 1 ^(m)=^(wmw~1) .

Then W also acts on the ^, and w~ 1 \(x)='k^(x). Note that w?i=?i if and only if
w ̂  = ̂  for all simple roots a.

The group M should be considered as the group Tp of F-rational points of an algebraic
torus T, which splits over E. A character X of M corresponds [13] to an admissible
homorphism

(p: W^^T,

where

(p (x x r) = (po (x x r) x x x T.

Recall that Horn (£ x, M) ̂  Horn ̂ T0, C x). The map

<PO: ^E/F-^T0

is determined on Ex by the requirement that

0^0(^=^00^=^,

i. e., that for each (simple) root a, the following diagram commutes:

E- ^W^-°> L^r' [^
M =Tp-^-^CX

Let the non-trivial element a of Gal ( E / F ) satisfy <J2=a in the Weil group. Then we
also require

^(Ixa^cpo^xcO^o^xl) .

The Langlands parameter

(p: H^-^G

corresponding to Ind(P, G; X) is given by (the equivalence class of) the map

^F-^E/F^T-^G.

More generally, we should use the "thickened" Weil group Wp x SL (2, C) to account
for special representations [13]. W^p will suffice for the purposes of this paper.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



36 C. D. KEYS

Define the parameter (p: ̂ /^-^Tq: LG corresponding to an Ind (P,5[/(n,n); A-) by
the same method. If ' k e M A is the restriction of XeA^, then the diagrams immediately
define a lift

^ W^^^^GLdn^C)

of the map

<Po^ ^^G^PGZ^n.C).

Then defining the lift ( p = ( p o X f r f , we easily use the formulas for the a" given above to
check that

^o(x)x~l=^o('Ix)

for x e Ex and T e Gal (£/F). Then (p is in fact a homomorphism, hence is a lift of (p.
In general, for the unitary principal series induced from a minimal parabolic subgroup

of a quasi-split group, one uses Theorem 2 (a) of Langlands' "Representations of Abelian
Algebraic Groups" to define the parameter (pj-: WF—>LM corresponding to a character
^ of M, since M is the group of F-rational points of an algebraic torus T which splits over
some Galois extension £/F. See [1]. Then the Langlands' parameter corresponding to
Ind (P, G; X) is given by the composition (p: Wp -> LM <^ LG.

For a unitary character ^ with parameter (p=(p(X), define the L-packet II to be the
set of irreducible components of Ind X.

2. R-group and L-indistinguishability

We first recall the general theory of the R-group, which determines reducibility of the
unitary principal series. The commuting algebra End (Ind ^) is given as a group algebra
^[R]^ wltn multiplication twisted by a 2-cocycle T|. For 'k one-dimensional, we show
that T| has trivial cohomology class. This allows us to parametrize the L-packet n by
the dual S^ ^jR^ and to define a pairing of H^ with S»,

Standard intertwining operators

A (w, ?iJ : Ind (P, G; ̂ ) -> Ind (P, G; w XJ

are defined initially for certain s by an integral formula

(A(w,^)y)fe)=f /Wrin,
JN n w N w " 1

where w is a fixed representative for the element w of the Weyl group W=N(S)/M, and
P=MN is the parabolic opposed to P. The operators are then defined as meromorphic
functions of 5 by analytic continuation [20], and satsify the cocycle relation

A (vvi w^, X,) = A (w^, w^ ̂ ) A (w^, ̂ ),
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L-INDISTINGUISHABILITY AND R-GROUPS 37

provided length (w^^)= length (w i) + length (n^).
Note that if the coset representative w is changed by an element m of M, the operator

changes by B"1^"1 (m). Let

^=^(1)^(2)- • -^a(0

be a reduced expression for w as a product of simple reflections, where I = length (w). The
expression is not unique. However, we may fix representative w^ for each simple
reflection so that the representative

^=^(1)^(2)" •^(D

for w is independent of the reduced decomposition chosen.
Fix such representatives w and write A (w, ^) for A (w, A-). We may define normalized

intertwining operators

^ (w, ?i,) = Y (w, X, s) -1 A (w, ?iJ

for certain meromorphic functions y of s, the c-functions of Harish-Chandra [20]. The
normalization may be chosen so that

^ (w^ ̂ a ̂ ) ̂  (H^ ̂ s) = J

for all simple roots a.
Let W(k)={\veW\w'k='k}.

THEOREM 2.1 (Harish-Chandra, [20]).—Suppose 'k is unitary. Then the commuting
algebra o/Ind(P, G; ^) 15 spanned by the operators

{^(w,?i) |weFy<T»}.

Plancherel factors ̂  are defined by

-4 (w^, w^ ?iJ A (w^, XJ = c2 n^ (?i, s) ~1 /,

where c2 is a certain positive constant. Let

A" = { roots a | ̂ (^,s)hasazeroats=0}

and let W be the subgroup of W generated by the reflections H^, for aeA". Then [21]

W = { w | ̂  (w, ?i) is scalar}.

THEOREM 2.2 (Silberger [21]).—Suppose ^ is unitary. Then the dimension of the
commuting algebra o/Ind(P, G;).) is \ WQ^/W |.

Define

^=^(?l)={weFy(?l) |a>OandaeA / implythatwa>0}.

Then R is a complement for W in FV(X).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



38 C. D. KEYS

Harish-Chandra's Theorem and the decomposition

W(k)=Rx,W/

imply that the normalized operators

{^(w,\)\weR}

span the commuting algebra of Ind (P, G; X,), since W corresponds to scalar opera-
tors. By Silberger's Theorem, the operators corresponding to R form a linear basis for
the commuting algebra.

By Schur's Lemma, the intertwining operators satisfy the cocycle relation with no
condition on the lengths of the Weyl group elements, up to a scalar. Thus, a priori, the
map w -->• ^ (w, K) is only a projective homomorphism. We define a 2-cocycle T| of the
Weyl group by

^ (WiW;,, ̂ ) = T| (Wi, V^) ̂  (Wi, W2 ̂ ) ̂  (^2. ̂ )-

Then the commuting algebra of Ind(P, G; ^) is isomorphic to the group algebra C[R] ,
with multiplication twisted by the 2-cocycle T|.

We show that the cocycle

ri: WxW-^C"

is a coboundary if \ is one-dimensional. Fix the choices of coset representatives for
Weyl group elements as above. The following is in [5].

THEOREM 2 . 3 . — S u p p o s e ^ is one-dimensional and that the intertwining operators
corresponding to the simple reflections w^ are normalized so that

^(^,w^)^(w^)=7.

Then T|=I, i.e., the cocycle relation holds with no condition on the lengths of the Weyl
group elements.

Since the restriction of the 2-cocycle T| to R x R is trivial, we have the following
theorem for the unitary minimal principal series representations of connected reductive
/?-adic groups.

THEOREM 2.4. — Suppose ^ is a one-dimensional unitary character with R = R (k). Then
(i) The commuting algebra ofInd (P, G; K) is isomorphic to the group algebra C [R],

(ii) Ind ^ decomposes with multiplicity one if and only ifR is abelian.
(iii) The inequivalent irreducible components n^ of the representation Ind ^ of G are

parametrized by the irreducible representations PI=P(TI() o/R, and
(iv) The multiplicity with which a component 7T;^=7c(p,) occurs in lnd'k is equal to the

dimension of the representation pi-e^ which parametrizes it.

Proof. — The result T| = 1 implies (i) and (ii). The parametrization of (iii) is determined
as follows. Let p be an irreducible representation of R, with dimension dim p and

4e SERIE - TOME 20 - 1987 - N° 1



L-INDISTINGUISHABILITY AND R-GROUPS 39

character 9p. Then, summing over r G R, the operators

Pp^.Rl^dimp^^^rA)
r

form | ^A | orthogonal projections onto invariant subspaces of Ind ^, by the orthogonality
relations for the characters 9p. Each is non-zero by Silberger's Theorem.

Further, each Pp is central in the commuting algebra, since the characters 9p are class
functions on R. Thus, if we let Fp = Pp F, where V is the space of Ind ^, then the Fp
are pairwise disjoint.

Thus

^^(i)®^)®...®^)

as an orthogonal direct sum, with the 7p^ disjoint, l^i^k=\RA\. But since
End (Ind^)^C[R], the number of inequivalent components of Ind X- equals the number
of conjugacy classes in R, which equals fe. Thus the subspaces V are isotypic. Note
that the elementary indempotents of C [R] further decompose each Fp into its irreducible
components.

Then the Pp are the projections onto the isotypic components of Ind X-, and the
component K corresponding to p occurs with multiplicity d (p), the degree of p.

If re corresponds to p under the identification II — R ^ y we write p=p(7i) and
TT = 7i (p). Note that n (p) \—> n (p ® p') determines an action of the group of one-dimensio-
nal characters p' of R on the set of components Up. The action is faithful and simply
transitive on the subset of the L-packet n^p consisting of the components which occur
with multiplicity one.

The inverse map to pi—^Ti is explicitly constructed as follows. Given an irreducible
component (TT, Vo) of Ind ^, fix a non-zero vector VQ in VQ. We consider the translates
of VQ under R. Let W be the span of the vectors

{^(r^)vo\reR}.

Since End(Ind^)^C[R], W intersects each irreducible component V^ of the Ti-isotypic
subspace of Ind "k. In fact, W intersects each irreducible component in a one-dimensional
subspace, by Schur's Lemma. Thus the dimension of W equals the multiplicity of K in
Ind X,. The representation p of R is defined by extending

p (r) [^ (rU) ̂ o] = ̂  (^ ̂ o

to W by linearity.
Suppose V^ is an irreducible component of Ind X equivalent to V^ and let i^ be a

non-zero vector in W C\ V^. By Schur's Lemma.

^ (r, ^) V\ ^= V\ if an only if ^ (r, X) acts on V^ as a scalar c.

This happens if and only if ^(r, ^) v^ ==cv^ i. e., p(r)v^=cv^.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



40 C. D. KEYS

Finally, we note that p is an irreducible representation of R and P is the projection
onto the Ti-isotypic subspace of Ind 'k. By the Theorem, there exists an irreducible
representation T of R such that P^ is the projection onto the Ti-isotypic subspace. In
particular,

Vo=P,Vo==\R\~ldimTI.Q,(r)^ (r^)vo=\R\~1 dim T 1:9, (r) p (r) 1:0

is non-zero. Thus T is contained in p. Then a counting argument as in the proof of
the Theorem implies that each p arising this way is irreducible, and p = T.

The correspondence between the set of components and the dual R" depends on the
choice of normalizations of intertwining operators giving End (Ind ^)^C[R]. But any
two such normalizations must differ by a one-dimensional character p' of R, i. e.,

^(r^)=p/(r)^(r^).

Then the parametrization of the L-packet Up by R^ will be shifted by the character
p'. If 71 corresponds to p(7i) with the first normalization, it corresponds to p^)®?'
with the second. We write 7i(p) =71" (p ® p').

For quasi-split G, M = T (F) is the group of F-rational points of a torus, and L-packets
of representations of M are singletons. A quasi-character K of M corresponds to an
admissible homomorphism (pj-=(p7.(^) of the Weil group Wp into LT. Assume that ^ is
unitary. Then the composition

(p: F^-^Tc^G

parametrizes an L-packet H^ of representations of G, consisting of the components of
Ind 'k, and all L-indistinguishability in this case is accounted for by reducibility.

We recall the L-group description ([12], [13]) of the reducibility group and the decompo-
sition W(X)=R(k) x^ W\ and check that R(k)^S^ in our situation. The proof is the
same as for real groups, modulo knowledge of Plancherel measure. The key point
concerns the location of zeros of the Plancherel measure. See Lemma 5. 3.15 of [18].

Langlands introduces several groups attached to a parameter (p. Let S be the
centralizer of (p (Wp) ^ LGmLGO, S^ the connected component of the identity in 5<p, and
ZWF the Weil group invariants in the center of LGO. Then define

s^=^/z^s$.

Let U be the connected component of the identity in the Weil group invariants
(L^W, ̂  LJO Let N be the normalizer of Lr^ in W

LEMMA 2.5. — Let P=MN be a minimal parabolic subgroup of a quasi-split group
G. Suppose XeM^ corresponds to the parameter (p. Then

(i) The centralizer o/U in W is ̂

(ii) U is a maximal torus of S^.
(hi) ̂  H S^= ̂ T0)^ = U. Z^.

(iv) ^ns^u.
4° SERIE - TOME 20 - 1987 - N° 1



L-INDISTINGUISHABILITY AND R-GROUPS 41

(v) N H S^ is equal to the normalizer of\J in S^.

Proof. — The centralizer of U in LGO equals LTO, since U contains regular elements
of ̂

Note that U is contained in S^. Then (ii) follows from (i). Statement (iv) also
follows easily.

For (iii), it is enough to note that ^T0)^ is connected if LGO has trivial center.
For (v), first note that an element x of S^ which normalizes U also normalizes the

centralizer LTO of U. To prove the reverse inclusion, start with an element x in
N r\ S^. The inner automorphism Int (x) carries LTO into LTO and commutes with the
image ^(Wp). This implies that Int(x) commutes with the usual action of the Well
group on LrTO, and hence preserves both the invariants ^T0)^ and the identity compo-
nent U.

PROPOSITION 2.6. — The following sequence is exact.

i -> (N n s^)/u ̂  (N n s^/u. z^ -^ s^. z^ ̂  i.
Moreover, the middle term in the exact sequence can be identified with the stabilizer W(^)
of ̂  in the Weyl group of G.

With this identification, W(S$, U) is the subgroup W'(^) ofW(K). Thus S^RCk).

Proof. — The exactness of the sequence is easy. For the surjectivity at the right end
one uses the conjugacy of maximal tori in S° Let seS . Then s normalizes S° and
s Us"1 is a maximal torus of S^. Hence there exists an element teS^ such that
s\Js~l=t\Jt~l. Then t ~1 s normalizes U, hence normalizes ^^T0. Thus t ~1 s e N 0 S^
maps to the same class as s.

The identification of (NO S^/U.Z^ with W(^) requires some care. For each co in
the Weyl group W, we get Lco : LT -^ ̂  and by Langlands' correspondence for tori

W (^) = {co e W ̂  CD ° (p is equivalent to (p }.

Let CD e W and let n e N be a representative for CD, where CD is viewed as a WF-invariant
element of the Weyl group of ^^ The Wp-invariance of CD implies that n normalizes
^ not just LrTO.

We claim first that Lwo^ is equivalent to Int(n)°(pT. The truth of the claim is
independent of the choice of representative n for CD and is clear if n is invariant
under Wp. Therefore the claim follows from

LEMMA. — Any CD e W has a W^-invariant representative n e N.
This is Lemma 6.2 in the survey article of Borel in the Corvallis proceedings if G has

a cyclic splitting field. The same proof works in general.
Using the claim, we see that CD fixes ^ if and only if Int (n) ° (py is equivalent to (p^,

that is, if and only if there is a t e LTO such that tn e S^. Therefore

W W = ((N n S<p). LT°)/LT0 = (N n S^)/(U. Z^).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



42 C.D.KEYS

By the exact sequence,

S<p=W(^)/W(S^, U), since W(S^, U)=(NnS^)/U.

We want to identify S^ with the R-group R(?i). All that remains is to show that
W(S^, U) is the subgroup W(X) of W(^) generated by reflections v^ with respect to
reduced roots oc for which the Plancherel factor ^(?i, 5) has a zero at 5=0.

Let S be a maximal F-split torus in T and let £, be the set of reduced positive roots
of S in G. A root a e Z^ determines a Levi subgroup M^ of G containing T. The root
spaces o fT in the Lie algebra Lie(MJ are precisely the root spaces of T in Lie (G)
corresponding to roots whose restrictions to S is some multiple of a.

The group ^MJ0 occurs naturally as a subgroup of W containing ̂  The root
spaces of^0 in Lie^MJ0) are the root spaces of ̂  in Lie^G0) corresponding to
the coroots of T in M^.

We now claim that the action of Wp on LGO preserves the subgroup ^MJ0, on which
it acts in the usual way (from the definition of the L-group). First, there is an co in W
such that coa is simple. From the Lemma, there is a Wp-invariant representative n e N
of co. Then ^MJ^Int^-^^M^)0). Since Int(n-1) commutes with the action of
the Well group, we are reduced to the case in which a is simple. Then the claim is
obvious.

Recall that U is a maximal torus of S^. Any root of U in S^ is the restriction of
some root of ̂  in W. The group (p(Wp) acts on Lie^G0) via the adjoint action
^ -^ AuHLie^G0)) and preserves the subspaces Lie^MJ0). We get one positive root
of U in S^ for every oceS, such that (p(Wp) fixes a non-zero vector in

V^Lie^MJ0) n Lie (unipotent radical of W).

We need to show that the following are equivalent:
(A) The image (p(Wp) fixes a non-zero vector in V^.
(B) The Plancherel factor ^(^, s) has a zero at 5=0.
Since ^(?i, 5) is the same for M^ as it is for G, we may assume that the F-rank of G

is 1 and that G=M^. Further, the truth of (A) and (B) is unchanged if G is replaced
by the simply connected cover of its derived group. The two statements are also
compatible with restriction of scalars. Thus we have only two cases to consider.

Case 1. - G=SL(2, F) and ?i is a character of F\
Then

V = f ° ^a lo o )
with Wp acting on the entry * by the character ^.

Therefore (A) is equivalent to ^==1.
Case 2. - G is a quasi-split SU (2,1) associated to a separable quadratic extension

E/F. Then 'k is a character of E x .
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Then

/o . ̂
v,=(o o ^ )=Vi©v,

\0 0 0 /

with

^0 ^ 0\ /O 0 ^
Vi=l 0 0 ^ j and V2=( 0 0 0

\0 0 O/ \0 0 0,

Then Wp acts on V\ by the representation of Wp induced from the character ^ of Wg,
and WF acts on V^ by the character sgUE/p. ^ IF^

The fixed points of Wp on V^ are the direct sum of the fixed points on V\ and V^.
Therefore (A) holds if and only if ^= 1 or sgng/p. ̂  ̂  =1.
Then from the explicit formulas for ^(X-, s) in [15] and [7], we see that (A) is equivalent

to (B) in both of the cases.

Remarks. — From the explicit normalizations of the operators ^ (w^, ^) for the
groups SL(2) and SU(2,1) over real and non-archimedean fields, one knows more than
just the location of the zeros of Plancherel measure. The normalizing factors may be
shown to be given in terms of Euler factors, as conjectured by Langlands. Further
details and applications will appear in a joint paper with F. Shahidi.

Now that we know S^R, and thus Tl^S^ (Theorem 2.4), we define a pairing of
S^xII^by

<r, 7i>=<r, p>=trace p (r)

for p = p ( 7 l ) £ R A .
For geC^(G), the operators

I(^)= g(x)lnd^(x)dx
JG

and

^(g)= g(x)n(x)dx
JG

have finite rank, 7i=7c(p) eIT^, and we may take traces.
The parametrization of H^ by the dual R A = S^ is defined so that the operators

j^(r, K) act on and permute the dim p irreducible subspaces of the 7i(p)-isotopic compo-
nent as the representation p. Thus we get
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THEOREM 2.7:

trace ̂  (r, ?i) I (^) = ̂  < r, p > trace TT (p) (^)

/or g in Q° (G), w^r^ the sum is over an L-packet.
Suppose we change the normalization of intertwining operators by a character p' of

R. Recall that the parametrization ^(p^RA is shifted by p', i.e., Ti^p^T^p'"1 (x) p).
Then, if jaT (r, X-) = p' (r) j^ (r, ^), the formula (2.7) for the new normalization and

parametrization gives

p' (r) trace ̂  (r, ?i) I (g) = trace ̂ / (r, ?i) I (g)
= ̂  9p (r) trace ̂ (p)^)

p
= ̂  9p (r) trace 7i (p'-1®?)^)

P

^ZQp'oopM^^^pK^)p
= P'(r)^9p(r) trace 7i (p)(^).

p

Thus a change in normalization amounts to multiplying both sides of (2.7) by the
scalar p^r). Note that the possible choices for a "base representation" of n , to be
indexed by the trivial character of R, correspond to the one-dimensional characters p'
o fR .

3. Classification of R-groups for
SU (n, n), U (n, n), and GU (n, n)

We give an explicit classification of the reducible (unitary) principal series by
constructing a list of characters with non-trivial R-groups, such that any ^ with non-
trivial R (^) is conjugate under the Weyl group to one on the list. Multiplicity one fails
for SU (n, n).

A less explicit classification is easy to obtain, and may be generalized. The R-groups
R for U(n, n) are contained in the group Z^ of sign changes in the Weyl group. Further,
the R are the reflection groups of type A^ x . . . x A ^ generated by the reflections w^
corresponding to the roots a =2^ for which the restriction of ^ to F" is the character
sgng/F of order 2 attached to E/F by class field theory. Then the R-groups for the
unitary group of similitudes GU(n, n) consist of the subgroups (of index 2) of even sign
changes in these R.

The R-groups for SU (n, n) are "generalized dihedral" groups, given as extensions

l ^ R ^ R ^ G a l ( L / E ) - > l
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of the R by the Galois group of an abelian extension L/E. The quotient R/R embeds
naturally into the group of characters (E^, and determines the extension L/E by class
field theory.

For x e E x , let X, = (2 ̂ )v (x) e M. Fix a character X e M A . Then define a map

© : W^-^E")",

by

©(w)=^, where ^(x)=?i(X,wX,-1 w-1).

This expression is independent of f, since w fixes ?i.
More generally, let h: G -> G be a homomorphism between quasi-split groups with

abelian kernel and cokernel. Fix a character X- of M and let X be a character of M for
which ^ = X ° h. Suppose w fixes L Then the map

mi-^w^(m). ̂ -1 (m)=X'(w~1 mwm"1)

defines a character © (w) =^ of the abelian group M. Note that ̂  is trivial on h(M),
so © factors through a map

© : W^^M/^M))^

Note that ^=1 if and only if weW(^), by definition.

LEMMA 3 .1 .—The map © is a homomorphism, and the kernel of © contains
W(X). Further, ifk=^oh, then ker©=W(Q, W^^W^), and R(X) Uker ©=R(Q.

Proof. — Let w^ and w^ be in W(X-). Then

© (wi) (m) © (w^) (m) = ?î  (m) ̂ , (m)

=/k(w^l m\v^ m~1) . ̂ (w^1 rnw^rn"1)
= ̂  (wi~1 mwi m ~ ̂ . w^1 ̂  (w^1 mw^ m ~1)
= ̂  (w^1 mw^ m ~1 w^ [w^x mw^ m -1] \v^ 1)
= X- (wi"1 mw^ w^ ^2 ~1 w^1)
= ̂  (w^x w^1 mwi w^ m -1)
=©(wi W2)(m).

We use the facts that a commutator w^1 m\v^m~1 is in the image h(M) and that \v fixes
the character ^ = X ° Ji.

Since the operator ^(w^, Q is identified with ^ (\v^ X) on the space V(Q^V(^), one
operator is scalar if and only if the other is. It follows that W(^) =W'(X'), and the rest
of the Lemma follows.

COROLLARY 3.2. — Let K be the restriction of^ to M. Then the quotient R(^)/R(X)
is abelian.

Proof. — The map
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R WIR W = R (?i)/R (^) U ker © q: (M/M)A

induced by © is injective, so we may consider the quotient as a subgroup of (M/M)^
which is abelian.

We now consider the case of the inclusion of groups SU(n, n) c^ U(n, n). Then the
quotient R(?i)/R(Q may be considered as a subgroup of E". The group of characters
given as the image of © arises in an interesting fashion, as in [9]. See also [3] and [16].

Let

L ( ^ ) = { w e W | w ^ = ^ ® ( o D ° det) for some one-dimensional co},

and

L ( ^ ) = { ( O w ̂ = ̂  ®(co° det) for some weW}.

Here oo is a character of E^ { x e E " |NormE/F(x)= 1}. By Hilberfs Theorem 90,
E l = { x x - l | x e E X }. Thus we may identify the group of characters co of E1 with the
characters v of E" which are trivial on F", via the isomorphism determined by
co(x/x)==v(x).

First, we show that L(^)=W(?i). Restricting w^=?C(x) (©odet) to M gives
L(X)^W(?i). If weW(?i), we may define co satisfying w^=^®((o°det) by

©(x/x^w^X'-^Ox^x)),

where a =2^. Thus weL(^), and W(^)^L(^). Note that the expression defining co
is just Q(w).

There is a natural homomorphism L(^) ^L(Q with kernel W(Q. With the above
identifications, this homomorphism is just ©.

We first classify the groups R =R (X) which occur for the unitary group U (n, n). Let
'k = ̂  IM, so that

R(Q=R(? i )nW(^)=R(? i )nker©.

PROPOSITION 3.3. — For any R-group R(^) for SU(n, n), R(^) HkerO is contained in
the group Z^ of sign changes in the Weyl group. In particular, any R(^) for Un, n) is
contained in Z^.

Proof. - Suppose that w==sceR(Q=R(? i ) C} ker©, with 5 in S^ and c in Z^. We
must show that s= 1.

If s^l, we may as well conjugate by an element of S^ to assume that the orbit of n
under s is

n\—>k\—^k-\-\\—>. . . }—>n— \\—^n.

Then by conjugation by elements of Z^, we may assume that c changes the sign of at
most one root 2 e^ say 2 e^ in the orbit.

If c (2 e,) = + 2 e, for all k ̂  i ̂  n, then w e R (X) ̂  ker © implies
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l=U^-l)=M(2^)v(x- l)w(2^)v(x)w- l)

= X ((2 ̂ )v (x -x) (2 e,) v (x)) = ̂  ((̂  - ̂ )v (x))

for all x e E x .
Thus e^ - ̂  e A'. But then ^ - ̂  > 0 and w (^ - ̂ ) == ̂  + ^ - ̂  < 0 contradict w e R.
Ifc(2^)=-2^, and c(2^.)=+2^. for fc^i^n-1. then weR(Q^ker0 implies

1 = ̂  (x) = ̂  ((2 ̂ )v (x) 5c (2 ̂ )v (x -1) (sc) - ̂

^^^(X)^^)^^-1)

= ̂  ((2 ̂ )v (x) (2 ̂ )v (x)) = X ((^ + ̂ )v (x))

for all xeE" .
Thus ̂  + ̂  e A'. But ^ + ̂  > 0 and

w(^+^)=5c(^+^)=s(^-^)=^+l-^<0

contradict w e R .

COROLLARY 3.4. — Suppose \v=sc and w^s'c' ar^ in R(?i), w^n s and s ' in S^ and c
and c ' in Z^. Then the permutations s and s ' commute.

Proof. - Since the commutator [w, w'] is in the coset [5,5']. Z^ in the Weyl group, and
[R, R] ̂  R Pi ker © ̂  Z^, the commutator [s, 5'] must be trivial.

Thus, the R-groups which occur for G=U(n, n) are products of the 2-element
group Z^, with the number of factors bounded by n=rank G. The following gives a
more precise description of the groups R(X).

LEMMA 3.5. — (f) Suppose a product of sign changes c=c^c^+^. . . c^ is in R(Q, where
1 ̂  k ̂  n. Then each c, is in R (X'), for k^i^n.

(ii) Ifc=c,,Ck+^ . .€„ f s f n ( 3 n R ( ^ ) , andl^k^n, then each c, is in RCk),for k^i^n. -
Further, c^ is in R(^), where ^==^|^.

Proof. - Let a =2^. Recall that w^=c, fixes a character ^ of M if and only if the
restriction of \ to the norm subgroup N^E") is trivial. Then c,.eR(^) if and only if
the restriction ̂  = ̂  p x is the character sgng/p of Fx of order 2 which is trivial on norms
f romE' .

To show(i), let c be any sign change in R (^). For any i with c(2^.)= —2^,

?:((2^.)VM^(2^.)V(^~1)^-1)=1 for j^

while

^((2^.)- (x)c,(2^.)v (x-^c.-^^^^^r (x)^,)- (x-^c-1)^ 1.

So ceW(X') and c(2^.)= -2^. imply that ^.eW(X). But (3>0 and cp>0 imply that
c, P > 0 also. Thus c e R (X) implies that c, e R (Q, for all f with c (2 ̂ .) = - 2 ̂ ,.

For part (ii), take n^2, and suppose ceR(^) with c(2^i)=2^i and
c (2 6?,) = - 2 e,. We check that c, e W (X) by noting that
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c^((2e,y(y)) =^((2^00),

for all ye¥\

c,^((^-^,)v(x))=^((^-^,)v(x))

for all x e E x , and j ̂  i, and

c, ̂  ((̂  - e,) v (x)) = c ̂  ((e, - e,) v (x)) = X ((^i - ̂ .)v (x))

fo ra l lxeE ' .
Then c,eR(X,) as before. Further,

^^(x^^Cx-1)^-1)^!

implies that c, e ker ©, so c, e R (?i) H ker © = R (^).

Remark. — The hypothesis l^k^n in part (ii) is necessary, since it is possible for the
longest Weyl element WQ=C^C^. . .c^ to be in an R(^) for SU(n, n) with no other sign
changes in R(X-). This happens if and only if WQ fixes ^ and © sends WQ to a character
of Fx of order 2, other than sgn^p*

We may now explicitly classify the reducible Ind ^ which occur for U(n, n). By
Proposition 3.3, R(X) is contained in the group of sign changes in the Weyl group.

Suppose R (^) is non-trivial. Pick an element c in R for which the set

I= I^{ f | c (2^ , )= -2^}

is maximal. Then by Lemma 3. 5 and the maximality of I, R(^) is the reflection group
< Ci i e I > of type A ^ x A ^ x . ^ x A ^ generated by the Cp for i e I.

Without loss of generality, we may replace ^ by a conjugate under W to assume that
I = { 1 1 k ̂  i ̂  n} for some k, (1 ̂  k ̂  n), and then

R(?C)=<Cfe , Cfc+i , . . ., c^>.

Recall that a character ^ of M may be defined by the n characters ^ of E", for
ai=e^—e^e^—e^ . . ., e^ _ ^ — e^ and 2 e^. Equivalently, we may specify the n characters
of E" corresponding to the roots a =2^, 2^, . . ., 2^.

Finally, the condition R (A+) ^ A+ in the definition of R requires that the characters
^ are distinct, for a =2^, 2 ̂ +i, . . ., 2^, if

R=R(?:)=<c, ,c^i , . . . , c , > .

THEOREM 3.6. — L^ G=U (n, n). Any character \ofM mth non-trivial R-group is
conjugate under the Weyl group to one of the following.

For the roots oc=2 e^ . . ., 2e^ let \ be distinct characters o/EX with X j p x =sgnE/F.
The characters corresponding to 2e^ . . .. 1e^_^ are arbitrary, subject to the condition
that k is minimal mth respect to this property.

The corresponding R-group R^^Z^ x . . . x Z^ is generated by the reflections with
respect to the roots 2 e^ where k^i^n.
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Thus Ind ^ decomposes with multiplicity one, since R (X) is abelian, and components TT
of the corresponding L-packet are parametrized by characters p of R (X).

Then the operator ^' (r, X) acts on the space of n (p) as multiplication by the scalar

p(7)=^ p>,

fory : inR(5C)=S^
The integrated representations corresponding to Ind ^ and n (p) satisfy

trace^(7,Ql(^)= ^ <?, p > trace Tip (g)
peg-

and

trace Tip (^IRI^ E <7Tp> tracer, QlQr)
p e R

forgeC^(G).
The same situation appears in [6] for the unramified unitary principal series of simply-

connected, semi-simple /?-adic groups. We may define a pairing as above in this case,
fixing the Ko-class-1 component as the base representation to be indexed by the trivial
character of R. Note that in the case 0 is of type C^ and q^^^l, then R is trivial, and
that G has only one conjugacy class of hyper special maximal compact subgroups in this
case.

We now classify the R-groups which occur for SU(n, n). A character 'k of M is
defined by n—\ characters \ of E", for the short roots oc==^—^ ' ' "> en-\~ew an(^ a

character ^p of F x, for P = 2 e^.
Recall that © induces an injection

/ R/ROkerQc^E')" .

If R 0 ker © is trivial, then R is abelian, and by (b) of Lemma 3.5, R H Z^ is either
the group < WQ >, or is trivial. Further, R Pi ker © is trivial implies that R acts on
{ ± 2 ^ J l ^ f ^ n } without fixed points. Thus | R | divides 2 n. Suppose m divides
In. Then if R is to have exponent m, R must inject into (E^F" (E^)^. Hence the
order of R divides both In and the index [E" : F^E^]. In particular, |R | divides
both 2 n and [E" : F^E")2"].

Note that the longest Weyl element WQ is in R(X) if and only if \(xx)=\ for
a = ^ i — ^ 2 , . . . , ^ - i—^? an^ ^p nas cfder 2 for P=2^, and A'=0. Suppose
Wo 6 R. Then, R 0 Z^ = < WQ > if and only if ^p has order 2 and ^p ̂ sgn^p.

Now consider the case R 0 ker © is non-trivial. Since R C~} ker © ̂  Z^, R will contain
a non-trivial product of sign changes. Then if

I = { f | 3 c e R with c(2^,)=-2^.},
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R contains each reflection c, by Lemma 3. 5. Thus R = R C\ ker © is the reflection group
of type A i x A i X . . . x A i corresponding to the root system

A = { ± 2 ^ . f i n I}.

If XeM" restricts to X, then

R = R ( X ) c;R(?i).

Let R * = { r e R oc>0 and oceA imply that ra>0}.
Then standard arguments concerning reflection groups imply that R* is a complement

of R in R.
Since R* acts on A, and R* Piker © is trivial, any non-identity element of R* acts on

{ 2 ^ | f e l } without fixed points. Thus, the order of R* divides | l |=rank(A)^n, and
the order of any R-group for SU(n, n) is bounded by n2". The action of R* on C[A]
is a multiple of the regular representation.

Note that © induces an inclusion R* c; (E^F^ c, (E^. Since |R*| divides |l|,
R* may be considered as a subgroup of the (finite) group of characters of E^F" of
order dividing 11. By class field theory, this subgroup determines an abelian extension
L of E with Gal(L/E)^R*. This provides an arithmetic condition limiting the com-
plexity of the R = R * x ^ R which can occur. Suppose m is a divisor of the rank of
R. Then if R* is to have exponent m, its order must divide the index [E" : F" (E^],
since then R* embeds into (E'/F' (E')")".

The exact sequence 1 -^R-^R-^R*-^ ! describes R as an extension of the reflection
group R=Z^ x . . . xZ^ by an abelian group R*^Gal(L/E). Further, any non-trivial
element of R* permutes the generators { w^ a=2^eA } of R with no fixed points. Thus
the order of R* divides the rank of R, and R is non-abelian if and only if both R and
R* are non-trivial.

Non-abelian R of order ml1' will occur, where k^n and m divides /c=rankR, subject
to the arithmetic conditions above.

We examine the conjugacy classes in the Weyl group to determine which ones may
contain elements of an R-group. We then find elements which may be used to "build"
the R-groups for SU (n, n). We may then construct an explicit list of possible R-groups
for SU(n, n) and use the arithmetic conditions on the extension E/F to determine the
existence of characters 'k for which these groups occur. Every finite abelian group will
occur as an R* for some G.

Conjugacy classes in Weyl groups are parametrized by certain admissible graph-
s [2]. An element w in a Weyl group S^ x ^L\ of type C^ acts on { ± 2 e^\ 1 ̂  i ̂  n} to
produce cycles

2^(i)^ ±2^(2)^ • • • ̂  ±2ej(r)^ ±2ej(lY

If w'' (2 €j (i))= +2 €j (D, say that the cycle is positive.
If w'" (2 €j ( i))== — 2 Cj (^, say that the cycle is negative.
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Then two elements of W are conjugate if and only if they have the same signed cycle
type.

Note that a positive cycle is conjugate in W to one involving no sign changes, and
that a negative cycle is conjugate to one involving a single sign change.

Thus conjugacy classes in W are parametrized by graphs of the form

^ l ( l ) + y A l ( 2 ) + • • • +LY(1)~^L\;(2)+ • • - ?

where

^(f(fe)+l)+^(fe)=n.

Here, A^ is the class of a positive cycle of length ;+1, and Cy is the class of a negative
cycle of length j.

Suppose again that R = R Pi ker © is non-trivial. Then R is the reflection group
associated to

A = { ±2^ . |3 reR with r (2^.)= -2e,}.

If R =R, then we are done, since R ^Z^ x . . . x Z^ and the classification is like that for
U(n, n). Otherwise, R* is non-trivial.

Suppose that R* is non-trivial. We want to determine the conjugacy classes of W
which may contain elements of an R*. Suppose R contains an element w=5c, where
seS^ and ceZ^, with s^l. By Proposition 3.3, w has no fixed points in
{ ±2^.| 1 ̂ i^n}. Suppose the shortest cycle in s has length k. Then ^k=•skc\ with
c'eZ^.

If 5^= 1, then all cycles of s have length k, so w has type

A f c - i + A , _ i + . . . + C f c + C f c + . . .,

and further, c'eR. By Lemma 3.5 (if C'^WQ or if we assume R non-trivial), R will
contain each sign change occurring in c\ Thus, to determine generators of R, we may
multiply w (if necessary) by some of these sign changes to assume that each cycle is
positive. So if sk=\, we may assume without loss of generality that w is of type
A ^ _ ^ + . . • + A ^ _ ^ . In the case R is trivial, w may be a product of negative cycles, of
type Cfc +. . . + C^ with \vk=WQ= the longest Weyl element. In this case
Rnz;=<wo>.

If instead sk^\, then ^vk=skc/ again has no fixed points. Since s contains a cycle of
length k, 5^ does have fixed points, so there exists an index i such that

^(26-,) =^(2 6-,) =-2 6?,

In fact, c^^^ — 2 ^ for each i fixed by 5\ by Proposition 3. 3. This implies that each
cycle of length k of s must be negative, since the action of d on the roots 2 ̂  in an orbit
associated to such a cycle is the product of the orbits of all the c^ associated with the
cycle.
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Finally, w2k=s2kc// does fix some root 2^., so s2k= 1 by Proposition 3. 3. Thus s is a
product of cycles of lengths k and 2^c. Further, any sign change occurring in w2k=c/'
will be in R by Lemma 3.5, so to determine generators of R, we may assume without
loss of generality that each cycle of w of length 2k is positive. Then w has conjugacy
typeA2^_ i+ . . . +A^- i+Cfc+ . . . +Q, and v^ has type A i+ . . . + A I + C I + . . . +C\.

The action of R* on R is given as k copies of the regular representation of R*, where
fe=rankR/ R*|.

THEOREM 3.7. — Any R-group for SU (n, n) fits into a split sequence

l - ^ R - ^ R ^ R * ^ ! ,

mth R non-abelian if any only if both R and R* are non-trivial.

R=Rnke r9^Z l

is a reflection group of type A ^ x . . . x A ^ associated to a root system

A={ ±2^.|3ceR mth c(2^.)==-2^}

and is an R-group for U (n, n).
Since R is a reflection group, the group

R * = { r e R | o c e A and oc>0 imply roc>0}

is a complement ofR in R, mth the order o/R* dividing the rank d of S. Further, R*
injects naturally into the finite group of characters (E^F" (E")^. Thus R* may be
identified mth an abelian Galois group Gal(L/E).

J/R is non-trivial, it is generated by sign changes of type A()+ . . . +A()+CI, and R* may
be built from elements of types A^+ . . . +A^ and A ^ _ i + . . . +A2fe - i+C^+ . . . +C^.

If R is trivial, then R = R * may be built from elements of types A^+ . . . +A^, and
Cj, + . . . + C^ (or \VQ, in case R H Z^ == < WQ », or /rom elements of types A^ + . . . + A^
a n r f A 2 f e - i + A ^ - i + C , + . . . +C,,.

4. Restriction of Representations and Reciprocity

We will study restrictions of representations between

G=SU(n, n)^G=U(n, n)^Q=GV(n, n).

More generally, we consider restrictions determined by a homomorphism

h: G-^G

with abelian kernel and cokernel, between quasi-split groups. We may assume that
h(P)^R If X M=^, i.e., X o ^ = ^ , then Ind (P, G; X) lo^Ind (P, G; ^). Further,
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R(X)^R(^) . The homomorphism h induces a map h^'^Q-^-^, and S^S^ if
(p=/z* o (p.

Recall from section 2 that the components of an Ind(X) are parametrized by the dual
of the group R(X)^S<p.

We show that the following type of reciprocity holds. If a component 71 of Ind X is
parametrized by an irreducible representation p of R(X), then the components of the
restriction of n to G are parametrized by the irreducible components of the induced
representation Ind (R(X), R(^); p) ofR(^).

The reciprocity result follows from a simple algebraic lemma. Let A -> B be a ring
homomorphism. Let W^ be an A-module, and let Wg and V be B-modules. Let
E=EndB(V). Then Hom^Wg, V) and Hoi-n^W^, V) have natural E-module structu-
res, using composition of homomorphisms to define the multiplication. There is a
natural homomorphism.

HOIH^WA, We) -> Home (Home (We, V), Hom^W^ V)).

LEMMA. — Suppose that Wg is a direct summand of\. Then the above homomorphism
is an isomorphism.

Proof. — Choose B-module maps i : Wg-^V and p : V-^Wg with p°i=id on
Wg. Then the inverse map is given by

^t-^ '' WA^^(^(O(^A)))

where \l/eHomE (Homg (Wg, V), Hom^ (W^, V)) and w^eW^.
Fix Langlands parameters (p and (p corresponding to (unitary) principal series

Ind(P, G; ?i) and Ind (P, G; X), with (p a lift of (p. Then we have ^=^\^ R^) is

normal in R(X-), and the quotient R(^)/R(X) is abelian. The commuting algebras of
Ind 'k and Ind X are given by the group algebras C [R (?i)] and C [R (X)], respectively. Fur-
ther, the restriction of a standard intertwining operator for G is a standard intertwining
operator for G, i. e.,

^(W, X)|o=^(w, X|M)=^(W, ^).

THEOREM 4. 1. — Let K be an irreducible component o/ Ind(P, G; X), corresponding to
an irreducible representation p ofSy Let n be an irreducible component <?/Ind(P, G; ^-),
corresponding to an irreducible representation p of S . Then the multiplicity of n in the
restriction of K from G to G is equal to the multiplicity of p in the restriction of p to S^,
which equals the multiplicity of the representation p in Ind(S^, S<p; p).

In particular, the irreducible components of the restriction of n to G are parametrized
by the irreducible components p of the induced representation Ind(S^, S<p; p) ofS^.

Proof. — It is enough to show that Hom^f^, 7r)^Homs~(p, p). Apply the Lemma
with A=C[G], B=C[G], V=Ind(P, G; X), W^n and W^n.
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Note that E = End^ (V) = C [S^] and that

P ̂  Homg (We, V) and p ̂  Hom^ (W^, V).

Consider now the inclusion SU(n, n) q; U(n, n). Recall that R(X) is then a reflection
group, and thus has a complement R* in R(?i).

Let p be an irreducible representation of R(X) and let Z(p) be the centralizer of p in
R (?i). The subgroup Z* = Z (p) H R* ̂  R* ̂  Gal (L/E) coming from the inclusion

R(X)^Z(p)^R(? i )

corresponds to an intermediate field extension

H^K^L,

with Z*^ Gal (L/K) and

R(?i)/Z(p)^R*/Z*^Gal(K/E).

The intersections of the kernels of the characters for each of the subgroups

Z^E'/F')" ^(E ' )"

give a lattice of norm subgroups NiX") of E\
Define a lattice of intermediate subgroups G1^ between SU(n, n) and U(n, n) by

G^^eU^, ^Idet^eNO^)},

for E^K^L. Then the restriction of Ind(P, U(n, n); X) to G1^ has commuting algebra
C [Z (p)] = C [Gal (L/K) x ^ R], and restrictions among the various G^ satisfy the reciprocity
result.

In the next section we count the number of characters fixed by subgroups Z between
R and R and use Mobius inversion to calculate the number of components, and
multiplicities, in an L-packet.

5. Structure of L-packets

THE NUMBER OF COMPONENTS AND MULTIPLICITIES. — We give examples of typical non-
abelian groups S^p which occur for SU(n, n), and derive formulas for the number of
components in a general L-packet, and multiplicities, using Mobius inversion. The
examples illustrate the reciprocity describing restriction of representations between the
groups U(n, n) and SU(n, n), and also the parametrization n^S^. The multiplicities
are just the dimensions of the corresponding irreducible representations of the group S .

The simplest non-abelian S^R(?i) occurs for the rank 2 group SU(2, 2). Define
PieM" by requiring \=)^o^ =0^ o(p to have order 2 in (E^F^ for ai=e^—e^ and
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^p== sgn^F, the character of Fx /N (E x ) of order 2, for P = 2 ̂ . Then A' = 0 and

R(^)=W(?i)=W.

The isomorphism R W^S^ is transparent. The subgroup

R * = < w , > = < ( 1 2 ) >

maps onto the subgroup < ̂  > of ( E x ) A . The subgroup

R=<V^WpW^ Wp>=<Ci , C2>

of sign changes is the R-group for a representation Ind X of U(2, 2), where ^=X|^.
Then, Ind)i decomposes in this case into 4 components of multiplicity 1, and 1

component of multiplicity 2. The group R determines reducibility under U(2,2), and
IndX decomposes into 4 components of multiplicity 1. These 4 components are indexed
by the characters p of R, and the intertwining operator ^(r, \) acts on the space V(p)
by the scalar p(7), for ?in R.

The group R* governs behavior of restriction to SU(2, 2). The two components of
IndX indexed by the trivial character p^, and the character p^ defined by

Pi (^ = Pi (^ ̂  ̂  = - ̂

each decompose into two irreducible subspaces on restriction to SU(2, 2). These are the
intersections of V(pi) and V(p2) with the +1 and -1 eigenspaces of the operator
^(w^, 'k\ since R * = < w ^ > stabilizes p^ and p^. This accounts for the 4 components of
multiplicity 1 in Ind?i, indexed by the one-dimensional representations p of R. For w
in R, the operator j^(w, ^) acts on these V(p) by the scalar p(w).

The other two components of Ind X in this example, indexed by the characters defined
by

P3(wp)=P4(wawpwa)= l

and

P3 (^a ̂  ̂  = P4 (w?) = - L

remain irreducible, but become equivalent, upon restriction to SU(2, 2). The characters
p3 and p4 are conjugate by w^, and the operator ^(w^, X) gives the equivalence under
SU(2, 2). This accounts for the component V(po) of Ind ̂  occurring with multiplicity 2,
where

po=Ind(R, R; p3)^Ind(R, R; pj.

Note that

i ^ (-x ^^)=i
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Po(c.)=(; _°

and

p^C;)
give the action of the operators s^(c^ F), ^(c^ X), and ^(w^ X), respectively, on the
subspacesV(p3)®V(p4).

Thus we know how each intertwining operator in the commuting algebra acts on the
SU( 2,2)-irreducible subspaces. In particular, if ^ (w, ^) acts as a scalar on an irreducible
component, we know the scalar. It is the value p(w) if the component is indexed by a
one-dimensional character p. It is the (non-zero) diagonal entry corresponding to the
space V(p3) or V(p4) in the matrices defining the two-dimensional po above.

It follows that the pairing of S x n given by

<r, p > =9p(r)= trace p(r)

for r in R ̂  S^, and p in R A ^ H^ satisfies

(*) trace ̂  (r, ^) I (g) = ̂  < r, p > trace n (p) (g)
n(p)

for ^eC^(G), where I=Ind(X), and the sum is over 7c(p)en^S^.
If a different normalization of intertwining operators is used, the parametrization

n^S^ will be shifted by a one-dimensional p'eS^ and each side of (^) will be
multiplied by p' (r). We may consider the component parametrized by the trivial charac-
ter as a base representation in II . Then such a shift corresponds to the choice of the
component V(p /) as the base.

To study the general non-abelian S^p which occur for SU (n, n), recall from section 4
that the component parametrized by

p=Ind(Z(p), R; y

occurs in the L-packet with multiplicity R/Z(p)|. Here, Z(p) is the centralizer of an
irreducible representation p of S^, and ^ is an irreducible component of
p=Ind(S^, Z(p); p). Consider the formula

|R|=I:|Z*(p)|.|R/Z(p)|2

{ p }

with a different point of view. Instead of summing over orbits { p } of R in R A , sum
over subgroups Z with R ̂  Z ̂  R and count the number of representations of R induced
irreducibly from Z.

Setting Z=Z* x ,R , let c(Z*, R*) be the number of characters of R with stabilizer Z*
in R*. Then there are c (Z* ,R*) . |Z* characters E, of Z to consider, which
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form c(Z*, R*)|Z*|. |R*/Z*|~1 orbits. For each orbit there is a component which
occurs with multiplicity | R*/Z* |.

Thus, in general, there are

^c(Z*, R*) . |Z* . \R^/Z^\-l==m-2\R*\^c(Z^, R*)

components of multiplicity m=|R*/Z*|, where the sums are over all subgroups Z* of
index m inR*.

Since R*=Gal(L/E), Z*=Gal(L/K), and R*/Z*=Gal(K/E), the sum may be conside-
red as over all field extensions K/E of degree m lying in L.

Note that | R =^c(Z*, R*), summing over all Z*^R*. The correct formula for the
dimension of the commuting algebra

R = R* R|=E(c(Z*, R * ) . Z*| . |R*/Z*|-1) R*/Z*|2

follows immediately.
Then the number of inequivalent components in the L-packet is given by the sum,

overZ*^R*,

^c(Z*,R*) Z* | . IR^I-^IR* -^(Z^R*). |Z* 2.

Next, the structure theorem describing the extension

1-^ R-^ R-^ R*-^ 1

gives an inductive method to define the coefficients c(Z*, R*). This will allow us to
give explicit formulas for the c(Z*, R*) in terms of Mobius inversion.

If N=rank R = | A | , then |R*| divides N. The N-dimensional representation of
R*=Gal(L/E) on the space C[A] is the multiple k times the regular representation of
R*, where fe=N/ |R* . The action of R*/Z* on C[A(modZ*)] is the same multiple k
of the regular representation of R*/Z*.

It follows that c(R*/Z*)=c(Z*, R*) depends only on the quotient R*/Z*.
We give formulas for the number of characters

c(Z*, R*)=Ci(Z*, R*)

with stabilizer Z* in the case that f e = l , i.e., N= R*|. Then, if N=fe . R*|, with
f e > l , the number of characters q(Z*, R*) with stabilizer Z* may be found from the
Ci(Z*, R*) by similar combinatorial arguments.

We remark that

^(Z, R*)=^Ci(Zi, R*)ci(Z,, R*) . . . cJZ,, R*),

where the sum is over ^-tuples (Z^, Z^, . . ., Z^) of subgroups with

Ziuz.n... nz,=z.
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Define the number c(H)=Ci(H) inductively for any finite abelian group H by

2'"'= ^ c(Z,H)= ^ c(H/Z).
Z < H Z^H

The sum is over the lattice of subgroups of H, partially ordered by inclusion. Then
by the Mobius inversion formula [14],

c(H)= ^ ^Z,^'7',
Z^H

where ^ is the generalized Mobius function defined inductively by

H ( H , H ) = 1

and
^(Z,H)=- ^ ^i(Z,X).

Z ^ X ^ H

For this lattice, ^(Z, H) depends only on the quotient H/Z. The quotients of
R*^Gal(L/E) correspond to the lattice of fields lying between L and E.

If R* is cyclic, then so are the quotients R*/Z*, and we write c(m) for c(R*/Z*) if
R*/Z* | =m. In this case, we have the inversion formula

2"=^ c(m) ^ c(n)=^ ̂ m)^

where ^ is the usual Mobius function defined by
^(l)-!,
^(n )==(— 1)^ if n is a product of k distinct primes, and
p,(n)=0 otherwise.
Example. — Define the character ^ of M for SU (n, n) by

^=?Loav=av o(p=\| /

of order n, for the roots 00=^—^2, e ^ — e ^ . . . , e ^ _ ^ — e ^ and X,p=5^nE/F for
P=2^. Then A'=0 and R(?i)=R* x,R, where R*=<(12. . .n)>^Z^ and R^Z"2 is the
group of all sign changes in the Weyl group. Since R* is cyclic in this example,

c(m)=c(ZJ=^ ^(m/d)2<
cl\ m

There are

cO^m^n^nm"2 ^ ^(m/d)!'1
d\ m

components in the L-packet which occur with multiplicity m, for each m dividing n.
There are a total of

^ c^m-^n ̂  m-2 ^ ^l(m/d)2d

w I n w | n d | w
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inequivalent components in the L-packet.
Note that the number of components of multiplicity one is 2 n.
For example, if n=12, ^*^Z^, and R^Z^2 , then n<p contains 24 components of

multiplicity 1, 6 components of multiplicity 2, 8 compents of multiplicity 3, 9 components
of multiplicity 4, 18 components of multiplicity 6, and 335 components of multiplicity 12.

As another example, let n=77, R^Z^, and R^Z77 . Then 11̂  contains 154 compo-
nents of multiplicity 1, 198 components of multiplicity 7, 1,302 components of multipli-
city 11, and 1,962,541,914,958,813,595,274 components of multiplicity 77.

Now, we give some examples to illustrate the case of a non-cyclic R*.
Consider the group SU (4,4), with rank n=4. Suppose the characters \=^f an(^

^,7^ all have order 2 in (E^F^, for the roots d=e^—e^ and ^3—^4, and the root
v==e2-e3. L^ the character ^=sgn^ for P=2^. Then R*=<(12) (34),
(13) (24)>^Z^ x Z^{\, ?iJ and R^Z^ is the group of sign changes in the Weyl group.

We may then use the values c (1) =2, c (Z^) =2, c (Z^ x Z^) =8 in the formulas derived
above to find that the L-packet for this example contains 8 components of multiplicity 1,
6 components of multiplicity 2, and 2 components of multiplicity 4.

For n=4, the example above with R*^Z^ cyclic would give instead 8 components of
multiplicity 1, 2 components of multiplicity 2, and 3 components of multiplicity 4.

Next, to illustrate the case ^=2, consider a similar example for SU(8,8), with
R^Z^xZ^ and R^Z^ with rank 8, instead of rank 4 as above. Considering the
lattice of subgroups of R*, and using the values for the c^ above, we count
<:2 (1, Z^ x Z^) =216 characters of Rwith trivial stabilizer in R*, ^ (Z^, Z^ x Z^) = 12 for
each of the three subgroups of R* isomorphic to Z^, and c^ (Z^ x Z^, Z^ x Z^) =4. Then
our formulas above give 16 components of multiplicity 1, 36 components of multiplicity 2,
and 54 components of multiplicity 4.

Finally, return to the case SU (12,12). Given a subgroup

Z 2 x Z ^ x Z 3 o^E'/F^,

we may define ^ with R^^Z^xZ^xZ^ and R^Z^2 as follows. Let ^=sgn^F for
P=2^ i2 - ^ke as generators for R* the (commuting) permutations

(1 2 3) (4 5 6) (7 8 9) (10 11 12),

(1 4) (2 5) (3 6) (7 10) (8 11) (9 12),

and

(1 7) (2 8) (3 9) (4 10) (5 11) (6 12).

Then use the definition of the embedding

R'^E^F^

to determine the characters ^. The situation is reminiscent of the explicit classification
of R-groups for SL(n)[5].
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We may then use the values c (1) = 2, c (Z^) =2, c (Z^ x Z^) =8, c (Z^) = 6,
c (Z^xZ^)=c (Ze)=54, and c ( Z ^ x Z ^ x Z^)= 3,912 to find that the L-packet in this
case contains 24 components of multiplicity 1, 18 of multiplicity 2, 8 of multiplicity 3, 6
of multiplicity 4, 54 of multiplicity 6, and 326 of multiplicity 12.

The reader may check as an exercise that the extension

1 - ^R-^Zl -^R-^R^Z^xZ^xZ^ 1

gives an L-packet for SU (8,8) containing 16 components of multiplicity 1, 28 of multipli-
city 2, 28 of multiplicity 4, and 23 of multiplicity 8. Note first that c (Z^ x Z ^ x Z^) = 184.

Then a similar example for SU (16,16) given by an extension

1 - ^R^Z^-^R-^R^Z^xZ^xZ^ 1,

which has k = rank R/ |R* |=2 , would give 32 components of multiplicity 1, 168 of
multiplicity 2, 756 of multiplicity 4, and 7,992 of multiplicity 8.

6. An example with non-trivial cocycle

We present an example of a minimal principal series representation with non-abelian
R-group, for which the 2-cocycle T| arising in the problem of normalization of intertwining
operators in the theory of the R-group, has non-trivial cohomology class. Then the
commuting algebra is not the group algebra C [R], but instead the twisted group algebra
C [R]^. The example is similar to an example of Vogan's.

Let G be an extension of SU (2,2) x SU (2,2) by the dihedral group D of order 8. Let
D be generated by X and Y, with relations X and Y have order 2, and XY has order 4.

Let X act on the first factor of SU (2,2) x SU (2,2) as conjugation by the diagonal
element diag (1, 1, XQ, Xg), where x^eF" is not a norm from E", and act trivially on
the second factor.

Let Y act trivially on the first factor and act on the second factor as conjugation by
diag (do, 1,1, flo1), where OQ is fixed below.

Take P()==M()NO a minimal parabolic in SU(2,2). Then

P=(PoXPo)x ,D=MN

is a minimal parabolic subgroup of G, with

M = ( M o x M o ) x , D .

Let (JQ be the irreducible 2-dimensional representation of the dihedral group D, and
let \ be the character of M^E" xF" defined by the conditions that \ is a character
of E" of order 2, for oc=6?i—^ such that the restriction ^[px is trivial, and that
^p == sgn^p is the character of Fx of order 2 attached to E/F by local class field theory,
for (3=2^.
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We choose the element a^ above and the character \ so that

M^o)--!.

Note that we have ^p(xo)= -1. We will consider the unitarily induced representation
Ind(P, G; a), where a=(X, X, Oo) is irreducible and 2-dimensional. The stabilizer W(a)
of a is the entire Weyl group W = W o X W o of G, where Wo is the Weyl group for
SU(2,2). ^ P

In general, if wa^a, consider the normalized integral intertwining operator

^ (w, a): Ind (P, G; a) -^ Ind (P, G; w a).

If

T: V,,-.V,

gives the equivalence w a ̂  a, we may define

a(w)=T

to extend the representation a of M on V,=V,, to a representation a of the group
< w > x ^M.

Then a (w) will be unique up to a scalar, which must be an m-th root of unity, where
m is the order of w, since we want

G(^v)m=a(\vm)=L

Thus

a(w)^(w, a): Ind(P, G; a) -^Ind(P, G; a)

is a self-intertwining operator. The operators

{a(w)^(w, CT) |weR=R(a)}

form a linear basis for the commuting algebra of Ind (P, G; a).
Define a 2-cocycle r ^ R x R - ^ C " by

a(wiW2) ^(wi w^ a)=r|(wi, co^c^) ^(w^, 0)0(^2) ^(v^, a)

=T|(WI, W2)a(wi)a(co2) ^(wi, a) ^(v^, a).

Then the commuting algebra is given as the group algebra C [R]^, with multiplication
twisted by T|.

The coset representatives for elements of W and the normalizations of the integral
intertwining operators j^(w, a) are chosen as in section 2, so that the cocycle relation

^(wi W2, a)=^(wi, W2<J) ^(^2, a)
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holds with no condition on the lengths of the Weyl group elements. Then the 2-cocycle
is determined by the conditions

a(wi w2)=r|(wi, W2)a(wi)a(w2).

Thus the possible obstruction arises from a problem involving finite groups.
For the case of 1-dimensional a, the condition wa^a means w<j=a, and we can

always take a (w)==l to extend a. Thus T|=I, and End(Inda)^C[R], as in sec-
tion 2. We hope that these remarks help to clarify the nature of the results of [5].

One general result for arbitrary parabolics of /?-adic groups may be obtained as in the
case of groups over finite fields. See § 6 of [4]. Suppose G connected. If there is a
component of Ind o occurring with multiplicity one, then C [R] has a one-dimensional
representation, which implies that T| is a coboundary. We may then absorb it in our
normalizations, so in fact End (Ind cr)^C[R]. In particular, this is the case if the
supercuspidal representation a of M has a Whittaker model.

We show that in the present example, the 2-cocycle T| is not a coboundary, i. e., the
projective homomorphism

wh->o(w) ^(vv,a)

or equivalently.

w \—> a (w),

can not be made into a homomorphism.
Write (v^, 1), (wp, 1), (1, w^), and (1, Wp), for ^=e^-e^ and (3=2^, for the simple

reflections generating W = Wo x Wo. Since the standard intertwining operators are essen-
tially SL^ operators, we check immediately that A'=0 in our example, so R =W(o) =W.

Try to extend the representation a consistently to a representation of R.
Since (w^, l)X(v^, l)-^^, l)X(n^, 1) - 1 X- ^ .X=X, we must define a(v^, 1) to

satisfy

(1) ^(w,, l)a(X)a(w,, O-^c^X).

Since

(wp, l )X(wp, IFM^ IHXwp^X-1, l)X=(diag(l , Xo, Xo 1 , 1), 1)X,

we must define a(wp, 1) so that

(2) a(wp, l )a(X)a(wp, I)-1 =sgn(xo)^(X)=-a(X).

Since Y acts trivially on the first factor of SU(2,2) x SU(2,2), we get

(3) a(w,, l)a(Y)cr(w,, ir^cTCY),

and

(4) <^p, l )a(Y)a(wp, l)-^^).
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Similarly, considering the actions of X and Y on the second factor, we require the
extension of a to satisfy

(5) o(l, v<)a(X)a(l, w,rl=a(X\
(6) o(l, Wp)o(X)(7(l , Wpr^c^X)

(7) oO.Oc^aaH^-^-^Y),

and

(8) cr(l, Wp)a(Y)a( l , Wpr^c^Y).

Since a(v^, 1) must commute with a(X) and a(Y), it must be a scalar, and (v^, l)2=l
implies

o(w,, 1)=±I.

Similarly,

0(1, COp)=±I .

Further, since the operators a(X) and a(Y) anticommute, the operator
cr(l, w„)CT(X) - l must commute with both a(X) and a(Y), and then

Similarly,

But then

and

oO.w^X)-1^!!^!.

a(wp, l ) c J (Y) - l =±I=£pI .

O^O-Sa^X)

a(wp, l )=Spa(Y)

must also anticommute;

a(l, v^)a(wp, l)=-a(wp, l)a(l, v^),

although (1, wj and (wp, 1) commute in W. Thus a can only be extended to a project! ve
representation of R, and the 2-cocycle T| gives non-trivial cohomology.

Finally, we can compute the 2-cocycle T| and examine

End(Ind a)^C[W]^

to show that Ind CT has 8 components occurring with multiplicity 2, and 2 components
with multiplicity 4.

If T[ were trivial, we would instead get 16 components of multiplicity 1, 8 components
with multiplicity 2, and 1 component with multiplicity 4.
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