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LOWER CURVATURE BOUNDS, TOPONOGOV'S
THEOREM, AND BOUNDED TOPOLOGY, II

BY U. ABRESCH

ABSTRACT. — Extending a result by Gromov, we establish an upper bound on the Betti numbers of
asymptotically non-negatively curved manifolds.

Introduction

In this paper we continue studying asymptotically non-negatively curved manifolds.
Our goal is to estimate their Betti numbers from above in terms of the curvature decay
and the dimension. In special cases bounds of this type are due to Gromov [G]; he deals
with non-negatively curved manifolds and with compact manifolds. Related is also the
work of Berard and Gallot [BG] who have applied heat equation methods in order to
get bounds for all topological invariants of compact manifolds.

We recall that a complete Riemannian manifold (M", g) with base point o is said to be
asymptotically non-negatively curved, iff there exists a monotone function
\\ [0, oo) -> [0, oo) such that

r°°(i) bo(k):= r.^(r)dr<ao
Jo

and
(ii) the sectional curvatures at p ̂  — \ (d (o, p)) for all p e M".
A detailed exposition of the analytical impact of the convergence of the integral fco(^)

has been given in chapter II of [A]; for instance there exists a unique non-negative
solution of the Riccati equation u'^u2—^ with the property that u(r)->0 for r-> oo.
This gives rise to another numerical invariant

b,w'^\'u(r)dr.
Jo
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476 U. ABRESCH

Both bo and b^ depend on ^ in a monotone way, and they can be regarded as invariants
of the manifold M" by taking the minimal monotone function ^ which obeys the
conditions (i) and (ii).

In principle fco ^d ^i can be regarded as equivalent invariants: b^^bQ^exp(b^)—\.
However, b^ is better adapted to our problem. A natural family of weighted L^-norms
on the Betti numbers of a space X is induced by the Poincare series

P,(X):=^.P,(X).
i

MAIN THEOREM. — For any asymptotically non-negatively curved manifold (M", g, o)
the Betti numbers with respect to an arbitrary coefficient field can be bounded universally
in terms of the dimension and the invariant b^:

P, „-1 (M") ̂  C (n). exp ( 15n—13 . b, (M-A
\ 4 /

where

C(n): =exp(5n3+8n2+4n+2)

and

,(,,),.̂ pQ.̂ .

Moreover these manifolds have finitely many ends and the Betti numbers at infinity are
bounded as follows:

^ P^-iCE^C^.exprtn-l^MM")).
ends E

Remarks. — (i) By the examples given in chapter IV of part one it is reasonable that
the bounds in both the estimates grow exponentially in n. b^ (M").

However there is no geometric reason known so far, why the constants C (n) and t (n)"
should grow exponentially in n3.

(ii) Notice that:

# {ends of M"} ^ ̂  P^^tW-1. ̂  P^)-I(E).
ends ends

Thus we have recovered a weaker version of Theorem III. 3 in [A].
(iii) Using the long exact homology sequence, one obtains an estimate on the relative

Betti numbers:

P^-i(M", U ^^(l+^^-^.C^.expf15^—13.^^]^")).
ends \ 4 /
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LOWER CURVATURE BOUNDS AND BOUNDED TOPOLOGY 477

(iv) Because of Poincare duality the inequality

^^(M^^e^.expf^^-^.fo^M")')

holds with

C(n): =3. ^(n)" / 2 .C(n)^exp(6n3+9^+4^+4).

Special Cases. — (a) M" has non-negative sectional curvature:

P^-i(M^C(n).

(b) the sectional curvatures of M" are bounded from below by —k2 and even more
are non-negative outside a ball with radius d around the base point o: (e. g.: M" compact
with diametre d)

P.^-iW^CW.expf^^^.k.d}'!(")

Method of Proof. — We use a modification of Gromov's direct geometric proof. The
basic idea is to combine Morse theory arguments on the distance function and covering
arguments. In a first step we do things locally and derive an estimate for small balls
(sections 1-3). In a second step we reduce the theorem to these local bounds (sections 4
and 5).

In principle the local result is already contained in Gromov's paper (c.f. [G]); however,
we shall rearrange the details in a more subtle way. Therefore our constants grow only
exponentially in n3', they do not depend doubly exponentially on n. The key to this
improvement is a non-standard packing lemma (c.f. Appendix A).

The way in which we put together the local estimates is essentially new. We use
metrical annuli as intermediate objects when extending the estimate from small balls to
all of the manifold M".

1. A topological Lemma

In this section we are going to do the topological part of the argument. There are
two reasons for avoiding the Betti numbers in the intermediate steps in the proof:

(a) Given a point peM" and any number N>0,it is easy to put a bumpy metric on
M" such that dim Hi(B(^, 1))^N. The idea is to produce a sufficiently complicated
intersection pattern of the distance sphere S(p, l)c=M" with the cut-locus of p.

(b) For arbitrary subsets X^, X^cM" it is impossible to estimate the dimension of
H*(Xi 0X2) in terms of dim H*(Xi) and dim H*(X2) only.

Some pieces of information about X^ 0 X^ are required in addition. These obstructions
towards an "obvious proof" are related, and they both can be circumvented looking at
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478 • U. ABRESCH

topological pairs (Y, X) where X c Y <= M" are open subsets. We consider the numbers

^ ^ ( rfe;(Y,X):=rank(H.(X)^H.(Y))
r fe*(Y,X) :=Srfe . (Y,X) . f .vi\ ^ 9

i^O

It is worthwhile noticing that under the hypothesis above the numbers rkf(Y, X) vanish
for i > n.

1.2 We consider open subsets B^°c=Bj c= . . . cB^1, 1 ̂ j^N, such that

N

Xc U B,°
j-i

and
N

Y=) U B^1.
j= i

LEMMA. — Let t>0 and suppose that any Bj intersects at most t distinct sets Wy, j ' ^ j ;
then there holds the following inequality:

_ / N N \

rk^Y, X)^rfc^1 U Bf1, U B9
\j=i j= i /

^(^-^.N.sup^-^B^^n.. .nB^, B^n. • .nB^j|
0^a^n, l^o<. . .<^_^N}.

Essentially this lemma is already contained in Gromov's paper (c.f. [G]). For the
sake of completeness we include an elementary

Proof. — Consider open subsets X^czX^czX^ and \^<^\^cz\^ in M". The Mayer-
Vietoris sequence gives raise to a commutative diagram with exact rows:

^H,(X,)CHJY,)-.H,(X,UY,)^H,_,(X,nY,)^
[ ^ [i^-1

^H,(X,)CH,(Y,)^H,(X2UY2)^-1(^2 HY^^
^p,X®^.Y ^^ ^

-H,(X3)eH,(Y3)-H,(X3UY3)-H^,(X3nY3)-

All the vertical homomorphisms are induced by inclusions. The standard diagram
chasing technique shows that:

1-3 rk (j^ o i^) ̂  rk (j^ x©7'p, v) + ̂  (^ -1)

or in different terminology:

rfe,(X3UY3,XiUY,)^r^(X3,X2)+r^(Y3,Y2)+rfe,_i(X2nY2,X,nY,).
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LOWER CURVATURE BOUNDS AND BOUNDED TOPOLOGY 479

This estimate extends as follows to the family B} when we use the Leray spectral
sequence instead of the Mayer-Vietoris sequence:

/ N N ^
1 . 4 rk\ UB}^^ UBj)

Vj=i j = i )
i

^Z ^ ^ E^ ^(B^-^n. . .HB^1, B^n. . .HB^p;

here v denotes some non-negative integer which does not exceed n—i.
We specialize to the case v=n—i and compute:

/ N N \ n , N N N.

rk^ U B^\ U B? ̂  t-^rH U B^1, U B,"-1)
^•=1 J=l / <=0 \,=i j = l /

n n

^Z E E ^-M•rfe.-v(B7o+ln...nB^,BJ,n...nB^ )
v=0 a=v j-o< . . . <Jn-a "-CT

" a

=E Z ^""•E^.^-vC. • • , . . . ) ,
"=0 Jo< . . . <.»•„-„ v=0

hence;

1 . 5 rfe^YuBf1, ^B°)
^•=1 ,=i /

n

^E ^^ E^^^-.^^BJ;^. . .nB ,̂ B^n.. .UB )̂.

To complete the proof, we point out that the number of non-empty intersections

^on.-.nBj^
does not exceed

N / t \
———.[ ), O^CT^n;
n-o+1 \n-CT/

therefore the number of non-vanishing terms on the right-hand side of 1.5 is bounded
from above by

^ N / t \ " 1
E————,-• .("-"^N. ^——————^N.(e-l) n

,=on-CT+l \n-aj o=o(n-o+l)/- v / u

In most of our applications the sets B} will be open metrical balls. We shall use the
notation p. B (p, r): = B (p, p. r). It is convenient to draw the following
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480 U. ABRESCH

1.6 COROLLARY. — Let p> 1, ̂  1 and suppose that:
(i) Xc=M" is covered by open metrical balls B^, 1 ̂ /^N,

(ii) i<n and B}U B}^0=^> p.B^B}^1,
(iii) p.B^cB^cY, l^N, and
(iv) each ball B^ intersects at most t other balls B^.
Then the following estimate holds:

_ / N N \

rfe^Y, X)^rk^1 U BfS U B,9
\j=i j-i /

^-l^N.sup^fe^p.B}, B})|0^n, l^N}.

Remark. — Condition (ii) is obviously met, if all the balls B^ have equal radii and if
B^^+pV.B,0, O^n, l^N.

2. The Morse theory of the distance function

Any point p e M gives rise to a function d p : M -> R defined by dp (p): = d (p, p) .p e M is
called a critical point of dp, iff for any veTpM there is a minimizing geodesic segment y
which joins /)==y(0) to /?, and which obeys (v, y^O))^. Sp:= {critical points of dp} is
said to be the singular set of dp. Notice that p is non-critical for dp, iff the initial vectors
of all minimizing geodesies joining p to p lie in an open half-space of TpM. Hence for
any non-critical point p, there is an open neighborhood U and a continuous non-vanishing
vector field v^ which is defined on U and has an acute angle with the initial vector of
any minimizing geodesic joining a point in U to p. As Qp is closed, one can reason in
the standard way and obtain:

2.1 LEMMA. — F o r any peM there exists a smooth vector field Vp:M->TM, which
obeys < Vp \ y (Q), y' (0) > > 0 for all minimizing geodesies y which join some point y (0) e M\$p
to p.

We shall use the vector field v? in order to construct retraction maps; we point out
that dp is monotone decreasing along the integral curves of Vp . Under some suitable
hypothesis this tool even gives raise to isotopies rather than homotopy equivalences
(c.f. [G], [GS].)

In order to establish a Morse theory on dp, it is moreover necessary to determine how
the topology of M changes at the critical points of dp and to count the strata of the
singular set $p in a reasonable manner. As dp is not differentiable at the cut-locus of p,
both these problems cannot be tackled in the usual way.

2.2. However, it is possible to bound in some sence the number of critical points of
dp: let L>1; we consider/?^ . . ., p^eM such that

(i) dp(p,.^L.dp(p,\
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LOWER CURVATURE BOUNDS AND BOUNDED TOPOLOGY 481

and

(ii) pi is critical for dp, 2 ̂  i ̂  k.

Such a sequence (pi)^= i will be called a metrical (k; L^, L, L^-frame of p, provided L^
and Lfc are positive real numbers which satisfy l^.=dp(p^)^L^ and l^==dp(pk)^L^ We
shall say that a subset Xc:M is (fc; L^, L, L^-framed, iff for each ^eX there exists a
metrical (k; L^, L, L^-frame.

2. 3 LEMMA. — (i) In a manifold (M", g, 6) "which has asymptotically non-negative curva-
ture any metrical (fe; L^, L, Lj,)-frame of the base point o obeys:

fe^.^-1/-—^ \exp((2n-2).b,).

(ii) Let p be any point in an arbitrary Riemannian manifold, and suppose that the
sectional curvatures in the ball B(j?, (1 +L~1) . L^) are bounded from below by —ri2 , T| ̂ 0.
If, moreover,

S.O+^/iy'^.ri.Li.cothOi.Li^L,

then k^2n holds for any metrical (k; L^, L, Lj^-frame of p.

Remark. — The lemma relates the parameter k to the dimension n of M", and thus it
justifies the terminology, although the word "frame" might be a little misleading. In a
similar context Gromov heuristically speaks of the "number of essential directions in
M"".

Proof. — We fix minimizing geodesies y^ which join p with py their initial vectors in
Tp M will be denoted by v^. We head towards a lower bound on the angle between any
two of these vectors and then make use of some packing arguments: let 1 ̂  i <j ̂  k and
study the geodesic triangle A==(pp p, pj) with edges y,, jj, and a minimizing geodesic y .̂.
We observe that pj is critical for dp, and thus jj can be replaced by another minimizing
geodesic .̂ such that the angle at pj in the modified triangle S does not exceed n/2. The
data on A and A are turned into inequalities by means of the (generalized) Toponogov
theorem. We start with S:

(i) Proposition III. 1 (ii) applies with £=(L—I)/L, and in the limit a -> \ it yields:

dp (p,) ̂  d (p,, p,) + dp (p,). /l-f1—1)2^^.^).
V \ L /

(ii) Obviously a minimizing geodesic which joins p^ to any point on y. is not longer
than dp (p^) + dp (pj), and therefore it is contained in the ball

B(A dp(p^dp(p^^B(p, (l+L-^.Li).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



482 U. ABRESCH

Hence the hyperbolic plane with curvature —r|2 is an admissible model. We deform the
Alexandrov triangle such that

^ dp (pi), Tj = dp (pj\ T= d (p,, pj\ and ^ at pj =n;

then the Law of Cosines yields:

cosh n T= cosh r } ' T i ^ cosh rl' dp (pi)

cosh ri. dp (pj) cosh T| . dp (pj)

Using the above estimates we can treat the triangle A in a similar way:
(i) Reversing the implication in Proposition III. 1 (i), we obtain:

/ / L — l \ 4
cos ^(v^Vj)< / I - — — .exp(-4.&i),

V \ L /

or :

^(r, Vj)\^ sin ,̂ ^.)|>('L-lY.exp(-2.^).
\ Ll )

In this case the claim immediately follows from the standard packing estimate, which
has been stated in Lemma III. 3.1 for instance.

(ii) Here we apply the Law of Cosines directly to the Alexandrov triangle:

k = dp (pi), Tj = dp (pj), T= d (p^ pj) and ^ at p^ <k at p = ^ (̂ ., .̂);

we obtain the inequality:

^ ̂  ^ cosh(Ti.Q.cosh(n.I;.)-coshQi.Q
smh (r|. li). smh (r|. I j )

coth(r|.?;) / 1 ^
^^^ -, cosh(r|.f,)- 1

sinh(r(.y \ J cosh(r|.y,

=coth(r|.J;).tanh(Ti.y^-r|.^coth(r|.J,);
b

hence:

cos ̂  (i;,, Vj) ̂  L~1 . T| . Li. coth (r|. L^).

By assumption the packing argument given in appendix A applies. D

4s SERIE - TOME 20 - 1987 - N° 3



LOWER CURVATURE BOUNDS AND BOUNDED TOPOLOGY 4g3

3. Morse theory and coverings

We have no idea how to control in which way the topology of M" changes at the
critical strata of rf,; thus the gluing arguments have to be eliminated from the Morse
theory. We are going to use covering arguments along the lines of section 1 instead
The idea of deformation will be applied to reduce to special covering situations which
we know quite a lot about. For this purpose we introduce some more language:

3.1 DEFINITION. - Given p> 1 ,• a ball B=B(p, r) in M" is said to be p-compressible to
a = B (p, r), if and only if:

(i) ^(l-p-1).?-,
(ii) p. Be p.B,

and

(iii) 8 is a deformation retract of some subset X c p. B, which also contains B.
B is called p-incompressible, iff there does not exist a ball B as above.

The injectivity radius is a continuous positive function on M", which has a positive
lower bound r,, on p.B. p-Compressing the given ball B repeatedly, one will therefore
arrive at a p-incompressible ball or at a topological ball within finitely many steps Thus
it is natural to try and reduce to incompressible balls, when bounding the invariant
rk-if (p. B, B).

3.2 LEMMA. — Ift>0, and if the ball B ;s p-compressible to B, then:

^"'(p.B.B^fe^p.B.B).

Proof. - The claim is an immediate consequence of the following commutative
diagram, where the graded maps are induced by inclusion:

H*(6) —^ H*(X) ^ H*(B)
deformation

retract

H,,(p.B) ^ H*(p.B) n

Moreover, incompressible balls allow for some statements about the critical points of
several distance functions.

3.3. LEMMA. —//B=B(/?, r) (s p-incompressible, then for any p e ( p - l ) / 2 B there is
a critical point p, of dp such that:

^{(l-p-^.r.r-p-^d^p^^d^p^r+d^p)^1^ ,.
2

Proof. - Conversely, let us assume that there is no critical point p, of d. which obeys
the above inequalities. We put:

r ^min^l-p-^.r.r-p-1.^,^)}

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



484 U. ABRESCH

and consider the balls 6:=B(p,?) and X :=B(p, r+d(p, p)\ We point out that
r+2.d(p,^)^p.r , hence B UB c= X c: B(/?, r+2.d(p, p)) c= p .B and p .Be p.B.
Lemma 2.1 gives rise to a vector field Vp which does not vanish on the closed annulus
X\S. As dp is monotone decreasing along the integral curves of Vp, we obtain a
retraction map, and, in contrast to the hypothesis, B turns out to be p-compressible
to B. D

We proceed and consider the covering situation in some more detail.

3.4. ASSUMPTIONS. — Let {;, ^, L, and L^ be some positive real numbers; define
functions p, q, to? ^d No by

and
/ T p T \n-l / / 9 W

No-f ' - . smh^) . 1+4.(2+3L). 5+- .
\q. Li L / \ \ L/ /

We suppose that:
(i) the ball p .B associated to B=B(p, r) is (fe; L^, L, (l+2L).r)-framed.

(ii) the curvatures in p. B are bounded from below by —^2.
(iii) the curvatures in B(/?, (1 +L~1). L^) are bounded from below by —^2 .
Furthermore it is useful to introduce the notation:

con4~' (Li, L, £;): = sup { rk^ ' (p. B, B) | the ball B meets the
conditions 3.4 (i) and 3.4 (ii)}.

3.5 LEMMA. — (i) Suppose that the assumptions 3.4 hold; then for any t ^ to there is
the estimate:

rfc* - l(p.B,B)^(^-l).No.sup{rfe* - l(p.S,B)|6=B(^,y :)wherey :^^.rand^liesinB}.

(ii) If moreover B 15 p-incompressible, then all the balls p .B on the right-hand side of
the above estimate are (k + 1; L^, L, (1 + 2 L). q. r)-framed.

(iii) Ift^to(L,,L,^then:

cont^^Li, L, ^)^max{l,(^-l).No.cont^\(Li,L,^)}.

(iv) If condition 3.4 (iii) holds and ifL^ ^/1+^.L2. 3.(1 + ^Y~1. then:

conC(Li,L,^)=L

Proof. — (i) We put p^:=(2+p) 1 for O^i^n and P n + i ' - = P ' P n ' We pick a maximal
set of pairwise disjoint metrical balls BJ'1, 1^/^N, whose centres lie in B and whose
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LOWER CURVATURE BOUNDS AND BOUNDED TOPOLOGY 485

radii equal r _ i := 0.5. q. p^.r. Obviously for O^i^n the families B}:=2. p,.B^1,
1^/^N, cover B. Since l-}-q.p=l+L~l<p, we conclude that the balls B^1 are
contained in p. B. Therefore the estimate is a consequence of corollary 1.6, provided
that (a) NQ^N and that (b) to bounds from above the number of balls B^ which intersect
any fixed B^. In order to verify both the conditions, we point out that the B~ 1 are
disjoint, and that:

(a) B71c=('l+-i-VBc=(l+4.p,^- l).B71^f34^VB
\ ^Pn/ \2.P»/

(b) B,"HB^0 => Brl^(2+-i—YBnjc:(4^-]—}'Bn,fJ \ 2.pJ J \ 2.pJ J

cfl+4.^+-^-YB.
V 2.pJ

These inclusions yield:

(a) N^sup"01^0-5-^1^^01^4^-^1^"1

~ , volB/1 - / volB/1

(b) ^{B^nB^}^01^8^-^1.
r vol B^ 1

Since all the balls are contained in p. B, the right-hand sides of these inequalities can
be evaluated by means of the volume comparison theorem for concentric metrical balls
(c. /. [BC]); we may use model spaces with constant curvature —^2, and we compute:

pl+4p^

sinh^.cT.r.iy1"1^
(a) N^^————————————————

smh(^.<J.r_^)n~ld<J
Jo

^l+4.plsup{sm^•CT•(l.+^•P^•r-^<a^rl

\ q ) C smh^.a.r_i J

^i+^.p^-f51"^-0^4^-^"-1)""^^.-V ^ 7 V ^.(l+(4/g).p,).r_i ^ - °

The last step is due to the fact that:

(l+4.p„).r_,=(2+qYr^(2+L-l).r^L,/L
\ 9 / \ 2.pJ

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



486 U. ABRESCH

andp,^-l=(2+3L).(5+(2/L))n.

p+8p«
sinh(^.a.r_iy1 1 da

(b) ^{B^lB^nB}^}^ '————————————————•i
sinh^.a.r.iy1"1^

^o

„ /sinhg.(l+8p,).r_,V-1

Y t(l+8p,).r_,^ i+s .p^ rT . : . ^ 1 ^o.
This time the last estimate is due to the fact that:

( l+8 .p„ ) . r_ l= f4+ l V^r^ 9 (2+3L) - l . ( l +2L ) - l .L^ L ^ .
\ 2.p^/ 2 2.L

(ii) It follows from lemma 3. 3 that for any point pe(l -\-q. p). B there exists a critical
point /^ of dy which obeys:

L.d(^,^L.(2+<?.p) . r=(l+2L).r
and

d^ ,^)^( l -p- l . ( l+g .p) ) . r=^ . (p .L-L- l ) . r=^ . ( l+2L) . r ;

therefore the set ( l + g . p ) . B as well as the subballs p .B are ( fe+1;
Li, L, (1 + 2 L). q. r)-framed.

(iii) Obviously rk^ (p.B, B)=l, if the metrical ball B is a topological ball as well.
Therefore lemma 3.2 reduces the proof to the case where B is a p-incompressible ball.
The estimate given in (i) holds, and the property (ii) allows to bound the right-hand side
as desired.

(iv) Suppose B were a p-incompressible ball which obeyed the conditions 3.4 (i), (ii)
and (ii) with f e = 2 n ; then by means of (ii) there would exist ( 2 n + l ; L^, L, 0)-framed
balls. As by hypothesis

L^^l+^.L^3.(l+^2)"- l^^L,.coth(^Ll).3.(l+^/2)n- l ,

the above conclusion contradicts to lemma 2. 3 (ii). D

3.6 PROPOSITION. — Suppose that the ball B = B (/?, r) obeys the conditions 3.4 (ii) and
(iii) with L ̂  /1+^.L^. 3. (1 + J ^ Y ' 1 ! moreover assume that the boundary ofB{p, L^)
in M" is non-empty and that L^ ^2r . (L+2+L~ 1 ) . Then for any t^tQ(L^ L, ^), one
has:

^"'(p.B.B)^^-!)2"-1.^^,^^2"-1.

Proof. — We fix a point p^ on the boundary of B(/?, L^); it is easy to verify
that p .B=(3+2.L - l ) .B is (1; L^, L, (l+2L).r)-framed. We apply lemma 3.5 (iii)
inductively and use 3. 5 (iv) in order to stop at k = 2 n. D
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LOWER CURVATURE BOUNDS AND BOUNDED TOPOLOGY 487

Heuristically speaking, the proposition bounds the topology of small metrical balls B
in a Riemannian manifold M". All the conditions can be formulated in terms of the
curvature, the diametre of M", and the radius of the ball B. No assumption on the
injectivity radius is required.

3.7. COROLLARY (c.f. Gromov). —/ /M" is non-negatively curved, non-compact, and
connected, and ift^l\ 8". 5"2, then for any ball B==B(p, r) in M" the following estimate
holds:

rfe*- l(M",B)^r^- l(3.3.B,B)^exp(5.n3+3.5.n2).

Proof. - Weput^ :=^ :=0 , L:=3.(l+^/2)"-1, and L, :=2r. L.(1+L-1)2.
Then the proposition applies; to make things more explicit, we make use of the

following computations:

^=^+8.5^( ' l+^YY^8^5"\expf 2 n 2+ n .5-K )^2 1 /" .8 n .5 n 2

\ \ 5 L / / \5 .L 8 /
and

N.-(u..L.s..(,̂ )-.(,̂ )y,<.....,....(̂ ^̂ )
i.e.

^(5.(l+^2))<M2+l•2•w)•(2"-l).5^5.exp(5.n3+3.5.n2-3.n). D

4. Metrical annul!
in asymptotically non-negatively curved manifolds

Most of the preceding results are valid for arbitrary Riemannian manifolds; especially
proposition 3.6 holds in general. In this section we are going to specialize to asymptoti-
cally non-negatively curved manifolds (M", g, o). Our goal is to get rid of the assumption
on the diametre of M". Towards this purpose it is natural to consider metrical annuli

A(Ri ,R,) :=B(o,R,) \B(o,Ri)

around the base point o of M". We want to bound from above

^(A^-^.Ri, (1+6).R^ A(Ri , R,)),

provided t and e are sufficiently large. The idea is to cover the annuli by balls of a very
special type: a metrical ball B=B(/?, r) in M" is said to be 6-small (5>0), iff r==5.do(p).
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We recall that by lemma II. 1.1 the curvatures at a point p € M" are bounded from
below by

-2.b,.f(d^p)).d^pr2',
here r\—>f(r) denotes a monotone non-increasing error function which takes values in
[0,1] and converges to 0 for r -> oo.

4.1. ASSUMPTIONS. - LetLo:=3.( l+^/2)M - l and let T|<(I+ ^/fco./(Ri/2Lo))~1 be
some positive number; we put:

L:=L, /l^A./f-^U-^-T
V "{2LJ \l-^}

p:=3+2.L-1

and

e^- .L^l+L)- 4 .^

4.2 LEMMA

(i) .Lo^L</3 .Lo^2 .Lo- l

s,,< n <^-
2.(L+4)-22

P.^9.^1-^11.
2 3 L + 1 0 ~ 7

(ii) //'0<8^s, anrf B=B(p, r) is any S-small ball in M" with centre p in A(R.i, R^),
t/ien t/ie estimate

^'((p.B.B)^^-!)2"-1.^"-1

/loMs /or

^^^.Lr.^.exp^.f^+g+l.S-^^-^-1^
VL \ 5 3 12 ) L+2 /

anrf /or all

^o(n):=8n.5"2.expf2M2+——^ l——+n.5-"V
~ \5L ^2.(L+2) 8 )

Proof. — (i) These estimates are obvious consequences of the definitions.
(ii) We define

L,•.=2L.(l+L-l)2.E,.do(p)=(-l—}2.r}.do(p).
\ ̂ "^ -1 /
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It is easy to verify that:
(a) the curvatures in B (p, (1 + L^1). L^) c: B (p, (L. T|/(L +1)). do (p)) are bounded from

below by —^2, where

^y2-^^^)-^^)'1^)-1

(b) i;.L^ /2.bo./( Rl ^ n

,L+1/ 1-ri

L^^/1+^.Lf.Lo.

(c) the curvatures in the ball p. B <= B (p, p. €„. dy (p)) (= B (p, (r|/7). dy (p)) are bounded
from below by —^2, where

^y^^iK'-y-^-
Therefore proposition 3.6 applies; it remains to compute No(Li, L, ^) and

to (Li, L, ^). Since

2^N^J^^_I__ _J1_<JL ^L
l-(Ti/7) (1+L)2 ' l - (^/7)-L+2"l-r | ?

we see that:

^^-L- -^ l i b ff-^V^^2-
L L + 2 * l - r | ' V ' 0 \ L + l 7 ~ L + 2 '

Because of the inequality

sinh(x) ^cosh(x)^exp(|x|)

we obtain that:

•^(^^•{^•(^i)')'^
and
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