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ENERGY ESTIMATES AND LIOUVILLE THEOREMS
FOR HARMONIC MAPS

BY KENSHO TAKEGOSHI

This article consists of two sections. In the first section, we shall establish a method
to estimate the energy of harmonic maps from a non-compact Kahler manifold provided
with certain hyper convex exhaustion function into other Kahler manifolds and induce two
monotonicity formulae for those maps. In spite of the elementary importance of establish-
ing such a method in function theory of several complex variables, up to now not much
is known about the general method to estimate the energy of harmonic maps or even
holomorphic maps of Kahler manifolds. As a by-product of this method, we can show
the same monotonicity formulae for smooth non-negative plurisubharmonic functions
on such a non-compact Kahler manifold.

To estimate the energy of those global solutions of elliptic differential equations of
second order, our method requires that a given non-compact Kahler manifold (M, ds^)
is provided with a non-negative exhaustion function 0 such that 0 is uniformly Lipschitz
continuous and O2 is C00 strongly hyper m— 1 convex on M relative to the Kahler metric
ds^ respectively and the complex dimension m of M is greater than or equal to two.

Fortunately there are several classes of non-compact Kahler manifolds provided with
such a hyperconvex exhaustion function.

For a given non-constant differentiable map/: (M, ds^) -> (N, ds^) from a non-compact
Kahler manifold (M, ds^) provided with the hyperconvex exhaustion function 0 as above
into a Kahler manifold (N, ds^) and any non-critical value r of <D, we induce an integral
inequality involving the energy E (/, r) o f / o n a sublevel set M (r) = { 0 < r ] of 0

(c/ (1.13)), its derivative —E(/,r) and the integral B(/,r) of the component of normal
Sr

direction of the differential df of / on the boundary 5M(r )={0=r} (c/ (1.14) and
Lemma 1.22, (1.23)) when/is either pluriharmonic or harmonic and the Riemannian
curvature of ds^ is semi-negative in the sense of Siu. This integral inequality plays the
crucial role in this article. In fact, from this integral inequality we can derive two energy
estimates for the above / which imply the monotone increasing property of the function
E (/, r)/^. Here [i is the positive constant determined by the ratio of the lower bound
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564 K. TAKEGOSHI

of the strong hyper m — 1 convexity of <D2 and the uniform Lipschitz constant of 0
relative to the Kahler metric ds^ respectively.

This integral inequality is induced from an integral formula for vector bundle-valued
differential forms on bounded domains with smooth boundary which was produced by
Donnelly and Xavier (cf. [6] and Proposition 1.10). Using this integral formula, we

rcan show the same formulae for the function G(/,r)= Tracer 88f2 dv^/r^ if/is a
JM(F)

smooth non-negative plurisubharmonic function on M.

Here it should be noted that this integral formula can be applied to show the analyticity
of harmonic maps of Kahler manifolds (cf. Remark 1.39).

For instance, we can obtain the following result as a corollary of our general result
(cf. Theorem 1.18).

THEOREM 1. — Let A c^ C" be an m ̂  2 dimensional connected closed submanifold of C"
/ "and let <D be the restriction of the function ||z||= / ^ \zl\2, z=(z1, . . ..z^eC" onto A

V 1=1
(O^A).

Suppose for a given Kahler metric ds\ on A the number pi defined by

m

W P i ' ' = inf S s,(x)
x e A f = 2

is positive where £i^£2^ • • • ^Syn are tne eigenvalues of the Levi form of^2 relative to
ds\ and the number p^ defined by

(^) p2:=sup|a<D|^(x)
x e A

is finite (For instance, if ds\ is the induced metric of Euclidean metric dsj of C", then we
can take p i = = w — l and p2==l/2) and a given non-constant differentiable map
f: (A, dsj) -> (N, ds^) into a Kahler manifold (N, ds^) is either pluriharmonic or harmonic
and the Riemannian curvature ofds^ is semi-negative in the sense of Siu.

Then the energy E(/, r) offon A ( r ) = { < D < r } satisfies the following proper ties:

The function H (/, r): = E (/, r)/r^ (|^=Pi/p2) ^ an increasing function of r and the
following estimates hold

Ha^-Ha^r21^^
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ENERGY ESTIMATES AND LIOUVILLE THEOREMS FOR HARMONIC MAPS 565

and

Ha^^Ha^expfr28^^
Ui E(/,0 )

for any r^>r^> inf <S) (x).
x e A

The same formulae hold for the function

G (/, r): = F (/, r)/^, F (/, r): = f Tracer 38 f2 dv^
J A ( r )

if f is a smooth non-negative plurisubharmonic function on A.

Remark 1. — When clinic A =1, the condition {^) in Theorem 1 is meaningless. But
setting p i=0 and assuming the condition f^^), we can obtain the above estimates for
^=0 and any non-constant differentiable map /: (A, ds^) -> (N, ds^) into any complex

manifold (N, ds^) because — E (/, r) (or s- F (/, r)) ̂  B (/, r) for almost all r (cf. (1.14)).
8r 8r

The former estimate in Theorem 1 is called the monotonicity formula in [19]. The
same statement as Theorem 1 holds for several classes of non-compact Kahler manifolds
(cf. § 1, Examples).

In the second section, as an application of the result obtained in the first section, we
shall show Liouville theorems for harmonic maps and plurisubharmonic functions on a non-
compact Kahler manifold provided with the hyperconvex exhaustion function <D as above
under certain slow volume growth condition.

Up to now several authors have investigated Liouville theorem for those maps on
various non-compact manifolds (cf. [2], [3], [7], [8], [9], [II], [12], [13], [18], [33] and so
on). One of the typical methods to study Liouville theorem for those objects is what
we call Bochner technique which shows the vanishing of certain function theoretic or
geometric object by coupling Weitzenbock formula with either a curvature condition or
a maximum principle (cf. [31]). In particular this method plays an important role to
study Liouville theorem on a non-compact manifold whose curvature is non-negative or
at most has a lower bound (cf. [4], [16], [32]). But this method is useless to study
Liouville theorem on a non-compact manifold whose curvature is non-positive and not
bounded from below.

The following theorems show that our method based on the energy estimate for
harmonic maps can be applied to study Liouville theorem for those maps on non-
compact Kahler manifolds with (asymptotically) non-positive curvature.

THEOREM 2. — Let (A, ds^) ̂  (C", dsj) be an m ̂  1 dimensional connected closed subman-
ifold of C" provided with the induced metric ds\ = i* ds^ and let O be the restriction of the
norm ||z||, zeC", onto A.
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566 K. TAKEGOSHI

Suppose the function n (A, r): = Vol (A (r))/r2 w satisfies

f°° A . . .
———— = oo jor ^om^ 6 > 0

Js ^(A,Q

77^ a) (A,^) admits no non-constant bounded harmonic functions
P) Let f'. A ->- N be a holomorphic map into a projectile algebraic variety N mth a very

ample line bundle L. // the set E^ (L) = { a e P (F (N, L)): Im/U supp (a) = 0 } ((a) is
the divisor defined by the section a) has positive measure, then f is a constant map.

y) A admists no non-constant negative plurisubharmonic functions

Remark 2. - It is known that n(A,r) is a non-decreasing function of r(cf.[2\]). Theo-
rem 2 is partially known in the following cases:

(1) A is affine algebraic or equivalently n(A,r) is bounded (cf. [26], [27]).

(2) dimcA= 1 and \ (tn(A, Q)-1 A== oo (cf. [13], [27]).
Js

The class of connected closed submanifolds of C" satisfying the condition
r°° (tn (A, t))~1 dt= oo contains smooth affine algebraic varieties properly (cf. [10], § 1).
Js

The holomorphic sectional curvature of the induced metric dsj, is non-positive and not
necessarily bounded from below even if A is affine algebraic (cf. [29] Examples 3 and 4).

When A is singular and transcendental i.e. n(A,r) is unbounded, up to now there is
only one result obtained by Sibony and Wong [22] in this direction i. e. they proved that
A c; C" admits no non-constant bounded holomorphic function if A is a pure m^ 1 dimen-

n (A r)
sional irreducible closed subvariety and satisfies lim inf ' <oo. Though we omit

r -^ oo log r
details here, using the plurisubharmonicity of log||z||, zeC", and the method used in the
proof of Theorem 2.1 in paragraph 2, we can generalize their result as follows:

y)7 A ̂  C" admists no non-constant negative plurisubharmonic functions which are smooth
on the non-singular part of A if A is a pure m^\ dimensional irreducible closed subvariety

r°°and satisfies (tn(A,t)) ldt=co.
Js

Anyway to show these two assertions, the plurisubharmonicity of log||z|| plays an
important role. However it should be noted that Theorem 2 is proved independent of
the existence of such a plurisubharmonic or parabolic exhaustion function (cf. The proof
of Theorem 2.1 in paragraph 2 and [27]).

The volume growth condition in Theorem 2 depends on the choice of metrics and the
above growth condition is optimal in the following sense:

Let (M,p,ds^) be a real two dimensional model (i.e. the metric ds^ is rotationally
symmetric relative to p) whose metric in polar coordinates centered at p is
ds^dr^WdQ2. Then /: [0, oo) -> [0, oo) satisfies that/(0)=0, /'(0)=1, /(r)>0 if
r>0 and /// (r) = K (r)f(r) (K(r) is called the radial curvature function). For a given
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ENERGY ESTIMATES AND LIOUVILLE THEOREMS FOR HARMONIC MAPS 567

8 > 1, let/be convex and let/(r) = r (log r)8 outside a compact subset [0, Z?J. The convexity
of/assures non-positive curvature. Hence the function n (M, r): = Vol (B (r))/r2 (here
B (r) is the geodesic ball of radius r centered at p) is a non-decreasing function of r. It
is easily verified that n(M,r)^(\ogr)2s for any r>3b^ (For details, the reader should
be refered to the proof of Theorem 2.4 in paragraph 2 and [30]). Since s>l,
r^ (tn(M, t)) 1 dt< oo. On the other hand, M has the conformal type of the unit disk
Js

r^since dt/f(t)<oo (cf. [9] Proposition 5.13). Therefore M admits many non-constant

bounded harmonic functions.

However in the case of Theorem 2, it is not so clear whether the volume growth
condition relative to the induced metric is optimal or not.

THEOREM 3. — Let (M,ds^) be an m^\ dimensional complete Kdhler manifold with a
pole OeM and let <S) be the distance function from OeM relative to ds^. Then the
assertions a), P) and y) in Theorem 2 hold for (M, ds^) if the radial curvature of ds^
satisfies one of the following two conditions:

c

(i) | radial curvature at x \ < ——————,———————— for a sufficiently small e,
' ((DM+r^log^M+Ti) y ^ ^

0<8=s^ „< 1, r\>e and any xeM.

(ii) the radial curvature of ds^ is non-positive on M and 0^ radial curvature at

x ̂  — ———,—————for a sufficiently small s, 0 < s = s^ < 1 and any x e M\M (ro\ r^ ^> 1
<S)(x)2\og(S>(x)

Remark 3. - In Theorem 3, if dimcM= 1, then it is known that (M,ds^) satisfying
the condition (i) or (ii) is conformally equivalent to the complex plane (C.dzdz) (cf. [9]
Proposition 7.6). But in the case dim^M^, we do not know whether (M,ds^) satis-
fying the condition (i) or (ii) is biholomorphic to the m dimensional complex Euclidean
space (C- dsj) (cf. [9], [15], [17], [25]).

In any case, by Hessian comparison theorem i. e. the estimate of solutions of Jacobi
equations, we may say that Theorem 3 contains the case treated by Greene and Wu in
[9], Theorem C (Quasi-isometry Theorem) (cf. [30] and Theorem 2.4 in § 2).

The author would like to express his hearty thanks to Doctors H. Kaneko, A. Kasue,
J. Noguchi and T. Ohsawa for their interests to this work and valuable discussions. In
particular, it should be noted that recently H. Kaneko has verified the assertion y), in
Theorems 2 and 3 from a quite different point of view (cf. [12]). His method is
probability theoretic.

This article is the second version of our previous manuscript "Energy estimates and
Liouville theorems for harmonic maps" published as a preprint from Max-Planck Institut
fur Mathematik in Bonn. The author also expresses his hearty thanks to the institute
for its hospitality during his stay.
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568 K. TAKEGOSHI

1. Energy estimates for harmonic maps

Let (M, ds^) be an m dimensional Kahler manifold with the metric tensor
m

^M=2Re ^ g^d^.
i , j= i

From now on, we always assume that M is connected and non-compact.
On the space C^'^M) of C°° differential forms of (p,q) type on M, the pointwise

inner product is defined by

(u,v)=2p+q ^ MA B ̂ q forMand^eC^(M)
Ap,B,

The star operator ^: Cpfq(M) -> C^^'^M) relative to ds^ is defined by

^u=C(m,p,q) ^ signf l ?•••9 w)s ign( ' l ?•••5 w)det(^MBpA^zA- .A^zB-p
Ag,Bp V^q^w-^/ \ BpB^_p/

for C(w,^,^)=(/^ -T)w(-l) ( l / 2 ) w ( w~ l ) + p w2p + 4~m and MeC^'^M). Using the star
operator, the inner product on C^'q (M) is defined by

(M,zQ= u / \ ^ v for u and ^(^(M).
JM

The following relation holds

M A ^V=(u,vy dv^.

Here ^^ is the volume form of M relative to ds^ and is defined by

m

, A <°Mdv^= ——
2mm\

m

for the Kahler form (0^= /"^ ^ ^i^^1 A ^ZJ °f ds^. These formulae are used to
u-i

determine the numerical coefficients of several integrals and operators which appear in
this article.

Let <I> be a continuous function on M. Throughout this section, we assume the
following conditions on 0.

(1.1) 0^0 W1?: =<D2 is ofclass C°°
(1.2) 0 is an exhaustion function ofM i. e. each sublevel set M (r): = {^> < r } is relatively

compact in M for r ̂  0
(1.3) C> has only non-degenerate critical points outside a compact subset K^ ofM

4° SERIE - TOME 23 - 1990 - N° 4



ENERGY ESTIMATES AND LIOUVILLE THEOREMS FOR HARMONIC MAPS 569

Remark 1 . 4 . — The condition (1.3) is assumed to avoid complicated discussions and
is sufficient for our purpose.

Under the condition (1.3), all critical points of 0 on M\K^ are isolated. Moreover
if r is a critical value of O, r>r^:= sup 0(x), then by (1.3), 8M(r): = { < D = r } is the

x e K *

union of a 2 m — 1 dimensional submanifold made up of all the non-critical points in
8M (r) and a finite set of critical points. Let x e 8M (r) be a non-critical point of <S>. The
volume element dSy of 8M (r) near x is defined by

d<S>
( 1 . 5 ) ^M=^———ArfS,

We set

(1.6) ^=-^-
W.&

For MGC^M), we denote by e(M):C^(M) -^ (^'^(M) the left multiplication
operator by M and denote by e(u)*: O^M) -^ C^'^^'^M) the adjoint operator of e(u)
relative to the inner product ( , ) L e. e (uY =(-\)(p+q)(s+t~l) ̂ e(u)^ on CP' q (M).

Since <D has only non-degenerate critical points on M\K^, Stokes theorem holds on
M[r] :={0^r} for any r>r^.

For a C°° differential 1-form (p on M, we have from (1.5) and (1.6)

(1.7) ^(p== e(^0)*(pco^ foranyr>^.
JM(r) J9M(r)

Here if r is a critical value of 0, then the integral on the right hand-side is taken over
the non-critical points of 9 M (r).

For a given C°° differential 1 form

(p= ̂  (pf dz1 + (pf-^?

on M, we consider the tangent vector @==[Q\Q1] on M defined by Q^ ^ ^(p^and
1=1

m

e^Z^cp,.
i=l

We denote by V^ (resp. V^) the ;-th component of the covariant differentiation of
/ w -\

type (1,0) (resp. (0,1)) relative to ds^. Since ^q>=2 ^ V.e'+V^e1 rf^. we have

\ i=i 7

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



570 K. TAKEGOSHI

from (1.7)

r / m -\ r
(1.8) 2 ^ V^+V.e1 A;M= e(^D)*(po),

J M ( r ) \ i = l / JeM(r)

for any r>r^.
Let /: (M, ds^) -> (N, ds^) be a differentiable map into an n dimensional Kahler man-

ifold (N, ds2^) with the metric tensor

n

ds^=2 Re ^ h^dw^dw^
a , P = l

We always regard a^y real-valued C00 function on M as a differentiable map from (M,
A^) ^o ^ Kahler manifold (C,dzdz) by composing f: (M, ds^) -> (R,dx2) with the
inclusion map i: (R, dx2) c^ (C, rfz dz) (z = x + / — I ^).

Let TM and TN be the complex tangent bundle of M and N respectively. Since the
complexifled differential df of f is regarded as an/* TN-valued differential 1-form, we
obtain an/*TN1'0-valued differential (1.0) form a/and an/*TN1'0-valued differential

i, o i ,o
(0,1) form ~Sf by composing the map \\ ° df: TM -^ TN1' °, f] : TN -> TN1' ° being the
projection, with the inclusions TM1'0 into TM and TM0'i into TM respectively
(cf. [7]). Then the form Sf (resp. Sf) is represented by (/?) (resp. (/?)) locally where

of"H = — and so on.l 8z1

The energy density e(f) of/is defined by

^(/):=^(/)+^(/)

^w-w^wl
and

^(/):=W)^W
We denote by ^ W the Leviform of ̂  = O2. We define an/* TN1' °-valued differen-

tial (1,0) form J^CF)(<9/) and an^TNi'^valued differential (0,1) form J^CF)(3/) as
follows:

(1.9)
^W(3/)={ Z g^^V^dA

Li,j,k=l )i, j, k = 1 J 1 ^ a ̂  n

^W(8f)=S Z /^^dz1}
Li,j,k=l ). i , j , k= l J l^a^n

82^where ^F.T^ ——zr.J 8ziozj
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ENERGY ESTIMATES AND LIOUVILLE THEOREMS FOR HARMONIC MAPS 571

We denote by V^o (resp. Vo, i) the covariant differentiation of type (1,0) (resp. (0,1))
induced from the connection on T*M (x)/*TN relative to ds^ and/*^. The exterior
differentiation

Di, o : ̂ pfq (M,/* TN) -. C^1'q (M,/* TN)

(resp. Do.iiC^M^TN^C^^MJ^TN)) is defined by Vi ,o (resp. Vo,i). We
denote by

Df, o ' ' C^ (M,/* TN) -. C7-lfq (M,/* TN)

(resp. D^C^MJ^TN^C^-^MJ^TN)) the formal adjoint operator of D^o
(resp. Do.i) (cf. [7]). Here C^MJ^TN) denotes the space of/* TN-valued C00

differential forms of 0?, q) type.
Let /: (M, ds^) -> (N, A^) be a differentiable map into a Kahler manifold (N, ^).

Then the following two formulae hold (cf. [5], [6], [28]).

PROPOSITION 1.10. — (i) For any non-critical value rof<S>

(1.11) f [2 {Tracer ̂  W e (/) - < ̂  (^F) (3/), a/>^TN - < ̂  W W\ Sf}^ ̂  }
JMO-)

+ < e (8^r 8f, Df, o Sf}f. TN + < DS, 13/, e (a1?)* a/>^ ̂
+ < a/, e (a1?)* Do, i Sf}^ TN + < e (3^)* D,, o 3/; a/>r TN] ̂ M

= 2 J [ [| 30) |M e (/) -1 e (30)* a/|̂  TN -1 e (50)* Sf\}. ̂  ̂  \
(.J6M(r) J

(ii)

(1.12) 2<a/;(D,,oDT,o-D$.iDo.i)(a/)>rTN
= 2 < (Do, i Do, i - D*, o D,, o) W\ 8f}^ TN
= Z R^(/) (/?/! -/T/D (/s' l/Y'J-/5' J/Y'r)

w^r^ ( , )^.TN ^ ̂  pointmse inner product on C^'<sr (M,/* TN) relative to ds^ and
f* ds^ and R^s is the Riemannian curvature tensor of ds^.

Proof. - First we show (1.11). We consider the following differential 1 forms on M:

(p,:^/)^

^:=1 Z WH^W^V^
2 a, P, i

(p3:=<?"(/)^

<P4:=- Z ^p (/VT (e(WW?
^a, P, i

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



572 K. TAKEGOSHI

Using (p^, we define the tangent vectors ©^{OL^^O} as before. We choose holo-
morphic normal coordinate systems (z1) around x e M and (w") around y =f(x) e N i. e.
^•j<x)=8^, dgi]-(x)=0 and h^(y)=S^, dh^(y)=0 respectively. Then all the Christofell
symbols ^T^ and ^T^ of ds^ and ds^ vanish at x and y respectively since
^^S^^jT an<a ^(^E^^ps respectively. Using these coordinate systems,

I 5

the integrand of the left hand-side of (1.11) can be obtained by calculating
m

E Vf (9! - ̂  + ̂  - 9^) pointwise (c/. [28] Proposition 1.14). Substituting
1=1
9i - 63 + 63 - 64 and (pi - (?2 + (Ps - <P4 into the formula (1.8) respectively, we obtain the
formula (1.11).

To show the formula (1.12), we fix the above holomorphic normal coordinate systems
for any point x e M and y =f(x) e N. Then all the Christofell symbols of ds^ and ds^
vanish at x and y respectively and moreover it holds that ^^^SyS-^h^ and
8^ np = 3p ̂ ^ at y respectively. Using these properties, the formula (1.12) follows from
a routine calculation.

Q.E.D.
We denote M (^, r^) = { r^ < <D < ̂  } for r^>r^> 0^: = inf 0 (x) and set

jceM

M(r,0^)=M(r)forr>0^.
For a differentiable map /: (M, ds^) -> (N, ds^) of Kahler manifolds, the energy

E(/,f2,ri) of/on M(r^,r^) is defined by

(1.13) E(/,r^):=f e(f)dv^
JM(r2 , r i )

We set E (/, r, 0^) = E (/, r) for A- > 0^. For some positive constant CQ > 0, we define

(1.14) B (/, r): = Co f [| e (30))* 8f\}. ̂  +1 e (30)* a/|^ TNJ ̂
J^M(r)

for r>r^.

If r is a critical value of 0, then the integral on the right hand-side of (1.14) is taken
over the non-critical points of SM (r). It is easily verified that B (/, r) is finite and a
continuous function of r>r^ (cf. [8], p. 275).

DEFINITION 1.15. — A differentiable map f: (M, ds^) -> (N, ds^) of Kahler manifolds is
called harmonic iff satisfies the following equation

Tracer Vi,o3/=0

and f is called pluriharmonic if

Vi,o5/=0

4eSERIE - TOME 23 - 1990 - N° 4



ENERGY ESTIMATES AND LIOUVILLE THEOREMS FOR HARMONIC MAPS 573

Clearly any pluriharmonic map of Kahler manifolds is harmonic and any holomorphic
or anti-holomorphic map of Kahler manifolds is pluriharmonic.

From now on we assume that the complex dimension m of M is greater than or equal
to two and moreover assume the following conditions on 0:

m

(1.16) the constant p i : = inf ^ s,(x) is positive where Ci^c^ . . . ̂ c^ are the
x e M\K** i == 2

eigenvalues of the Leviform o/lF=02 relative to ds^ and K^ is a compact subset ofM
(1.17) the constant p^ : = sup 30 \j^ (x) is finite.

x e M\M [0*]

The main result of this section is stated as follows.

THEOREM 1.18. — Let (M,ds^) be an m^2 dimensional connected non-compact Kahler
manifold and let 0 be the function satisfying the conditions (1.1), (1.2), (1.3), (1.16) and
(1.17).

(i) If a given non-constant differentiate map f: (M, ds^) -> (N, ds^) into a Kahler man-
ifold (N,rf^) satisfies either (1) fis pluriharmonic or (2)fis harmonic and the Riemannian
curvature o/(N,rf^) is semi-negative in the sense of Siu [23] i.e.

(1 .19) R^sOO (A" ̂  - C" D^ (A5 B7 - C5 D7)

is non-negative for any y e N and complex numbers A", B", C7 and D5, then the energy
E (/, r, ro) of on M (r, ro) satisfies the following properties:

The function H (/, r, r^): = — — ° ( |LI : = -A } is an increasing function of r^ro and
^ \ P2/

the following estimates hold

(1.20) H (/, r,, ro) - H (/, r,, r^) ̂  ( r 2 Bc^0 dt

(1-21) H (/, ̂  ro) ̂  H (/, r,, ro) exp ( P B(/? f) dt\
\Jri E(/^^o) /

for CQ=— in B (/, r) (cf. (1.14)) and any r, > r^ > max (ro, r .)
P2

(ii) Iffis a non-constant non-negative plurisubharmonic function of class C2 on M, ^^
^/M^^

G(/,r,ro):=F(^
r^

F (/. '•. '•o) : = ^^dA 55/2 ^M»
JM(r,ro)

satisfies the same properties as H (/, r, ^0).
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Here the value ^ is determined as follows: in the case (i), (1), ro==0^ ^/K^=0 or ro
is a non-critical value of^ with ro>r^^:= ^P ^(x) ^/^**^0 fl^ m tne case either

xeK**

(i), (2) or (ii) /^ = 0^ ;/K^ = K^ = 0 or ro is a non-critical value of^ with ^o >max (r^, r^)
if otherwise.

Theorem 1.18 follows from the following lemma which plays the crucial role in this
article.

LEMMA 1.22. — Let (M, ds^, <S>) be as above in Theorem 1.18.
(i) If a given differentiable map f: (M, ds^) -> (N, ds^) into a Kdhler manifold (N, ds^)

satisfies the condition either (1) or (2) in Theorem 1.18, (i), then the following integral
inequality holds

(1.23) r8E(f,r,ro)-ViE(f,r,ro)^rB(f,r)
8r

(ii) Iff is a non-negative plurisubharmonic function of class C2 on M, then the function
F(/, r, ro) defined in Theorem 1.18, (ii) satisfies

(1.24) r'-P^r^o^-^F^r^o^rB^r)
or

where \JL= -1-, CQ= — in B(/,r) (cf. (1.14)) and r is any non-critical value o/O with r^r^.
P2 P2

First we show Theorem 1.18 by using Lemma 1.22.

Proof of Theorem 1.18. — Here we give the proof of the case (i), (1) only because
other cases are proved quite similarly.

For any non-critical value r of 0, r^^r^r^, we have from (1.23)

(1.25) -Wr,^^ forH(/,^)=Ea^^)

or r^ r"

Hence H (/, r, to) is an increasing function of r^^o.
Integrating (1.25), we obtain (1.20) because the set of critical values of0 is discrete.
Since E(/,r,ro)>0 for any r>ro (cf. [20] Theorem 1), we have from (1.23).

(1.26) ^'^^logEa^)
r E (/, r, ro) 8r

Hence we obtain (1.21) by integrating (1.26).

Q.E.D.

Proof of Lemma 1.22. — (i) In the case ^"o^*? to show the inequality (1.23), we
should apply the integral formula (1.11) to the domain M(r,ro) for any non-critical
value r and the fixed non-critical value ^ of 0, r>rQ>0^. Since M(r,ro) has two
boundaries 8M (r) and 8M (ro), in this case two boundary integrals appear in (1.11). But
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the left hand-side of (1.11) is dominated by the boundary integral on 8M(r) because the
boundary integral on 8M (/o) is non-negative by Cauchy-Schwarz inequality.

(1) Let /: (M, ds^) -> (N, ds^) be a non-constant pluriharmonic map of Kahler
manifolds. Then/satisfies the following equations:

(1.27) Do, i Sf= D*, o 8f= D,, o 8f= D*, , 9f= 0

If the compact set K^(c/, (1.16)) is empty, then we set ro==0^. Otherwise we fix a
non-critical value FQ of<D with rQ>r^.

By (1.11), (1.27) and the above consideration, we have for any non-critical value
r>max(ro,r^) ofO

(1.28) f {Tracer ̂  OF) e (/) - < ̂  OF) (5/), Sf},. ̂  - < ̂  QF) (3/), ̂  ̂ } ̂
JM(r,ro)

^ '• f [| ̂  IM e (/) -1 e (50)* a/|̂  TN - e (50)* a/|̂  TN] co,
J^M(r)

For any point xeM\K^ and ^=/(x)eN, we choose local coordinate systems (z1)
around x and (0 around y so that ^-(x)=8^, ^-(x) = 8, (x) 8 .̂ and Aap-O^^p
respectively. From (1.9) and (1.16), we have at x

(1.29) Tracer ̂  W ̂  (/) - < ̂  OF) (3/), 5/>^ TN - < ̂  (^) (Sf\ Sf}^ ̂
n m / m \

= S S (S ̂ -^)){\fn^\2+\fH^\2}^ple(f)(x)
a = l i= l \j=l /

Then the inequality (1.23) follows from (1.14) (CQ= -1-), (1.17), (1.28) and (1.29).
\ Pi/

(2) Let /: (M, ds^) -> (N, ds^) be a differentiable map of Kahler manifolds. If the
compact sets K^ and K^ are empty, then we set ^o=0^. Otherwise we fix a non-
critical value FQ of<D with ^ >max(r ̂ ,r^).

Since Do, i 9f=D^o8f (cf. [28], (1.8)), by (1.12) and integration by parts, we have
for any r^ro

0 • 30) 2 ?1, 0 ̂  Di, o 3/)^ TN, M (r) - (D*, 1 8f, Dg, , J/)^ ̂ N, M (rj

+ f ER^(/)(/^/!-/!/D(75:y^^
JM(r)

= f [< e (30)* 5/; D*, o Sf}f. TN + < D*, i ̂  e (30)* 5/>^ ̂
J8M(r)

+ < a/, e (30)* Do, i 3/>^N + < e (30)* D,, o ̂  8f^ ̂  co,
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