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POLYNOMIAL BOUNDS FOR THE NUMBER
OF AUTOMORPHISMS OF A SURFACE

OF GENERAL TYPE

BY ALESSIO CORTI (*)

ABSTRACT. — We study Weierstra(3 points and discriminants on algebraic surfaces of general type and we
give applications to a polynomial type estimate in c^ for the order of the automorphism group.

1. Introduction

In this paper we bound the order of the group of automorphisms of a complex surface
of general type by an effective polynomial function of degree 10 in the second Chern
class (Theorem 7.10). From this respect, our result is completely analogous to the
classical bound 84 (g—1) for curves of genus at least two. We do not know of any
example where the growth is more than linear, but perhaps the belief that a linear bound
should hold is too naive. It would be nice to see an example of quadratic growth.

Andreotti [1] gave an estimation of exponential type in the geometric genus. The
problem of giving polynomial bounds has been more recently attacked by Howard and
Sommese [8], and by Horstmann [7] in his Ph. D. thesis, but as far as we know, no one
was able to prove the result in its generality.

We use the same method as Howard and Sommese, who understood that the problem
can be solved producing an invariant locus on the surface. That such a locus exists is
proved in sections 5-6.

The search for an invariant locus led us to study the notion ofWeierstrap points. They
were introduced, at least to our knowledge, by litaka [9] and Ogawa [15]. Unfortunately
here the theory can not be as rich as one would like. In general Weierstra? points do
not exist. We have been able to bound their associated classes in the Chow group. This
is done is sections 3-4. The only reason why we include here these estimations is that
we think they could be of some technical interest. The problem is to bound the zero
cycle of a section of a vector bundle of rank bigger than the base space. Our methods

(*) This paper was written while the author was supported by a government scholarship as a student of the
graduate school in mathematics at the Scuola Normale Superiore, Pisa (Italy). It was revised while the author
was supported by a teaching fellowship as a graduate student at the University of Utah.
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114 A. CORTI

could perhaps be used in different or more general situations. The reader that is not
interested can skip section 3 and 4.

It is a pleasure for me to thank my friend and teacher Fabrizio Catanese. Without
his stimulating conversations and his help, both human and professional, this paper
would have never been written.

I also wish to thank the referee of the Annales scientifiques de VEcole Normale
Superieure, for pointing out some mistakes in the first version of this paper, and C. Peters
for valuable discussions during its revision.

Added to the last version (Nov. 15, 1989): we received a few weeks ago a preprint by
Huckleberry and Sauer. They also obtain polynomial bounds, that actually are a little
better than ours [of the order \og{c^)c\5'2}. Their method is completely different and
ultimately relies on finite group theory.

NOTATIONS. - In this paper S denotes a smooth algebraic surface over the field of
complex numbers. In sections 3 to 6, S is a minimal surface of general type with ample
canonical sheaf. In section 7, S is a surface of general type. For the definition and
standard properties of algebraic surfaces of general type we refer to Barth, Peters and
Van de Yen [2].

We use the following notations freely.
the field of complex numbers.
the ^-dimensional projective space.
the structure sheaf of a non singular algebraic variety.
the rank of a coherent sheaf on an algebraic variety.
the dual of a coherent sheaf.
the determinant line bundle of a coherent sheaf.
an injective homomorphism of coherent sheaves.
a natural isomorphism of coherent sheaves.
the sheaf of sections of a vector bundle E.
the graded bundle associated to a filtration 0 = Eo c= . . . c= E^ = E. Namely,

C:
P":
^
rg(^):
^*:
det(^):
^ c :̂

^F^\
^P(E):
Gr(E.):

k

Gr(E.)=©E,/E,_,.

the dual of a vector bundle E.E*:

AE:
S'E:
EOOE':
P(E):

the r-th exterior power of E.
the r-th symmetric power of E.
the tensor product of two vector bundles E and E\
the projective bundle associated to a vector bundle.
we take from Fulton [5], P (E) = P roj( ® (9 (S" E*)).

In our notation, that

n^O

Y-E
c,(E):
VL:

the restriction of a vector bundle to a subscheme Yc^ X.
the f-th Chern class of E.
the r-th jet bundle of a line bundle L.
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AUTOMORPHISMS OF A SURFACE OF GENERAL TYPE 115

(9 (D): the sheaf of sections of the line bundle associated to a divisor D.
(9 (D + D'): D and D' being two divisors, the sheaf (9 (D)®^ (D7).
D=D': the divisors D and D' are linearly equivalent.
| D |: the complete linear system of effective divisors linearly equivalent to D.

For a smooth algebraic surface S we have the following notations:
Aut(S): the group of automorphisms of S.
I(C): the inertia group of a curve C on S. It is the subgroup of Aut(S)

of elements fixing pointwise C. Namely, I(C)={^eAut(S) s. t. g (p)=p,
V^eC}.

A^(S): the Chow ring of cycles mod. rational equivalence. For 8eA^(S) we have
a natural decomposition 5=80+81+82 according to the dimension. For a
subscheme Y c^ S, we write [Y] for its class in A^ (S) (see Fulton [5]).

D. D': the intersection product of two divisors on S.
Q1: the cotangent bundle of S [and not the cotangent sheaf, which is denoted

by the symbol ^(Q1)].
K: the canonical bundle of S, or a canonical divisor.
f\nK\'' tne ̂ h canonical map /j „ K |: S — -> | ^ K |*.
pg: the geometric genus hP (K).
p^\ the n-ih plurigenus h° (n K).
q: the irregularity h° (Q1).
h19 1: the dimension over C of the vector space H1 (Q1).
7 (<^s): the Euler characteristic of the structure sheaf: ^ (^s) = 1 — q -\-pg.
Ci, c^. the first and second Chern classes of the cotangent bundle.
/^(D): the arithmetic genus of a divisor D on S.
deg(L|c): for a reduced irreducible curve C on S, and a line bundle L on S, the

intersection number L. C.

For a smooth algebraic curve C:
g(C): the geometric genus of C.

For a homology manifold M:
e(M): the topological Euler characteristic of M.

For a finite set Z:
| Z |: the order of Z.

For a finite group G acting on S:
[G: G']: for a subgroup G' of G, the index of G' in G.
Gp: for a point peS, the stabilizer ofp in G. Namely, Gp== [geGs. t. g(p)=p}.
G (p): the orbit of p: G (p)={ g (p\ g e G }
x= 0 (y^: there is a constant c such that x^ cy^. We always use this notation meaning

that we know how to compute the constant c, that is universal independent
of the situation, but we are too lazy to do so.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



116 A. CORTI

2. Definition of Weierstra? points

We give in this section the basic definitions of canonical Weierstrap points, following
Ogawa [15]. He defined Weierstrap points for algebraic varieties of any dimension
relatively to any line bundle L. We simply specialize to surfaces and to the canonical
bundle. Throughout this section S denotes an algebraic surface. We begin with the
fundamental:

DEFINITION 2 .1 .—Let S be an algebraic surface, and ( O i , . . . , o)p a basis for
H°(K). It is then defined a homomorphism of vector bundles ^'.O^ -> ^(J^K), s.t.

^ (e^ ==/ (c0f), where/(co^) is the k-th jet of co^. Let m=mm^pg, ( ) ^ . The k-th

canonical Weierstrap locus W^ (S) is the subscheme of S defined by the vanishing of the
W. Wl Wl

sheaf homomorphism z^: (9^9 -> (9 ( f K).
There is a natural stratification of Wj^ (S):

DEFINITION 2.2. — Let u be an integer, 0 ̂  u ̂  ( ), and m = min {u, pg}. W^ (S)

is the subscheme of S defined by the vanishing of the sheaf homomorphism

^: (9^^(9( J^K).
We say that a Weierstrap scheme is non-trivial if it is different from 0, S, and in this

case its associated class [W^(S)] in A^(S) is [W^(S)]o+[W^(S)]i, where [W^(S)]o is the
class of a zero dimensional cycle and [W^(S)]i is a divisor. Let us study Wo and W^
first. We state a lemma which we shall use a plenty of times in this paper:

LEMMA 2.3. — We have, for all integers k, an exact sequence (called the principal parts
exact sequence):

0-^ S^O^K-^ J^K-^J^-1 K-^ 0.

Proof. — There are many sources. See for instance Ogawa [15].
Q.E.D.

LEMMA 2.4. — Let S be a surface of general type. If p g ' ^ 1 , Wo(S) is the base locus
of the complete canonical system | K |, and the following estimates hold:

deg ([WJo) ̂  K2 + c^, [WJ2 ̂  [WJi. K ̂  K2.

If p g ' ^ 3 , W^ (S) is the locus of points where the first canonical map f\^\ is not a local
immersion, and the following estimates hold:

degaWJo^^K^^, [WJ^4[WJi.K^16K2.

Proof. — The assertions about Wo are clear. Let indeed K = F + M where
F is the fixed divisor, and M is the moving part. Clearly [Wo]i=F and
K2 = K. F + K. M ̂  K. F =-- M. F + F2 ̂  F2. If K has isolated fixed points, they are the
fixed points of the moving part M, and there are M2 of them, counted with
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AUTOMORPHISMS OF A SURFACE OF GENERAL TYPE 117

multiplicity. To bound M2, observe first that C being any irreductible curve, K .C^O
unless C is an exceptional -1 curve (here K.C=-1), and there are at most ^ such
curves. So

K^K.F+K.M^K.M-c^F.M+M^c^M2-^.

We now prove that / j^ i is a local immersion at xeS if and only if v1 is surjective
at x. Let U be a neighborhood of x and 7:U^C^ a local lifting of f^\. The
differential df\ ̂ , is injective at x if and only if dj is injective at x and J (x) ̂  V, where
7(x)+V is the tangent space to7(U) at x. This means exactly that v1 is surjective
at x. Now, remember that we have the principal parts exact sequence (lemma 2.3):

O-^Q^K-^K-^K-^O,
3

which implies that A J1 K=4K.
Now Wi is the zero scheme of a global section a=(ai, . . ., aj of (4K)7", for

some m. If a vanishes on a divisor C, C+E^4K for some effective divisor E. Note
that C contains all the exeptional curves of S. Since 4K is numerically connected,
C.E^O and

16K 2 =4K(C+E)=4K.C+4K.E^4K.C=C 2 +C.E^C 2 .

To bound deg([WJo), we proceed as follows. Let D^ be the divisor of zeros of a,, then
assume D^ = F + D'l, D^ = F + D^, with D[, D; tranverse. Then clearly

deg([WJo)^D / l .D2+degZ(a3|F,. . . ,cT, |F)^D^D2+4K.F+4c2
^D / l .D2+F .D2+4K.F+4c2=4K.D2+4K.F+4c2=16K 2 +4c2 .

Q.E.D.
Let us say something about another extreme situation:

LEMMA 2.5. — The map v^: (9^ -> VQ K is infective.

Proof. - It follows easily from the theory of Wronskians. See litaka [9](1).
Q.E.D.

The aim of the next two sections is to give estimates for the fundamental classes of
Weier strap schemes. - In section 3 we give an upper bound for [W^(S)]i.K, and in
section 4 for deg[W^(S)]o. We wish now to observe that, despite litaka's conjecture
(cf. litaka [9]), surfaces with trivial Weierstra? schemes do exist, and it seems likely that
the generic surface has trivial Weierstra? schemes. In fact we have the following very
elementary:

EXAMPLE 2.7. — A generic quintic surface in P3 has trivial Weier strap schemes.

Proof. — To prove the assertion, it suffices to show that for S generic and smooth the
natural v 4 ' : (9^ -> J2 (K) is everywhere injective. It is easy to show that this means exactly

(1) At a first glance, litaka's definitions look different from ours, but what he actually defines is our W^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



118 A. CORTI

2. Definition of Weierstra? points

We give in this section the basic definitions of canonical Weierstrap points, following
Ogawa [15]. He defined Weierstrap points for algebraic varieties of any dimension
relatively to any line bundle L. We simply specialize to surfaces and to the canonical
bundle. Throughout this section S denotes an algebraic surface. We begin with the
fundamental:

DEFINITION 2 .1 .—Let S be an algebraic surface, and c o ^ , . . . , ©p a basis for
H°(K). It is then defined a homomorphism of vector bundles ^'.(P^o -> ^(J^K), s.t.

^ (ei) ==/ (o)f), where/(cc^) is the k-th jet of co^. Let m=mm^pg, ( j ^ . The k-th

canonical Weierstrap locus W^ (S) is the subscheme of S defined by the vanishing of the
W. ffl ttl

sheaf homomorphism A ^: A (9^ -> (9 (A J^ K).
There is a natural stratification of W^ (S):

DEFINITION 2.2. — Let u be an integer, 0 ̂  u ̂  ( ], and m = min {u, p g } . W^ (S)

is the subscheme of S defined by the vanishing of the sheaf homomorphism
Tfl W. ttl

Az^A^-^AJ'K).
We say that a Weierstrap scheme is non-trivial if it is different from 0, S, and in this

case its associated class [W^(S)] in A^(S) is [W^(S)]o+[W^(S)]i, where [W^(S)]o is the
class of a zero dimensional cycle and [W^(S)]i is a divisor. Let us study Wo and W^
first. We state a lemma which we shall use a plenty of times in this paper:

LEMMA 2.3. — We have, for all integers k, an exact sequence (called the principal parts
exact sequence):

0-^ S'Q^K-. J^K-. J'-1 K-. 0.

Proof. — There are many sources. See for instance Ogawa [15].
Q.E.D.

LEMMA 2.4. — Let S be a surface of general type. If pg^ 1, Wo(S) is the base locus
of the complete canonical system | K |, and the following estimates hold:

deg ([WJo) ̂  K2 + c,, [WJ2 ̂  [WJi. K ̂  K2.

If pg^3, Wi(S) is the locus of points where the first canonical map / j^ i ls not a local
immersion^ and the following estimates hold:

degaWJo^^K^^, [WJ^4[WJi.K^16K2.

Proof. - The assertions about Wo are clear. Let indeed K = F + M where
F is the fixed divisor, and M is the moving part. Clearly [Wo]i=F and
K2 = K. F + K. M ̂  K. F = M. F + F2 ̂  F2. If K has isolated fixed points, they are the
fixed points of the moving part M, and there are M2 of them, counted with
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118 A. CORTI

that VPeS, Tp(S) n S has not a triple point at P. An easy dimension count now shows
that the locus of quintics having Weierstra? points is of codimension one in the P55 of
all quintics.

Q.E.D.

3. Estimates for the dimension one component

Throughout this section, S indicates a minimal surface of general type over the field of
complex numbers, and with a ample canonical sheaf. — We give an upper estimate for

s

the intersection number [Z(a)]i .K, where a is a global section of A FK. We use K-
semistability in the sense of Mumford-Takemoto of the cotangent bundle (theorem 3.2).
An upper estimate for [W^i .K then easily follows (cf. theorem 4.6).

We first recall the following basic definition:

DEFINITION 3.1. — Let S be a projective surface and H an ample divisor on S. Let
^ be a coherent sheaf of ^s-^dules, we define [i ( ̂  ) = c^ ( ̂  ). H/rg (^ ). A torsion-
free coherent sheaf S of (^s-modules is called H-semistable if for all coherent subsheaves
of ^s-modules ^ of ^, we have |Li(^')^|Li(<f). Otherwise we say that ^ is H-unstable.

THEOREM 3.2. — The cotangent bundle Q1 of a surface of general type with ample
canonical sheaf is K-semistable.

Proof. - Yau's theorem (Yau [17]) gives a Hermite-Einstein metric on S. The tangent
bundle endowed with this metric is by definition Kahler-Einstein with respect to the
Kaher class, hence K-semistable by a result ofKobayashi and Liibke (see Kobayashi [11]).

Q.E.D.
We now show how K-semistability can be used in our situation. We remark that jet

bundles are not semistable, since the principal parts exact sequence (lemma 2.3) is
destabilizing, as follows'by| straightforward computations. First of all we state a lemma
which will tie used several times in this papen

I ! ' I ! i ' l
LEMMA 3.3. — An exact sequence of vector bundles:

0 -> E' -. E -^ E" -> 0

determines in a natural way:
r+l

- A filtration E . :0=EoC=. . . cE.+^S'E with Gr(E.)= ® S1-1 E^S'-1-^ E\
i= i

r r + l i - 1 r - i+1

- A filtration E.:0=Eo^. . . cE,+i=A E mrt Gr(.)= ® A E"® A E'.
1=1

Q.E.D.

Proof. — See Hirzebruch [6).
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AUTOMORPHISMS OF A SURFACE OF GENERAL TYPE 119

s

THEOREM 3.4. — Let a be a global section of A V K, and Z (a) its zero scheme.
We then have :

[Z^.K^^K-.

S

Proof. - a defines an injection ^s ^ ^(A FK). By saturating this inclusion we obtain
a devissage:

s

o-^ (Ps -^(ArK)-^-^
1 I I 1

s

0 -> (9 (D)->(P (A J' K)-^-^ 0

where D is an effective divisor, [D]==[Z(<j)]i. It suffices then to show that for any
s

subcoherent sheaf ^ of 0 (A FK) the following inequality holds:

^^^i^K2.
2

Suppose we have a vector bundle E and a filtration O=EQC= . . . cE^E with
^(E^/Ef_i) K-semistable. We claim that for any subcoherent sheaf ^ of ^P(E) the
following inequality holds:

H(jF)^ max H(E,/E,_O.
1 ^ i ̂  m

In fact, taking ^=^'n^(E,), we obtain a filtration 0=^:'oc: • • • ̂ -^^^ with
^i/^i-i ^ ^(Ki/Ki-i)- The claim then follows observing that:

HW= Z ^^^^^(^/^-^^^^^^(^•/^-i)

and using K-semistability of ^P(Ef/E^_i).
We study now jet bundles. The principal parts exact sequence (lemma 2.3) induces

5

a filtration of (9{1\ VK) (lemma 3.3) with quotients isomorphic to:

iQ

A^S^^K^.^AK

where ij are non negative integers s. t. ;o + • • • + ir=s. We recall that by Maruyama [12]
wedge and symmetric powers, and tensor products of semistable bundles are
semistable. By our claim we thus only need to compute (i. We first compute

^
H(A (S^'O1®^). By straightforward computations we have

^(S'O^K^^r+OQ^^K

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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multiplicity. To bound M2, observe first that C being any irreductible curve, K.C^O
unless C is an exceptional -1 curve (here K.C=-1), and there are at most c^ such
curves. So

K^K.F+K.M^K.M-c^F.M+M2--^]^2--^.

We now prove that / j^ i is a local immersion at xeS if and only if v1 is surjective
atx. Let U be a neighborhood of x and 7:U-^C^ a local lifting o f / j ^ i . The
differential df\^\ is injective at x if and only if (ff \s injective at x and 7 00 ̂ V? where
7(^)+V is the tangent space to7(U) at x. This means exactly that v1 is surjective
at x. Now, remember that we have the principal parts exact sequence (lemma 2.3):

0 -> Q^K -. J1 K -^ K -> 0,
3

which implies that A J1 K=4K.
Now Wi is the zero scheme of a global section a=(<7i, . . ., o^) of (410)^ for

some m. If a vanishes on a divisor C, C+E^4K for some effective divisor E. Note
that C contains all the exeptional curves of S. Since 4K is numerically connected,
C.E^Oand

16K 2 =4K(C+E)=4K.C+4K.E^4K.C=C 2 +C.E^C 2 .

To bound deg([WJo). we proceed as follows. Let D, be the divisor of zeros of a,, then
assume D^ = F + D[, D^ = F + D^, with D^, D^ tranverse. Then clearly

deg([WJo)^.D,+degZ(a3|F, . . ., a, ̂ D[.D^4K.¥^4c,

^D / l .D2+F.D2+4K.F+4c2=4K.D2+4K.F+4c2=16K 2 +4c2 .
Q.E.D.

Let us say something about another extreme situation:

LEMMA 2.5. — The map v^: (9^ -> JPg K is infective.

Proof. - It follows easily from the theory of Wronskians. See litaka [9](1).
Q.E.D.

The aim of the next two sections is to give estimates for the fundamental classes of
Weier strap schemes. - In section 3 we give an upper bound for [W^(S)]i.K, and in
section 4 for deg[W^(S)]o. We wish now to observe that, despite litaka's conjecture
(cf. litaka [9]), surfaces with trivial Weierstra? schemes do exist, and it seems likely that
the generic surface has trivial Weierstrap schemes. In fact we have the following very
elementary:

EXAMPLE 2.7. - A generic quintic surface in P3 has trivial Weierstrap schemes.

Proof. - To prove the assertion, it suffices to show that for S generic and smooth the
natural v 4 ' : (9^-> J2 (K) is everywhere injective. It is easy to show that this means exactly

(1) At a first glance, litaka's definitions look different from ours, but what he actually defines is our W\
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120 A. CORTI

p /rg(E)-l\
and, since c^ ( E) = \ c^ (E) we obtain:

\ p-\ )

^ (S-O^K))^^1-01 r! (^(^K^^^t2)^
(r+1)! (;-l)!(r+l-0! 2 2

Finally, since [i(E'W')=[i(E')-}-[i(E"):

ir io s(r+2)H( (S'Q^K)®...® K)^-"——'K2.
2

Q.E.D.

4. Estimate for the dimension zero component

Notations are as in section 3. In particular, S is a surface of general type over C and
s

"with ample canonical sheaf. Let a be a global section of VK, and let Z(a) be
the zero-scheme of a. We assume that a is not identically zero and we put
[Z((j)]=[Z(a)]o+[Z(a)]i in A^(S), where [Z(<j)]o is the Ao-component, and [Z(a)]i the
A^-component. We give in this section an upper bound for deg[Z(a)]o, in term of the
invariants of S and the integers r, s (theorem 4.4). This will lead to an estimate for the
degree of the Ao-component of [W^(S)], which will be stated in theorem 4.6. The idea

s

is to take a filtration O=E()<= . . . cE^ .TK, with E^./E,_i line bundles, and then put
deg([Z(a)]o)^max{E^/E(._i .EyE^._i}. To obtain such a filtration we begin with a

i, J

filtration of01.

LEMMA 4.1 .—There exists a global section TeH^Q^lOK) with zero schemed
smooth of pure dimension zero, giving thus a filtration:

(4.1) 0 -> (9 (- 10 K) -» (9 (Q1) -> (9 (11 K)(x)J^ -^ O

where J^ is the ideal of Z and deg (Z) = 110 K2 + c^

Proof. — Just note that since Opn(2) is generated by global sections, and the
complete linear system |5K| embeds S in projective space, we then have that Q^IOK
is generated by global sections and we may apply Kleiman [10], to obtain a global
section T whose zero scheme Z is smooth of pure dimension zero. T gives an injection
^ c, ^(O^OO^OOK), which tensored by - 10 K gives (9(- 10 K) q: ^(Q1). We have
that the cokernel is isomorphic to ^f®^z? an<^ ^^^(11K) by properties of the
determinant. It is clear that deg (Z) = ̂  (Q1010 K) = 110 K2 + c^.

Q.E.D.

We need the following slight refinement of lemma 3.3.

LEMMA 4 . 2 . — L e t E', E be vector bundles on S. Suppose we are given an exact
sequence:

0 -> (9 (E') -> (9 (E) -> ^ -> 0,

4eSERIE - TOME 24 - 1991 - ?1
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where ^ is a torsion-free, rank one, coherent sheaf. We are then naturally given:
— An exact sequence:

0 -> (9 (E'^S'-1 E) -^ (9 (S' E) -. Q -̂  0

and an inclusion Q ̂  Q**^^**
— ^4/2 exact sequence:

r r

0 -^ ^ (A E') -> (9 (A E) -> Q -^ 0

r-l

a^ ̂  inclusion Q q: Q**^ A E'®^**.

Proof. — For the first assertion we have (Hirzebruch [6]) an exact sequence on
S'=S-sing(^):

i
0 -^ ^ (E' Is/^S'-1 E |s,) -^ ^ (S' E |s,) ̂  r^ |s, -^ 0.

Now, E and E' are locally free sheaves, and by Hartogs theorem ;' extends to an
inclusion ;:

T. (9(E'(S)Sr~lE)^([)(SrE).

The quotient Q is a torsion-free coherent sheaf, and therefore injects in its bidual
Q**. On S', Q** |s,^r^'** |s,. Since we are on a non singular surface, Q** and ^**
are both locally free, and by Hartogs theorem the isomorphism extends to an isomorphism
on all of S.

For the proof of the second assertion, proceed the same way.
Q.E.D.

In the proof of the main theorem 4.4 of this section, we will need to restrict
filtration (4.1) to a curve, so we now prove:

LEMMA 4.3. — Let C be a reduced irreducible curve on S. Filtration (4.1) induces a
filtration:
(4.2) 0-^ - l O K l c + L - ^ l c - ^ l l K l c - L - ^ O

where C is the normalization ofC and L an effective divisor on C s. t.:

deg(L)^ ^ ap(C)
P e Z nC

where Z is as in lemma 4 .1 and Op (C) is the multiplicity of C at P.

Proof. - Let 0(-10 K) [c ^ ^(Q1) |c be the restriction to C of the inclusion
in (4.1). We saturate this inclusion obtaining an exact sequence of vector bundles
on G:

0^ - lOKlc+L-^lc^L^O

with L an effective line bundle on C and L' a line bundle on C. L^K|c—L by
2 2

functoriality of the determinant bundle: since K c=(A Q1) c= A (Q1 c), we have
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K |c ̂  - 10 K |c + L +1/ giving L' ̂  11 K |c - L. The estimate on deg (L) comes from the
following local computation. Remember that S is locally factorial. This implies that
locally in P e Z the inclusion (9 (- 10 K) q: (9 (Q1) is given by:

0 ̂  (9s (U) ̂  ^s (U)2 ̂  (/ g) ̂  (U) ̂  0

where ;(!)=(/, ^); n (e^) = -g,n (e^) =f and /, g e (9^ (U) are coprime. Let Q be a point
of C over P, / a uniformizing parameter at Q. Then ; |c: ̂  (— 10 K |c) c^ (9 (Q1 |c) writes
locally at Q:

o --, ̂  (v) -^ ^c (V)2. ^ (i) = y(Q), ^2 (Q))

where v, (Q)==ordQ(/|c)=(F.RQ)p and v^ (Q) = ordo (g |c) = (G. R^ with F ={/=()},
G=[g==Q] and RQ the place of C corresponding to Q. Since (F.G)p= 1 (recall that Z
is smooth!), we have v (Q) = min { v^ (Q), v^ (Q)} ̂  Op (Rp) (c/. Fulton [5]). To conclude
observe that ^ Op(Rg)=ap(C) and that L corresponds to the divisor ^ v(Q)Q

Q - ^ P Q - ^ Z
on C.

Q.E.D.

We can now prove:
s

THEOREM 4.4. — Let a be a not identically zero global section of A V K. Then:

deg [Z (a)]o = 0 C?3 r3 K2 + s2 r2 K2 c^).

Proof. - We first need to isolate the cycle [Z(a)]o from [Z(a)]i. If D=[Z(a)]i,
s

a factors through T : (9^ -> A J' K (- D), and [Z (o)]o = [Z (r)]. Now lemma 4.1
and 4.2, together with the principal parts exact sequence, give us a filtration

s

(9 (A Y K) (- D) = ̂  (Efe) :̂  . . . => ̂  (Eo) = 0, such that each quotient (9 (E,)/^ (E,_ i) injects
in a sheaf of the form:
(4.3) ^ ( ^ K - l O r i K + l l ^ K - D )

with r^, r^ non negative integers, r^r^^sr. Note that "moving" the filtration (4.1),
we may assume that ^(E.) is non degenerate on [Z(a)]o. Now let k' be the smallest
integer such that re^(E^). Reducing modulo ^(E^_i) we get a non zero section in
H°(5'K— 10 r^ K+ 11 r^K—D), some r^, r^- Let C=^^.Q be the decomposition in
irreducible components of its divisor of zeros. Then clearly:

(4.4) deg ([Z (a)]o) ̂  S n, deg [Z (r c,)].

So now we bound deg[Z(T|^)] and sum up. This can be done with the aid of
lemma 4.3. Coupled with the principal parts exact sequence it gives a filtration

s

0 = Fo c . . . c Ffe = A Y K (- D) |c,, with (9 (F,/F,_ i) a sheaf of the form:

^K|c,+ri(-10K|c;+L)+r2(llK|c,-L)-D)
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