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EXISTENCE OF FLAT TORI IN ANALYTIC
MANIFOLDS OF NONPOSITIVE CURVATURE

BY V. BANGERT AND V. SCHROEDER

Introduction

A k-flat in a complete Riemannian manifold M is a totally geodesic and isometric
immersion F: ff^ -> M of euclidean [R^. A ^-flat is closed, if F is periodic with respect
to some cocompact lattice of [R^. Hence a closed flat induces a totally geodesic and
isometric immersion of a flat A:-torus.

The purpose of the paper is to prove the following result which answers a question
raised by Yau ([Y], Problem 65), see also [Gl], p. 169.

THEOREM. — Let M be a compact real analytic Riemannian manifold with nonpositive
sectional curvature. IfM contains a k-flat, then M contains also a closed k-flat.

We briefly describe the context of the theorem and some of its consequences.
By the flat torus theorem ([GW], [LY]) the existence of a closed A:-flat is equivalent to

the existence of a subgroup isomorphic to f in the fundamental group n i (M).
The existence of ^-flats in M is closely related to the "hyperbolicity" of M in the

sense of Gromov [G2] and to the Tits geometry of the universal covering space M
([BGS], chapt. I). Combining results from [G2], [BGS], [El] one can see that for a
compact manifold of nonpositive curvature the following properties are equivalent:

(1) M contains no 2-flat.
(2) M is hyperbolic in the sense of Gromov.
(3) The Tits geometry of M is degenerate.
(4) M is a visibility manifold (cf. [EO]).

We relate these conditions to the Preissmann property:
(P) Every non-trivial abelian subgroup of n^ (M) is isomorphic to Z.
Preissmann [P] proved this property for a compact manifold with strictly negative
curvature. Under the assumptions of our theorem, condition (1) is equivalent to the
nonexistence of a subgroup J? in TT^ (M). Since 71:1 (M) is torsion free this is equivalent
to (P).
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606 V. BANGERT AND V. SCHROEDER

Thus we have:

COROLLARY. — Under the assumption of the Theorem any of the conditions (1)-(4) is
equivalent to the Preissmann property (P).

Our result fits into the program to detect geometric properties of manifolds M of
nonpositive curvature which are equivalent to algebraic properties of the fundamental
group n^ (M). Examples are the existence of flat tori, the existence of a splitting
([GW], [LY]), the visibility property [E2] and, more generally, the existence of a ^-flat
[AS]. By our theorem the last property is equivalent to the existence of a subgroup
Zfe c: n^ (M) provided the metric is real analytic. Another important result in this context
is the equivalence of the geometric and algebraic rank [BE].

In the case that there exists a flat of codimension ^ 2 in M the above theorem was
proved in [Sl]. For the special case of higher rank manifolds see [BBS], section 4. For
examples of analytic manifolds containing higher dimensional flats see [Sl], [S3] and
[S4]. In the C^-category the theorem has been proved for codimension one flats, cf.
[B], [S5], but for higher codimension this question is open, cf. also the discussion in [G2],
p. 135.

The methods developed in this paper may be useful in investigating the structure of
the set of flats (or more generally of higher rank subspaces) in analytic manifolds of
nonpositive curvature. Such a structure theory exists in dimensions ^4 [S2].

We now indicate the main steps of our proof which combines methods from
(i) synthetic geometry of manifolds with nonpositive sectional curvature;

(ii) the theory of subanalytic sets;
(iii) the theory of dynamical systems.
Assume that k is the maximal dimension of a flat in M. By F^(M) we denote the

subset of all ^-planes <j in the Grassmannian G^ (M) such that exp: a -^ M is a ^-flat.
In the first part of the proof (section 2) we look for flats with an additional structure

of singular subspaces. Note that a vector z?ea, aeF^(M) induces a parallel vectorfield
along the flat exp: a -> M. We call v singular, if v has additional parallel vectors outside
the flat and regular otherwise. This notion generalizes the corresponding notion for
symmetric spaces. We define P-rank(^) to be the dimension of the space of vectors
parallel to v. Thus a vector v tangent to a ^-flat is regular if P-rank (z^) = k. Under a
certain nonclosing condition which we may assume by induction, cf. section 5, we show
in Theorem 2.5 that there is a subset of F^(M) containing flats with an additional
structure of singular subspaces. In particular every a in this subspace contains a flag
<7i c . . . c= (7^=0 of subspaces c^- with dim(a,)==; such that the sequence m^:=min P-

v e CTI

rank(^) is strictly decreasing m^>m^> . . . >m^=k. Thus c^_^ is a singular hyperplane
in a and the a^ for i<k—\ are singular subspaces of higher codimension. We call a
flat containing a flag with this property well structured. Furthermore we show that a
well structured flat can only contain finitely many singular subspaces.

We can consider the set of well structured flats as a subset Vo of the Stiefelbundle
S4(M) of orthonormal ^-frames: A point (x,v^ . . .,i^)eVo is a k- frame of vectors

4eSERIE - TOME 24 - 1991 - N° 5



FLAT TORI IN MANIFOLDS OF NONPOSITIVE CURVATURE 607

v, E T, M such that the span < ̂ , . . ., v, > = a, defines a flag as above. Note that parallel
translation of the vectors v^ . . ., z^ in the corresponding flat gives a natural H^-operation
onVo.

In section 3 we use the theory of subanalytic sets to prove the existence of a compact
^-invariant analytic submanifold V of Vo. We construct a direction
w==(wi, . . ..H^JeS^"1 such that the map w:V-^SM, w(x,^, . . ..^^w^ is an
analytic diffeomorphism onto a submanifold W=w(V) of the unit tangent bundle
SM. The submanifold W is invariant under the geodesic flow and the sets of parallel
vectors in W define a ^-dimensional foliation of W. Now the following point is crucial:
Choosing V and W such that their dimension is the minimal possible one we can show
that there are no parallel and not even affine Jacobiflelds on W which are normal to the
foliation.

In the final part of the proof (section 4) we use this last property of W to find a
compact subset G of W which is saturated with respect to our foliation and on which
the geodesic flow is normally hyperbolic in the sense of [HPS]. Using the tools from
the theory of dynamical systems developed by Hirsch, Pugh and Shub in [HPS], in
particular the Shadowing Lemma (7 A. 2), we can then prove the existence of a closed
^-flat, see section 5.

1. Preliminaries

A. CONVEXITY PROPERTIES ([BGS], chapt. I, [EO], [BO]). - In this paper M will denote
an ^-dimensional connected compact real analytic Riemannian manifold of nonpositive
sectional curvature (K^O) with universal covering p:M->M. By TM, TM and SM,
SM we denote the tangent and the unit tangent bundles of M and fA. For a tangent
vector v e T^ M let y^ (t) = exp^ (tv) be the geodesic with initial vector v and let
^:SM-^SM, ^v.^j^t), be the geodesic flow. By d( , ) we denote the distance
function on M and M.

A function /: M -> R is convex, if f° j : R -> R is convex for every geodesic y in M
The curvature condition K^O implies the convexity of the following functions:
1. The distance function d\ M x M -> [R.
2. The norm t\—> || Y(^) || of a Jacobifield along a geodesic.
3. The distance function d( , H): M -> R, where H is a convex subset of M.

For a subset A c= M let Tube, (A) == { x £ M \d(x,A)^r] be the r-tube of A. Two
complete totally geodesic submanifolds H and H' of M are called parallel (H || H'), if the
Hausdorff distance HD between H and H7 is finite, i.e. if there exists r such that
H c Tube,(H7) and H' c= Tube,(H). Two parallel totally geodesic submanifolds H, H'
bound a convex subset isometric to H x [0,r], where ^HDflI.H') (Sandwich Lemma).

In general the set PH of all points in M which lie on parallels to H is convex and
splits isometrically as P H = H X Q , where Q is a convex subset of M. The analyticity
implies that PH is without boundary.
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608 V. BANGERT AND V. SCHROEDER

If H is a convex subset of M, then there exists an orthogonal projection
projn: M -> H, which is distance nonincreasing. If H* is a complete totally geodesic
submanifold of M such that d( ,H) is constant on H*, then H': = projn (H*) is also
complete and totally geodesic with H'||H. This follows from the proof of [BGS],
Lemma 2.3.

B. GEOMETRY OF THE TANGENT AND FRAME BUNDLE. - Let TM, TM and SM, SM be
the tangent (unit tangent) bundle of M and M. All bundle projections will be denoted
by n. Let K: T(TM) -> TM be the connection map of the Levi-Civita connection. On
TM and SM we use the metric

<^T1>*:=<7r^ ,7T,T1>+<K©,K(Tl )>

induced by the metric < , ) on M. We make the usual identification:

TSM={(w,A,B) |weSM;A,BeT^M,Blw}

where A = n^ (w, A, B) and B == K (w, A, B).
For weSM we denote by J(w) the space of Jacobifields along the geodesic y^. Let

. J * (w) :={YeJ (w) |<Y / (0 ,y , (0>=0}

where V is the covariant derivative of Y along y^. We have dimJ(w)=2n,
dim J* (w) = 2 ^ — 1 . There is a canonical isomorphism

^Y^

between T^SM and J*(w): for ^=(w,A,B) let Y^ be the Jacobifield along y^ with
Y^ (0) = A and Y^ (0) = B. For the geodesic flow ̂ : SM -> SM we have

^=(^H^(O,Y^))

We call YeJ(w) stable (unstable), if ||Y(Y)|| is bounded for t->co(t-> - oo). Let
P(w), J"(w) c= J(w) be the subspaces of stable and unstable fields. For every vector
weTM there exists a unique stable (unstable) field YeJ^w) (ZeJ"(w)) with
Y (0) = Z (0) = w. In particular dim P (w) = dim J" (w) = n.

Let P (w) be the subspace of J (w) consisting of parallel Jacobifields along y^. The
following properties are equivalent (see [BBE] 1.4):

(i) YeF(nO;
(ii) || Y (0|| is constant on IR;
(iii) || Y (0|| is bounded on R;
(iv) R(Y(0,y,(0)y,(Q=0.

In particular P (w) = J5 (w) U J" (w).
We define the strong stable (strong unstable) fields by

J55^): = {Ye.F(w) | Y(0) 1 Z(0) for all ZeP(w)}

J5"^): = {yer (w) | Y(0) 1 Z (0) for all ZeP(w)}

4^^^ - TOME 24 - 1991 - ?5



FLAT TORI IN MANIFOLDS OF NONPOSITIVE CURVATURE 609

By [BBE], Lemma 3.3, we have: ifYeJ^w) (eJ^w)) and Y(0)1Z(0) for ZeP(w),
then Y (Ql 7(0 for all teR. Note that every Jacobifield YeJ(w) with lim Y(/)=0

t -* 00

[resp. lim Y(Q=0] is in J55^) (J^w)). This is true since <Y(^) ,Z(0> is linear in t
t -> — 00

i fYeJ(w) and ZeP(w), c/ [BBE], Lemma 3.3.
If dim F (w) == w, then dim J55 (w) = dim J5" (w) = ^2 - m. Note that J55 (w), J5" (nQ, J17 (w)

are all contained in J* (w). We call a Jacobifield affine, if
w

Y (0=^(^+^(0
1=1

where Z^eJ^w). Let J^w) be the space of affine fields, and

j^(H;)=r(^)^j*(H;)
Then dim J° (w) = 2 m and dim J*° (w) = 2 m - 1. If Y e J55 (w) or Y e J5" (w) and Z e F (w)
then Y (0 1 Z (Q for all ^ e R. We have the decomposition

J (w) = P (nQ © J55 (w) © J5" (w)
J* (w) = J*° (w) © J55 (w) © J5" (w).

Stiefelbundle. — By ST^ (M) we denote the Stiefelbundle of orthogonal ^-frames:

St , (M)=={(x ,^ , . . . ,^ ) |xeM,z^eT,M, || v,\\=\^Lv,fori^j,\^iJ^k}

Using the connection map K, we describe the space TySt^(M), v=(x,v^ . . .,z^) as
follows: Represent r|eT^Stfc(M) by a path v(t)=(x(t\v^ (Q, . . .,^(0) with
v (0) = v. Let A = x (0) e T^ M and B, = K (v, (0)) e T^ M. The orthogonality relations of
v^ . . ..pimply

(*) <z; ,B,>+<z; , ,B,>=0 for \^iJ^k

We identify

T,St,(M)={(x,z^i, . . .,^,A,Bi, . . .,B,)|^,A,B^T,Mandz^satisfy(*)}

Thus T| e Ty St^ (M) can also be described by Jacobifields Y; along y^ with Y, (0) = A and
YKO)=B,

Jacobifields along flats. — Infinitesimal deformations of a flat F() : IR^ -> M by flats are
described by Jacobifields along flats. Suppose F: [R^ x (—8,s) -> M is a 1-parameter
family of flats F(=F( , Q. Then Y(z)=a/a^=oF(z. 0 is a vector field along FQ such
that Y(^+&) is a Jacobifield for every line s\—>as-\-bm [R^. Every vectorfleld with this
property will be called a Jacobifield along F(). A Jacobifield Y along Fo is uniquely
determined by its value Y (z) = A at an arbitrarily fixed z e ̂  and its covariant derivatives
D, Y (z) = K (Y^ (e,)) = B,., 1 ̂  / ̂  k at z. Note that with this notation the curve of frames

z;(0=(F(z,0,F^(^),...,F^(^))
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610 V. BANGERT AND V. SCHROEDER

has derivative

z;(0)=(^(0),A,B,,. . . ,B,).

The Jacobifields Y ^ Q F / O t coming from a variation F^ as above are special in that the
Fy are isometric whereas they need only be affine to define a Jacobifleld. This corre-
sponds to the fact that for every ze[R^ the vectors v^^o^^i) an<^ B^=D^Y(z), 1 ̂ i^k,
satisfy the relations (^ Since Fo is totally geodesic the components Y1 and Y^ of Y
tangent and normal to Fo are Jacobifields as well, cf. [BBE], Lemma 2.4. Since Fo is
fiat YT is affine, i.e. Y^^+A) is affine for every line s\->as+b in R^. Geometrically
the presence of the tangential component yT corresponds to the freedom to reparametrize
FQ. More precisely we can find an infinitesimal isometry R z = S z + a of 1R\ i.e. S e so (k)
and a e [R^, such that Y7 (z) = Fo^ (R z). One has to take S and a so that Y1 (0) = Fo^o (^)
andD^^Fo^^).

The generic nonexistence of flats of dimension k > 1 in Riemannian manifolds has the
following infinitesimal counterpart: if k>\ there may not be a Jacobifleld Y along Fo
for every (non-tangential) choice of initial values and if Y exists it need not come from
a variation F( of Fo by flats.

C. SUBANALYTIC SETS. — In sections 2 and 3 our assumption that the manifold M and
the Riemannian metric <( , ) be analytic will be crucial. We shall frequently appeal to
the theory of subanalytic sets as described in [T] or [BM]. Since the precise definition
of a subanalytic set is a little lengthy we only present a class of examples which is
important for us: If/.-M-^N is a proper (real) analytic map between (real) analytic
manifolds and if A c: M is analytic, then /(A) is subanalytic in N, cf. [T], Theorem
1.2.2(vi) .

A particularly nice property of the set SUB (M) of subanalytic subsets of M is that
SUB (M) is closed under finite union and intersection and under set theoretic difference,
cf. [T], Theorem 1.2.2 (i). Moreover every AeSUB(M) can be stratified into analytic
submanifolds A^eSUB(M), see [T], Theorem 1.2.2 (iv). In particular subanalytic
subsets are locally pathwise connected, cf. also [BM], Theorem 6.10.

The following theorem due to Tamm is of fundamental importance for us, cf. [T],
Theorem 2.4.2, or [BM], Theorem 7.2:

For A c= M and 0 ̂  q ̂  dim M let rq (A) denote the set of analytic ^-regular points of
A, i. e. the set of x e A which have a neighborhood U in M such that U 0 A is a q-
dimensional analytic submanifold of M. If A is subanalytic in M then so is r^(A) for
every O^^^dimM. I fA^0 there exists a maximal q such that rq(A)^0. For this
q the set B:=A\^(A) is subanalytic in M and dim B<dimA.

2. Flats with additional structure

In this section we prove the existence of flats which have an additional structure of
singular subspaces similar to the situation of symmetric spaces. Before we explain this
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FLAT TORI IN MANIFOLDS OF NONPOSITIVE CURVATURE 611

more explicitly (cf. the remark before Theorem 2.5) we have to present some basic
properties of flats and of their singular subspaces.

We assume that k^2 is the maximal dimension of a flat in M. For l^m^n
let G^ (M) and G^ (id) be the Grassmannbundle of m-planes with bundle projections
TC:G^(M)->M and n:G^(^/l) ->M. By dm( , ) we denote the induced distance
functions on G^(M) and G^(S/l).

For l^m^k let F^(M) [resp. F^(M)] be the subset of all <jeG^(M) (aeG^(M))
such that exp: a -» M (exp: cr •-> Kl) is an w-flat in M (resp. 1VI).

We call T, T'eF^dCl) parallel (r^'), if the Hats exp(r) and exp CO are parallel as
subsets of id (section 1 .A). Let

^-{T-eFJM^IlT}

By 1. A the projection P^ == n (P^) c: M is a complete totally geodesic submanifold which
splits isometrically as (FT x Q. For xeP, let r(x) be the (unique) w-plane in T^M with
T (x) || T. Then T (x) is tangent to the (ir-factor of P,. We define

P-rank (r): == dim P, = dim P,

F^(I%):={TeF,(ld)|P-rank(T)=^}

We define parallelism in the quotient as follows: let c?o, a^ eF^(M) and c: [0,1] -> M
a path from n(ao) to 7r(ai). We call o-o parallel to a^ along c, if there is a lift
?:[0,1]-^ andTo,TieG^(M)l i f t so fao , Oi with TT (To)= ?(0), 7c(Ti)=?(l) and To| |Tr

For aeF^(M) let P^:=^(P,), where T is a lift of a. Then P^ is an immersed
submanifold. We set P-rank (a): == P-rank (r) and

F^ (M) = { a e F, (M) | P-rank (a) = q }

Clearly the P-rank is semicontinuous, i. e. if o .̂ e F^ (M) and c .̂ -> a, then

P-rank (a) ̂  lim sup P-rank (c^)

For a vector veSM (resp. SM), we define Py:=P<^ and P-rank (z^) := P-rank «-y »
where ( v ) denotes the linear subspace generated by v. We will use the following fact
frequently:

Let TeF^(IYl) and T' be a linear subspace of T, then P^ c: P^,.
Let aeF^(M). We call P^ c/oW, if the set P^ is compact. Note that P^ is closed if

and only if for a lift T e F^ (M) of a we have PJF^ is compact, where F^ is the group of
those decktransformations which leave P^ invariant.

Let F c: ]\4 be a flat of maximal dimension, i.e. dimF=A:, letj^eF and a=T FeFfe(M).
If T c: a is a linear subspace, then reF^(M) where w=dimr and P^ =3 F. We call a
vector veTpP regular if Py==F and singular if Py^F. In symmetric spaces the singular
vectors are contained in finitely many hyperplanes. We shall show that in our case the
situation is similar.
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612 V. BANGERT AND V. SCHROEDER

We call a subset P of M a parallel space of F, if there is a linear subspace T of a such
that P=P,.

2.1. LEMMA. — If P^ and P^ are parallel spaces of F, then P^ is orthogonal to P^ in
the sense that

Projp, ?2 = Pi 0 Pi = Projp^ Pi

Proof. — Let Pf=P^ with T^ c a and let xeP^. Then P^ contains the flat exp (1:2 (x)).
Since exp(T2(x))||exp(T2) and the latter space is contained in P^ we see that d( ,P^) is
bounded on exp (r^ (x)). By 1. A we see that projp^ (exp (r^ (x))) is parallel to exp (r^ (x))
and hence is contained in P2. In particular projp^ (x) eP^ 0 P2- n

As an easy consequence we obtain:

2.2. LEMMA. — (i) There exist only finitely many parallel spaces of¥.
(ii) If T is an m-dimensional subspace of a, then there is a neighborhood U of T in

G^(a) ^MC/? that i ^eU implies P^ c= P^.
For a parallel space P of F with a = Tp F we define

kern,(P):=={z;ea P c = P , }

If v^,v^ekevn^(P), then P is foliated by parallels to exp«-yi)) and to exp«i^)). It
follows that P is foliated by parallels to exp^i^,^)). Thus kern^(P) is a linear
subspace of a and characterized by the property that P=Pkern^p)- I11 particular we have
T <= kern^ P^. From the definition we have

p c= P ' => ken^ (P') c: kern^ (P)

2.3. LEMMA:
c: <=

(i) IfP is a parallel space with F^P, then kern^ (P) =^ o.

(ii) P^P^^kern.P^kern.Pi.
(iii) L^ T=kern^(P) m^A m=dimT. T/z^^ there is a neighborhood U of ^ in G^(a)

^MC/Z ^^ TieU\{T} implies P^^P^.
Proo/. - (i) If kern^(P)=a, then P=P<,. Note that P^ splits isometrically as [R^xQ
and by the maximality of k, Q is a point. Thus P=F.

(ii) If T=kern^Pi=kern^P2 then Pi=P,=P2.
(iii) Because of Lemma 2.2(ii) we have P^ c= P^ for suitable U. If P^=P,, then

kern^ (P^) = kern^ (P^) = T. Thus T^ c= T and hence T^ = T. D
Now we construct flats with a flag c^ c: . . . c: a^a, (j;eF^(M), such that the c^ are

singular subspaces with parallel spaces of maximal dimensions. For 1 ̂ s^, k let G^ ^(M)
be the bundle of flags

(a,a^, . . .,a,)GG,(M)®G^(M)e. . .©G,(M)

4eSERIE - TOME 24 - 1991 - N° 5



FLAT TORI IN MANIFOLDS OF NONPOSITIVE CURVATURE 613

with a, c= . . . c= Ofc and G^(M) the corresponding bundle over M. The bundle projec-
tions are denoted by n.

Define inductively subsets E^(M) c G^(M) and integers m,, 1 ̂ s^k, by
1. E^(M):=F,(M),m,:=fe.
2. If E^+i ,fe(M) is defined let m^ be the maximum of all dimensions dimP^ where

aeG,(M) is such that there exists (a,+i, . . . ,C^)GE,+^(M) with a c= a,+i. Then we
set

Es^M)-^, ...,a,)eG,^(M)|a,eFfc(M),dimP^=m,for^^^}

Correspondingly we define E, ^ (M) c= G, ^ (M). Thus

E..fe(M)={((7,,... ,a,)eG^,(M)|a,eF,(M),dimP^=^for^^^}

2.4. DEFINITION. —We call E, ̂ (M) well structured, if m,>m^+^> . . .>m^=k.

Remark. - The arguments in section 5 and inductive use of Theorem 2.5 below will
allow us to assume that E^(M) is well structured. If this is the case a flat F=exp(c^)
is called well structured if a^ can be completed to (c^, . . ., c^) e E^ ^ (M). The important
property of well structured flats F = exp (c^) is that (by Lemma 2.8 below) a^ can be
completed to an element of E^(M) in only finitely many ways. This implies that a
well structured flat carries-up to finite ambiguity-a natural basis. This will be crucial
in the proof of Theorem 3.1, cf. Lemma 3.5 (ii).

2.5. THEOREM. — Let us assume that E^ ^(M) is well structured and s^2. If there
exists a flag (a,, . . .,a^)eE, ^(M) such that P^ is not closed, then E,_i ^(M) is well
structured.

Remark. - For s=k, the theorem says that the existence of a nonclosed /r-flat implies
the existence of a fc-flat with a "singular" hyperplane. This was proved in [Sl], section 4.

We start with some lemmas.

2.6. LEMMA
(i) F^(M) is a compact analytic subset ofG^(M).

(ii) F^(M) and F^(M)= U F^(M) are subanalytic subsets ofG^(M).
r^q

(iii) E^ ^(M) is a compact subanalytic subset ofG^^(M).

Proof. - (i) For aeG^(M) let S(a) c= a be the unit sphere. If a is tangent to an
w-flat, then the volume of the immersed sphere exp(S(a)) equals o^-i, where (D^_i is
the volume of the standard (m - l)-sphere. In general vol (exp (S (a))) ̂  co^_ i and equal-
ity implies that the unit ball in a is mapped totally geodesically onto an immersed flat
ball in M ([BGS], 1. E). By analyticity a is tangent to a flat.

Thus F,(M)=/, ̂ O) where

/„ (a): = vol (exp (S (a))) - co, _ ,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



614 V. BANGERT AND V. SCHROEDER

Clearly f^ is an analytic function on G^(M).
(ii) For (^,w)eSM©SM let v^(t) denote the parallel vectorfield along exp(^w) with

v^ (0) = v. The map (SM © SM) x (R -, SM defined by (v, w, Q i-̂  v^ (t) is real analytic.
Choose a constant e>0 smaller that one third of the injectivity radius of M and define

g+: SM©SM->[R

g+_ (^, w)= [d(exp (± s^ (c)), exp (± szQ)]2 - s2

Then the geodesies exp (tv) and exp (tv^ (s)) are parallel, if and only if g+ (v, w) == g_ (v, w) = 0.
Define g : SM © SM -^ (R by

g (v, w) = ̂ r2. (v, w) + ̂ 2 (z?, w)

Since the distances involved in the definitions of g+ are smaller that the injectivity
radius, the function g is real analytic. We have g (v, \v) ̂  0 and g (v, w) == 0 implies that
w is tangent to Py. Now we define

g : G,(M)©G,(M)->^

f t^(a,T):=/^(a)+ ^,w)aWw
JyeS(o) JweS( t )

where/^ is the function of (i) and S(a), S(r) are the unit spheres in a and T. The
function g is analytic and ^(a,T)^0. Now g(a,r)=0 first implies /^(a)==0, L^.
aeF^(M). Secondly ^(^,w)=0 for every z^eS(a) and w€S(r). This implies that T is
tangent to Py for all z?ea, thus T is tangent to P^ and in particular dimPy^q. This
computation shows that F^(M)==^i ({^==0}) where

^: G,(M)©G,(M)-^G,(M)

is the canonical projection. Thus F^ (M) and F^ (M) == F^ (M^F^^x (M) are suban-
alytic by 1. C.

(iii) E,,,(M)={(a,,...,a,)eG^(M)|a,eF,(M), dimP^mJ. Since the m, are
choosen to be maximal possible, we see that E^ ^(M) is compact by the semicontinuity
of the P-rank.

Consider on

G^(M) © G^(M) © . . . © G,,(M)

the function
k . .

/Z(((7,, . . .,0,),T,, . . .,Tfe):==A(CT,)+^ g(v,w)dvdw
i = s J v e S (of) J w e S (T()

then we see as in (ii) that E^ ^(M)=/?i ({ / z=0}) is subanalytic where p^ is now the
projection onto G^ ^(M). D

4s SERIE - TOME 24 - 1991 - N° 5


