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1. Introduction

In this paper we prove the existence of a Banach density of the set of rational and
integral points on subvarieties of abelian varieties (or more generally, commutative
group schemes) over algebraic number fields and algebraic function fields of arbitrary
characteristic. We state in this introduction some of the main results for the simplest
case where k is a global field (i.e. a finite extension of Q or a function field of
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136 M. L. BROWN

transcendence degree 1 over a finite field). We have (¢f. Theorem 4.5, Corollary 4.6):

THEOREM 1.1. — Let A/k be a smooth commutative group scheme, V/k a closed subsch-
eme, and T" a finitely generated subgroup of the group of k-rational points A (k). Then
there are a finite number of translates A,, contained in V, of algebraic subgroups of A
such that

rnv=uUTnNAyUs,

i=1

where the density dp(S) is zero. In particular, the (Banach) density d- (' \V) of TNV
in T exists and is a rational number.

Indeed, we prove an O-estimate for size of the exceptional set S of this theorem, which
immediately implies zero density. An application of the sharper O-estimate is the
following: with A, V, k as in Theorem 1.1, assume further that A/k is an abelian variety
and let Z be an ample line bundle on V. Define the Dirichlet series

Z(s;V, hg)= Y he(®)™*

xeV (k)

where /4, is a global (logarithmic) Weil height on V associated to % and the sum runs
over the all but finitely many xeV (k) with A4, (x)>0. We have (¢f. Theorem 4.20):

THEOREM 1.2. — The Dirichlet series Z(s; V, hy) has a meromorphic continuation to
the half plane Res>rank A (k)/2—¢, for some €>0, such that the only singularity in this
half plane is a possible simple pole at s=rank A (k)/2. Further, a simple pole occurs at
s=rank A (k)/2 if and only if A contains an irreducible component of the Zariski closure
of A (k) and A (k) is infinite.

Lang ([24]; ¢f. Conjecture 4.1 below) conjectured that if k£ has characteristic zero and
A/k is a semi-abelian variety then the exceptional set S of Theorem 1.1 is empty. This
conjecture has been proved in various cases (listed at the beginning of Section 4 below)
and supersede Theorem 1.1 when they apply. This higher dimensional generalisation of
Mordell’s conjecture would become false over fields of positive characteristic.

Suppose now that A/k is an abelian variety and k' is a finite field extension of k. The
group A (k') is finitely generated, by the Mordell-Weil theorem; hence by Theorem 1.1
the density dj ¢ (V (k) of the set V (k'), of k'-rational points of V, in A (k') is a well
defined rational number in the interval [0, 1]. One may ask for the variation of this
quantity as the field k" varies. We prove (¢f. Theorem 4.12):

THEOREM 1.3. — If char. k=0, then the subset of Q N[0, 1] given by

{da 4,(V(K")); k' a finite extension field of k }

omits infinitely many rational numbers in Q N [0, 1].
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RATIONAL POINTS 137

As for integral points, we have (¢f. Theorems 5.6 and 5.7):

THEOREM 1.4. — Let D be an ample divisor on the abelian variety Alk. If 1 is a D-
integral subset of A (k), then 1 is either finite or of density

dp 4y (D=0.

Lang conjectured ([24]; ¢f. Conjecture 5.5 below) that if the field k is a finitely
generated extension of Q then a D-integral subset of A (k) is finite. When k is a
number field, the conjecture has been proved by Faltings ([12], [46]) and this supersedes
Theorem 1.4 in characteristic zero. Again in positive characteristic, this conjecture
would become false.

The main technique we use is the Masser-Wiistholz zero estimates (¢f. § 2) of transcen-
dental number theory ([28], [30]), for ground fields of arbitrary characteristic, combined
with a combinatorial theorem (§ 3, Theorem 3.1) on ‘large” subsets of abelian
groups. For the question of integral points, we consider the distribution of the values
of local Néron heights on abelian varieties (§ 5) by means of these zero estimates as well
as special considerations of locally compact valuations.

The methods of this paper can be contrasted with those of Faltings’s paper [12]. Both
use some techniques of diophantine approximation; roughly speaking, the main difference
is that we consider the “spatial distribution” of rational points and show that they
cannot be ““dense’” whereas Faltings shows, under restrictions, that one cannot have long
finite chains of rational points with rapidly increasing heights.

Some of the main results of this paper were announced in [5]. Prof. D. Masser
remarked to me that the zero density results could be improved to O-estimates by slightly
sharpening the zero estimates and using the combinatorial Theorem 3.1, in place of a
deep theorem of Furstenberg; I thank him very much for his suggestions. It is a pleasure
also to thank my colleagues at Orsay for their kind hospitatility, with especial thanks to
Prof. L. Illusie.

2. Zero estimates

We state here a slight extension of the zero estimates of Masser and Wiistholz for
commutative algebraic groups (without multiplicities). We refer the reader to [2] for a
survey of zero estimates and their applications to transcendental number theory.

Let k be a field of arbitrary characteristic and G/k a smooth connected commutative
group scheme of finite type. Let I be a finitely generated subgroup of G (k).

Let G —» P} be an embedding of G, as a locally closed subscheme, into projective
space over k. Then the degree deg(X) of a closed subscheme X of G is then defined
via this embedding.

THeorREM 2.1. — Let Iy, .. ., T, be finite subsets of G (k), where d=dim G. Suppose
that the restriction to G of the section sel” (P}, O (m)), m>0, is not identically zero and
vanishes on the set of points I';+ ... +1,in G(k). Then there is a connected algebraic
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138 M. L. BROWN

subgroup H of G, H#G, and an integer i such that
| Tom (1) | .deg (H) <deg(G). (am)%im GH

where a>0 is a constant depending only on G and its embedding in Py, and ngy is the
projection G —» G/H. X

The proof of Theorem 2.1 (which we omit) is similar to the proof of Théoréme 2 of
[2]. It differs only in that the field k has arbitrary characteristic (the hypothesis
char. k=0 in [2] is superfluous for the zero estimates without multiplicities, see [8], [5],
[36]) and that the section s vanishes on a set of points of the form I'; + ... +T,.

3. A combinatorial theorem

The main result of this section (Theorem 3.1) asserts that a sufficiently large subset of
a finitely generated abelian group contains a set of “well-spaced” elements. It is similar
to, but effective and much easier to prove than, the following famous theorem of
Furstenberg [14]:

THueorReM (Furstenberg). — Let S be a subset of Z" with positive upper (Banach)
density. Let Q be a finite subset of Z". Then there is an integer a#0 and an element
beZ" such that

aQ+bcS.

Furstenberg’s theorem can be used in place of Theorem 3.1 to obtain many of the
zero density results of this paper (c¢f. the remark after Theorem 4.4); but, for the sharper
O-estimates, we require Theorem 3.1.

3.1. DENSITIES AND RANKS. — Let A be a finitely generated abelian group and let A
denote the torsion subgroup of A. Let a,,...,a,€A be a set of generators of A.

tors

If S is a subset of A, we define for every real number X >0

S(X)-”—{SES; s=Y oya;, —X=2o,<X, a;€Z, for all i}.

i=1

The upper (Banach) density d* (S) [respectively, the lower density d, (S)] of S is defined
to be

@*(S)=limsup| S (X) || A (X) |

X =

[resp.
d, (S)=liminf|S(X) |/|A X)|].

X = o
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RATIONAL POINTS 139

If @* (S)=d,, (S), one calls the common value the density d, (S) of Sin A. If A is finite,
then d, (S) exists and is equal to |S|/|A|. In general, the quantities dS, dr.S, drS
depend on the choice of generators of I'; but there are important cases where they are
independent of the choice: (a) if df S=0; (b) if S is a coset of a subgroup of I'; (¢) if S is
obtained from a finite number of sets of types (a) or (b) by the operations of union and
intersection. This applies particularly to all the density results of this paper; we shall
therefore not usually specify any generators.

The rank (or logarithmic upper density) rank (S) of a subset S of A is defined
analogously to be

rank (S)=limsuplog S (X) |/log X.

X =

If S is a subgroup of A, then rank (S) is equal to the rational rank of S (hence there is
no contradiction in terminology). Clearly, if S< A has rank (S) <rank A then d, (S)=0.

It is convenient to fix a particular set of elements of A: let a,,...,a, be linearly
independent elements of A so that

A= (®?= 1 Y/ ai)®Ators'

Let N be a positive integer. A subset Sc A is called N-special (with respect to
a, . ..,a) if there are subsets F,cZ, i=1, .. .,k, with

|F;|=N, for alli,
k
S=a+ ) F,a,

i=1
for some a€A.

If S is N-special, then we have |S|=N*  The main property of N-special sets is their
“rigidity”” under group homomorphism (¢f. Lemma 3.3).

3.2. STATEMENT OF THE THEOREM. — Let A, a,, ..., a, be as above. Fix a finite set of
generators of A by adjoining torsion elements g, ., . . . to the set a;, .. ., q,.
THeOREM 3.1. — For any pair of integers N, n=>1, there is a real number £>0 with the

following property. Let M >0 be any integer and let Sc A be a subset satisfying
limsup |S (X) |/X*~¢= + 0

X = o

[in particular, if rank (S)>k—¢]. Then there are N-special subsets U,, ..., U,cA and a
subset S' =S with |S'|=M so that

$58'+ Y U,

i=1
Remarks. — 1) The proof below shows that we may take € to be
e(N, n, k)=(N+2) "™ min (k, N+2),

but this is unlikely to be best possible.
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140 M. L. BROWN

2) The above theorem suffices for our application but in fact the proof gives the
following stronger assertion: Assume S satisfies (for fixed N, » and suitable £¢>0)

limsup|S (X)| X* = + c0.

X =

Given a sufficiently large integer X >0, there is a subset S'<S (X) satisfying, as in the
theorem above,

SoS8'+ Y U, and U; is N —special for all i,

i=1

and

S| > X2,

where >0 depends only on ¢, N, n, k.

3) For A=Z2, k=2, N=2, n=1, Theorem 3.1 has the following geometric interpret-
ation: If a subset S < Z? satisfies

limsup | S (X)|/X**®= + o0

X = o

then S contains a rectangle.
Theorem 3.1 is proved inductively from the following technical lemma.

LEMMA 3.2. — Let N>O0 be an integer. Then there is a constant c, >0, depending only
on A and N, with the following property. Let S be a subset of A; let r, a be real numbers
with r>0, 0<a<1, and X>0 an integer satisfying

1) |SX)|>rXt,

2) X>(N4*1| Ay, |/ Xe> 1.

Then there are subsets S; =S, Fc Z with |F|=N and
@) [S;2X)[>rN*2c; 2X) T2,

(b) S,+Fa,cS.

We prove Theorem 3.1 in Section 3.4 and Lemma 3.2 in the next section.
3.3. ProoF oF LEMMA 3.2. — We have the decomposition
A = (@f= 1 Z ai)@Ators'

Let L be the real number

3.1 L=(N4"*1 A, |/nX
then
(3.2) X>L>1
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RATIONAL POINTS 141

by hypothesis (2) of the lemma. Put
(3.3) Y =[X/L],

where [n] denotes the greatest integer <n.

Let x be an element of (@®;4;Za;®A
with—Y=<y<Y. Define

o) (X) and let y be an integer

(3.4) 1(x; y)={Ma,; he[yL, (y+ 1) L] }@xcA.

Call the interval I(x;y) good if it contains at least N+1 elements of S, bad
otherwise. Let G(X), B(X), respectively, be the number of good and bad intervals
I(x; y). Since (Y+1)L>X [from (3.2)] we see that

AX)= UI(x; y),

3.5) x>y
SK)=U d(x; )N S).

x, ¥y

Every interval I(x; y) contains L+ 1 elements; in particular, each of the good intervals
contains at most L+ 1 elements of S. By definition, each of the bad intervals contains
at most N elements of S. Comparing cardinalities in (3.5) gives

3.6) |SX)|=(L+1)G(X)+NB(X).
The total number of intervals I(x; y) is at most

BT A | X+ DL QY+ 1] Ay | @X+DF L @X+LYLE A, |4 XYL,

as L<X, by (3.2). In particular, |A
from (3.6) we have

|4X*/L is an upper bound for B(X). Hence

tors

1
(L+1)

1
(L+1)

3.8) GX)= (|SX)|=N| A |4 X /L) 2 (|SX) |—rX*/4),

tors

using (3.1). It follows this and hypothesis (1) of the lemma that

3.9 GX)=(A/(L+1)(r X —rX/4)=3/(AL+4) r X+
As L=1, from (3.2), we have

(3.10) GX)=(1/8L)yrXk *=c, r2 Xk~ 22

where ¢,=1/(8N4*"1|A
“many” good intervals.

Let T be the number of subsets with N elements of the set {er; ogng} and let

wrs|)» from (3.1). Roughly speaking, this shows that there are

F,, ..., F be these distinct subsets. One then has
L+1
(3.11) T= ( [ ] >
N
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142 M. L. BROWN

For each m=1, ..., T define
(3.12) Sn={seS; s+F,a, =S}

As a good interval I(x; y) contains at least N+ 1 elements of S, there is a subset F;,
1<j<T, and an element s(x; y)el(x; y) NS with

s(x; y)+F;a,<I(x; y)y NS.

It follows that each good interval I(x; y) contains an element s(x;y) such that
[from (3.4)]

T
s(x; e U S;(X+L)=4,,UX+L).

j=1

As an element s(x; y) belongs to at most two distinct good intervals, it follows from
(3.10) that

|[UXA+L)|2G(X)22cyr? X2, c3=¢,/2>0.
Hence for some m, 1 <m<T, we have
(3.13) | S (X+L)|2cyr? X< 2T.
From (3.11) we have the elementary estimate
T<4NLN/NL.
Hence from (3.1) we obtain

(3.14) TSENYNDNAF A | XN S e, r N XN

tors
where

cg=NN4EFIN|A NN 10,

tors

Combining (3. 13) and (3. 14) gives that for some suitable m we have

| S, (X+L)|2(cs/cy) NT2XE-N* D,
As X>L [by (3.2)], this gives
[Sm(2X) |2 (c5/cy) PN H2XE-NT D2,
and the lemma follows from this and (3.12) by taking
¢ =c3/(c, 2% >0.
Remark. — The proof of the lemma shows that one can take ¢, to be

C,1=N!4-—2N(k+2)—k—3l\I—N—1 iA

i-—N— 1
tors .

4° SERIE — TOME 25 — 1992 — N° 2



RATIONAL POINTS 143

3.4. ProoF oF THEOREM 3.1. — Fix integers N, n=1. Let ¢, >0 be the constant
given by Lemma 3.2 applied to A and N. Put
c,=N4*1 A

tors l .

Define recursively the functions f; of the real variable ¢ by:

3.15) {fo(q)=q, " ‘
f;+1(q)=c1(f;(q)) > l=0: 15
Clearly, f;(q) » o, as ¢ > oo, for all i=0, 1, ... Let ¢ be any real number satisfying
(3.16) 0<e<(N+2)""™ min (k, N+2).

With M >0 an integer as in the theorem, select a real number ¢ >0 so large that
(3.17) S (@ ZM.
We may then select an integer X >0 so large that
(3.18) 2 X > (0, /fi (@) @X)N*D'es 1 forall i=0, 1, ..., nk—1.
This choice of X is possible because the exponents (N +2)' ¢ satisfy
3.19) 0<(N+2)e<l1, foralli=0,...,nk—1,

from (3.16).

Put S,=S. For any integer i, we may uniquely write i=sk+¢, where 1 <t<k and s,
teZ.

We may then inductively construct subsets S;cS,_;, i=1, ..., nk, and subsets F,cZ
with |F,|=N, 1<s<n, 1=<t=<k, such that

@ [8:2'X) [>/,(q) @' X)~ N+,

(b);S;+Fya,cS;_,, i=sk+t, 1=tk

For this, assume that (a);, (b); are true and apply Lemma 3.2 to S; where r=f;(q),
a=(N+2)'e. This gives a subset S,,, satisfying (a);,, and (b);,, provided the hypo-
theses of the lemma are satisfied; but hypothesis (1) for S; is simply (a); and hypothesis (2)
is given by (3.18).

The hypotheses (b), . . ., (b),, now give

n k

Sut Y Y Fua,cS,=S.
s=11=1
Furthermore, the hypothesis (a),, gives
| @ X) [> e () @ XY~ N2 £ () 2 M,
by (3.16) and (3.17). This proves the theorem.
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144 M. L. BROWN

3.5. A LemMMAa. — The next lemma is the main property of N-special sets.

LEmMmA 3.3. — Let A, ay, . . ., a, be as above. Let S be an N-special subset of A with
respect to a, . .., a, and let H be a subgroup of A of rank r. Let n:A — A/H be the
natural surjection. Then we have

|7 (S)| = NF,

k

Proof. — Let S=a+ ) F;a. As it suffices to prove the lemma for the translate
i=1
k

Y. Fia; of S, and as ay, . .., a, generate a torsion free subgroup of A which contains
i=1
this translate, we may reduce to the case where A itself is free with basis a, . . ., 4.

As rank A/H=k—r, the images of some subset of k—r elements of a,,..., q,
generate a free subgroup of A/H. By reindexing we may suppose these elements are
ag, ..., a_, Put

k—r

S'= > F,a;cS.

i=1

Then the elements of S’ remain distinct under n hence | n(S") |=N*"", whence the result.

4. Rational points on subvarieties of commutative group schemes

Let G/k be a commutative group scheme of finite type over a field k. Let k be an
algebraic closure of k. Let I" be a subgroup of G (k) of finite rank i.e. '®,Q is a finite
dimensional Q-vector space. Lang [24], combining conjectures of Chabauty, Manin and
Mumford, proposed the following higher dimensional analogue of Mordell’s conjecture.

CoNJECTURE 4.1. — Suppose that G/k is a semi-abelian variety (i.e. an extension of an
abelian variety by a linear torus) and that char. k=0. Let V/k be a closed subscheme of
G/k. Then there are a finite number of translates H;, i=1, . . ., m, of algebraic subgroups
of G contained in V such that

rNvk= U T NHk).
i=1
This conjecture has been proved in the following cases:

1) V/k is a curve, G/k is an abelian variety and char. k=0 (Raynaud [38] and
Faltings [11]);

2) T is the full torsion subgroup of G (k), char. k=0 (Raynaud [38], extended by
Hindry [18]);

3) G/k is a linear torus, char. k=0 (Laurent [26]);
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4) k is a function field over a number field k,, G/k is an abelian variety with
Ty, (G)=0, and V contains no translate of a sub-abelian variety (Raynaud [39]);

5) kis a number field, G/k is an abelian variety, I is finitely generated, and V contains
no translate of a sub-abelian variety (Faltings [12], [46]).

This conjecture would become false for an arbitrary commutative group scheme;
furthermore, it would become false in characteristic p>0 (e.g. the counterexamples to
Mordell’s conjecture in positive characteristic). Nevertheless, one of the main results of
this section (Theorem 4.5) shows that when I is finitely generated and G is any commu-
tative group scheme of finite type over a field & this conjecture is true up to subsets of I’
of lower rank, in particular, up to subsets of density zero.

In particular, this theorem shows that the density of 'V in I' is well-defined
(Corollary 4.6). A sharper result (Theorem 4.7) is proved for the special case where G
is a semi-abelian variety, by using the results of Section 4.1 on tori contained in semi-
abelian varieties. The variation of the density with the ground field is examined in
Section 4.3. Subgroups of finite rank of abelian varieties are considered in Section 4.4
and in fact we prove the Conjecture 4.1 (¢f. Theorem 4.17) for the case where V is a
curve by a reduction to the Mordell conjecture. In Section 4.6, we give an application
to the meromorphic continuation of certain zeta functions.

4.1. ToRI IN SEMI-ABELIAN VARIETIES. — We begin by extending some results of
Bogomolov [3] to the case of semi-abelian varieties.

Let G/k be a semi-abelian variety. Let H be an algebraic subgroup of G. By a torus
of type H we mean a translate of H by xe G (k). The set of tori of type H is parametrised
by the scheme G/H. The torus lying over the point te G/H (or passing through te G)
is written H,.

Let X/k be a closed subscheme of G. A torus H,cX is maximal if it is not properly
contained in a torus H;=X. Note that more than one maximal torus may pass through
a given point of X. Let

p: G- G/H
be the projection and let p’ be the restriction of p to X. Then the subset
My =X (k)

of points of X having maximal torus of type H is contained in the closed subscheme M,
of X whose set of k-valued points is

My (R)={xeXk); p'~'p'(x\)=H,}.

Let My, be the Zariski closure of M, which is a closed subscheme of My; it is clear that
if My # &, then My, is a component of M.

PRrOPOSITION 4.2. — A closed subscheme X/k of G contains only a finite number of
types of maximal tori.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



146 M. L. BROWN

Proof. — Let G’ be the Serre compactification of G (see [7]) i.e. G’ is an irreducible
projective k-scheme containing G as an open subscheme and equipped with an action
by G as a group scheme of operators

GxG -G

extending that of G on itself. If V is a subvariety of G, we denote by V' the Zariski
closure of Vin G'. Fix some projective embedding of G'.

We can choose a set of points o;e H (k) of cardinality at most dim X+ 1 such that
(where X denotes the translate o+ X’ of X')

N X, =M.

@

This can be done by using a sufficently general set of elements o, Hence computing
degrees with respect to the fixed projective embedding of G’, we have

deg M}, <deg M, < (deg X')dimX+1,

Now, xeMy has maximal torus H, if and only if p’(x) has trivial maximal torus in
p'(My). Therefore there exists a set of elements B;eG (k) of cardinality at most dim
p' (M, such that

N MH, Bj
j

is the union of a finite number of the H, and is not empty. As

deg H; <deg (N My ) < (deg M) %0 < (deg X)@im X+ 1) dim (),
j

we have that the degree of H is bounded. Hence the image H* of H in the abelian
variety G/P, where P is the maximal linear connected algebraic subgroup of G, has
bounded degree; therefore, there are only finitely many possibilities for the subgroup H*
of G/P. Furthermore, the subgroup H M P has bounded degree in P; hence there are
only finitely many possibilities for H M\ P. Hence there are only a finite number of such
subgroups H. This proves the proposition.

Recall that the logarithmic Kodaira dimension x (V) of a separated irreducible and
reduced k-scheme of finite type V, where k is a field of characteristic zero, is defined as
follows (see [20]). By a theorem of Nagata, there is a complete algebraic variety V/k
which contains V as an open subscheme; further, by Hironaka there is a smooth complete
variety V* and a birational morphism

p: V¥V
so that

D=V*—p~*(V)
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