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F-ISOCRYSTALS AND THEIR MONODROMY GROUPS

BY RICHARD CREW

Introduction

The main object of this paper is to prove a ^-adic analogue of Grothendieck's Global
Monodromy Theorem. The theorem in its /-adic form is the following: let A: be a finite
field of characteristic p, k^ the algebraic closure of fe, X a normal geometrically
connected fe-scheme of finite type, and suppose that p: 7ii(X)-»-GL(V) is an /-adic
representation of its fundamental group, where / is a prime different from p. Finally let
G denote the Zariski closure in GL (V) of the image under p of the geometric monodromy
group Tii (X®/^). The monodromy theorem says that the radical of the connected
component G00"" is unipotent. One of the more important applications of this theorem
is Deligne's construction [6] of the "determinantal weights" associated to an /-adic
representation, a fundamental step in his second proof of the Weil conjectures. It is at
first disconcerting to note that there is no corresponding result for j^-adic representations
of 7i i. Katz and Lang [10] prove an analogue of the monodromy theorem for /?-adic
representations when X/k is smooth and proper, but their result does not hold for
nonproper varieties; there are well-known examples of /?-adic characters of n^ (X) of
infinite order when X/fc is a smooth affme curve.

On the other hand, p-adic representations do not arise from geometry in the same
way as /-adic representations do (e.g. as the monodromy representation coming from
the relative /-adic cohomology of a smooth family); what one gets directly from a
geometric situation is a more general kind of object, an P-isocrystal. The /?-adic represen-
tations can be identified with a full subcategory of the category of F-isocrystals, namely
the unit-root F-isocrystals. Thus there can be no analogue of the global monodromy
theorem for general F-isocrystals, but then not all F-isocrystals come from
geometry. The interesting class seems to be Berthelot's category of overconvergent F-
isocrystals ([I], [2]), and it is this category for which we will prove an analogue of the
monodromy theorem.

The monodromy groups themselves will be defined by means of the theory of Tan-
nakian categories, following the example of Katz [9]. Once we have set up all the
requisite machinery, the proof of the monodromy theorem can proceed along the same
lines as in [6], which we do in 4. As in the /-adic situation, the basic case is that of an
F-isocrystal of rank one, which we treated in [5]. A key part of the rest of the argument
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430 R. CREW

is the Tannakian description of the category of F-isocrystals on a scheme over a perfect
field which we give in 2. The problem is that the category of F-isocrystals on X/K is a
non-neutral Tannakian category, and so cannot be described as a category of representa-
tions of some group. Of the several ways around this, we have decided to give a
description in terms of groups endowed with a "Frobenius structure". This is not really
necessary if k is a finite field, for then the category can be "linearized" by replacing the
Frobenius by a suitable power. But we will need this technique in other situations, as
for example in 3, when we have to study the category of unit-root F-isocrystals in the
case when k is algebraically closed. Another possibility is to brutally linearize the
category by extension of scalars "a la Saavedra"; this was in fact my original approach
to the problem, abandoned for the reasons given in 3. In 5 however we consider the
case when k is finite, and show that the methods of 2 amount to the construction of a
"Well group" attached to an F-isocrystal (or to a category of F-isocrystals). The results
of 4 then enable us to set up a ^-adic theorey of determinantal weights, and to prove
some simple results about them.

The monodromy groups defined here do not seem to be any easier to compute than
the differential galois groups computed by Katz [9]. In 4 we treat one of the simpler
examples, the overconvergent F-isocrystal coming from the relative H^, of a family of
elliptic curves. The corresponding monodromy group turns out to be SL (2), just as in
the /-adic case-which might at first seem surprising, for if the family is totally ordinary,
the presence of the "unit-root" sub-F-isocrystal makes it appear that the monodromy
group should be solvable. In fact, however, the unit-root sub-F-isocrysal is not overcon-
vergent, as we pointed out in [5]. That the ^-monodromy group should turn out to be
the "same" as the /-adic is very suggestive, although it is not yet clear to what extent
the monodromy group of an overconvergent F-isocrystal should resemble the geometric
monodromy group of an /-adic representation that is "compatible" with it (for that
matter, it is not known whether the members of a compatible system of /-adic representa-
tion have the "same" mondromy groups). In a subsequent paper, I will treat another
interesting F-isocrystal, the /?-adic hypergeometric equation studied by Dwork and Sper-
ber in connection with the theory of Kloosterman sums, and will show that in most
cases its (overconvergent) monodromy group is the same as the corresponding /-adic
one.

I am grateful to a number of people for the help I received while working on this
paper, particularly Ogus, Deligne, Katz, Gabber, Ekedahl, Messing, Berthelot, and the
late Phillipe Robba. Much of this work was done while visiting Harvard with the
support of an NSF Postdoctoral Fellowship, and I would like to thank these institutions
for their support.

1. F-isocrystals

1.1. Fix a perfect field k of characteristic p>0. In what follows, ^-schemes will be
assumed to be separated and of finite type. We denote by K (k) the fraction field of
the ring of Witt vectors W (fe) of k. Letters like K, L will usually denote finite extensions
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F-ISOCRYSTALS AND MONODROMY 431

of K (k). Our basic references for the theory of convergent and over convergent isocrystals
are [12] and [2]. There are useful summaries in [I], [5], and the sketch which follows is
merely meant to establish notation. For any fe-scheme X (separated and of infinite
type) the basic constructions give us categories Isoc(X/K), Isoc^X/K) known as the
categories of convergent (resp. over convergent) isocrystals on (X|K). In what follows,
the term "isocrystal" by itself will mean an object of either category. These categories
are of local nature on X and functorial in the pair X/K (we will explain this in a
moment). If X/fe is smooth and a formally smooth lifting 3£/R, R being a discrete
valuation ring with fraction field K and residue field k, then Isoc (X/K) is equivalent to
the category Diff^y (X^) of locally free sheaves on the rigid-analytic space 3?" endowed
with a convergent connection; the term convergent means, roughly speaking, that the
Taylor series associated to the connection ([5], 1.2.2, [2]) converges in every opeen unit
disk in SP". For more general X/fe, one has to resort to cutting, pasting, embedding,
etc. as in [2], or else to a "site-theoretic" definition (as in [12]). The category Isoc^X/K)
is more difficult to describe, and for the moment we shall just say that for the objects
and morphisms ofIsoc^X/K) one imposes additional conditions of "overconvergence at
infinity". Forgetting the additional conditions gives rise to a faithful functor ([2] 2.3.10
(0)

( I . I . I ) L^ (X/K) -> Isoc (X/K)
Mh-^M.

It is not known whether this functor is fully faithful. The notation is meant to suggest
"restriction to the completion" of the weakly complete (in the sense of Washnitzer-
Monsky) algebras on which live the representatives of an object of Isoc^X/K).

To describe what is meant by "functoriality in thee pair X/K" we introduce a category
^ whose objects are pairs (X, K), where X is a separated fc-scheme of finite type and K
is an extension of K (fe); we will prefer to write the pairs as X/K rather than as (X, K). A
morphism X'/K7 -> X/K is a commutative diagram

(1.1.2)
X' -^ Spec(^) <- Spec(R7m/) -^ Spec(R/)
i I I I
X -^ Spec(fe) ^- Spec(R/m) -^ Spec(R)

in which R has maximal ideal w, fraction field K and residue field an extension of k,
and similarly for R7, k\ K7. Then the functoriality of the categories Isoc (X/K),
Isoc^X/K) can be described by saying that there are fibered categories Isoc, Iso^
over ^ such that the fiber of Isoc (resp. Isoc^ any over Z/L is Isoc(Z/L) (resp.
Isoc^Z/L)). Thus for any morphism /iX/K-^X'/K' there is a functor
/": Isoc (XVK7)-^ Isoc (X/K) [resp. f\ Isoc+(X'/K')-^ Isoct (X/K)] satisfying the usual
compatibilities (cf. [2], 2.3.6). Finally, there is an evident Grothendieck topology on ^
for which the open coverings of X/K are those induced by the (zariski) open covers of
X, and the assertion that Isoc (X/K) and Isoct (X/K) are of local nature on X means
that Isoc and Iso^ are stacks with respect to this topology (cf. [2], 2.3.3 (i)).
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432 R. CREW

When /: X/K-^X'/K' is the morphism 1.1.2 in ^, we will say that / covers the
morphism X -> X'. In a number of situations there are obvious (or nearly obvious)
morphisms in ^ covering a morphism X-^X'; for example, if U^-X is an open
immersion, there is an obvious U/K -> X/K covering it and we will denote the correspond-
ing functor by M -> M\U. If x -> X is a point of X and /: x / K ' -> X/K covers x -> X,
we will denote /*M by M^, if the reference to K/ is not essential. If M is an
overconvergent isocrystal on X/K and x is a closed point of X, then there is a canonical
isomorphism M^^M^, as one can see immediately from the constructions. Finally, if
k ' / k is an extension and Spec ( k ' ) / K ' -> Spec (k)/K covers the natural map, then there is
a natural extension of scalars functor Isoc(X/K) -> (X^k'/K'), which we will write
Mi-^M^K7.

When X=Spec(fc), both Isoc(X/K) and Isoc^X/K) can be identified with the category
Vec^ of K-vector spaces. In general, they are K-linear abelian (x) -categories (cf. [2],
2.3.3 (iii)). Furthermore if x -> X is a point of X with values in a perfect field and
x/K' -> X/K covers x -> X, then the pullback functor Isoc (X/K) -> Vec^ is faithful and
exact (see 1.9 below).

We will say that an isocrystal on X/K is constant if it is (possibly after passing to
extensions of k and K) a pullback via the structure map X -> Spec (k) of an isocrystal
on Spec (A:).

From now on we will denote by F: X -> X a fixed power of the absolute Frobenius
morphism, say F(x)=x^ for some q=pf', then for any lifting cr: K -> K of the q-th power
automorphism of k, there is a unique morphism F^: X/K -> X/K covering F and inducing
a on K. We will now assume that there is a a which fixes a uniformizer of K; this can
always be guaranteed in practice, at the cost of replacing K by a finite unramified
extension. We will now fix such a a and drop the subscript on F^ whenever it is
convenient. A convergent (resp. overconvergent) P-isocrystal on X/K is an object M of
Isoc (X/K) [resp. Isoc+ (X/K)] endowed with an isomorphism

(1.1.3) 0: F^M^M

(strictly speaking we should call these a — F-isocrystals, or F^-crysals...). We shall call
an isomorphism such as 1.1.3 a Frobenius structure on M. Morphisms of course are
morphisms of isocrystals compatible with the Frobenius structure. The category of
convergent (resp. overconvergent) F-isocrystals on X/K will be denoted by F-Isoc(X/K)
(resp. F-Isoct (X/K)), and "F-isocrystal" by itself will mean an object of either
category. When X = Spec (fc), both categories are equivalent to the category F-criso^ of
F-isocrystals on K, i. e. of K-vector spaces endowed with a a-linear automorphism. In
general they are abelian (x) -categories, though not K-linear; rather they are Ko-linear,
where K() denotes the fixed field of cr on K.

Denote by F-Cris (X/W) the category of F-crystals on X/W. Berthelot constructs (cf.
[2], 2.3.11) a functor

(1.1.4) ' F-Cris (X/W -^ F-Isoc (X/K)
Mh^M®Q

4° SERIE - TOME 25 - 1992 - N° 4



F-ISOCRYSTALS AND MONODROMY 433

which is fully faithful up to isogeny; i.e. 1.1.4 induces an isomorphism

(1.1.5) HomF_cns(M, N)®Ko ̂  HomF-isoc(M®Q, N®Q).

IfXIk is smooth, then 1.1.4 is essentially surjective up to Tate twists ([2], 2.3.12). One
would like to know which objects in the essential image of 1.1.4 are
overconvergent. Furthermore if X/k is smooth, it is not difficult to show that 1.1.4 is
fully faithful up to isogeny in the category of crystals, i. e.

(1.1.6) Homcns (M, N)®K ̂  Hom^, (M®Q, N®Q)

for any crystals M, N endowed with a Frobenius structure. In fact, since the assertion
is local on X, we can assume X=Spec(A) is affme, and that U/R lifts A. An F-crystal
M on X/W can be identified with a locally free U-module M endowed with a integrable
nilpotent connection, and the isocrystal M®Q is J^®K endowed with the corresponding
connection, which is convergent since M has a Frobenius. Morphisms in either category
are just horizontal maps (not necessarily compatible with Frobenius), so that 1.1.6 is
clear.

Since we have chosen a a which fixes a uniformizer of K, Manin's structure theorem
for F-isocrystals on a field is applicable ([II], 2.1), and one can define in the usual way
the Newton polygon of a F-isocrystal on K, or of an F-isocrystal on X/K at a closed
point x of X. A unit-root F-isocrystal on X/K is an F-isocrystals whose Newton polygon
at every point ofX is purely of slope zero. The unit-root F-isocrystals in F-Isoc(X/F)
and F-Isoc^X/Y) constitute full subcategories of F-Isoc (X/K), resp. F-Isoc^X/Y) which
we will denote by UR(X/K) resp. UR^X/K). We will need the following consequence
of the specialization theorem for Newton polygons of F-isocrystals ([4], Theorem 2.1):

1.2. PROPOSITION. — Suppose that X/A: is geometrically connected and let (M, 0) be
an F-isocrystal on X/K. If, for some geometric generic point x -> X, the fiber (M, 0)^ is
unit-root, then (M, 0) is a unit-root F-isocrystal on X/K.

Proof. - By [4] 2.1, there is a dense open U^X such that the fiber of (M, 0) at any
point of U is unit-root. Since the Newton polygon rises under specialization, and since
the location of the endpoint is the same for all points of X by [4] 2.1.3, we see that
(M, O) is unit root at every closed point. •

Since K() is the subfield of K fixed by a, it is a local field; in fact if F is the q-th
power map, it is a finite totally ramified extension of the fraction field of W(F ). If
G/L is an affine group scheme over a field L, we denote by Rep^G) the category of
finite-dimensional representations of G defined over L. If P is a profinite group and L
is a field with a ;?-adic topology, then we denote by Rep^111 (P) the category of continuous
finite-dimensional representations of P. One basic result that we shall need from [5] is
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434 R. CREW

the following:

1.3. THEOREM ([5] 2.1 and 2.2.4). — Suppose that X/k is smooth and geometrically
connected and that F^S/r. Then there is an equivalence of ®-categories

(1.3.1) G: RepKSOtiCX^UinX/K). •

One would like to have a similar description of UR^X/K), but at present one has
(partial) results only in the case when X/k is a smoth curve. Let Xc;X be a smooth
compactification of X; then we say that a representation p: 7ti(X) ->GL(V) on a Ko-
vector space hsis finite local monodromy) if the image under p of the inertia group at any
point of X-X is finite. We will denote by Rep^Oii (X)"" the category of representa-
tions with finite local monodromy.

1.4. THEOREM ([5] 3.1 and 2.2). — Suppose that X/K is a smooth geometrically connected
curve and that TqSik. Then there is a fully faithful ®-functor

(1 .4 .1 ) G^ : Rep^ Oti (X))"" ̂  U^ (X/K)

such that

(1.4.2)
Rep^O^X))"" °l UR^X/K)

I I

Rep^(^(X)) ^ UR(X/K)

is 2-commutative. Every rank one object of UR (X/K) is in the essential image of G^ •

It is not known whether Gt is an equivalence of categories. Nonetheless, if p is an
object ofRep^o (TC^ (X))^, then one sees from the commutativity of 1.4.2 that the essential
image of G^tp] (where [p] is the 0-subcategory generated by p) is stable under the
formation of subquotients. Therefore the essential image of G^\[p] is the entire ®-
subcategory [M, (&] of UR^X/K) generated by (M, 0) == Gt (p), and G+ induces an
equivalence of categories

(1.4.3) G^ [p]^[M,<D]

1.5. COROLLARY. — With X/k as in 1.4, suppose in addition that k is the perfection of
an absolutely finitely generated field. Then for any rank one object (M, <I>) of F-
Isoct (X/K)111', some tensor power (M, (I))01^ is constant.

Proof. - By 1.4, there is a character p: 7i1 (X) -> K" with finite local monodromy such
that G^p)^ (M, <&). Since Gt is fully faithful, it is enough to show that some tensor
power of p is trivial on the geometric fundamental group n^ (X®^). Let Xc?X be a
smooth compactification; then since p has finite local monodromy, some tensor power
of p extends to a character of 7Ci(X). So it is enough to see that the image of
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F-ISOCRYSTALS AND MONODROMY 435

Tti (X®^)^ in Tii (X)^ is finite. For this, we need a result of Katz and Lang [10]:

1.6. THEOREM. — Suppose that Xo/^o is smooth and proper and that k^ is absolutely
finitely generated. Then the image ofn^ (Xo®^)815 in n^ (Xo)^ is finite. •

To finish the proof of 1.5, we note that since X/fe is of finite type, we can find an
absolutely finitely generated field ko whose perfection is k, and a smooth proper bo-
schema XQ such that Xc^XoOA:. Since the projection X-^XQ is a homeomorphism
in the etale topology, n^(X) and 71:1 (X®^) are isomorphic to n^(Xo) and
n^ (Xo®^^). Thus the assertion we need for 1.5 follows from 1.6. •

1.7. Suppose now that n: Y-^X is a finite etale map of smooth ^-schemes. We
will construct a functor

(1.7.1) n^: Isoc(Y/K)^Isoc(X/K)

and, if X and Y are smooth curves, a functor

(1.7.2) T^: Isoc^Y/K^IsocKX/K)

left adjoint to TC*. We will discuss in detail the convergent case, as the overconvergent
case is similar.

Since we can argue locally on X, we can assume that X is affine, and choose a lifting
9)/R-^3£/R of 7i as in 1.1; we will use n to denote the induced morphisms ^)-^X,
^)an -^ y"\ \Ve will need some notation and results from [1, 2]. Denote by ]X[^x3e resp.
]Y[^x^ the tube of the diagonal Xc^X x X in 3?" x y" (resp. of Yc?Y x Y in ^an x g)8",
cf. [I], § 1), and by p,: ]X[̂  ̂  P", ̂ : ]Y[̂  ̂  9)an 0'= 1, 2) the natural projections. A
convergent isocrystal M on Y/K can be identified with a coherent sheaf M on ^an

endowed with a convergent connection, i.e. an isomorphism q^M^q^M on ]Y[^x3e
restricting to the identity on the diagonal and satisfyind a cocycle condition
[1 § 4.1]. Since n: 9)^ -> 3?" is finite, the direct image n^ M of M is coherent, and we
must construct a convergent connection on TC^M, namely an isomorphism
p^ n^ M ̂  p^ K^ M on ]X[^ x x restricting to the identity on the diagonal and satisfying a
cocycle condition. For ;== 1 or 2 we consider the commutative diagram

m^x^r"
(1 .7 .3 ) .x.t [n

ixk^y".

If we can show this is cartesian, then we will have an isomorphism

p* n^ M ̂  (n x n)^ qf M since M is coherent, n is finite and pi is flat. The desired
isomorphism is the composite

(1 •7 •4) Pt ̂  M ̂  (n x 71)̂  ̂  M ̂  (TC x n)^ q^M^p^n^M
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where the middle arrow is induced by the connection q^M^q^M on M. To see that
1.7.4 restricts to the identity on the diagonal of ]X[^x^ 11: ls enough to observe that the
inverse image of the diagonal of]X[^xx under the left-hand vertical arrow in 1.7.3 is the
diagonal of ]Y[^x^- The verification of the cocycle condition will be left to the
reader. To show that 1.7.3 is cartesian, i.e. that the natural map

m^-T^^m^
is an isomorphism, we choose i'=2 or 1 so that i ^ i ' , and consider the commutative
diagram

(1.7.5)

m<Dx<o ^ ^x^r
[ [idxn

^an X ^an ]X[^ ^ ̂  ——p! ^an X X8".

In fact the bottom arrow is an open immersion (it is the composite of the open
immersion S)2" x ^an ]X[^ ̂  c, 9)^ x ^an (^an x ^an) and the isomorphism
^an x ^an (3P" x 3P") ̂  ̂ an x ap"). One checks readily that the image of the bottom arrow
is the tube ]Y[^x^ of the graph of n:

Y^^YxXc^X-^xX.

We must therefore show that in the diagram

diae
Y—-^ 9)x^)

|| [ i d x n

Y——> ^xX

the right-hand vertical arrow induces an isomorphism on tubes lYtwx^^lYbxx-
nxidn x ia

Since 9) x %)——»-3£x%) is etale, this follows from [2] 1.3.1, which says that given any
pair of immersions ;: Zc^93, ;": Zc^®' with Z of finite type and 93, 93' formally smooth
of finite type, and any u: 237 -> 93, etale in a neighborhood of Z, such that u ° i ' =i, then

M induces an isomorphism on the tubes ]Z[^' -> ]Z[<B
The overconvergent case can be handled similarly; the basic change is that one must

choose smooth compactifications Xc^X, Yc>Y and make use of [2] 1.3.. 5 in place of [2]
1 3.1. Details will again be left to the reader. •

Suppose, finally, that M is a convergent isocrystal arising from a representation of
7ii(Y), i.e. we have (M, 0)==G(p) where G is the functor 1.3.1. One can show, using
the construction in [5], § 2, that n^ M is the isocrystal underlying the convergent F-
isocrystal G(Indp), where Indp is the induced representation from ^(Y) to
TCi (X). Similarly, if X and Y are curves and p has finite local monodromy, then the
overconvergent isocrystal n^ M is the underlying isocrystal of G^Ind p).
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F-ISOCRYSTALS AND MONODROMY 437

Now let x -> X be a point of X with values in a perfect field, and x/K7 -> X/K is a
map in ^ over x -> X. As we have remarked, the natural pullback functors have the
form

(1.7.6) f Isoc(X/K)-^VecK'
[isoc^X/IQ-^VecK/.

We now want to show that when X is geometrically connected, they are fiber functors
in the sense of Saavedra:

1.8. LEMMA. — If^/k is geometrically connected and x is a point ofX with values in a
perfect field, then the functor 1.7.6 is a faithful exact ®-functor.

Proof. — We treat the convergent case first. We can factor x->X as x ->\J -^ X,
such that U is a geometrically connected smooth affine subscheme of X, and such that x
maps onto thee generic point of U. We will prove 1.8 by showing that the pullback
functors for the two morphisms x-»U, Uc^X are faithful, exact, and compatible with
tensor products.

We will have to make use of some notation and terminology from [2]. If X is affine,
and has an embedding Xc>^ over R into a formally smooth formal R-scheme, then a
convergent isocrystal M on X/K can be identified with a locally free sheaf on the tube
]X[^ endowed with a convergent connection (cf. [1] 1.3 and 4.1). The tensor product
on Isoc(X/K) is that induced by the tensor product of ^"-modules. Since the pullback
functor for Uc^X is induced by the restriction to the tube ]U[^c]X[^>, it is compatible
with tensor products, and its faithfulness and exactness follow from [2] 2.3.3 (iii).

As for the pullback by x -> U, we can write U=Spec(Ao), and since U is smooth, we
can find a formally smooth R-algebra A such that A®A:=A(), and we put U=Spf(A).
Let ;c=Spec(fe/), and let R' be a complete discrete valuation ring extending R with
residue field k' and fraction field K7. Since U/A: is smooth, x -^ U lifts to Spf(R7) -> U,
and the pullback functor for x -> U is

0.8.1) M^r^xr1,^)®^
where A^=A®K is the affmoid algebra of U^, and A^-^K7 is obtained from
Sp^R^-^U. We can replace the completed tensor product in 1.8.1 by an ordinary
tensor product, since Ji is locally free; then 1.8.1 is visibly compatible with tensor
products. It is faithful, because if a horizontal section m of M vanishes at a point of
IP", then it vanishes on a neighborhood of that point; since U is connected, IP" is
connected as well, and the section m must vanish identically. Finally 1.8.1 is exact,
since it is the composite of the functors Mh^F^", .0 and Ni-^N®^^ which are

exact on the categories of quasicoherent ^nan-modules, resp. locally free A^-modules
(note that we cannot use [2] 2.3.3 (iv) directly here, since it seems to be stated only for
morphisms of finite type, which is not the case for x -> U unless x is a closed point).

The overconvergent case can be proven in the same way; one could also deduce it
from the convergent case, since the second functor in 1.7.6 is the composition of the
first with I.I.I, which is also faithful, exact, and compatible with tensor products. •
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