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THE CONNECTION BETWEEN THE K-THEORY
LOCALIZATION THEOREM OF THOMASON,
TROBAUGH AND YAO AND THE SMASHING

SUBCATEGORIES OF BOUSFIELD AND RAVENEL

BY AMNON NEEMAN

0. Introduction

Let ^ and y be triangulated categories, and suppose ̂  is a full triangulated subcate-
gory of y. Then ̂  is called epaisse if it contains all y-direct summands of its objects.

If ^ is an epaisse subcategory of y, there is a standard way to construct a quotient
category ^/^=^"'. The construction closely parallels the passage from an abelian
category ^ and a Serre subcategory ^ to be the quotient category ̂ /^ == ̂ .

For Quillen's K-theory, Quillen showed in [Q] that applying the functor
"K-theory" to the maps of abelian categories

^-.i

yields a homotopy fibration

K(^)-^K(^)-^K(^).

One would like to make an analogous statement for triangulated categories. In a
previous article [N], the author defined a K-theory for arbitrary triangulated
categories. This K-theory has some nice properties; in particular if ^ is an abelian
category and D^ (cO is its bounded derived category, then K (D^ (jaQ) agrees with K (^),
Quillen's K-theory of ^.

For two years now, the author has unsuccessfully been trying to prove a localization
theorem for this K-theory. Precisely, given a triangulated category y and an epaisse
subcategory ^ as above, and with ^~ being the quotient as defined above, one would
like to show that the sequence

K^-^K^-^K^)

is a homotopy fibration.
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548 A. NEEMAN

The results of this article concern triangulated categories. The applications is
K-theoretic. But the fact that the K-theory of triangulated categories is still in an
embryonic stage of its development does not present a real difficulty. It constitutes
little more than a technical nuisance. In the application, one simply works with the
Waldhausen K-theory of closed model categories, and uses the Walhausen Approximation
Theorem and the Fibration Theorem. Precisely, let R be a closed model realisation or
^, S a closed model realisation for y and T a closed model realisation for ^~. As
above, suppose that ^ is an epaisse subcategory of y and ^ is the quotient. Suppose
further that the triangulated functors ^-^ and y-> ^T lift to functors on closed
models R -> S and S -> T. Then, for Waldhausen's K-theory functor on closed model
categories, there is a fibration

K(R)->K(S)-^K(T).

There is an excellent exposition of this in [TT], Section 1.
In the remainder of this introduction we will pretend that there is a K-theory functor

defined on triangulated categories, which satisfies a localization theorem. I strongly
conjecture that the functor defined in [N] works. In any case, modulo suitable technicali-
ties involving closed model categories, everything K-theoretic we say can be translated
into real theorems.
The problem with localisation sequences of triangulated categories

^ —> y —> <TcVli r c-7 T c^/

(i.e. triples of triangulated categories as above, with ^ epaisse in y and ^"=e97^ the
quotient) is that the interesting ones occuring in nature tend to involve very large
categories ^?, y and ^ ' . For instance, it is often the case that the categories are closed
with respect to arbitrary small coproducts. But it is well-known that then the K-theory
spectrum must be contractible. It is therefore interesting to know some construction
which, starting with a localisation sequence of large triangulated categories, produces a
localisation sequence of triangulated categories with interesting K-theories.

Now suppose that y is a triangulated category closed with respect to the formation
of all small coproducts. A full triangulated subcategory ^ is called localizing if it is
closed with respect to the formation of ^-coproducts of its objects. It is very easy to
show that then ^ must be epaisse. We define ^T to be the quotient triangulated
category, as above. To define suitable small categories, we consider the full subcategories
of compact objects.

DEFINITION 0.1. - Let y be any triangulated category. An object t in ^T is called
compact if Horn (t, -) respects coproducts.

DEFINITION 0.2. — The full subcategory of ^T consisting of the compact objects will
be denoted y. Clearly, y is an epaisse subcateogry of y ' .

Suppose now that y is a triangulated category closed under the formation of small
coproducts, ̂  is a localizing subcategory, and ST is the quotient as above. We fix this
notation for the rest of the Introduction, indeed for most of the article. Then one can
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ask whether there is a sequence
(3>c <yc < -̂c
e-t- r t.7 ' &-'

and more specifically whether one can, in reasonable circumstances, conclude that the
map y^^ -> ̂  comes close to being an isomorphism.

THEOREM 0.3 (Thomason and Trobaugh). — Lei X be a quasi-compact, separated
scheme. Suppose X admits an ample family of line bundles. Let U be an open sub scheme,
and let X — U be the complement. Let ^ be the abelian category of quasicoherent sheaves
on X, -whose support is contained in X — U . Let ^ be the abelian category of quasicoherent
sheaves on X and let ^ be the abelian category of quasicoherent sheaves on U. Then it is
well known that ^ is a Serre subcategory of S6, and the quotient ^/j^ is ̂ .

Let y=D(^), ̂ '=D(^) and ^=D^(^), the category of chain complexes of objects
of ̂  with j^-cohomology. Then it is obvious that y is closed with respect to coproducts,
that ^? is a localizing subcategory of y , and that ST is the quotient as above.

Then the theorem states that the map ^ -> y takes W to y\ the map y -> y takes
y to y\ that the induced map ̂ /^ -> ̂ c is fully faithful, and that every object in
^ ' c is a direct summand of an object in ^j^ (i. e. the smallest epaisse subcategory of
y containing the quotient ̂ ^ is all of ^c. Thus ST' is the epaisse closure of ^7^
in ^rc).

There is a very nice generalization of the Thomason-Trobaugh theorem which is due
to Yao.

THEOREM 0.4 (Yao). — The conclusion of Theorem 0.3 rmains true when ^ is replaced
by an admissible abelian category and s^ and ̂  are a suitable subcategory and its quotient
category.

Remark 0.5. — It is a little complicated to state the hypotheses Yao needs to make on
e^, ^ and (€. Suffice it to say that the theorem can be applied to non-commutative
rings, in a way not covered by [TT].

For the K-theoretic application, one needs the following lemma:

LEMMA 0.6. — Suppose y is a triangulated category, and y is a full triangulated
subcategory whose epaisse closure is all of^~. Then a delooping of the map K (^) -> K (^r)
is a covering space, and is a homotopy equivalence if and only if y ^ ^ T , i.e. the inclusion
y c; y is an equivalence of categories.

Remark 0.7. — The proof of Lemma 0.6 is so simple that it generalizes without
difficulty to the K-theory of triangulated categories in [N].

(Wiebel pointed out to me that in the Waldhausen framework the statement of
Lemma 0.6 is a little delicate; I was very happy to hear this. It provides yet another
example of a theorem whose statement and proof become simpler in the triangulated
K-theory of [N]. In the Waldhausen framework the result is due to [TT]. We give a
"triangulated" proof in the Appendix).
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550 A. NEEMAN

Thus in the situation of the theorem of Thomason, Trobaugh and Yao there is a
homotopy fibration

K (^c) -^ K (^c) -. K (^7^r»

and the map K (^7^) -^ K (^"c) is an isomorphism on the connected component at 0,
while the map on IIo is injective. Thus the sequence

K (^c) -> K (^c) -. K (^rc)

is almost a homotopy fibration. With a suitable definition of a non-connective
K-theory spectrum, one can make it a genuine homotopy fibration. Once again, there
are very good discussions of this in [TT] and [Y].

It seems fair to say that Yao pushed the methods employed in the two proofs to the
limit. His proof is an impressive technical tour de force. The point of this article is
that, using a completely different technique, one can prove a vast generalization of the
theorem of Thomason, Trobaugh and Yao. The new proof hinges on ideas of Bousfield
and Ravenel. Let us begin by stating the theorem.

THEOREM 2.1. — Suppose y is any triangulated category closed with respect to arbitrary
coproducts. Suppose that the subcategory ^ of compact objects is small, and that y is
the smallest localizing subcategory containing y\ Suppose furthermore that there is a set
R of objects in y\ and ̂  is the smallest localizing category containing R. Let ^ be the
quotient category y^. Then the map ^ -> y carries ^c to y\ the map y -> ̂  carries
^ to ^\ the natural functor ^l^-.^ is fully faithful, and ^c is the epaisse closure
of the image.

Remark 0.8. - Under the hypotheses of Thomason, Trobaugh and Yao, the category
y and ^ are in fact generated by their compact objects. In a special case, this is
discussed in [BN], Section 6. The more general statement is left to the reader, but
follows from essentially the same argument.

The idea of the proof is really in the work of Bousfield and of Ravenel. Bousfield
shows that under hypotheses far more general than the above the functor y -> y has a
right adjoint, the so-called Bousfield localization. Ravenel shows that under the hypo-
theses above, the localization functor commutes with coproducts. These two statements,
together with the fairly explicit construction of the localization, yield the proof of
Theorem 2.1.

There is an amusing corollary of Theorem 2.1, due to Thomason and Trobaugh.

COROLLARY 0.9. - The objects of ̂  isomorphic to objects in the image of y0!^ are
precisely those for which the image in KQ C^/Ko (^c) vanishes.

In fact one can generalize a little.

COROLLARY 0.10. - Let y bea triangulated category, y a full triangulated subcategory
whose epaisse closure is ^~. Then an object X in ^~ is isomorphic to an object in y if
and only if its image in K() (^)/K() (V) vanishes.
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Proof. — Pick X an object in ST which is not isomorphic to any object of e97. Form
the smallest full, triangulated subcategory of ST containing y and X. Call this category
^x.

Clearly, the epaisse closure of y in e^x ls ^x» an<^ the epaisse closure of e^x in ^
is y. Thus lemma 0.6 applies, and we get inclusions Kg (<^) c= Kg (e^x) and
Ko^x^^oC^")- Because X is not isomorphic to an objects in ^, the inclusion
y c: ̂ x ls proper, and therefore the inclusion of K-groups is proper. But Ko (^x) ls

generated in Ko (^~) by K() (e^) and X, and we therefore deduce that the image of X in
Ko(^)isnotinKo(^). D

The article is structured as follows. Section 1 contains a brief background sketch of
the work of Bousfield and Ravenel. In particular, the Bousfield localization functor is
only constructed in the special case of interest for the proof. Section 2 contains the
proof of Theorem 2.1. K-theory never gets mentioned again.

Theorem 2.1, and the more restricted theorems of Thomason Trobaugh and Yao, are
highly applicable. But there is a very thorough and complete discussion of the applica-
tions in [TT], and in [Y] there are various examples of applications of the stronger
theorem not covered by [TT]. I will therefore restrict myself to observing that if y is
the topolocigal category of all spectra and ^ is a smashing subcategory generated by its
compact object. Theorem 2.1 applies (cf. [W2]). Furthermore, this case is clearly not
covered by [TT] or [Y].

I would like to thank Yao for very helpful discussions. I would like to thank
Thomason, Weibel and Yao for helpful suggestions that improved the original manuscript
and cleared up the presentation.

1. Bousfield localisation and smashing subcategories

We begin with a definition:

DEFINITION 1.1. — Let S~ be any triangulated category, closed with respect to the
formation of all small coproducts. Suppose X is an object of ^ ' . Then X is called
compact if the functor Hom(X, — ) commutes with the formation of direct sums. The
full subcategory whose objects are all the compact objects of y is called ^"c. Clearly,
y is triangulated.

Example 1.2. — If ̂  is the category of all spectra, then ̂  is the subcategory of finite
spectra. If X is a quasi-compact, separated scheme and y is the derived category of
the category of quasicoherent sheaves on X, then y is the full subcategory of all perfect
complexes.

Next comes another definition:

DEFINITION 1.3 (Ravenel). - Suppose y is a triangulated category closed with respect
to the formation of arbitrary small coproducts. Suppose that ^ is a full, triangulated
subcategory of y which is closed with respect to the formation of arbitrary ^-coproducts.
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552 A. NEEMAN

That means that ^ is closed with respect to the formation of coproducts, and
furthermore the inclusion functor ̂  -> y respects coproducts. Then we call J? a localis-
ing subcategory of y.

In both examples discussed in Example 1.2, it is the case that ^T is closed with respect
to the formation of arbitrary coproducts and that ^c is a small category. Usually, it is
also true that the smallest localising subcategory containing y is all of ST. In the
topolocigal example it is simply true. In the algebro-geometric example, weak hypothesis
on the scheme X suffice; for instance, it suffices to know that X admits an ample family
of line bundles. This will be the situation that will most interest us in this article. We
will make frequent use of another standard concept, namely the homotopy colimit of a
sequence. Let us therefore define it.

DEFINITION 1.4. — Let {X,} be a sequence of objects in a triangulated category ST.
Suppose for each n^Q we are given a map X^-^X^.^. Suppose the category y
is closed with respect to the formation of arbitrary coproducts. Then we define
hocolim (X^) to be the third edge of the triangle

©x, '-̂ r ex,(»\ /
hocolim (X,)

LEMMA 1.5. — Suppose y is a triangulated category closed with respect to the formation
of coproducts. Suppose {Xj is a sequence of objects in ^", together with connecting
morphisms as in Definition 1.4. Suppose t is a compact object of ^~. Then there is a
natural isomorphism

colim Horn (X,) —> Horn (t, hocolim (X,))

Proof. — From the triangle used to define hocolim (X,), we get an exact sequence after
applying the functor Horn (t, —). Because t is compact, we get a commutative diagram
where the rows are exact and the vertical maps are isomorphisms of sets

1 -shift
Horn (r, hocolim (X,)) ——> Horn (^, ©EX,) ——> Hom(r, ©SXJ

i i I
1 -shift

Horn (r, hocolim (X^)) ——>• ©Horn (t, Z XJ ——^ ©Horn (/, S X^)

In the bottom row, the map 1-shift is clearly inject! ve. Therefore we conclude that the
map Hom(^, hocolim (X^)) -> Horn (/, ©X,) must be zero. Therefore, the rows in the
following diagram are exact, and the columns are isomorphisms:

Hom(^, ©X,) l—sh^t Hom(^, ©X,) ——> Horn (^, hocolim (X^)) ——> 0
I I I

©Hom(^,X,) l—h^t © H o m Q . X , ) — — > Horn {t, hocolim (XJ) ——>- 0
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and the bottom row identifies Horn (r, hocolim (XJ) with the direct limit colim Horn (t, X^). D

CONSTRUCTION 1.6. (Adams, Bousfield). — Let y be a triangulated category closed
with respect to the formation of arbitrary coproducts. Let R be a set of compact objects
in <97, and suppose R is closed under taking suspensions. Let ̂  be the smallest localising
subcategory of y containing all of R. It is relatively trivial to show that ^ is epaisse
(every localising subcategory is. See [BN], Remark 1.4 and Section 3). We remind the
reader that an epaisse subcategory is a triangulated subcategory which is closed with
respect to the formation of direct summands. To show that ^ is epaisse, (without
having to look up the reference), let r be an object of ^ and suppose it decomposes
in y as r==ri©r2. Let e be the idempotent e: r->r such that e is 1 on r^ and 0
on r^. Then consider the sequence

e e e
r —> r —> r —> r -

Clearly, the hocolim of this sequence is r^. But since the construction of the hocolim
involves only coproducts and triangles on objects of ^?, r^ must be in ^.

In particular, it is possible to form the category ^=c99/^. This is a triangulated
category obtained by setting all the objects of ^ isomorphic to zero. There is a natural
functor y*: y -> ^~. A very important fact, which is due to Sullivan, Adams and
Bousfield, is that this functor has a right adjoint, which we denote by j^ called the
Bousfield localisation functor.

To construct 7'̂ , one proceeds as follows. Define an object Y in y to be R-local if
for every object r in R, Hom(r, Y) is zero. Then one proves:

LEMMA 1.7. — Given any object X in c^, there is an R-local object Y in y and a
morphism f\ X —> Y such that the mapping cone on f is in the subcategory ^%, the smallest
localising subcategory containing R.

Let us first show why the Lemma 1.7 implies the existence of 7^. The point is that
given any object X of ^, and any local object Y, then

Hom^(X, Y)=Hom^(X, Y)

is an isomorphism.
We recall that a morphism X -> X7 in y is called a quasi-isomorphism if its image

in ST is an isomorphism. ^T is the category obtained from y by formally inverting
the quasi-isomorphisms. The notation ^"=c97^ means that any quasi-isomorphism
X-^X' has for its mapping cone an object Z in ^?. But for every object r in R, we
known that Hom(r, Y) vanishes; this is because Y is local. Thus it follows that
Hom(-, Y) vanishes on the entire localising subcategory generated by R. In particular,
Horn (Z, Y) = 0. Thus Horn (X7, Y) ̂  Horn (X, Y) must be an isomorphism. Since this
is true for all quasi-isomorphisms, it follows immediately, by the definition of morphisms
in ^", that

Hom^(X, Y)=Hom^(X, Y)

is indeed an isomorphism.
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554 A. NEEMAN

Coupled with the fact that every object in e99 is quasi-isomorphic to a local object,
this immediately gives that the category of local objects is equivalent, via the projection
7*: y -> y , to the category y. With this equivalence, we let j^ be the inclusion. The
counit of the adjunction is then just the map X -> Y, given in Lemma 1.7.

Remark 1.8. - Everything above is completely standard, so I summarised it as succintly
as I could, giving the barest sketch for the unitiated. What I really want to observe is
that Bousfield gives a very explicit description of the counit of adjunction
T| : X ->j^j* (X). Therefore we will recall the proof of Lemma 1.7 in some detail. The
real virtue of BousfiekTs construction will become obvious when we use it to prove the
theorem of Thomason, Trobaugh and Yao.

Proof of Lemma 1.7 (Adams, Bousfield). - Let X be an object of e99, and suppose R
is a set of compact objects in y as above. We define inductively objects X^ of e95', with
77^0, and quasi-isomorphisms X^^X^+i . By definition, we set Xo=X. Let I be the
set of all morphisms o^: r, -> X^ with ^ in R. Then define X^+ ^ to be the mapping cone
on the morphism

©r,^X^
i e I

Now define Y to be hocolim(X^). Then firstly we observe that the canonical map
X=Xo -> hocolim (X^) == Y is an isomorphism in ^r, since each X^ -> X^+i is. Thus the
mapping cone on X -> Y is indeed an object of ^.

Next we need to show that Y is local. Pick any r -> R. Then r is a compact object
of the category <y, and therefore by Lemma 1.5, there is an isomorphism

colim Horn (r, X^) -> Horn (r, hocolim (X^))

But by the construction ofX^ from X^+i, it is clear that the map

Horn (r,X^ Horn (r, X^)

is the zero map. Therefore Horn (r, Y) = colim Horn (r, X^) must vanish. D
There is one more important observation.

PROPOSITION 1.9 (Ravenel). - Let all the notation be as in Construction 1.6. Then the
functor j^: y -> y preserves coproducts).

Proof. - It suffices to prove that the full subcategory of y consisting of local objects
(which is equivalent, via 7^, to ^) is closed under the formation of y coproducts.
Therefore let I be any index set, X^ a collection of local objects in y indexed by I. we
need to show that ©X^. is local.

Consider therefore any object reR. Then, because r is a compact object of ^,

Hom(r, ®X,)=©Hom(r, X,)

and because each X, is local, Horn (r, X,) vanishes for all i. Thus the right hand side of
the equation is zero, and ®X^. is indeed local. D
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Remark 1.10. — It is possible to construct localization functors in far greater
generality. This was extensively studied by Bousfield. Ravenel conjectured that the
localization functors which preserve coproducts all arise from a set R as above. The
corresponding subcategories ̂  are called smashing.

2. Proof of the Main Theorem

We begin by stating the main theorem:

THEOREM 2.1 (Generalized from the work of Thomason, Trobaugh and Yao). — Let ^
be a triangulated category closed with respect to the formation of small coproducts.
Let ^c be the subcategory of compact objects, as in Definition 1.1. Suppose that ^ is a
small category, and that the smallest localising subcategory of y containing ^ is the
whole of y (we recall that this is true in both examples of Example 1.2, and should
somehow be viewed as "normal"). Let R be a subset of the objects of yc, closed with
respect to the suspension functor. Let ^ be the smallest localising subcategory of y
containing R. Let ^~,j^ andj^ be as in Construction 1.4. Then the sequence of triangu-
lated functors

^-.y-^^r

yields, by restriction to compact subobjects, a sequence of functors

^ac <yc (JTC
t^t- r t^/ r t^/

There is therefore an induced functor

^<y^c _^ ^rc

The functor F is fully faithful, and identifies ̂ /^ with a subcategory of ̂  whose epaisse
closure is all of ̂ "c. In order words, any object in y is a direct summand of some object
in ̂ 7^.

We will break up the proof into a sequence of easy lemmas.

LEMMA 2.2. — The category ^c is contained in y6. In fact, more is true. The category
^c is the smallest epaisse subcategory containing R.

Proof. — Given an object X in ^c, then Horn (X, — ) commutes with coproducts in ^?,
but it is not so clear that it also respects arbitrary coproducts in y.

However, it is clear that the Bousfield localisation functor sends X to zero, since X is
an object of ^. But then, by the proof of Lemma 1.5, we construct a sequence of
objects X^, and the construction clearly shows that each X^ must be in ^?, and hocolim (XJ
is zero. It makes no difference whether we take homotopy colimits in ̂  or in y, since
the inclusion functor preserves triangles and coproducts.
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556 A. NEEMAN

If follows therefore, by applying Lemma 1.5 to the compact object X in the category
^, that

0=Hom(X, hocolim(X^))=colimHom(X, X^)

and, hence for some n>0, the natural map X=XQ->X^ is the zero map. But by
construction, the mapping cone on XQ -> X^ is a finite extension of direct sums of
objects of R. Since it is the mapping cone on the zero map, it is also the direct sum
X^©EXo. Thus we have proved that Xo is a direct summand of a finite extension of
coproducts of elements of R. It remains to show that the coproducts can be taken to
be finite. Then we will have proved that ^c is in the epaisse subcategory of y generated
by R, and this is clearly contained in ^c.

Thus Lemma 2.2 is an immediate consequence of

LEMMA 2.3. - Let y be a triangulated category closed under the formation of
coproducts. Let R be a set of objects in y\ closed under suspension. Let ^ be the
localising subcategory of e99 generated by R. Let < R ) be the epaisse subcategory of y
generated by R.

Suppose we are given two objects of y, and a morphism X -> Y between them. Suppose
that X is a compact object in ̂ , and suppose we are given a map Y' -> Y in y such that
the mapping cone on Y'->Y is a finite extension of direct sums of objects
ofR. Then there is a map X1 -> X whose mapping cone is in < R ), such that the composite
X' -> X -> Y factors through Y ' .

Proof that Lemma 2.2 follows from Lemma 2.3. - In the proof of Lemma 2.2 we began
with a compact object X in ^, and constructed a split monomorphism X -> Y where Y
is a finite extension of direct sums of objects in R. So let Y'=0 in Lemma 2.3. It
follows that there exists an X' -> X with mapping cone in < R > , such that the composite
X7 -> X -> Y factors through Y' = 0. But when we compose with the splitting Y -^ X,
this implies that the map X' -> X vanishes. Thus X is a direct summand of the mapping
cone, which by hypothesis lies in < R ). D

Proof of Lemma 2.3. - Complete the map Y'->Y to a triangle
Y' -> Y -> E -^ £ Y'. The proof is by induction on the length of E. If the length of E
0'. e. the number of extensions needed to express E as an extension of coproducts of
objects in R) is one, then the mapping cone E on the map Y' -> Y is a coproduct of
elements of R. Now consider the composite map X -> Y -> E. Because X is a compact
object of ^ and E is a coproduct of objects in R, the map X -> E factors through a
finite direct sum of objects of R, which is a direct summand F of E. Now we may
complete the commutative square

X ——> F

I I
Y ——> E
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