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SINGULARITIES OF THE SCATTERING
KERNEL FOR TRAPPING OBSTACLES

BY VESSELIN PETKOV and LATCHEZAR STOYANOV (1)

ABSTRACT. - It is shown that for certain classes of trapping obstacles K in IR" there exists a sequence of
scattering rays in the exterior of K with sojourn times Tm —^ oo such that —Tm is a singularity of the scattering
kernel for all m.

1. Introduction

Let ^ C R^n > 2, be an open and connected domain with C°° boundary Qfl and
bounded complement

K =Hn\flc{x^nn : x \<po}.

Consider the problem

{ (^2 - Aa,)^ = 0 in R x ^,
(1) u = 0 on 1R x 9^,

u{^x)=f,(x)^9tU^x)=f^x).

Associated to (1) is a scattering operator

S{\) : ̂ (S"1-1) —> L^-1), A G R.

The kernel a(A,0,cc;) of the operator S{\) — I d , called scattering amplitude, depends
analytically on u,0 G 5'71-1 (see [LP1], [LP2]). For fixed ((9, uj) G 5'n-l x 5'n-l, a(A, 6, uj}
is a tempered distribution in A and

. .(n-l)/2

a(A,^)= — ^^0^).
\ZA /

Here Tt—,\ denotes the Fourier transform and the distribution s(t^0^uj) is called the
scattering kernel (see [Ma], [P]). For the applications concerning inverse scattering

( ]) Partially supported by Australian Research Council Grant 412/092.
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738 V. PETKOV AND L. STOYANOV

problems it is convenient to examine the singularities of the scattering kernel which
one can observe for t in some bounded interval, while the scattering amplitude is related
to the Fourier transform taking account of the global behaviour of s ( t ^ 6 ^ u j ) on R.For
n odd the operator S(\) and the distribution a(A,0,o;) admit meromorphic continuation
in C with poles Aj, Im \j < 0, which are independent of 0 and uj. For n even the
operator S (A) admits a meromorphic continuation on the Riemann logarithmic surface
2 = [z G C : -oo < arg^ < +00} (see [LP1], [LP2]).

One can characterize the poles Xj using the modified resolvent of the Laplacian in f^
given by

R^W = y(x)Rm{x).

Here the operator

R(\) : Co°°(n) 3 f ̂  u(x,\) G C°°W, ImA > 0,

is determined by the (-%A)-outgoing solution u(x,\) of the Dirichlet problem for the
reduced wave equation

((^+X2)u(x,\)=f in 0,
[ u = 0 on 9fl

and the functions (^(rr), ^(x) G (^(R/1) are chosen to be equal to 1 in some
neighbourhood of the obstacle K. Then J?^(A) admits a meromorphic continuation
in C for n odd and in 2 for n even the poles of which and their multiplicities coincide
with those of the A/s. Moreover, the poles \j do not depend on the choice of (p and ^
(see [LP1], [V], [Vol], [Vo2]). Below we denote by A the set of scattering poles.Given
(rr,^) e T*(9K) \ {0}, consider a geodesic segment c{t) on 9K (with respect to the
standard metric) with c(0) = x and c(0) = ^, and let i^(t] be its curvature at c(t) with
respect to normal to 9K pointing into the interior of K. The normal (sectional) curvature
of OK at x in direction ^ is said to vanish of infinite order, if ^(t) and all its derivatives
vanish at t = 0. If some of the derivatives of i^(t) (this may be the Oth derivative, i.e. the
function ^(t) itself) does not vanish at t = 0 and the first non-zero derivative at t = 0 is
positive, then {x, ̂ ) is called a diffractive point. Finally, if ^(t) > 0 on some open interval
t G (—e, e), e > 0, we will say that 9K is convex at x in direction ^.

Denote by fC the class of obstacles K having the property: for each (x^) G T"{9K) if
the normal sectional curvature of 9K at x in direction ^ vanishes of infinite order, then
9K is convex at x in direction ^. Clearly /C contains the class fCo of all obstacles K the
normal sectional curvature of which does not vanish of infinite order.

In what follows we assume that K G 1C. Fix an open ball Bo of radius po containing
K. For each ^ G Sn~l denote by Z^ the hyperplane tangent to Bo and orthogonal to ^
such that the half space H^, determined by Z^ and having ^ as an inner normal, contains
K. It follows from K e 1C that the generalized Hamiltonian flow Ft related to the wave
operator 9^ - A^; is well defined in 5*(n) {see [MS] or Section 24.3 in [H]) and for
(^) G S'*(^) we denote by

7M={F,(;r,0:^[0,oc)}
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SINGULARITIES OF THE SCATTERING KERNEL 739

the generalized bicharacteristic passing trough (x^) for t = 0. Let TT : 5'* (^2) —> fl, be
the standard projection. Given z = (x,^) G 5'* (^2), we say that 7(2^) is a trapping ray
for AT, if 7r(7(^)) C Bo^ that is the geodesic issued from z stays in Bo for t G [0,oo).
Denote by Z^ the set of all z G S'*(f^) so that 7(^) is trapping. We shall say that
7(2;) is a regular trapping ray for J^ if z = (x,^) C Z^, x is not an interior point of
[y G R" : (^,0 G Z^}, and there exists an open neighbourhood 0 of x in R" such
that for almost all y G 0 (with respect to the Lebesgue measure in W1) the bicharacteristic
7(^/,^) does not contain diffractive points.

DEFINITION. - An obstacle K G JC is called trapping if the set Z^ is not empty. If
K G JC and there exist a regular trapping ray for K, then K will be called a regular
trapping obstacle. _

Notice that if there exists a generalized geodesic of 9^ — Aa. which stays in 0 for t > 0,
then the set Z^ is not empty and the obstacle K is trapping. This follows from the
continuity of the generalized Hamiltonian flow Ft (see [MS] or Section 5 in [PS2]).

For e > 0, d > 0 introduce the domain

^ = { z e c : d - 6 l o g ( i + H ) ^ 3^<o}.

For n even in the definition of <7g^ we add the condition -Tr/2 < arg^ < 37T/2. It is
well known (see [V]) that for non-trapping obstacles there exist e > 0, d > 0 so that
Ue,d H A = 0 and with some constants C > 0, a > 0 for all A e Ve,d we have

(2) ll^^^/II^CT^Ce-l^lll/II^CT.

For n odd and obstacles having at least one ordinary reflecting ray ^(z) with z e Z^°°\
Ralston [Ra] proved that for all t > 0 we have ||^(^)|| = 1, where Z(t} is the semi-group
introduced in Chapter 3 in [LP1]. This leads to

sup ||-fi^(A)/||^i(^) = +00.
>^\\f\\L^W=1

One expects that for trapping obstacles we have Ue,d H A / 0 for all e > 0, d > 0. This
fact has been proved in some cases (see [BGR], [G], [II], [I2], [I3], [Fal],[Fa2]).

It is common to the works just cited that one obtains complete information on the
dynamics of the rays sufficiently close to trapping ones, and the existence of periodic
rays plays an essential role in the analysis of the singularities of the trace of the kernel
E(t^ x^ y} of cos^^—A). Assuming only the condition Z^ ^ 0, in general one can deal
with generalized trapping rays and some rays ̂ (z) with z sufficiently close to QZ^ should
produce singularities -Tm —^ -oo of the scattering kernel s(t,6m^m)' An obstacle K
will be said to have the property ( S ) if there exists a sequence (uJm^m) ^ S71"1 x S""1

and reflecting (c<;^,6^)-rays ^rn with sojourn times Tm —> +00 so that

(3) -Tm C smgs}ipps(t,0m^m), Vm G N.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



740 V. PETKOV AND L. STOYANOV

It is natural to make the following

CONJECTURE. - Every regular trapping obstacle K G /C has the property ( S ) .
We refer the reader to Section 2 for the definitions of reflecting rays, sojourn times, etc.

Notice that if -Tm is isolated in sing supp s(t, 6m-, ̂ m) and if Tra is the sojourn time of
a non-degenerated ordinary reflecting {uJrn^ra) ray 7yn, one can determine explicitely the
leading singularity of the scattering kernel near -T^, provided there are no (^, 6^)-rays
different from ^rn with sojourn time Tra (see Section 9.1 in [PS1] for n odd and (4) for
n even). Therefore, if (5) holds, according to Theorem 2.3 in [PS2], one concludes that
either for all e > 0 and d > 0 we have U^,d H A / 0 or there exist e > 0 and d > 0 so
that Ry^(X) is analytic in U^^ but for all a > 0, p G N, k G N we have

sup (1 + lAD-^e-^l \\R^Wf\\H^w = +00.
AC^,d, l l / l l ^ f c ( ^ ) = l

The latter leads either to the existence of poles in Ue,d or to a polynomial blow-up of the
norm of Ry^{\). It seems that for general trapping obstacles this should be considered
as optimal, provided we do not have precise information on the dynamics of the rays close
to trapping ones and if the existence of periodic rays is not assumed.

The aim of this paper is to prove that a class of regular trapping obstacles K C /Co m

R^n > 3, satisfying an additional condition (cf. condition (F) in Section 4), have the
property (S). In particular, we show that all regular trapping obstacles in R2 have this
property. Moreover, if D is a regular trapping obstacle in R2 with smooth boundary QD
symmetric with respect to a line L, then the obstacle K C R3 obtained by rotating D
about L has the property (S). For these obstacles one can also apply Theorem 2.3 in [PS2]
mentioned above. In the special case when K is a finite disjoint union of strictly convex
bodies, (S) was established in [PS2]. Section 6 below contains another result concerning
the case of several disjoint convex bodies.

Our first motivation to examine the property (S) came from Theorem 2.3 of [PS2].
Another motivation is related to the inverse scattering result obtained by one of the authors
(see [Sti], [St2]). This result says that for a large cass of obstacles the knowledge of all
singularities of s(t,6, uj) for a dense set of directions {uj,0} G S ' 1 ' 1 x S^^- determines
uniquely the obstacle. Consequently, the sojourn times can be considered as scattering
data. Clearly for obstacles satisfying (5) some sojourn times can be observed only after a
sufficiently large time. Moreover, if K has an additional property {see condition (ND) in
Section 2), then for each m G N there exists a set H^n C S71'1 x S'71"1 with positive measure
Cm > 0 so that the (a;,0)-rays with (cc;,0) G Tf-rn produce singularities —Tm < —m. It is
interesting to construct examples when some part of 9^1 cannot be determined from the
sojourn times in any bounded time interval.

The definition of regular trapping obstacles probably deserves a few comments. If for
an open neighbourhood 0 of a point x, (rr,$) E QZ^, all generalized rays 7(l/,<0 with
y G 0 contain diffractive segments, then the map J^(y) cannot be defined and we are
unable to study the singularities related to these rays. On the other hand, it follows from
the result in Section 3 that the points u for which the rays ̂ (u, $) contain gliding segments
form a set of Lebesgue measure zero on Z^. It is probably not a coincidence that in the
analysis of the exact controlability of solutions of the wave equation with a control given on

4° SERIE - TOME 29 - 1996 - N° 6



SINGULARITIES OF THE SCATTERING KERNEL 741

a part (0, T) x {ci;} C R x 90 (see [BLR]) the generalized rays containing diffractive points
are exiuded. The geometric condition established in [BLR] says that every generalized ray
must pass over (0, T) x {^} either at a point of reflection or at a gliding point.

2. Preliminaries

Let K C )C be an obstacle in R", n > 2. As in Section 1, fix an open ball Bo of radius po
containing K. For ^ G fi^"1 define the hyperplane Z^ as before. Let ^ G S^.O € S^"1.
An (cj, 0)-my in n is a curve of the form 7 = Im r, where T(t) : R —> 0 is_the natural
projection on H of a generalised bicharacteristic of the wave equation in T*(Q x R) (cf.
[MS] or Section 24.3 in [H]) such that there exist constants a < b with r'(t) = uj for
t < a and r ' ( t ) = 6 for t > b. Geometrically, such a curve 7 is the trajectory of a
point incoming from infinity with direction a;, moving with constant velocity in 0, and
outgoing to infinity with direction 6 (cf. [PS I], Chapter 2). If 7 meets the boundary 90
transversally, then 7 is reflecting at 90. following the usual law of geometrical optics. In
general, an (ci;,(9)-ray 7 may have segments lying entirely on 90; these segments, called
gliding segments, are geodesies with respect to the standard metric on 90. If 7 does not
contain gliding segments on 90 and has only finitely many reflection points, it is called a
reflecting (a;, 6)-ray in 0. If moreover 7 has no segments tangent to 9K, then it is called
an ordinary reflecting (o;,0)-ray.

The sojourn time T^ of an (cc;,(9)-ray 7, introduced by Guillemin [Gu], is defined by
T^ = T ' - 2po, where T^ is the length of this part of 7 which is contained in H^ D H-e-

Let 7 be an ordinary reflecting (a;, 0)-ray in 0 with successive reflection points r r i , . . . , Xk
on 9K. In this case we have

k-l

T^ = (c^rci) + ̂  \\x, - ;r,+i|| - (0,Xk),
1=1

where < , > denotes the standard inner product in ̂  (see [Gu] or Section 2.4 in
[PS1]). Denote by u^ the orthogonal projection of x^ on Z = Z^. Then there exists
a neighbourhood W = W^ of u^ in Z such that for every u G W there are unique
0(u) G S"^ and points ^(n), . . . , Xk(u) G <9^ which are the successive reflection points
of a reflecting (c^0(n))-ray in 0 passing through u. Setting J^(u} = 0(u), we obtain a
smooth map J-y : W^ —> S^1 and the ray 7 is called non-degenerate if det dJ^(u^) / 0.

For trapping obstacles it is not difficult to construct a sequence of rays ^frn with
Tm —^ +00. (see Section 5 in [PS2]). The problem is to construct the sequence in such
a way that -Tm are singularities, and a natural way to try to do that is to make all ^rn
non-degenerate. However in general the latter is also a difficult problem. The difficulty
comes from the fact that (especially for rays 7 with many reflections) the map J^ depends
in a very complicated way on the geometry of the boundary 9K near the reflection points.

It follows from the results in [CPS], [PS2], [Sti], that to obtain (3) for a given trapping
obstacle K, it is sufficient to establish the following property.

r There exists a sequence (uJm^m) ^ S7'"1 x S""1 and non-degenerate
v ; \ reflecting (cj^,0^)-rays ^rn with sojourn times Tm —> +00.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



742 V. PETKOV AND L. STOYANOV

It is easy to prove that the property (S) follows from (ND). In fact, it is sufficient to
construct a sequence of ordinary reflecting non-degenerate (uJm, ̂ m)-rays ^rn with sojourn
times Tm —^ +00 so that for each m the pair (^m^m) has the followig properties:

(i) if 8 and 7 are different ordinary reflecting (c<;yn,0yn)-rays, then Ts / T^/;
(ii) there are no (c<;^,0yn)-rays in ^ containing tangent or gliding segments.
To arrange (i) we approximate (u^rn^m} by suitable directions using the results in [PS2],

while for (ii) we make an approximation applying the results in [Sti] concerning generalized
rays with gliding segments. More precisely, there exists a dense set 7^ C S71'1 x S71'1

such that for all (ci;, 0) G Ti every (cc;, 0)-ray in 0 is ordinary reflecting. Therefore, from the
Poisson relation for the scattering kernel (established in [CPS] for n odd and in Appendix
for n even) and the continuity of the generalized Hamiltonian flow (see [MS]), we obtain
that for a sequence of directions (a^,0^J there exist ordinary reflecting non-degenerate
(c^,^)-rays 6m with sojourn times T^ -^ oo. Moreover, —T^ are isolated in sing supp
s(t^ O^i^m) anc^ following the argument in Section 9.1 in [PS1] which works without any
change for all dimensions n > 2, the leading singularity of the scattering kernel at —T^
can be described as follows. Assume that 7 is non-degenerate ordinary reflecting (uj, 0)-ray
with m reflections. Let —T^ be an isolated singularity of s(t^0^uj) and assume that there
are no (c<;, 0)-rays different from 7 with sojourn time T^. Take a function p(t} e C^°(R) so
that supp p C (—1,1), p(0) = 1. Then for all n > 2 and e > 0 sufficiently small we have

(4) (^M,^), pf^±^V^) = (27^)^l-n)/2(-l)me^f^^+^A^^
\ e / \ z /

deidJ^u^(y(q^^) -1/2 ̂ -i)/2 ^_ o(\\\^-^/3}
{v(qm),0} \ ) '

where f3^ G Z is related to a Maslov index and q\^ qm denote the first and the last
reflection points of 7, respectively.

3. Tangent and gliding rays

Let K G JCo. Fix an open ball Bo containing K in its interior. Given uj G fi'71"1, define
Z^ as in Section 1. For u G Z^ let 7^(n) be the generalized geodesic in d = ̂ IK issued
from {u,uj}. Denote by Z ' ^ the set of those u G Z^ such that ^^(u) is contained in a
compact subset of H71, that is Z^ = Z ^ H Z ^ . Then Z^ is a compact subset of Z^, so

U — Z \ Z^uUJ —— ^UJ \ ZJ^

is an open unbounded subset of Z^. Clearly for each u G U^ there exists a (unique)
0^(u) G S^"1 such that ^(u) is part of an (cc;, ^(n))-ray in fl. Denote by T^{u) the
sojourn time of this ray. It follows from [MS] that the two maps

J. : ̂  -^ s^ , w = e^u}^

and T^ : U^ —> H are continuous.
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SINGULARITIES OF THE SCATTERING KERNEL 743

Next, denote by Z^ the set of those u G Z^ such that the ray 7^) contains a point
(rc,<0 G S*{9K) (that is, 7^(zQ is tangent to <9i^ at x). Notice that ^t) contains all
u G Z^ such that 7c^(^) has at least one non-trivial gliding segment on OK.

Clearly for u G U^ \ Z^\ the ray 7^) consists of finitely many straightline segments
and has only transversal reflections at OK.

Denote by U^ the set of these u G U^ H Z^ such that all tangent points of the
(^6^(n))-ray 7^) are diffractive points. Thus, for u e ^t), 7c^) is a reflecting ray
which does not contain gliding segments on OK.

It follows from Section 3 of [PS2] that there exists a subset A of full Lebesgue measure
in S^1 such that whenever uj G A, the set U^ has Lebesgue measure zero in U^.
Moreover, for such LJ, U^ is a a-compact set, i.e. it is a countable union of compact
sets of measure zero.

LEMMA 3.1. - Let uj G S'7'"1 ^ arbitrary. There exist a countable family of (n - 2)-
dimensional submanifolds Trn of Z^ such that Z^ \U^ C (Jyn^m-

Proof. - Given integers s > 0, k > 1, denote by S^fc(^) the set of those u G ̂  such
that there exists a point a(n) = (^(i^^)) G 7c^(^) Ft S^OK) such that the normal
curvature of OK at 7/(n) in direction r](u) vanishes exactly of order k and that part of
7^(n) which is between {u,uj} and a(u) has exactly s transversal reflection points and no
gliding segments (however it may have some tangencies to OK). Clearly,

z^\u^c IJ s^(^),
s>0,fc>l

so it is enough to show that each Ss^(ci;) is contained in a countable union of
(n — 2)-dimensional submanifolds of Z^.

Fix integers s,k and a point u' G S^A-(^). Let Ft be the generalized geodesic flow in
5*(^) and let to > 0 be such that

Ft,(u/^)=a(uf).

It follows by [MS] (cf. also Section 24.3 in [H]) that there exist an open neighbourhood
0 of a(u1} in T^IR") and local symplectic coordinates (rr^) = {x^ , . . . ,Xn, ̂ i , . . . , ^n)
in 0 such that a(^') = 0,

T*(^) n 0 = {(rr, 0 : rri > 0}, 9T*(^ H (^) = %(^ H 0) = {(^ Q : x, = 0},

and there exists a smooth (Hamiltonian) function of the form

p^o-^-^o
such that the generalized bicharacteristics in T*(^) (possibly changing the natural
parametrization along them) are precisely the integral curves of the generalized Hamiltonian
flow of p. Here and in what follows we use the notation

X' = (a;2,. . . ,Xn)^ <f = ( ^ 2 ? - • • ^n)-

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



744 V. PETKOV AND L. STOYANOV

Also we have

s^^)r^o=p~l(Q)

and the set of glancing points G is given in 0 by

G={{x^):x,=^=o}np-lW.

For (O^CU7) G 0 set

ro^O^O^O, ri(^ 0=^(0^:0.

Below we assume that k > 1. It follows from [MS] (see also Lemma 24.3.1 in [H]) that
in 0 the set C?^2 of points ( y ^ T ] ) G T*(0) so that the curvature of 9fl at y in direction
^ vanishes of order at least k has the form

G^2 = {(O^CUQ : ro(^0 = 0 and H ^ x ' ^ ' ) = Oj = 0 ,1 , . . . , k - 1}.

By assumption cr(?/) G G^2 \ G^3, so H^r^O) / 0 which (c/: again Lemma 24.3.1 in
[H]) is equivalent to H^^x^ff} / 0. We may assume that 0 is so small that

^+^i(^0/0, (rr;OG0.

Then
S = {(^;Q G 0 : p(x^) = H^x^x^) = 0}

is a symplectic submanifold of T*(0) with dim 5 = 2n - 2 and 5 C ̂ (O) = 5'*(^).
We claim that A4 = S H G is a symplectic submanifold of S with dim M. = 2n — 4.

Indeed,
M = {(0,^;0,0 e 0 : ro(x',a = H^r^x',^') = 0} C G,? ^? s y ^ ̂  • ' uv^ ? s ) — ^ro

and in G we have {ro,^^"1^!} = -ff^ri 7^ 0. Now the Darboux lemma implies that Ad
is a symplectic submanifold of G (and therefore of 5') of codimension 2.

Take small open neighbourhoods U ' of ZA' in Z^,, V of cc; in S71'1. Choose a number
^/ G (0,to) so close to to that the segment {^(z^cc;) : i' < t < to} of 7cc;(^/) is contained
in 0 and has no common points with 9K. Let

Ft'(u/^)=(u/f^)

and let A be a hyperplane in R71 containing ^// and transversal to 77. There exist \>to—t/

close to ^o — ^ and an open neighbourhood W" = U" x V" of (u'^rj) in 5* (A) such
that Ft{W") C 0 for all \t\ < A.

Next, let r c i , . . . ,Xg be the consecutive transversal reflection points of ^^{u'). For each
i <_ s, let r\ be an open neighbourhood of xi in 9AT so that

r,n{Ft(^) :o^^^}={^} .

We may assume that these neighbourhoods and the neighbourhood W = U ' x V of (?/, a;)
are so small that whenever (n, ^) G M77, the trajectory \Fi(u^ ^) : 0 < i < t ' } has exactly s
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SINGULARITIES OF THE SCATTERING KERNEL 745

transversal reflections ^ / i , . . . , ys at 9K and yi e 1̂  for each i = 1 , . . . , s and this trajectory
has no tangent points to r = Fi U . . . U Fg. Now for ('u,$) G W define the trajectory
7(16, $) to be the billiard trajectory issued from (u^) which has reflections at T only
(i.e. the rest of 9K is disregarded). Let P^(u^} be the first intersection point of 7(^,$)
with the set W " . Assuming W is small enough, we get a well-defined symplectic map

p^ : w' —> W".

Notice that for (n,^) G W D Ss^(^). Pi(u^) coincides with the first intersection point
of the trajectory {Ft(u^) : t ^ 0} with W11.

Since
CQ={{U^):U^U'}

is a Lagrangian submanifold of W C 5'*(Z^), it follows that C' = P^(Co) is a Lagrangian
submanifold of W " .

Next, we define the map

p^ : w" —> S

in the following way. Given p G W " , consider the integral curve of the vector field
Hp in T^R") (this curve is actually in 5'^R71)) issued from p and denote by P^p) its
intersection point with S. If W" (resp. W) is small enough, P^ is a well-defined smooth
symplectic map. Hence C" = P^C'} is a Lagrangian submanifold of S. It now follows
from Proposition 3.6 in [Sti] that there exists an open neighbourhood 0' of (j(u') in 0 with

r" n M n <y c c

for some Lagrangian submanifold C of A^. In particular dim£ = n — 2. Set

W = (?2 o Pi)-1^'), Z = (?2 o Pi)-1^).

Then W is an open neighbourhood of (u^uj) in 5'*(Z^) with VF C W, while Z is an
(n — 2)-dimensional submanifold of CQ. Finally, notice that for the set Ss^(c<;), defined
in the beginning of this proof, we have (Ss,fc(^) x {^}) F}W C I. So, there exist a
neighbourhood U\ = pT-^(W) of u' in Z ,̂ and a smooth (n — 2)-dimensional submanifold
Zi = pri(Z) of Z^ such that S^(^) H U^ C Zi.

The above local argument shows that Ss^(o;) can be covered by a finite union of
(n — 2)-dimensional submanifolds of Z^. This completes the proof of the assertion. D

4. Trapping obstacles

Throughout this section we assume that the obstacle K e /Co satisfies the following
condition:

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



746 V. PETKOV AND L. STOYANOV

There exist cc;o ^ S^"1 and a boundary point UQ of Z^ such that 7(^0^0)
is a regular trapping ray for K and there exists an open ball Uo with

(F) < center ^o in Z^ such that for almost all u ^ UQ, if the map u' ^ J^(u'}
is defined, differentiable and singular on a whole neighbourhood V of u
in Z^o ^ tnen ^o = const on some neighbourhood of u in Z^p.

Remark. - The above condition emerged from our efforts to find a geometrical condition
that implies (ND). As one can easily convince himself, in general this would be quite a
difficult task. It is natural to expect that (F) would be satisfied if K admits a regular trapping
ray with reflections from cylindrical (or close to cylindrical) parts of the boundary 9K. So
it certainly determines a non-trivial class of obstacles. Especially when the dimension n is
relatively small, it does not look so restrictive. In fact, as we shall see in the next section,
every regular trapping obstacle in the plane satisfies the condition (F).

Fix cc;o, UQ and the ball UQ with the properties in (F). According to the regularity of the
trapping ray 7(^0^0), we may assume that Uo is so small that for almost all u G Uo
the ray 7(^,0:0) has no diffractive tangent points to 9K. The fact that UQ is a boundary
point of Z^ implies

uo e Uo n u^.
Recall from Section 3 that U^ = Z^ \ Z^\ Thus, U^ \ Z^ = Z^ \ (Z^ U Z^)
is an open subset of Z^.

PROPOSITION 4.1. - Let u G Uo and let V be a connected open subset of U^ \ Z^. If
J^ (n) = const for u G V, then T^ {u) = const on V.

Proof. - It is enough to show that VT^o = 0 on V. Let 6 = J^ (u) for u G V. Fix v G V
and take a neighbourhood V of v in V such that k{u) = k = const for u G V. Then

k-l

T^(u) = (^o^i(^)}+^IM^)- ^+1(^)11 ~(xk(u),e}
i=l

for each u G V'. Using this and the reflection law at each reflection point Xi(u) of
7(^,^0), we get:

9^o. ^ / 9X^ ^——4^) =(^,——{u)
ouj \ duj /

k-l Xj(u)-x^(u) Ox,{u) _ 9xw \ _ / O x k^ x.W-x^u) ^w "^fa^ —^(u) 6
+^\||^)-^(,)||- Qn, w Qu, w ) {Ou^^

_^/9^ x^{u}-x,[u) X j { u ) - X j ^ ( u ) \
~ ̂  \9u,w' \\x^(u) - x,(u)\\ ' \\x,(u) - x^{u)\\ /

iQx^ , ^i(^) -^(u) \
+ ( -—{u)^o + -n——\———T\\\ I\9uj \\x^u) - x^{u}\\ /

, / ^ fe . ^ Xk-l(u) - Xk{u) A
+\9u,{uh H^-iM-^MII' 7~
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