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THE GROTHENDIECK-RIEMANN-ROCH
THEOREM FOR GROUP SCHEME ACTIONS

BY BERNHARD KOCK

ABSTRACT. - Let G be a group or a group scheme. We establish formulas for the equivariant Euler characteristic
of locally free G-modules on a projective (^-scheme: We prove an Adams-Riemann-Roch theorem and, under
a certain continuity assumption for the push-forward map, a Grothendieck-Riemann-Roch theorem in (higher)
equivariant K-theory. Furthermore, we present the following applications: The Adams-Riemann-Roch theorem
implies that Adams operations and induction for representations commute with each other. In case of a flag variety
G/B, the continuity assumption mentionned above is verified, and the Grothendieck-Riemann-Roch theorem yields
a new proof of the Weyl character formula. © Elsevier, Paris

RESUME. - Soit G un groupe ou un schema en groupes. Nous etablissons des formules pour la caracteristique
Eulerienne equivariante pour les G-modules localement libres sur un G-schema projectif: nous prouvons Ie theoreme
de Adams-Riemann-Roch et, sous 1'hypothese d'une certaine continuite pour 1'application image directe, Ie theoreme
de Grothendieck-Riemann-Roch en K-theone equivariante (superieure). De plus, nous presentons les applications
suivantes : Ie theoreme de Adams-Riemann-Roch implique que les operations de Adams et 1'induction pour les
representations commutent. Dans Ie cas d'une variete G/B de drapeaux, 1'hypothese de continuite mentionnee
ci-dessus est verinee et Ie theoreme de Grothendieck-Riemann-Roch apporte alors une nouvelle demonstration de
la formule des caracteres de Weyl. © Elsevier, Paris
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416 B. KOCK

Introduction

For a projective morphism / : Y -> X between complex nonsingular varieties, there
are essentially two different Riemann-Roch formulas both of which imply the famous
Hirzebruch-Riemann-Roch theorem. The first one says that the canonical map from
algebraic to topological -K'-theory commutes with push-forward ^. A generalization of
this formula to higher ^-theory of group scheme actions with values in the equivariant
etale-topological K-theory was given by Thomason in [Th2]. The second one is the
Grothendieck-Riemann-Roch formula with values, say, in the graded object associated
with the Grothendieck filtration on the algebraic K-theory. It describes the behaviour of
the Chem character with respect to push-forward. This paper deals with a generalization
of the latter formula to the equivariant case, again in the context of higher K-theory of
group scheme actions.

Let G / S be a flat group scheme. For a G-scheme X / S , let Kq(G,X) denote the q-th
equivariant K-group of X, i.e. Quillen's q-th .PC-group associated with the exact category
of locally free G-modules on X, and let

K(G^X):= © K,(G^X).
q>0

Then exterior power operations make the Grothendieck ring KQ^G, X) a so-called (special)
A-ring. Applying Grayson's construction of exterior power operations on higher ^-theory,
we also obtain maps \\ i > 0, on Kq(G,X), q > 1 (see section 2). Conjecturally,
K(G^ X) together with these maps is a (special) A-ring. Whereas two of the three axioms
of a A-structure are rather easy to verify (see section 2), so far no proof is known for
the remaining axiom concerning the composition of exterior power operations. Apart from
Grassmann varieties (see section 2) and generalized flag varieties G / B (see section 7),
this axiom can be checked in the rather general situation, when X is nonsingular and G is
a finite constant group scheme whose order is invertible on X (see [Ko2] and section 2).

Now let / : Y —)• X be a G-projective local complete intersection morphism between
G-schemes Y and X. We furthermore assume that each coherent G-module on X (and
then also on Y) is a G-quotient of a locally free G-module (of finite rank). This assumption
holds in most interesting cases by Thomason's work [Th3]. Then the association

^E^w*^
(T a locally free G-module on Y) "induces" a push-forward homomorphism

f.:K(G^Y)-.K(G,X^

the so-called equivariant Euler characteristic or Lefschetz trace (see section 3). The
equivariant Riemann-Roch problem is to compute this Euler characteristic f^.

Our first answer to this problem is a formula for the behaviour of the Adams operations
^ J ^ 1, with respect to /„ (see section 4). For this, let K{G, X)[j~1} be the completion of
K(G, X)[j~1] with respect to the Grothendieck filtration on K{G, X)[j~1}. (It would also
suffice to complete with respect to the J-adic filtration where I is the augmentation ideal in
Ko{G, X).) Let O^f) e Ko(G, Y) be the j-th equivariant Bott element associated with /.
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THE GRQTHENDIECK-RIEMANN-ROCH THEOREM 417

THEOREM (Equi variant Adams-Riemann-Roch formula). - For all y G K(G^Y) and
j > 1^ we have

^f.(y)=f.(0j{f)~l'^(y)) in K(G^x)[j-

Apart from the generalization from finite constant group schemes to (more or less)
arbitrary flat group schemes, the essential improvement of this formula (compared with
the formulas in my previous paper [Ko2]) is that it drops the assumption that either G
acts trivially on X and Y or that f is a regular closed G-immersion. However, this
improvement makes it necessary to complete AT-theory as defined above in order to be
able to invert Bott's element (see section 4).

Our second answer to the equivariant Riemann-Roch problem is a formula for the
behaviour of the Chem character

ch : K(G,X) -^ GrK{G,X)^ = JJ FnK(G,X)^/Fn^lK(G,X)^
n>0

with respect to the equivariant Euler characteristic f^ (see section 5): Whereas the
equivariant Adams-Riemann-Roch theorem does not use the third axiom of a A-structure,
we now assume not only the conjecture mentioned above (concerning the A-structure on
higher AT-theory) but also the following conjecture (concerning Grothendieck groups as
well) to be true:

CONJECTURE. - The equivariant Euler characteristic /* : K(G^Y) —» K(G^X} is
continuous with respect to the Grothendieck filtrations, i.e. f^ induces a homomorphism

^ : K ( G ^ Y ) ^ K ( G ^ X )

between the completions.
Let Td(/) G GrJ^(G, Y)q denote the equivariant Todd class associated with /.

THEOREM (Equivariant Grothendieck-Riemann-Roch formula). - Under the above
assumptions, (/*)q respects the Grothendieck filtrations up to a shift, and for all
y G K{G,Y), we have

ch(/.^))-Gr(^)Q(Td(/).ch^)) in GvK(G^X)^

This theorem is proved in section 5 where we also present some special cases (see below)
supporting the above conjecture on /*. In the non-equivariant case, this theorem was proved
by Grothendieck (see [SGA6]) for Ko-groups and by Soule (see [So]) for higher AT-groups.

In section 6, we apply the equivariant Adams-Riemann-Roch theorem to the following
situation. Let H be a subgroup of the finite (abstract) group G, A a commutative ring, and
let %„ : K(H,A) —^ K{G,A) be the induction map.

COROLLARY (Induction formula). - For all x G KQ(H^ A) and j ^ 1, we have

^W^i^(x) in K(G,A)[j-1}.

This formula for instance implies that the induced representation A[G/H] viewed as an
element of KQ{G,A)[j~1] is invariant under the Adams operations ^, j > 1. Whereas
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418 B. KOCK

this fact can directly be checked for A = C by identifying representations with characters
and by using Atiyah's computation of the kernel of the completion map, I do not know an
elementary proof of this fact for A == Z (but see Remark (6.10) for related formulas). An
interesting application of this fact is the construction (see section 6) of universal annihilators
for the Chem classes of the induced representations A[G/H] in the sense of Grothendieck
(see [Gro2]) or Thomas (see [Tho]). In the case A = C, we furthermore interpret a deep
theorem of Atiyah (see [At]) as an example where f^ is continuous as conjectured above.

Using some ideas from the paper [KK2] of Kostant and Kumar, we compute the higher
T-equivariant (algebraic) ^-theory of G / B in section 7. Here, G is a simply connected
split semisimple group scheme over a regular base S, T a maximal split torus in G, and B
a Borel subgroup of G containing T. We deduce from this computation that K(T, G / B ) is
a (special) A-ring and that the push-forward homomorphism TT* : K(T, G / B ) -^ K(T, S)
associated with the structure morphism TT : G / B —^ S is continuous as conjectured above.
Applying the equivariant Grothendieck-Riemann-Roch theorem to TT, we finally give a new
proof of the famous Weyl character formula.

We now describe further relations connecting the subject of this paper with several
rather different areas.

Chinburg, Erez, Pappas, and Taylor have independently proved similar equivariant
Riemann-Roch formulas for arithmetic schemes with a finite group action (see [CEPT]).

Current research is concerned with the question how to express the "Adams operations"
defined by Cassou-Nogues and Taylor on locally free classgroups (see [CNT]) in terms of
(exterior) power operations (see [BC], [Ko8], and [Ko9]). In the paper [BC], Burns and
Chinburg establish a formula for these "Adams operations" for certain ambiguous ideals in
a tame Galois extension of a number field. In the paper [Ko9], we give an algebro-geometric
explanation of their formula using the equivariant Adams-Riemann-Roch theorem of this
paper.

Edidin and Graham develop an equivariant intersection theory in their paper [EG]. They
establish a Riemann-Roch isomorphism between equivariant K-theory and equivariant
intersection theory and they prove a version of the continuity conjecture mentioned above
for arbitrary reductive groups acting on smooth varieties over a field.

In the paper [BV], Brion and Vergne prove an equivariant Riemann-Roch theorem for
complete, simplicial toric varieties. One should be able to deduce their theorem from the
equivariant Grothendieck-Riemann-Roch theorem of this paper. This would in particular
solve the problem mentioned at the end of the paper [Mo] by Morelli. I hope to say more
on this in a future paper.

Finally, I would like to mention that several people working in Arakelov theory expect
that there exist theorems of Riemann-Roch type in equivariant Arakelov J^-theory which
would be analogues or generalizations of the results of this paper.

Since probably facts and proofs concerning algebraic geometry, (higher) ^-theory,
group schemes, (equivariant) Riemann-Roch theory, etc. are sometimes assumed to be
well-known without giving a reference in the text, I now give a list of books which I
have used and where these facts and proofs are likely to be found: [EGA], [FL], [Ha],
[J], [KoO], [Q], [SGA3], [SGA6].

This paper is a revised version of my "Habilitationsschrift" ([Ko6]). I would like to
thank T. Chinburg, F. Herrlich, W. v. d. Kallen, I. Panin, D. Roessler, C. Soule, G. Tamme,
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THE GROTHENDIECK-RIEMANN-ROCH THEOREM 419

M. J. Taylor, and R. W. Thomason for their encouraging interest in this project and for
discussing several questions during the preparation of this paper. Especially, I would like
to thank C.-G. Schmidt for his support in so many ways during the last years.

1. Equivariant geometry

The purpose of this section is to introduce some notations used throughout this paper and
to recall some facts and constructions of equi variant geometry for the reader's convenience.

Let S be a noetherian scheme, and let G be a flat group scheme over 5. All fibred
products of schemes without further specifications will be taken over S. A G-scheme over
S is an S-scheme X together with an S'-morphism mx : G x X -^ X which satisfies the
usual associativity property. For any G-schemes X, Y over S, the set of G-equivariant
5'-morphisms (for short: G-morphisms) from X to Y is denoted by Moro{X,Y). We
denote the category of G-schemes of finite type over S by (G-schemes/*?).

Let X € (G-schemes/5'). The following definition describes the same as Mumford's
notion "G-linearization" (see Chapter I, §3 of [Mum]).

(1.1) DEFINITION. - A G-module on X is an Ox-module M together with an isomorphism

m^t : m'x'M —> pr^-M

of OGXX-modules which satisfies the following associativity property:

(pr^m^) o ((1 x mxYrriM) = (^G x 1)*^M-

Here, me denotes the multiplication G x G —» G, and pr^ : G x X —^ X and
pr^ 3 : G x G x X — ^ G x X denote the obvious projections. A homomorphism of
G-modules on X is a homomorphism of the underlying Ox-modules which is compatible
with the G-structures. We denote the category of G-modules on X by ./V(G,X). The full
subcategory ofN(G,X) consisting of coherent modules (respectively locally free modules
of finite rank) is denoted by M{G,X) (respectively P(G,X)).

(1.2) EXAMPLE. - (a) The structure sheaf Ox is a G-module on X via the canonical
isomorphisms m^Ox ^ OGXX ^ P^x°x' A closed subscheme Y of X is a G-subscheme
if and only if the associated ideal sheaf is a G-submodule of Ox-

(b) Direct sums, tensor products, exterior and symmetric powers, and the dual of G-
modules on X are again G-modules on X\ they satisfy the obvious universal properties
in A^(G,X).

(c) For any G-morphism / : X —^ Y in (G-schemes/5), the module of relative
differentials QX/Y is a G-module on X. The direct image and the inverse image define
adjoint functors between M{G,X) and J\T{G,Y): The action of G on the direct image is
based on the base change isomorphism (cf. Corollaire (9.3.3) of [EGA] I). The projection
formula holds for G-modules.

(d) If G is a constant group scheme, i.e. if G = U-yer s with an ^stract group F, then a
G-module on X is the same as an Ox-module M together with isomorphisms ̂ M —^ M,
7 € r, which satisfy the usual associativity properties (cf. section (1.1) of [Ko2]).
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420 B. KOCK

(e) A quasi-coherent (^-module on the base S is the same as a quasi-coherent Os'
module £ together with a homomorphism G —^ Aut(<?) of group schemes over S (<see
Proposition (9.6.4) of [EGA] I for the definition of Aut(f)).

Proof. - Straightforward.

(1.3) LEMMA. - The categories Af(G^X) and A4(G^X) are abelian categories. The
category P(G, X) is an exact category in the sense of Quillen (see [ Q ] ) . A sequence of
G-modules on X is exact if and only if the underlying sequence of Ox-modules is exact.

Proof. - This follows from the flatness of G over S.
For any quasi-coherent G-module £ on X, the associated projective space bundle

Px(S) is a G-scheme over S which satisfies the corresponding universal property in
(G-schemes/6'). Though this fact is well-known, I don't know a reference for it. Since,
on the other hand, the projective space bundle is a fundamental tool in the equivariant
Riemann-Roch theory, we will prove it here.

For this, more generally, let F : (Schemes/X) —> Sets be a representable contravariant
functor, and let (TT : P —^ X, 1 € F(P —> X)) be the representing pair. By composing with
the projection pr^ and the multiplication mx, we obtain functors

Fpr^ and Fmx : (Schemes/G x X) -^ Sets.

Let
m : Fp^ -> Frnx

be an isomorphism of functors which satisfies the associativity property

^Ixmx ampT2,3 = ̂ mcXl : (Fpr^)mGXl ~^ (Fmx)mGXl-

(1.4) LEMMA. - ( a ) There is a unique action mp : G x P —^ P of G on P such that
the diagram

G x P ^ P
t IXTT [ 7 T

GxX ^ X

commutes and such that F(mp)(l) = m(G x P ̂  G x X)F(prp)(l) in F(G x P
^ G x X ̂  X) = F^(G x P ̂  G x X).

( b ) The pair (P, 1) equipped with the G-action of (a) represents the functor

{G-schemes / ' X ) —^ Sets
(T -, X) ̂  {a G F(T -> X) : F^rXa) = m(G x T-^ G x X)F(pr^)(l)

in F(G xT -^ G x X m^ X) = F^{G x T - ^ G x X)}.

Proof. - The uniqueness assertion in (a) is clear. Since G x P is the fibred product
o f G x X with P over X with respect to the canonical projections, the G x X-scheme
G x P -^ G x X represents the functor Fpr^ • The corresponding canonical element is

4'̂  SfiRIE - TOME 31 - 1998 - N° 3



THE GROTHENDIECK-RIEMANN-RQCH THEOREM 421

F(prp)(l) G F(G x P ̂  P ̂  X) - Fp^(G x P ̂  G x X). Let (G x X) x^ P
be defined by the cartesian square

( G x X ) x ^ P -^ P

I I-
G x X ^ X

Then the projection {G x X) x^n P —^ G x X represents the functor Fynx- The
corresponding canonical element is F(pr)(l) G F((G x X) x^P -^ P -n—9- X) =
F^((G x X) Xm P —» G x X). Now the functor isomorphism m defines a (G x X)-
morphism

Gx P ̂  { G x X ) x^P

denoted by m again. The morphism m is determined by the equality F(m)F(pr)(l) =
m{G x P —> G x X)F(prp)(l). We define mp to be the composition

G x P -m^ ( G x X ) x ^ P -pr^ P,

and the assumed associativity property shows that mp indeed is an action. Thus, claim (a)
is proved. For claim (b), let T —^ X be a G-scheme over X. Then we have

Morc,x(^ P) = {a G Morx(T, P) : a o mr = mr o (1 x a)}
= {a (E F(T) : F(mr)(a) = m(G x T-^ G x X)F(pr^)(a)}.

(1.5) Let £ be a quasi-coherent G-module on X. Then the associated project! ve space
bundle TT : Px{£) —^ X represents the functor

F : (Schemes/Z) -^ Sets
{p : T -^ X) ̂  {Invertible quotients of ?*<?}.

The canonical element is the twisting sheaf 0(1) on Px{£) considered as an invertible
quotient of 7r*£. The isomorphism m^ : m\£ —> pr^-f defines an isomorphism of functors
m : Fpr^ —^ Fmx which satisfies the above associativity property. By Lemma (1.4)(a), we
have an action mp of G on Px(^) such that the invertible quotient mjS>7r*<? —)- mp0(l)
equals the invertible quotient mp7r*<? = (1 X7r)*m^<? x_7_m£ ^ xTr)*?^^ == prp7r*£ ̂
prp0(l). This means there is an isomorphism mo{i} : mp0(l) —> prp(0(l)) which
identifies these two quotient maps. Then 0(1) together with mo{i} is a G-module on
Pjc(f) and the quotient map TT*<? —^ 0(1) is a G-homomorphism. By Lemma (l,4)(b), the
pair (P^(<?),7r*<? ^- 0(1)) together with these G-structures represents the functor

(G-schemes/X) -^ Sets
(p : T -^ X) ̂  {Invertible G-quotients of ?*£}.

The homomorphism £ -^ TT^S —> TT^O(I) and, more generally, the homomorphism

Sym(£)-^ r,(0p) = e 7r,(0(n))
n>0
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422 B. KOCK

are G-homomorphisms and even G-isomorphisms if £ is locally free. Furthermore, it
follows that, for any locally free G-module £ of rank r on X, the Koszul resolution

0 -^ yT7r*<? 0 0(-r) -^ ... -^ TT*<? 0 0(-1) -^ 0

is an exact sequence of G-modules on Px(<?).
The same procedure can be applied to other bundle constructions in order to show that

they carry a natural G-structure and that they satisfy the corresponding universal properties
in (G-schemes/5').

(1.6) Let V ̂  X be a closed immersion of G-schemes over S. Using the universal
property of blowing up, one easily shows that the blowing up Bly(X) of X along Y
carries a natural G-action which is compatible with the canonical projection Bly(JC) —^ X
and that Bly(X) satisfies the obvious universal property in (G-schemes/5').

This fact and the previous considerations show that G naturally acts on the deformation
space used for the deformation to the normal cone and that all arrows in the deformation
diagram (see page 99 of [FL]) are G-morphisms.

2. The A-strocture on the equivariant algebraic K-iheory

After recalling the definition of the higher equivariant AT-groups, we apply Grayson's
techniques of [Gr] to define exterior power operations on these K-groups. We show that
these exterior power operations make the equivariant Grothendieck group a A-ring and
that, on higher ^-groups, they satisfy two of the three axioms of a A-ring. For this,
the essential ingredient is the splitting principle based on the equivariant projective space
bundle theorem.

As in the previous section, let S be a noetherian scheme and G a flat group scheme
over S. Let X be a G-scheme of finite type over 5'.

(2.1) DEFINITION. - For any q ^ 0, the q-th K-group

K,(G^X):=K,{P(G^X))

(in the sense of Quillen, cf. [Q]) associated with the exact category P(G,X) consisting
of locally free G-modules on X of finite rank is called the q-th equivariant (algebraic)
K-group of X.

The tensor product makes the Grothendieck group Ko(G,X) a commutative ring with
1 = [Ox] and Kq{G,X) a Ko(G,X) -module for each q > 0. We endow the direct sum

K(G^X):= e K,(G,X)
q>0

with the multiplication induced from this ring and module structures; the product of
elements of Oq>iKq(G,X) is defined to be zero. The inverse image of G-modules
obviously makes K(G, -) a contravariant functor with respect to arbitrary G-morphisms.

The following theorem is fundamental in the equivariant Riemann-Roch theory.

(2.2) THEOREM (Equivariant projective space bundle theorem). - Let £ be a locally free G-
module of rank d on X. Let ^ : P := Px(£) -^ X be the associated projective space bundle
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in (G-schemes/S') and 0(1) the universal invertible G-module on P (cf. (1.5)). We view
K{G, P) as K{G, X)-algebra via the pull-back homomorphism TT* : K(G, X) -> K{G, P).
Then the association T i—^ [0(1)] induces an isomorphism

I ( d \
K(G^X)[T] / ^(-l)^]^-1 -> ^(G,P)

of K(G,X)-algebras.

Proof. - We recall the argument of Thomason (cf. Theorem 3.1 of [Th3]): Quillen's
proof of the non-equivariant analogue (cf. [Q], Theorem 2.1) carries over. The essential
ingredients Quillen's proof is based on (e.g. the Koszul complex) are summarized in (1.5).
Note that even no finiteness assumption on G is necessary though assumed in [Th3].

Next, we recall the notion "X-ring'\

(2.3) DEFINITION. - A A-ring is a commutative ring K together with maps

^ :K ^ K, k > 0,

which satisfy the following properties:
( i ) \° = 1, A1 = id^, Xk(x + y) = ̂ ^ X^^x) • X\y) for all x, y G K and k > 2.
(ii) A^ • y) = P/,(A1^ . . . , Xkx, A 1 ? / , . . . , Xky) for all x, y G K and k > 2.
( H i ) XkXl(x) = P^(A1^..., X^x) for all x e K and k, I ^ 2.
Here Pje and P^.i are the universal integral polynomials defined e.g. on page 5 of [FL].

If K only satisfies axiom (i) we call K a pre-A-ring.

(2.4) LEMMA. - The exterior power operations [£} i-̂  [A^f], k > 0, induce well-defined
maps A^, k > 0, on the Grothendieck group Ko(G^X). KQ^G^X) together with these
maps is a X-ring.

Proof. - In order to show that Ko(G^X) carries a pre-A-ring structure, it suffices to
show that for any exact sequence 0 —^ £ ' —^ £ —^ E" —> 0 of locally free G-modules
on X we have

[A^] = Y^A^S'} .[A^] in K^X)

for all k >_ 0. In order to prove this (and in order to give at least the essence of Grayson's
axioms of power operations on an exact category (cf. [Gr]) needed later on), we will define
the obvious equivariant analogue of the Koszul filtration on Ak£ and we will prove the
analogous properties: For any i = 0 , . . . , fc, the G-module T1 := Ak~^£/ A A^£ on X
is defined to be the image of the canonical G-homomorphism Ak~^£l 0 A^£ —> Ak£.
Then, similarly to the non-equivariant case, 0 C y° C ... C ^k = Ak£ is SL
filtration of Ak£ by locally free G-modules on X, and the canonical G-homomorphism
A^C' 0 A'e -> A^e' ^) AC" induces a G-isomorphism

r i r ~ 1 -> A^e' ^ A e " .
This shows that A"o(G, X) is a pre-A-ring. Axioms (ii) and (iii) follow from an equivariant
version of the splitting principle (see Theorem 2.7 of [FL] on p. 118) which is a consequence
of the equivariant projective space bundle theorem (2.2).
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