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A PURITY THEOREM FOR THE WITT GROUP

By MANUEL OJANGUREN anp Ivan PANIN

ABSTRACT. — Let A be a regular local ring and K its field of fractions. We denote by W the Witt group functor
that classifies quadratic spaces. We say that purity holds for A if W(A) is the intersection of all W(A,) C W(K),
as p runs over the height-one prime ideals of A. We prove purity for every regular local ring containing a field
of characteristic # 2. The question of purity and of the injectivity of W(A) into W(K) for arbitrary regular local

rings is still open. © Elsevier, Paris

RESUME. — Soit A un anneau local régulier et K son corps des fractions. Soit W le foncteur groupe de Witt qui
classifie les espaces quadratiques. On dit que le théoréme de pureté vaut pour A si W(A) est I'intersection de tous
les W(Ap) € W(K), ot p parcourt les idéaux premiers de hauteur égale a 1 de A. Nous démontrons le théoréme
de pureté pour tout anneau local régulier qui contient un corps de caractéristique # 2. La question de la pureté et
de I’injectivité de W(A) dans W(K') pour un anneau local régulier arbitraire est encore ouverte. © Elsevier, Paris
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72 M. OJANGUREN AND 1. PANIN
1. Introduction

We briefly review the definitions of quadratic spaces and Witt groups. A very detailed
exposition of these topics may be found in [9] and in [10].

Let X be a scheme such that 2 is invertible in I'(Ox ). A quadratic space over X is a
pair q = (&, q) consisting of a locally free coherent sheaf (we also say “vector bundle™)
€ and a symmetric isomorphism ¢ : £ — £* = Homp, (£,Ox): this means that, after
identifying £ with £** in the usual way, it satisfies ¢ = ¢*.

An isometry ¢ : q — ¢’ is an isomorphism ¢ : &€ — £’ such that the square
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commutes.

The orthogonal sum of q and q' is the space q L ' = (€D E', ¢ ).

Let q = (€, q) be a quadratic space over X and F a subsheaf of £. The orthogonal F+
of F is the kernel of :* o g, where i denotes the inclusion of F into £.

A subbundle L of £ is a sublagrangian of q if £ C £+, and it is a lagrangian if £L = L*.
Note that lagrangians and sublagrangians are subbundles, i.e. locally direct factors, not just
subsheaves. A space q = (£, q) is said to be metabolic if it has a lagrangian.

Let GW(X) denote the Grothendieck group of quadratic spaces over X with respect to
the orthogonal sum. Let M be the subgroup of GW(X) generated by metabolic spaces.
The Witt group of X is the quotient W(X) = GW(X)/M. If f : X — Y is a map of
schemes and q = (&, q) is space over Y, the pair f*q = (f*€, f*q) is a quadratic space
over X. It is easily seen that f* respects orthogonal sums and maps metabolic spaces to
metabolic spaces; thus f induces a group homomorphism W(f) : W(Y) — W(X) and
W turns out to be a contravariant functor from the category of schemes to the category
of abelian groups.

If X = Spec(A) is affine, a quadratic space over X is the same as a pair (P,q)
consisting of a finitely projective A-module P and an A-linear isomorphism ¢ : P — P*
such that ¢ = ¢*. In this case a space (P, q) is metabolic if and only if it is isometric to
a space of the form (L& L*,(97)).

For an affine scheme X = Spec(A4) we denote W(X) by W(A).

Let now X be an integral scheme and K = k(X)) its field of rational functions. By the
functoriality of W there is a canonical map W(X) — W(K) and, for every point z € X,
a canonical map W(Ox ,) — W(K). We say that an element { € W(K) is defined at z if
¢ is in the image of W(Ox ). We say that an element £ € W(K) is unramified (over X)
if it is defined at every height-one point x € X. We say that purity holds for X if every
unramified element of W(K') belongs to the image of W(X) in W(K).

Purity is known to hold for every regular integral noetherian scheme of dimension at
most two [3] and fczr every regular integral noetherian affine scheme of dimension 3 [15].

The main result of this paper is the following purity theorem (§7).

THEOREM A. — Purity holds for any regular local ring containing a field of characteristic
different from 2.
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A PURITY THEOREM FOR THE WITT GROUP 73

Theorem A will be deduced from the same statement for essentially smooth local algebras
over a field, using a well-known result of Dorin Popescu. Further, using essentially the
same methods, we prove (§8)

THEOREM B. — Let A be a regular local ring containing a field of characteristic # 2 and K
the field of fractions of A. Let f be a regular parameter of A. The natural homomorphism
W(Af) — W(K) is injective.

From this, using a result of Piotr Jaworski for 2-dimensional regular rings, we deduce (§9)

THEOREM C. — Let A be a regular local ring containing a field of characteristic # 2 and
f a regular parameter of A. There is a short exact sequence

0 — W(A) — W(A;) - W(A/Af) — 0,

where § is induced by the second residue homomorphism Oy at the height-one prime p = Af.

Let A((t)) = A[[t]}: be the ring of formal Laurent series over A. As a special case of
Theorem C we can formulate (§9):

THEOREM D. — Let A be a regular local ring containing a field of characteristic # 2.
There exists a split short exact sequence

0—>W(A)—>W(A((t)))——>W(A)——>O.

Remark. — The method used for proving purity for an essentially smooth local k-algebra
A also yields a new proof of the injectivity of W(A) into the Witt group W(K) of its
field of fractions. Since this result is well-known and not very difficult (see for instance
[14]), we use it whenever it is convenient, without proving it again.

Our proof has been inspired by Vladimir Voevodsky’s work [20] and makes essential
use of a non-degenerate trace form for finite extensions of smooth algebras, which was
discovered by Leonhard Euler in a special case. We recall its definition and main properties
in §§ 2 and 3.

2. The Euler trace

Let k be any field and A — B a finite extension of smooth, purely d-dimensional k-
algebras. Let Q4 and 25 be the modules of Kihler differentials of A and B over k and let
Qp,4 be the module of relative differentials of B over A. Let wy = /\d Q4, wp = /\d Op.

PRrOPOSITION 2.1. — There exists an isomorphism of B-modules
wpB —:—> HOIHA(B,(UA).

Proof. — Let R be the polynomial algebra A[Xy,...,X,] and p: R — B a surjective
homomorphism of A-algebras. Let I = ker(p). Since B is a local complete intersection
over A, by Lemma 4.4 of [18] there exists an isomorphism of B-modules

n

(%) Hom4(B, A) ~ [\ (Homp(I/I?, B)) .
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74 M. OJANGUREN AND I. PANIN

On the other hand, from the canonical exact sequence of projective B-modules (see [1],
VII, Theorem 5.8)

0—I/I? - BRrNg — Np —0,

we deduce, taking maximal exterior powers, that

(1) wB®B/\(I/]2)':B®AwA.

From (1) we get, using the fact that 7/I? is a finitely generated projective B-module,

wp ~ (B®4wa) ®p Homp </n\(1/12),B> ~ (B®awa)Qp /\ (Homp(I/I?, B))
and then, from (x),

(B®awa)®sp J\ (Homp(I/I*, B)) ~ ws ®4 Homa(B, A) ~ Homs(B,w,) . O
COROLLARY 2.2. — If wa and wg are trivial, there exists an isomorphism of B-modules
A: B - Homu(B, A) . O
The isomorphism A induces an A-linear map
e:B—- A

defined by e(xz) = A(1)(x). We call it an Euler trace because Euler discovered a special
case of it (see [5] and also [17], Chap. III). Conversely, from ¢ we get back )\ as
Az)(y) = e(zy).

In the next proposition we record, without proof, a few obvious properties of e and A.

PROPOSITION 2.3. — Let B be a finite locally free A-algebra and ¢ : B — A an A-linear
map such that the bilinear map \ : B — Hom (B, A) given by A(z)(y) = e(zy) is an
isomorphism. .

Then, for every A — A’, we have an A’-linear map ¢ = e®4 A’ : B =B®, A’ — A’
such that the associated \' : B' — Homyu/(B', A") is an isomorphism of B'-modules. If
B = B; X By, A decomposes as A1 X Ay, where \; : B; — Homy(B;, A) is the map
associated to ¢|p,. In particular, if B = By X A, the map Ay : A — A is multiplication
by a unit of A.

3. Traces and quadratic spaces

Let A — B be a finite flat extension of commutative rings. Let ¢ : B — A be an
A-linear map such that the associated A : B — Hom4(B, A) is an isomorphism. To every
quadratic space q = (P, q) over B we associate the bilinear form Tr’(q) = (P4, ¢ 0 q),
where P4 denotes P considered as an A-module. This bilinear form is in fact a quadratic
space and it is easy to check (see [10], I, §7) that Tr has the following properties:
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A PURITY THEOREM FOR THE WITT GROUP 75

() Tr'(q L ) = Tr'(q) L Tr'(q").
(2) If q is hyperbolic, Tr*(q) is hyperbolic.

(3) For any homomorphism of commutative rings A — A’ we have
Tr* (q®4 A') = Tr'(q) ®4 A,

where ¢/ = e®4 A'.
(4) If, as at the end of §2, B = B; x B and ¢; = ¢|p,,

Tr'(q) = Tr" (q1) L Tr(q2) ,

where q; = q Qp B;.

(5) I, as in (4), B = B; x By but B, = A, then e, is multiplication by a unit u € A*
and thus, for any quadratic space q,

Tr?(qo) = u-q2 .
If f: A— A’is aring homomorphism and B’ = B®4 A, clearly B’ = B] x B} with

Bl = A’, and ¢ is multiplication by f(u).

(6) Suppose that the map f : A — A’ considered in (5) has a section s : A’ — A and
that B4 A’ = B’ = B} x B} with B, = A’. Then, by (5), ¢, is the multiplication by
a unit u’ of A’. Replacing ¢ by s(u’)~'e, we get a new Euler map ¢ : B — A for which
¢, = idas and, for any ring homomorphism A’ — A”, we have B” = BY x Bj with
BY = A” and ¢4 = id4». Thus, for any quadratic space q” over B”,

e (a5) = df -
(7) The linear map ¢ : B — A induces a homomorphism of Witt groups
T : W(B) —» W(4) .

(8) If B is of the form A[t]/(f) = A[r], where f is a monic polynomial of odd degree
and 7 the class of ¢, we can define an Euler map by

o [0 ifi<n—1,
e(T)‘{l ifi=n—1.

In this case, a direct computation shows that the composite homomorphism
W(A) - W(B) - W(A)
is the identity of W(A).
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76 M. OJANGUREN AND I. PANIN
4. Reduction of purity to infinite base fields

Let F be a finite field of odd characteristic p and A a local, essentially smooth F-algebra
with maximal ideal m. Suppose that purity holds for essentially smooth local algebras over
any infinite field k. Let K be the field of fractions of A and £ an unramified element of
W(K). Let p™ be the cardinality of the algebraic closure of F in A/m and s an odd
integer greater than 2 and prime to m. For any 1 let k; be the field (in some fixed algebraic
closure of F) of degree s over F. Let k be the union of all ;. Since k£ ®¢ (A/m) is still
a field, B = k ®p A is a local, essentially smooth algebra over the infinite field k. Let
L = k®F K be its field of fractions. The image £, of £ in W(L) is unramified. In fact, let
q be a height-one prime of B and p = ANgq. By assumption £ € W(A,) and since A, — L
factors through B, the class &, is in W(B,) for every q. Since purity holds for B, £, is
in the image of W(B). We can now find a finite subfield F’ of k£ and, for A’ = F' ®p 4, a
& € W(A') which maps to £1. Let K’ be the field of fractions of A’. Further enlarging F/,
we may assume that the images of £ and ¢’ in W(K") coincide. Consider now the diagram

W(A4) — W(4") L W(A)

bk

W(R) — W(R") I W(K)

where e has been chosen as in §3 (8). Since the composition of the horizontal maps is the
identity, we have a o Tr*(¢) = ¢ in W(K). Thus £ is indeed in the image of W(A).

5. The geometric presentation lemma

We state and prove a lemma that will play a crucial role in the sequel. In geometrical
disguise it sounds like this:

LEmMA 5.1. — Let A be a local ring of a smooth variety over an infinite field k. Let
U = Spec(A) and let u be the closed point of U. Let p : X — U be an affine U-scheme,
essentially smooth over k. Let f be an element of k[X] such that k[X]/(f) is finite over A.
We denote by Xy the principal open set defined by f # 0. Assume that there exists a finite
surjective morphism X — U x Al of U-schemes and that there exists a section A : U — X
of p such that p is smooth along A(U).

Then there exists a finite surjective morphism © : X — U x Al of U-schemes with the
following properties:

(@) 7= YU x {1}) is in Xy.

(b) 71U x {0}) = A(U) LI D, where D C Xy.

Clearly the statement above is equivalent to the following, purely algebraic one.

LEMMA 5.2. — Let A be a local essentially smooth algebra over an infinite field k, m its
maximal ideal and R an essentially smooth k-algebra, which is finite over the polynomial
-algebra A[t]. Suppose that € : R — A is an A-augmentation and let I = ker(¢). Assume
that R is smooth over A at every prime containing I. Given f € R such that R/Rf is
finite over A we can find an s € R such that

(1) R is finite over Als].
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A PURITY THEOREM FOR THE WITT GROUP 77

(2) R/Rs = R/I x R/J for some ideal J of R.
3)J+ Rf = R.
@ R(s—1)+ Rf = R.

Proof. — Replacing t by t — €(t) we may assume that ¢ € I. We denote by “bar” the
reduction modulo m. By the assumptions made on R the quotient R is smooth over A4 at its
maximal ideal I. Choose an o € R such that @ is a local parameter of the localization Ry
of R at I. By the chinese remainders’ theorem we may assume that & does not vanish at the
zeros of f different from I. Without changing @ we may replace a by o — e(«) and assume
that « € 1. Since R is integral over A[t], there exists a relation of integral dependence

a” +p1(t)a"'1 +...Fp(t)=0.

For any r € k* and any N larger than the degree of each p;(t), putting s = o — rt" we
see from the equation above that ¢ is integral over A[s]. Hence R, which is integral over
Alt], is integral over A[s]. Clearly s € I. To insure that 3 is also a local parameter of Ry
it suffices to take n > 2. By assumption R and A[s] are both regular and since R is finite
over Afs], R is locally free over A[s] (see for instance Corollary 18.17 of [4]) and hence
R/Rs is free over A. Since 3 is a local parameter of Rz, R/SR is étale over A at the
augmentation ideal I and so we can find a g ¢ I + mR such that (R/Rs), is étale over
A. By the next sublemma R/Rs splits as in (2).

SUBLEMMA 5.3. — Let B be a commutative ring, v : B — C' a finite commutative B-algebra
and X\ : C — B an augmentation with augmentation ideal 1. Let h € C be such that

(a) C}, is étale over B.
(b) A(h) is invertible in B.
Then C splits as C/I x C/J for some ideal J of C.

Proof. — Since B — (;, is étale and the composite map
B¢, 2B

is the identity of B, by Proposition 4.7 of [1], C;, — B is étale. But C — C,
is étale, hence A : C — DB is étale and in particular it induces an open morphism
A* : Spec(B) — Spec(C). Its image A*(Spec(B)) = Spec(C/I) is therefore open and
since it is also closed, C splits as claimed.

To complete the proof of Lemma 5.2 we still have to choose r € k* so that conditions
(3) and (4) are satisfied. Since R/Rf is semilocal, there are only finitely many maximal
ideals of R containing f. We denote by m;, ..., m, those which, in case f € I + mR,
are different from I + mf. Recalling that a was chosen outside m; U ... U m,, we have
s ¢ myU...Um, for almost any choice of r € k*. To see that condition (3) is satisfied it
suffices to show that J € m; for 1 <4 < p and that J & m R+ 1. The first assertion is clear
because s € J\m; for 1 < ¢ < p. For the second one note that, since R/Rs = R/I xR/ J,
we have I +.J = R and therefore J € mR + I. It remains to satisfy (4). Since R/Rf is
semilocal there exists a A € k such that s — A is invertible in R/Rf. Without perturbing
conditions (1), (2) and (3) we may replace s by %s and thus satisfy (4) as well.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



78 M. OJANGUREN AND I. PANIN

6. A commutative diagram for relative curves

LeEmMMA 6.1. — With the notation and the hypotheses of Lemma 5.2, let U = Spec(A)
and X = Spec(R). Let p : X — U be the structural morphism and A : U — X the
morphism corresponding to the augmentation € : R — A. Let Z C X be a closed set of
codimension at least 2, contained in the vanishing locus of f. Suppose that wy i, is trivial.
Then there exists a homomorphism ¢ : W(X \ Z) — W(U) such that, for any g € A
with X, C X \ Z, the diagram

W\ 2) L W)
W(j)l lW(i)

W \ Zg) =W(Yy) gz WD)

commutes, where i : Uy, — U and j : X, — X \ Z are the inclusions.

Proof. — By Lemma 5.2 there exists an element s € R satisfying the conditions (1) to
(4). The A-algebra homomorphism A[t] — R sending ¢ to s defines a finite surjective
morphism 7 : X — U x Al of U-schemes such that, putting 7 ~(U x {0}) = A(U) I Dy
and 71U x {1}) = D4, we have Dy U D; C Xy. Since wy a1/ is obviously trivial and
wy i 1s trivial by assumption, we can use Corollary 2.2 to find an Euler trace ¢ : R — A[t]
such that the associated map A : R — Hom 4(R, A[t]) is an isomorphism. We can then
choose a trace map Tr : W(X) — W (U x A!) as in §3. Restricting Tr to W(r~(U x {0}))
yields a homomorphism W (7 ~(U x {0})) — W(U x {0}). Since the evaluation at ¢ = 0
has as retraction the natural embedding A — A[t], by (6) of §3 we may choose the Euler
trace ¢ : R — A[t] such that Trlwaw)) = W(A).

Having fixed e and Tr in this way, restricting e to D;, + = 0,1, we get trace maps
Tr; : W(D;) - W(U). Let ¢; : D; — X \ Z be the inclusion. We put

% =Try o W(e1) — Trg 0o W(po) .

Since Z is of codimension > 2 in X and 7 : X — U x A! is finite, the image of Z in
U under the structural map is contained in the vanishing locus of some non zero g € A.
Making now the base change of ¢ by means of the inclusion ¢ : U; — U we get ¢, and Tr,
such that we still have Try|wa,)) = W(4A,) (see (6) of §3). Further restricting ¢4 to D; g,
i = 0,1, we get trace maps Tr;; : W(D;,) — W(Uy). Let ;, : Diy — Xy \ Z, = A,
¢ = 0,1, be the inclusions. We put

Py = Trig 0 W(p1,) — Trog 0 W(po,) -
Clearly property (3) of §3 implies the relation W(4) o ¢ = 9, o W(j). Thus, to complete

the proof of the lemma, it suffices to check the relation ¢, = W(A,). For this take any £
in W(X,) and, using property (4) of §3, write a chain of relations

Trg (&), x {13 — Trg(§)lu, x {0y
= Tr14({lpy,) — Trog(€lmo,) — Trg(law,)) = ¥e(€) — W(A)(E) -
A well-known theorem of Max Karoubi (see [10], VII, §4) asserts that for any affine
k-scheme S the canonical homomorphism W(S) — W(S x Al) is an isomorphism,

and therefore, the left hand side of the relation above is zero. This proves the relation
g = W(A,), whence the commutativity of the diagram.
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A PURITY THEOREM FOR THE WITT GROUP 79
7. Purity

THEOREM 7.1. — Let A be a local, essentially smooth algebra over an infinite field k and
let K be its field of fractions. Every unramified element of W(K) belongs to W(A).

Proof. — Let U = Spec(A) and let £ be an unramified element of W(K). By assumption
there exist a smooth d-dimensional k-algebra R = k[tq,...,t,] and a prime ideal p of R
such that A = R,. We first reduce the proof to the case in which p is maximal. To do
this, choose a maximal ideal m containing p. Since £ is infinite, by a standard general
position argument we can find d algebraically independent elements X3, ..., X, such that
R is finite over k[X7,..., X, and étale at m. After a linear change of coordinates we
may assume that R/p is finite over B = k[X1,..., X,,], where m is the dimension of
R/p. Clearly R is smooth over B at m and thus, for some h € R\ m, the localization
Ry, is smooth over B. Let S be the set of nonzero elements of B, k' = S~!B the field
of fractions of B and R’ = S™'Ry,. The prime ideal p’ = S~1p, is maximal in R’, the
k'-algebra R’ is smooth and A = R;,.

From now on and till the end of the proof of Theorem 7.1 we assume that A = Ox ,
is the local ring of a closed point x of a smooth d-dimensional irreducible affine variety
X over k.

Replacing X by a sufficiently small affine neighbourhood of & we may assume that wx
is trivial. By Proposition 2.4 of [3] we may assume that ¢ is defined on the complement
of a closed set Z of codimension at least 2 in X. Let f # 0 be a regular function on X
which vanishes on a closed set Y containing Z. By Quillen’s trick (see [16], Lemma 5.12)
we can find a morphism ¢ : X — A?~! with the following properties:

(1) ¢q is smooth at z.

(2 qly : Y — A1 s finite.

(3) ¢ factors as

with ¢; finite and surjective.
Consider the cartesian square

PX -
A——X

I’\J’ TA \L‘I

U e Ad—l

where U = Spec(Ox ), r = qlu, X = U xpa-1 X, p is the first projectionand A : U — X
the diagonal. Denote again by f the composition of f with px.

Since r is essentially smooth and X is smooth over k£, X is essentially smooth. By
base change, condition (3) implies that X is an affine relative curve over U. Since U is
local and ¢ is smooth at z, p is smooth along A(U). From (3), by base change of ¢ via
r: U — A%l we get a commutative triangle

D)

X —L U x Al

N
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80 M. OJANGUREN AND I. PANIN

with p; finite. Again by the same base change we see that k[X]/(f) is finite over A.
Thus all the hypotheses of Lemma 5.1 are satisfied and we can find a U-morphism
m: X — U x A! satisfying conditions (a) and (b).

We further claim that wy is trivial. To see this observe that

wr/k = Py (Wx/k) ®or wr)x

(cf. [7], Proposition 17.2.3) and that wy,x ~ p*wy/a¢-1. Since U is essentially smooth over
A1 Wy /aa-—1 1s locally free of rank-one, hence trivial because U is local. Thus p*wy/pe-1
is trivial and, since wyyy is trivial by assumption, we conclude that wy ;. is trivial.

We can now apply Lemma 6.1 with Z = U xps-1 Z C X. We define n = (W (px)(&))
and claim that 7 is an extension of & to U. In fact, choosing g € A as in 6.1 and denoting
byi:U,—U,i:U;, — X\ Zandj:X, - X\ Z the inclusions, we have

W(i)n = W(i)otho W(px)§ = W(Ag) o W(j) o W(px)§ = W(px ojog)§ = W(i')E .

This completes the proof of Theorem 7.1. O

To prove Theorem A we now recall a celebrated result of Dorin Popescu (see [11], [12]
and [13] or [2] or, for a self-contained proof, [19]).

Let k be a field and R a local k-algebra. We say that R is geometrically regular if
k' @i R is regular for any finite extension k' of k. A ring homomorphism A — R is
called geometrically regular if it is flat and if for each prime ideal g of R lying over p,
Ry/pR, = k(p) ®4 R4 is geometrically regular over k(p) = Ap/p,.

Observe that any regular local ring containing a field & is geometrically regular over
the prime field of £.

POPESCU’S THEOREM. — A homomorphism A — R of noetherian rings is geometrically
regular if and only if R is a filtered direct limit of smooth A-algebras.

Proof of Theorem A. — Let R be a regular local ring containing a field. Let k£ be the prime
field of R. By Popescu’s theorem, R = li_m)Aa, where the A,’s are smooth k-algebras. We

first observe that we may replace the direct system of the A,’s by a system of essentially
smooth local k-algebras. In fact, if m is the maximal ideal of R, we can replace each A, by
(Aa)pa’ where p, = mnNA,. Note that in this case the canonical morphisms ¢, : A, — R
are local and that every A, is a regular local ring, thus in particular a factorial ring.

Let now L be the field of fractions of R and, for each «, let K, be the field of fractions
of A,. Let £ be an unramified element of W(L). We may represent £ by a diagonal
matrix ¢ = diag(ry,...,r,) with r1,...,7, in R. Let X be the (finite) set of height-one
primes of R which divide at least one of the r;. For every p € ¥ we can find a matrix
a(p) € GL,, (L) that transforms ¢ into a diagonal form diag(u;(p),...,u,(p)) with every
ui(p) € R\ p. Clearing denominators we may assume that o(p) € M, (R) and that

a(p)"qo(p) = diag(us(p),. .., un(p))(d(p))?

for some d(p) € R. We can now choose an index « such that, for every p € X,
A, contains preimages 7y,...,7y, U1(P),...,Un(p), d(p) and 7;;(p) of the elements
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