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ARRANGEMENT OF HYPERPLANES. I: RATIONAL
FUNCTIONS AND JEFFREY-KIRWAN RESIDUE

BY MICHEL BRION AND MICH&LE VERGNE

ABSTRACT. - Consider the space R^ of rational functions of several variables with poles on a fixed arrangement
A of hyperplanes. We obtain a decomposition of R^ as a module over the ring of differential operators with
constant coefficients. We generalize the notions of principal part and of residue to the space R^, and we describe
their relations to Laplace transforms of locally polynomial functions. This explains algebraic aspects of the work by
L. Jeffrey and F. Kirwan about integrals of equivariant cohomology classes on Hamiltonian manifolds. As another
application, we will construct multidimensional versions of Eisenstein series in a subsequent article, and we will
obtain another proof of a residue formula of A. Szenes for Witten zeta functions. © Elsevier, Paris

RfisuMfi. - Nous considerons 1'espace R^\ des fonctions rationnelles en plusieurs variables, dont les poles sont
dans un arrangement d'hyperplans A fixe. Nous obtenons une decomposition de R^\ comme module sur 1'anneau des
operateurs differentiels a coefficients constants. Nous generalisons a 1'espace R^\ les notions de partie principale et
de residu, et nous decrivons ses relations avec les transformees de Laplace des fonctions localement polynomiales.
Ceci explique des aspects algebriques des travaux de L. Jeffrey et F. Kirwan sur les integrales de classes
de cohomologie equivariantes dans les varietes hamiltoniennes. Comme autres applications, nous construirons,
dans un autre article, des versions multidimensionnelles des series d'Eisenstein, et nous obtiendrons une autre
demonstration d'une formule de residus pour les fonctions zeta de Witten, due a A. Szenes. © Elsevier, Paris

1. Introduction

Consider the space T?A of rational functions of r variables with poles on an arrangement
of hyperplanes A. It is important to study the decomposition of the space R^ under
the action of the ring of differential operators with constant coefficients. In the one-
variable case, a rational function of z with poles at most on z = 0 is written uniquely as
(f)(z) = PT'mc((t))(z)+^(z) where Prmc((^)(^) = Z^<o ̂ ^ is the principal part of (f)(z)
and ^{z) = E^>o ̂ ^ ls ^e polynomial part of (f)(z). Remark that the space

G=\^z)=Y^anZn\
I n<0 J

of principal parts is free under the action of 9 / 9 z while the space of polynomials is
evidently a torsion module. Furthermore, the function 1 / z is the unique function which
cannot be written as a derivative.

We show similarly, in the case of several variables, that there is a well determined
decomposition of R^ as

R^ = GA C NG^
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716 M. BRION AND M. VERGNE

where C?A is a free module under the action of the ring of differential operators with
constant coefficients, and NG/^ is the torsion submodule. Here the space G?A can be
characterized as the space of rational functions with a zero at infinity in all directions. Let
us describe more precisely the space GA- We need more notations.

Let V be a finite dimensional vector space over a field fc, of characteristic zero. Let
r = dim V. Let A be a finite subset of nonzero elements of V. Consider the union of
hyperplanes in V*:

7T(A):= \j{zeV^(z^a)=0}
aCA

and the ring R^\ of rational functions on V* with poles contained in 7<*(A). We denote
by G?A the subspace of R/^ spanned by the elements

0 ^^
a(=K UL

where ^ is a subset of A generating V, and where the ria are positive integers. It turns
out that G?A is the subspace of R^\ consisting of functions that vanish at infinity in any
direction. It is a graded vector space with highest graded part G^[—r} := *SA. Furthermore,
SA is the linear span of the

^o- = r=r—————
Tlaeaa

where a ranges over all bases of A.
As the space GA is a direct factor in R^, under the action of the ring 5'(V*) of

differential operators with constant coefficients, there is a natural projection ROSA from
J?A to <SA that we call the Jeffrey-Kirwan residue. The name Residue is justified by the
fact that the kernel of the map ResA is the space of derivatives. By a generalization of
the Cauchy formula, any 5'(y*)-morphism from GA to another S(V*)-mod\x[e is entirely
determined by its value on SA, and this morphism exists provided certain linear relations
between the (pa- are satisfied. The space SA is isomorphic to the top degree component
of the "Orlik-Solomon algebra" associated to the hyperplane arrangement 7<*(A); as a
consequence, we produce bases of *SA consisting of certain <^. Their dual bases can be
described in terms of iterated residues, as shown by Szenes (see [S] and section 4).

If k = R, then G?A occurs as the space of Laplace transforms of locally polynomial
functions with possible discontinuities on hyperplanes generated by r — 1 elements of A.
The Laplace transform intertwines the action of S(V*) on locally polynomial functions by
multiplication, with its action on GA by differential operators with constant coefficients.
We study the jumps of locally polynomial functions in terms of the poles of their Laplace
transforms. As a consequence, we show that a locally polynomial function is continuous
if and only if its Laplace transform vanishes at order 2 in any direction. We also construct
inverses of the Laplace transform, using our description of GA by generators and relations.

Many of the statements proved in this article are already implicitly stated in Jeffrey-
Kirwan articles [JK1] and [JK2]. However, we felt the need, for applications, to clarify some
of their statements. The main application will be an algebraic construction of Eisenstein
series: to each rational function with poles on hyperplanes, we will associate a periodic
meromorphic function in several variables. This will be treated in part II of this article.
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ARRANGEMENT OF HYPERPLANES 717

Applications to the Poisson formula will be given in another article.
Our interest in the space of functions R/\ and their Laplace transforms comes from the

study of integrals over symplectic spaces of equivariant cohomology classes. Let (M, f2) be
a compact symplectic manifold, with an Hamiltonian action of a torus T. Let / : M —> t*
be the moment map, let X e t, and let Q.(X) = {f, X) + ̂  be the equivariant symplectic
form. Let a{X) be an equivariant closed form on M. Consider the integral

I{X) = ! a(X)e
J M

,^(X)

Assume for simplicity that the set F of fixed points for the action of T on M is finite. For
p € F, let Ap C i* be the set of weights for the action of T in the tangent space TpM.
Then, by the localisation formula in equivariant cohomology, we have

iW^^^We^^,
pCF

where each <j)p is in the ring R^p-
If ^ is a regular value of /, we can consider the reduced space Mred(0 = /-1(0/^'

with reduced symplectic structure 0^. The equivariant cohomology class of a{X) gives
rise to a de Rham cohomology class o^ on Mred(0- Consider the function

r (0=/ 1 a^.
^M,ed(0

This function is defined for regular values of $. It is important to determine this function
and its jumps when crossing walls of singular values of the moment map. The functions
I{X) and r(^) are related by the Laplace transform. Thus it is important to study jumps
of Laplace transforms of functions in the space GA.

We thank Michel Duflo for his comments on this article, and Bernard Malgrange for
his decisive help in the proof of Theorem 1.

2. Rational functions with poles on hyperplanes: Jeffrey-Kirwan residue

Let V be a finite dimensional vector space over a field fc, of characteristic zero, and let
r = dimV. We denote by S(V) the symmetric algebra of V. Let V* be the dual space.
We identify S(V) with the ring of polynomial functions on V*. Let A C V be a finite
subset of nonzero elements, which spans V. We denote by

J?A := A-^Y)

the ring generated over S(V) by inverting the linear functions a G A. This is a ring graded
by the degrees (positive or negative). Consider the union of hyperplanes in V*:

^*(A):= \j{zeV\(a^z)=0}
aCA

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUP^RIEURE



718 M. BRION AND M. VERGNE

and the open subset

^A-^-^A)

of (A)-regular elements in V\ Then R^ is the ring of rational functions on V* with
poles contained in the union of hyperplanes 7-T (A). Functions in R^ are defined on the
set Vr^g,A °^ rcgular elements.

Let P be the ring of differential operators on V* with polynomial coefficients. Recall
that the ring P is generated by its subrings S(V) of polynomial functions on V*, and
S{V*) of differential operators on V* with constant coefficients. Observe that S(V) and
RA are graded P-modules.

If (/) € R^ and if y G V* is a regular element, then ^ i-̂  <^ + ̂ ) is a rational function
for any z e V*. We say that (^ vanishes at infinity if the rational function t ̂  (f){y + tz)
is 0 at oo for all regular y G V* and for all z G V*.

Let /^ be a subset of A. The subset /^ is called generating if the a e K generate the
vector space V. It is called a basis of A, if the a € ^ form a basis of V. We denote
by B(A) the set of bases of A.

For K c A, set

^ ''= ,=r———.
ILe^

We denote by GA the subspace of R^ spanned by the

1

llae^ a'

where ^ is generating and the n^ are positive integers. Then GA is a graded vector space
with highest graded part S^ (in degree -r). Furthermore, 5^ is the linear span of the
4>a where a ranges over all bases of A.

Clearly, any function in the space GA vanishes at infinity. We will prove that the
converse holds in Theorem 1 below.

Remark. - The space G^ is contained in ̂ .̂  R^\-j\ but is strictly smaller if r > 1.
For example, if a G A, then a^ is never in~G/\.

We denote by NG^ the subspace of R^ spanned by the

^
FLe. ana

where ^ e S(V), K is not generating and the n^ are non-negative integers.
Remark that the subspace NG^ of R/^ is stable under the action of P, whereas GA is

stable under the action of S(V*) by differential operators with constant coefficients.

THEOREM 1. - We have a direct sum decomposition of S(V*) -modules

RA=G^^NG^.

4® SfiRIE - TOME 32 - 1999 - N° 5



ARRANGEMENT OF HYPERPLANES 719

Moreover, the space C?A is a free S(V*)-module, and is freely generated by S^, while
the space NG^ is the torsion submodule. Finally, C?A is the space of functions in R^
which vanish at infinity.

For this we prove a succession of lemmas.

LEMMA 2. - The S(V^-module G^ is generated by SA. Moreover, we have R^ =
GA + NG^.

Proof. - Observe that the 5'(y*)-module generated by SA is the span of the elements

n^.^
where a € ff(A) and where each np is a positive integer. To prove the first assertion, it is
enough to check that this vector space is stable by multiplication by l/o^ where a G A.
For this, write a = Z^o- c^{3. Then we have

_____1______ _ ^-^ __________Cq/3__________

^.n Tf ^(3 ~ / ^ rvn~^lBn(3~l TT ^n^ 'a llfteaP p /3e<T ' li7€cr,7^/37

If /3 G a is such that n/3 = 1, then the corresponding term in the right-hand side is in the
5'(y*)-module generated by S^: indeed, if c^ / 0 then a U {a} \ {(3} is a basis of A.
On the other hand, if n^ > 1 then our term is the inverse of a^ ]\^ ̂  with n^ ^ 1
and E/3ea n//? = (S/3e<r n/3) - 1- so the assertion follows by induction on ̂ ^ n^.

Similarly, any element of R^ = A-15'(y) is a linear combination of elements

ct>= ^

Hae.^

where ^ G 5'(y), ^ is linearly independent and the n^ arc positive integers. If moreover
K is not generating, then ^ is in TVC?A. If ^ is generating, then we can express ^ as a
polynomial in the variables a G ^, and we obtain (f) G C?A + NG^.

LEMMA 3. - The S(y*)-module R^/NG^ is free.

Proof. - Observe that R^/NG/^ is a P-module. Furthermore, it is spanned (as a vector
space) by the images of

n rv",a€<T u-

where a is a basis of A, and where the n^ are positive integers. It follows that the P-module
R^/NG^ is generated by the images ~^a of the (f)a (o- € B(A)). Observe that <^ is killed
by V; thus, the P-module P^o" is a non zero quotient of V/W. The latter is a simple
P-module, isomorphic to 5'(V*); therefore, V^a is isomorphic to 5(y*), too. Iterating this
argument, we construct an ascending filtration of the P-module R^/NG^, each submodule
being generated by certain (^'s, with successive quotients isomorphic to S(V*).

LEMMA 4. - The subspace GA intersects NG^ trivially.

ANNALES SCIENTinQUES DE L'ECOLE NORMALE SUPERIEURE



720 M. BRION AND M. VERGNE

Proof. - We argue by induction on the number of elements in A. By lemma 3, it is
sufficient to prove that S^ D NG^ == 0. We may assume that A contains no proportional
elements. Let (f> G SA. Write

t= ̂  r-.a60(A) ^ea"-

and consider (f) as a rational function on V*. Observe that the poles of (f) are simple
and along the hyperplanes a = 0 (a G A). Choose a among the poles of (f). Choose a
decomposition V == fca C Vo. Then Q(V) (the fraction field of S(V)) is identified with
the field of rational functions in the variable a, with coefficients in Q(Vo}. Therefore, we
have a restriction map S(V) —> S{Vo) : (f) \-^ <^o. Consider the image Ao of A \ {a} in
Vo- The restriction map extends to a homomorphism (A \ {a})~lS{V) —> A^^Vo) by
restriction to generic points. We have also a residue map ReSc, : Q(V) —^ Q(Vo) with
respect to the variable a, defined by the formula

'̂-(^((i.r'f"'''̂
for any integer K such that o^^ € -RA\{Q-}-

As a is a simple pole of (f), we simply have

Res^W = ̂  ca

<r,a(Eo- l^ea,/3^a^0

where Po denotes the image of f3 in VQ. If a is a basis of A which contains a, then
(cr \ {a})o is a basis of Ao. Therefore, ReSa((^) is in 5'Ao-

Consider a generator

^
n^c.^

of NG^, with ^ C S(V) and ^ non generating. Write

^
u ^JC TT /3n/3 '

a ll/3e^,^a^

If K = 0, then ReSc,(^) = 0. If AT > 0, the set /^ contains a and is non generating. Thus,
its restriction ^o is non generating. We see that ReSo;^) can be written as

Res^(zA) ^

0 ^+^-1 •
/3o€^o ^0

for some -0' e S{Vo}, so that Res^(^) e NG^.
If (f) C S^n NG^, it follows from the above discussion that ReSc, (<f)) e S^ H NG^.

Therefore, by the induction hypothesis, we have Res^((^) = 0: thus, (f) has no pole along
a = 0 . Thus (f) has no pole at all, so that (f> == 0.

LEMMA 5. - If (f) € -HA vanishes at infinity, then (f> is in G?A.

4e SfiRIE - TOME 32 - 1999 - N° 5



ARRANGEMENT OF HYPERPLANES 721

Proof. - First we claim that the space of functions which vanish at infinity is stable by
the action of S(V*). Indeed, let (f> G R^ vanish at infinity. Write

^cf>= rLeA^-
where ^ € S(V). For z G V*, set

n^) := ^ n^
a,{a,z}^0

The assumption that <^ vanishes at infinity means that

deg(t i-̂  '0(?/ + ̂ )) < n{z)

for all regular y and for all 2; in V*. Let w G V*; then, for all IA G fc such that y + -uw
is regular, we also have

deg{t ^—> ^(y + tz + i&w)) < n(^)

and therefore, the function

9(w)^

ILeA a

vanishes at infinity. Now

9(w)'0 ^-^nct(c^^w)0^ = _^^ _ y W^
naeA^ ^ A

^A"- aeK

which implies our claim.
Assume now that there exists a non-zero (f) G NG/^ which vanishes at infinity. As in

the proof of Lemma 2, we can write

^ = y^ <^
K

where the sum is over all linearly independent subsets ^ C A which are not bases, and
where each <^ is in K~1S(V). Furthermore, we may assume that the number of ^ such that
(^ is non-zero is minimal (among all possible decompositions of all non-zero (f) e NG^
which vanish at infinity).

Choose KQ such that <^o / 0» ^d choose a non-zero ZQ G V* such that (a, zo) = 0 for
all a € KQ. Then Q71^)^^ == 0 for large n. But all successive derivatives of (f) vanish
at infinity and are in NG^. Moreover,

On(z^= ^ Q^z,)^
K^KO

is a decomposition with fewer terms than (f). Thus, ^^(^o)^ = 0 for some positive n.

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUP^RIEURE



722 M. BRION AND M. VERGNE

Choose a minimal n with this property, and set ^ := a71-^^)^. Then ^ is a non-zero
element of NG^ which vanishes at infinity, and <9(^o)'0 = 0. But then the function
t i— ^{y + tzo) is constant for any y e V*, a contradiction.

The space SA is generated by the elements <^ where a ranges over B(A). However, there
are linear relations among the elements <^. Indeed, let a be a basis of A. If a e A \ a and

a = 1^ c^
/3e<r

is the expansion of a in the basis a, then a U {a} \ {/?} is a basis if and only if c^
is non zero, and we have

(t)cr= ^ C^^u{a}\{/3}.

^€o-,Cc,^0

In section 4, we will prove that the linear relations between the elements <^ are generated
by the relations above.

We can now define the Jeffrey-Kirwan residue map: denote by

RA := A-^y)

the ring generated over the ring S(V) of formal power series, by inverting the linear
functions a G A. Define the Taylor expansion at order K as the projection

Taylor^ : RA -^ (g R^[j}.
j<K

Using Taylor[<_^, we project the space R^ to R^[< -r]. Then using the direct sum
decomposition

^A = GA C NG^
we obtain a projection map

PrincA : RA -^ GA

by composing both projections R^ —> R^[< -r] -^ GA.
Remark that as G^ is contained in R^[< -r], the map Prince can also be defined

as the composition of Taylor^ : R^ -^ R^[< K] for any index K > -r, followed
by the projection R^[< -K] —^ G^.

DEFINITION 6. - The Jeffrey-Kirwan residue map

ROSA : RA —^ SA

is defined to be the composite of the projection PrincA followed by the projection of GA
on SA-

In other words, the map Res^ is the identity on SA and vanishes on ^j^rR^U] and on
NG^ as well. We can determine easily the map ResA on RA by first projecting on RA[-r],
then, using the fact that RGSA vanishes on NGA, projecting further on GA[-r} = SA.

4e SfiRIE - TOME 32 - 1999 - N° 5



ARRANGEMENT OF HYPERPLANES 723

Consider the subspace V*R^ spanned by derivatives of elements of R^-, it is a
submodule of -RA under the action of S(V*).

PROPOSITION 7. - We have

V"R^=NG^e ©GA[J].
J<-r

In particular, we have

R^ = y*^ e SA, RA = V^RA e s^
and the kernel of ROSA is V*R^'

Proof. - From Theorem 1 we obtain

V^RA = y*7VC?A e V*GA = V*^GA e © G^\j}.
j<-r

So it is sufficient to check that NG^ = V*NG^. For this, consider

. ^

n^.^
where •i/' G 'S'(^) and where K is linearly dependent. Choose y £ V* such that (y, a} = 0
for all a e K. We can find ^ G 6'(y) such that Q{y)^ = i/>; then

<f>=9w(—————}•T ^vn^"""/
In particular, the kernel of RGSA is the space of derivatives. Using RGSA, we now obtain

a multidimensional analogue of the Cauchy formula: for any meromorphic function (f) of
one variable z, and for any y ^ 0, we have

(Prince) =Res,=o^.

Let y G V* be regular and let ^ € .RA. Set

(CW)(z):=^(y-z).

Then the rational function C{y)^ is defined at 0, and thus its Taylor series at the origin is
in S(V). To any (j) G RA, we associate the endomorphism u((f)) of SA defined by

WW{z) = ResA^O^Q/ - z)).

Denoting by m(^) the multiplication by <^, then u{(f)) is the composition Res^om{(p)oC{y).
We consider its trace Tr5^(ResA ° m(0) o C(y)).

PROPOSITION 8. - For any regular y in V* and for any (f) G R^\, we have

(PrmcA^)(2/) = Tr^(ResA o m{(f>) o C(y)).

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPfiRIEURE



724 M. BRION AND M. VERGNE

Proof. - First we consider the case where (/) G S^. Then

ResA(^WQ/ - z)) = (t>(z)^(y)

because z i—^ ^{y — z) is defined at 0. So u{(f)} maps ^ to ^{y)(f>, and its trace is
<^) = PmiCA WW'

Now we assume that the formula holds for (/), and we claim that it holds for 9(w)<p
where w e V*. Indeed, using the fact that ROSA vanishes on derivatives, we obtain

ResA((9(w)^)^ - z)) = -ResA(<^)^(w)^ - z))
== Res^((f){z)9y(w)^(y - z)) = 9y(w)Res^((f)(z)^(y - z))

which implies the claim.
It follows that the formula holds for any (f) G C?A- If <^ € NG^, then the left-hand side

vanishes. On the other hand, the function z i—> ^ ( y — z ) is in S(V); thus, z ^—> c/){z)^{y—z)
is in A^GA and the right-hand side vanishes, too.

Remark. - More generally, let A : R^ —^ R^ be an operator which commutes with the
action of S(V*). Then we have for any regular y G V* and for any (^ e R/\''

A(PrincA(^))(^) = Tr^(ResA o m(^) o C7(2/) o A)

(the proof is the same).
Let us deduce from this (abstract) Cauchy formula, an explicit expression of Princ^^)

in terms of derivatives of elements of S^. For this, choose a basis (4>b)beB of SA and
denote by (^b) the dual basis. For (f) G R^ and h € V, the function y i-̂  e~^^(/){y)
is in R^. Moreover, the map

h ̂  <<^ResA(e-^)) := D\(t))(h)

is easily seen to be polynomial. It thus defines a differential operator Db{(f)) on V*.

PROPOSITION 9. - For any (j) G -RA. and for any basis {(pb)beB of S^, we have

PrmcA(^)=^-D6^)-^.
bCB

Proof. - Let y be a regular element of V*. Then, by the Cauchy formula, we have :

PrmcA(^)Q/) = ̂ ^(ResA o m(</>) o C(y)) = ̂ {(f)\Res^(z)(t>b{y - z))).
b^B

Now observe that ^{y - z) = (e'^^b)^). Thus, we have

((^ResA(<^6Q/ - z))) = D\^ . ̂ .

Remark that Propositions 13 and 14 below provide a basis ((f>b)beB together with the
dual basis (<^)&^B. Thus we obtain an explicit expression of any element in (?A as a sum
of successive derivatives of elements <^. This provides a way of separating variables.

4® SfiRIE - TOME 32 - 1999 - N° 5



ARRANGEMENT OF HYPERPLANES 725

Example. - Let V be a vector space with basis (61, 62). Let A be the ordered set

A = (61, 62,61 +62).

The set B of Proposition 13 according to this ordering consists of

bi = (61,62) &2 = (ei,6i +62).

Furthermore, if a = {62,61 + 62}, we have (f)a = ̂  — ^62. Let

(^1,^2) = ——T————r.
^2(^1+^2)

If h = /ii6i + fa2<°2, the component of degree -2 of e'^^'^^^z^z^ is

-/ll^l - /l2^2 ^1 ^2 , , , / , , x ,
————/——————^ = -——7——————^- - ——/——————\- = -^10bi + (^1 - ^2)0b2-
^2(^1+^2) ^2(^1+^2) ^ l (^ l+^2)

We have indeed

1 _ 9 1 (_9___9_^ 1
^1^2(^1 + ^2) <9^1 ^1^2 <9^1 9^2 ^l(^l + ^2) '

Remark. - The residue that Jeffrey and Kirwan actually defined is a linear form over
S'A, defined in the case when k = R. It depends on choices of chambers in V and V*.
We will describe this residue in section 5.

3. Residue along a hyperplane

Let us recall the notion of a residue map along a hyperplane.
Let VQ be an hyperplane in V. We denote by Ao the subset A D VQ. The space V^- is

a line in V*. The fibers of the restriction map V* —> V^ are affine lines z + V^~. If (^
is a rational function with poles on the set of hyperplanes A, its restriction to the affine
line z + VQ~ is a rational function, except when the affine line z + V^~ is contained in the
pole set of (f) (in this case the restriction is nowhere defined). The residue at infinity of
this rational function is well defined. More precisely, choose differential forms of maximal
degree uj on V*, UJQ on VQ* an(^ choose an equation ZQ of Vo» such that UJQ = int(^o)^
where int is the contraction. Define the residue map

Resy/y, : A-^y) (S) A'V -^ Ao'W) ̂  A'-^o

by
Resy/y^ 0 o;)(^) = -Rest=oo(<^ + tzo)dt) 0 o;o

for ^ € V* (clearly, this only depends on the image of z in V* / k z o = VQ*)* ^e now

give a characterization of this map.
We identify R^ = A^-S^Vo) to a subalgebra of J?A, so that J?A is a J^Ao^^ule.

We denote by Ai the complement of Ao in A.

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUPfiRIEURE



726 M. BRION AND M. VERGNE

If y = (o^ 1 < j < L) is o. sequence of elements of A with possible repetitions, we set

m''•=^,
We write v c Ao (resp. v c Ai) if all elements Oj of the sequence v are in Ao (resp. Ai).

Let u) G A^V. If /? € Ai, there exists a unique 0:0 G A7'"1^ such that a; == /? A a;o.
We then write

UJQ = (d/3)~1 f\uj.

PROPOSITION 10. - The map Resy/y^ is the unique R^ -linear map

resy/y, : R^ 0 ̂ V -^ R^, 0 A7'-1^

such that, for uj e ^V,

1) for any f3 G Ai, resv/Vo (j ^ ^) = (d/?)"1 A a;.
2) resy/y,(5(y)0a;) = 0.
3) for any sequence v C Ai, resy/yjm^ 0 a;) = 0, if the length ofv is strictly greater

than 1.
Indeed, these properties are easily checked for the map Resy/Vo defined above, and

uniqueness follows from the following remark.

PROPOSITION 11. - We have

^A^Ao-1^^ ̂  R^m^.
z/CAi

Proof. - Let '0 e S(V) and v a sequence of elements of A. Consider the element -ipm^
of J?A = A^S^Y). If v is contained in Ao, or if ^ e S{Vo), we are already in the desired
set. If Q.J e v is not in Ao and if ^ is not in S(Vo), then using the decomposition

S(V) = 5(Vo) C ajS{V)

we can strictly decrease the power of aj in the expression of m^.
We finally note some properties of the map Resy/Vo'
We extend the map PrincA : RA —^ GA to a map

PrincA : -RA 0 A^V -^ GA 0 A"1^^

still denoted by PrincA. In the same way we extend the map RGSA to a map

ROSA : -RA 0 ̂ ^V -> SA 0 A111^ .̂

PROPOSITION 12. - The map Resy/y^ is homogeneous of degree -1, and is compatible
with the maps Princ and with the Jeffrey-Kirwan residue. More explicitly:
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