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HYPERBOLIC GROUPS WITH LOW-DIMENSIONAL
BOUNDARY

BY MICHAEL KAPOVICH * AND BRUCE KLEINER 1

ABSTRACT. - If a torsion-free hyperbolic group G has 1-dimensional boundary OooG, then OooG is
a Menger curve or a Sierpinski carpet provided G does not split over a cyclic group. When OooG is
a Sierpinski carpet we show that G is a quasi-convex subgroup of a 3-dimensional hyperbolic Poincare
duality group. We also construct a "topologically rigid" hyperbolic group G: any homeomorphism of QooG
is induced by an element of G. © 2000 Editions scientifiques et medicales Elsevier SAS

RESUME. - Soit G un groupe hyperbolique (au sens de Gromov) sans torsion. Si la dimension topologique
du bord OooG est egale a un, et G n'est ni un produit amalgame, ni une extension HNN sur un groupe
cy clique, on montre que OooG est homeomorphe a Feponge de Menger ou au tapis de Sierpinski. Si QooG
est homeomorphe au tapis de Sierpinski, on montre que G est isomorphe a un sous-groupe quasi convexe
cTun groupe de dimension trois de dualite de Poincare. On construit un exemple d'un groupe hyperbolique
G qui est «topologiquement rigide» : chaque homeomorphisme du bord QooG est induit par un element
g G G. © 2000 Editions scientifiques et medicales Elsevier SAS

1. Introduction

We recall that the boundary OooX of a locally compact Gromov hyperbolic space X is a
compact metrizable topological space. Brian Bowditch observed that any compact metrizable
space Z arises this way: view the unit ball B in Hilbert space as the Poincare model of infinite-
dimensional hyperbolic space, topologically embed Z in the boundary of B, and then take the
convex hull CH(Z) to get a locally compact Gromov hyperbolic space with <9ooCH(Z) = Z.
On the other hand when X is the Cayley graph of a Gromov hyperbolic group G, then the
topology of OooX ̂  QooG is quite restricted. It is known that OooG is finite-dimensional, and
either perfect, empty, or a two element set (in the last two cases the group G is elementary).
It was shown recently by Bowditch and Swarup [13,41] that if OooG is connected then it does
not have global cut-points, and thus is locally connected according to [11]. The boundary of G
necessarily has a "large" group of homeomorphisms: if G is nonelementary, then its action on
OooG is minimal, and G acts on OooG as a discrete uniform convergence group. It turns out
that the last property gives a dynamical characterization of boundaries of hyperbolic groups,
according to a theorem of Bowditch [14]: if Z is a compact metrizable space with \Z\ > 3 and
G C Homeo(Z) is a discrete uniform convergence subgroup, then G is hyperbolic and Z is G-
equivariantly homeomorphic to OooG. In general the action G r\ OooG is not effective, but if G
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648 M. KAPOVICH AND B. KLEINER

is nonelementary, its ineffective kernel is a finite normal subgroup N < G\ moreover, every finite
normal subgroup of G is contained in N . We let G denote the quotient G / N .

There are two questions which arise naturally:

QUESTION A. - Which topological spaces are boundaries of hyperbolic groups?

QUESTION B. - Given a topological space Z, which hyperbolic groups have Z as the
boundary?

Regarding Question A, all spheres, some homology spheres [20], the Sierpinski carpet, and the
Menger curve [5] arise as boundaries of hyperbolic groups. Moreover, according to Gromov and
Champetier [18], "generic" finitely presentable groups are hyperbolic and have the Menger curve
as boundary. On the other hand, as was noticed by Bestvina, it is unknown if higher-dimensional
universal Menger compacta [6] appear as boundaries of hyperbolic groups (Dranishnikov has
constructed hyperbolic groups with boundary homeomorphic to the 2-dimensional Menger
compactum, [21]).

Considerably less is known about Question B. If 9ooG is zero-dimensional, then G is a
virtually free group [40,26,25]. Recently, it was proven in [24,17,43] that any hyperbolic group
whose boundary is homeomorphic to §1 acts discretely, cocompactly, and isometrically on the
hyperbolic plane. We call such a group virtually Fuchsian. The case when 9ooG ̂  §2 is a difficult
open problem:

CONJECTURE 1 (J. Cannon). -If G is a hyperbolic group whose boundary is homeomorphic
to S2, then G acts isometrically and properly discontinuously on hyperbolic 3-space M.3.

In Section 7 we construct new examples of hyperbolic groups for which we answer Question B
completely. These groups have a remarkable topological rigidity property:

DEFINITION 2. -A hyperbolic group G is said to be topologically rigid if every homeomor-
phism f : 9ooG —> 9ooG is induced by an element ofG.

Remark 3. - Actually, the topologically rigid groups constructed in this paper are even locally
topologically rigid in the following sense: if [/, V C 9ooG are connected open subsets, then any
homeomorphism U —> V is induced by an element of G.

Our examples are the first known topologically rigid nonelementary hyperbolic groups (finite
groups and groups G which fit into an exact sequence

1 —> finite group —> G —> Z/2 * Z/2 —> 1

are topologically rigid for trivial reasons). The Cay ley graph of a topologically rigid nonele-
mentary hyperbolic group is a quasi-isometrically rigid metric space (every quasi-isometry is
within bounded distance from an isometry) (see Lemma 18). Previously known examples of
quasi-isometrically rigid metric spaces include quaternionic hyperbolic spaces and the Cayley
hyperbolic plane [35], higher rank symmetric spaces of noncompact type [32], Cayley graphs
of maximal non-arithmetic nonuniform lattices in isometry groups of rank 1 symmetric spaces
of dimension > 2 [37], and universal covers of compact hyperbolic n-manifolds with nonempty
totally geodesic boundary2, n ̂  3. Topologically rigid groups have an even stronger rigidity
property than quasi-isometrically rigid groups (see Lemma 19):

2 This was observed in a discussion Bernhard Leeb, Richard Schwartz, and the authors. The rigidity statement follows
from a doubling construction and the technique of [37].
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If G' is a hyperbolic group whose boundary is homeomorphic to the boundary of a
topologically rigid hyperbolic group G, then G/ embeds in G as a finite index subgroup.

The topologically rigid groups mentioned above have 2-dimensional boundary; we prove
in Corollary 17 that this is the minimal dimension for the boundary of a nonelementary
topologically rigid group.

The remaining results of our paper concern hyperbolic groups with one-dimensional boundary.

THEOREM 4. - Let G be a hyperbolic group "which does not split over a finite or virtually
cyclic subgroup, and suppose QooG is 1-dimensional. Then one of the following holds (see
Section 2 for definitions):

(1) QooG is a Menger curve',
(2) 9ooG is a Sierpinski carpet',
(3) QooG is homeomorphic to §1 and G maps onto a Schwartz. triangle group with finite

kernel.

It is probably impossible to classify hyperbolic groups whose boundaries are homeomorphic to
the Menger curve (since this is the "generic" case); however, it appears that a meaningful study is
possible in the case of hyperbolic groups whose boundaries are homeomorphic to the Sierpinski
carpet. Recall that the Sierpinski carpet S has a canonical collection of peripheral circles (see
Section 2).

THEOREM 5.- Suppose that Q^G^S. Then:
(1) there are only finitely many G-orbits of peripheral circles',
(2) the stabiliser of each peripheral circle C is a quasi-convex virtually Fuchsian group which

acts on C as a uniform convergence group. We call these subgroups peripheral subgroups
of G;

(3) if we "double" G along the collection of peripheral subgroups using amalgamated free
product and iterated HNN-extension (see Section 5), then the result is a hyperbolic group
G which contains G as a quasiconvex subgroup',

(4) the boundary ofG is homeomorphic to §2. Hence by [ 11,7], G is a ̂ -dimensional Poincare
duality group in the torsion-free case',

(5) when G is torsion free, then (G; H ^ , . . . , Hk) is a ^-dimensional Poincare duality pair
(see [22] for the definition), where H\,..., Hi are the peripheral subgroups of G.

A similar result holds in the case of higher-dimensional analogs of the Sierpinski carpet, except
that in Part 2 one says that peripheral sphere stabilizers are hyperbolic groups with spherical
boundary.

Known examples of groups with Sierpinski carpet boundary are consistent with the following:

CONJECTURE 6. - Let G be a hyperbolic group with Sierpinski carpet boundary. Then G
acts discretely, cocompactly, and isometrically on a convex subset ofM.3 with nonempty totally
geodesic boundary.

There is now some evidence for this conjecture. It would follow from a positive solution of
Cannon's conjecture together with Theorem 5 (see Section 5). Alternatively, in the torsion-free
case, if one could show that (hyperbolic) 3-dimensional Poincare duality groups are 3-manifold
groups, then Thurston's Haken uniformization theorem could be applied to an irreducible 3-
manifold with fundamental group isomorphic to the group G produced in Theorem 5. Under
extra conditions (such as coherence and the existence of a nontrivial splitting) it appears that one
can show that a 3-dimensional Poincare duality group is a 3-manifold group.

The conjecture above leads one to ask which hyperbolic groups have planar boundary.
Concretely, one may ask if a torsion-free hyperbolic group with planar boundary has a finite
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650 M. KAPOVICH AND B. KLEINER

index subgroup subgroup isomorphic to a discrete convex cocompact subgroup of IsomfH3).
Here is a cautionary example which shows that in general it is necessary to pass to a finite
index subgroup: if one takes a surface of genus 1 with two boundary components and glues one
boundary circle to the other by a degree 2 map, then the fundamental group G of the resulting
complex K enjoys the following properties (see Section 8):

(1) G is torsion-free and hyperbolic;
(2) G contains a finite index subgroup which is isomorphic to a discrete, convex cocompact

subgroup of Isom(E3) which does not act cocompactly on HI3. In particular, the boundary
of G is 1-dimensional and planar;

(3) G is not a 3-manifold group.

2. Preliminaries

Properties of hyperbolic groups and spaces

For a proof of the following properties of hyperbolic groups, we refer the reader to [26 1 25
14]. ' ? '

Let G be a nonelementary Gromov hyperbolic group, and suppose G acts discretely and
cocompactly on a locally compact geodesic metric space X. Then the boundary of X is
a compact metrizable space 9^X on which Isom(X) acts by homeomorphisms. For any
/ e Isom(X), we denote the corresponding homeomorphism of 9^X by 9^f. The action
of G on Q^X is minimal, i.e. the G-orbit of every point is dense in Q^X. Let 92 X :=
9^X x 9^X - Diag be the space of distinct pairs in 9^X. Then the set of pairs of°points
(_^ V) e ̂ x which are ^ed by an infinite cyclic subgroup of G is dense in 92 X We let
9^X:=9^X/^y)^^x).

The group G acts cocompactly and properly discontinuously on 9^X := {(x,y,z) e
(9^X)3 | x, y , z distinct}. There is a natural topology on X U 9^X which is a G-invariant
compactification of X, and this is compatible with the topology on 9ooX.

Recall that a subset S of a geodesic metric space is G-quasi-convex if every geodesic segment
with endpoints in S is contained in the G-tubular neighborhood of S. Quasi-convex subsets of
^-hyperbolic metric spaces satisfy a visibility property (cf. [23]):

Given R, G, 6 <E (0, oo) there is an R' with the following property (we may take R' =
R +106). IfX is a 6-hyperbolic metric space, Y C X is C-quasi-convex, and x e X satisfies
d(x, Y) ̂  R ' , then given any two unit speed geodesies 71, 72 starting at x and ending in Y
andanyte [0,R] we have d(^(t),lm(^)) < 6 andd(^(t),lm(^)) < 6.

As a consequence of the visibility property, if Yj, C X is a sequence of G-quasi-convex subsets
of a ^-hyperbolic space X, and d(x, Yj,) -^ oo as k -. oo, then a subsequence ofV^s converges
to a single point ^ e <9ooX.

Sierpinski carpets and Monger curves

The classical construction of a Sierpinski carpet is analogous to the construction of a Cantor
set: start with the unit square in the plane, subdivide it into nine equal subsquares, remove the
middle open square, and then repeat this procedure inductively on the remaining squares. If
we take a sequence D, c S2 of disjoint closed 2-disks whose union is dense in S2 so that
Diam(^) -^ 0 as i -^ oo, then §2 - Ujnterior(^) is a Sierpinski carpet; moreover, any
Sierpinski carpet embedded in §2 is obtained in this way [45]. Sierpinski carpets can also be
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characterized as follows [45]: a compact, 1-dimensional, planar, connected, locally connected
space with no local cut points is a Sierpinski carpet.

We will use a few topological properties of Sierpinski carpets S:
(1) there is a unique embedding of S in §2 up to post-composition with a homeomorphism

of §2;
(2) there is a countable collection C of "peripheral circles" in 5, which are precisely the

nonseparating topological circles in 5;
(3) given any metric d on S and any number D > 0, there are only finitely many peripheral

circles in S of diameter > D.
The Menger curve may be constructed as follows. Start with the unit cube J3 in M3. Consider

the orthogonal projections TT^ : I3 —^ Fij of the unit cube onto the ij coordinate square, and let
Sij C Fij be the Sierpinski carpet as constructed above. The Menger curve is the intersection
n^Tr^1^^). The Menger curve is universal among all compact metrizable 1-dimensional
spaces: any such space can topologically embedded in the Menger curve. By [2,3], a compact,
metrizable, connected, locally connected, 1-dimensional space is a Menger curve provided it has
no local cut points, and no nonempty open subset is planar.

3. Proof of Theorem 4

The fact that G does not split over a finite group implies [40] that G is one-ended, and 9ooG is
connected. Recall that by the results of [ 11,13,41 ], the boundary of a one-ended hyperbolic group
is locally connected and has no global cut points; furthermore, if 9ooG has local cut points then
G splits over a virtually infinite cyclic subgroup unless 9ooG ̂  §1 and G maps onto a Schwarz
triangle group with finite kernel. Therefore from now on we will assume that 9ooG has no local
cut points.

A 1-dimensional, compact, metrizable, connected, locally connected space Z with no local
cut points is a Menger curve provided no point z C Z has a neighborhood which embeds in
the plane (see Section 2). Hence either 9ooG is a Menger curve or some ^ € 9ooG has a planar
neighborhood U\ therefore we assume the latter holds.

LEMMA 7. - Let r C QooG be a subset homeomorphic to a finite graph. Then r is a planar
graph.

Proof.-Since the action of G on 9ooG is minimal, every G-orbit intersects the planar
neighborhood U, and so every point of QooG has a planar neighborhood. Because 9ooG has
no local cut points, we have 9ooG \ r ^ 0. So we can find a hyperbolic element g e G whose
fixed point set {771,772} C 9ooG is disjoint from F (Section 2). Hence for sufficiently large n,
(^(-T) is contained in a planar neighborhood of 771 or 772.

We recall [19,34] that a compact, metrizable, connected, locally connected space X with no
global cut points is planar as long as no nonplanar graph embeds in X. Therefore 9ooG is planar.
Finally, by [45], 9ooG is Sierpinski carpet. D

4. Groups with Sierpinski carpet boundary

Let M be a compact hyperbolic manifold with nonempty totally geodesic boundary and let
G := Ti-i (M) be its fundamental group. The universal cover M of M may be identified with
a closed convex subset of HI3 which is bounded by a countable disjoint collection P of totally
geodesic planes. Each P e P bounds an open half-space disjoint from M. M is obtained from E3
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652 M. KAPOVICH AND B. KLEINER

by removing each of these open half-spaces, and 9^M c Q^H3 is obtained from Q^M3 ̂  §2

by deleting the open disks corresponding to these half-spaces. The closures of these disks are
disjoint since the distance between distinct elements of P is bounded away from zero. As 9^M
has no interior points in §2, it is a Sierpinski carpet (see Section 2). Note that the peripheral circles
of Q^M are in one-to-one correspondence with elements of P, and therefore the conjugacy
classes of G-stabilizers of peripheral circles are in one-to-one correspondence with P/G, the set
of boundary components of M. The stabilizer of a peripheral circle is the same as the stabilizer
of the corresponding element of P, so these stabilizers are quasi-convex in G.

The next theorem shows that similar conclusions hold for any hyperbolic group whose
boundary is a Sierpinski carpet.

THEOREM 8. - Let G be a hyperbolic group with boundary homeomorphic to the Sierpinski
carpet S. Then:

(1) there are finitely many G-orbits of peripheral circles in S\
(2) the stabilizer of each peripheral circle C is a quasi-convex subgroup G whose boundary

is C.

Proof.-We recall that G acts cocompactly on the space O^G := {(x,y,z) e (9oo<?)3

x, y , z distinct}. Therefore if Cj, C Q^G is a sequence of peripheral circles, (^ yk^k^ ^G
and {xk.yk^k} C G^, then after passing to a subsequence we may find a sequence ̂  G G,
(^oo^oo, ^oo) e Q^G so that (gkXk, gkVk, 9kZk} converges to (^00,2/00, ^oo). But this means that
Diam(^(Gfc)) is bounded away from zero, so gk(Ck) belongs to a finite collection of peripheral
circles, and hence gk(Ck) is eventually constant. We conclude that there are only finitely many
G-orbits of peripheral circles, and the stabilizer of any C <E C acts cocompactly on the space of
distinct triples in C. By [13] Stab(G) is a quasi-convex subgroup of G, and 9ooStab(G) = G.
From now on we will refer to stabilizers of peripheral circles as peripheral subgroups. By [24,17,
43] each peripheral subgroup is, modulo a finite normal subgroup, a cocompact Fuchsian group
in!som(E2). n

5. Doubling Sierpinski carpet groups along peripheral subgroups

In this section we prove Theorem 5.
Let G be a hyperbolic group with 9^G ̂  5, and let H^..., Hk be a set of representatives

of conjugacy classes of peripheral subgroups of G. We define a graph of groups Q as follows.
The underlying graph has two vertices and A; edges (no loops). Each vertex is labelled by a copy
of G, the zth edge^s labelled by H^ and the edge homomorphisms H, -^ G are given by the
inclusions. We let G be the fundamental group of Q.

Next we construct a tree of spaces on which the group G acts in a natural way. Let XQ be a
finite Cayley 2-complex for G, and let X, be a finite Cayley 2-complex for the group H,. The
inclusion H, ̂  G is induced by a cellular map h, '.X, -^ XQ between the 2-complexes. Let
h: \JXi -^ XQ be the corresponding map from the disjoint union of the X^s to XQ, and let X
denote the mapping cylinder of h.

Let DX be the double oOT along the collection of subcomplexes X,, i = 1,... ,k. Consider
now the universal cover DX of DX with the deck transformation group G. Let Y be the 1-
skeleton of DX. The 1-skeletons of the subcomplexes X,, i = 1,... ̂ , lift to disjoint edge
subspaces of V. A vertex subspace of Y is obtained as follows: take a connected component
G of the complement of the edge spaces in V, take the closure G, and then add in all edge
spaces which intersect G. Each vertex space is a copy of the 1-skeleton of the universal cover of
X. Let T be the graph corresponding to the decomposition of Y into vertex and edge subspaces:
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vertices v of T correspond to vertex spaces Yy C V, the edges e correspond to the edge subspaces
Ye C Y. An edge e is incident to a vertex v if and only if Ye is contained in Yy. It is standard that
the graph T is actually a tree (compare [39]). Let V and E denote the collections of vertices and
edges in T respectively. If v e T we let Ey denote the collection of edges containing v.

Let a: DX —^ DX be the natural involution of DX. A map r: V —^ Y is a reflection if it is
a lift of a and it fixes some point; each reflection fixes some edge space in V, and each edge
space Ye is the fixed point set of precisely one reflection r-e. Let F be the group generated by the
reflections in Y. The group F is normalized by G since conjugation of a reflection by an element
of G yields another reflection; likewise G is normalized by F. Let v € T be any vertex. Then F
is the free product of order two subgroups of the form {re} where e G Ey. The vertex space Yy
is a fundamental domain for the action of r on Y. The group r preserves the tree structure of
V, so we have an induced action of F on T by tree automorphisms, each reflection re acting on
T as an inversion of the edge e. The action of F on T naturally induces an action of F on OooT.
The space Y is a connected graph, and we give it the natural path-metric where each edge in Y
has unit length.

LEMMA 9.-
(1) The space Y is Gromov-hyperbolic.
(2) Edge and vertex spaces are all K-quasi-convex in Y for some K.
(3) There is a function C(R) such that for every R, the intersection of R-neighborhoods of

any two distinct vertex or edge spaces has diameter at most C(R) unless the spaces are
incident.

Proof. - The space Y is quasi-isometric to Cay ley graph of G. The group G is Gromov-
hyperbolic by [9,10]. The assertions (2) and (3) follow from [33] and [42]. D

We have a coarse Lipschitz projection p:Y —^ T which maps (Yy — Uee^ ^e) to v ^or

each v e V, and maps each edge space to the midpoint of the corresponding edge of T. If
7: [0, oo) —^ Y is a unit speed geodesic ray, then p o 7 is a coarse Lipschitz path with the bounded
backtracking property 3 by the quasi-convexity of vertex/edge spaces. Hence p o 7 maps into a
finite tube around a geodesic ray r in T. If p o 7 is unbounded in T, then the equivalence class
of the ray r is uniquely determined by 7 and we label 7 with the associated boundary point
[r] G QooT. By the quasi-convexity of edge spaces, if 7 hits an edge space for an unbounded
sequence of times, then it remains in a quasi-convex tubular neighborhood of the edge space (of
uniformly bounded thickness). In this case, we know that 7 eventually remains in a bounded
neighborhood of a unique edge space by property (3) in Lemma 9, and we label 7 with this
edge. If neither of the above two cases occurs, then for each edge e of the tree, we know that
7 eventually lies in one of the two components of the complement of the edge space Ye, and
we label the edge with an arrow pointing in the direction of the corresponding subtree of T.
There must be some (and at most one) vertex v e T such that all edges emanating from v have
arrows pointing toward v\ otherwise we could follow arrows and leave any bounded set. There
must be an unbounded sequence of times tk such that 7(^) lies in the vertex space Yy (by
the construction of the edge labelling); by quasi-convexity of Yy, this means that 7 eventually
lies in the ^-neighborhood of Yy; in this case we label 7 by v. Equivalent geodesic rays are
given the same label. We get a labelling map <9ooLabel: QooY -^ (T U OooT) which is clearly
7^-equivariant.

We now examine the topology of QooY. This space is metrizable and we fix a metric d on
QooY; in what follows we will implicitly use d when discussing metric properties of QooY.

3 A map c: [0, oo) —^ T has the bounded backtracking property if for every r C (0, oo) there is an r ' G (0, oo) such
that if^i < t'2, and d(c(^i), c(t-2)) > r ' , then d(c(t), c(ti)) > r for every t > t^.
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Recall that each vertex space Yy is quasi-isometric to G c± X\ since by Lemma 9 every subspace
Yy is quasi-convex in V, we conclude that QooYv C 9ooY is a Sierpinski carpet. Similarly, the
peripheral circles of the Sierpinski carpet QooYv are in one-to-one correspondence with the
boundaries of edge spaces Ye C Yy. We note that the union |ĵ  9ooYy is dense in 9ooY, since
this subset is G-invariant and G is a nonelementary hyperbolic group.

By the visibility property of the uniformly quasi-convex edge spaces, there is at most one
boundary point of 9ooY labelled by any ^ G 9ooT. For each edge e in T, the set of points in
QooY labelled by e is the ideal boundary of the edge space Vg, i.e. a circle. For each vertex
v e T, the set of points labelled by v is

9ooY^ - (J 9ooYe^
eeEy

i.e. the Sierpinski carpet QooYy minus the union of its peripheral circles.
Our next goal is to describe the topology of 9ooY using the tree T. Choose v 6 T. Every edge

e of T separates T into two subtrees, and we let T^g C T be the subtree disjoint from v. We
define the outward subset, Out^g, for a pair (v, e) e V x E to be the collection of points of
9ooY labelled by elements of T^g U QooTy.e- The visibility property of Y implies that for a fixed
v e T and any e > 0 there are only finitely many edges e C T so that the diameter of Out^g
exceeds e. Outward subsets of 9ooY are open since a geodesic ray 7 with (?oo7 ^ Out^,e will
eventually leave any tubular neighborhood of the edge space Ye, and so nearby boundary points
correspond to rays which eventually lie in the same component of the complement of Ye in Y.
It follows that if ^ £ 9ooT, and e/c is the sequence of edges occurring in the ray z^, then the
sequence of outward sets Onty^k ls a nested basis for the topology of 9ooY at the point labelled
by ^. The closure of Out^,e is Out^e U 9ooYe because the complement to Out^g U 9ooYe is
Out^e where w is the endpoint of e furthest from v (obviously 9ooYe C Out^e)-

LEMMA 10. - Suppose ^jc ^ 9ooY converges to ^oo ^ 9ooY. Then one of the following holds.
(1) ^oo is labelled by a boundary point Label(^oo) ^ 9ooT. In this case Label̂ ) converges

to Label (^oo) m the compact space T U 9ooT.
(2) f^oo is labelled by a vertex v € T. In this case, for any subset £ C Ey containing all but

finitely many elements ofEy, the sequence ̂  eventually lies in

<9ooK,U f I |Out,.V(u'^eee
'oo-'-v ^ I I J ^^-^v.e

(3) ^oo is labelled by an edge GQ. In this case, if v^w are the endpoints of eo, then for any
subset £ C Ey containing all but finitely many elements of Ey, and any subset F C Ew
containing all but finitely many elements of Eyj, the sequence ̂  eventually lies in

9ooYyU9ocY^U ( (j0u4,e) U ( |j Out^,e).
^ee£ / ^ee^ }

Proof. - Case (I): if v is any arbitrary vertex of T, and e\, e^,... is the sequence of edges
comprising the geodesic ray z^oo C T, then Out^e^ C 9ooY is a neighborhood basis for ^oo-
Therefore Label(^) converges to Label(^oo) by the definition of the topology on T U 9ooT.

Case (2): if this weren't the case, then a subsequence of ̂  would converge to an element of
Out^e = Out^e U 9ooYe for some e ̂  £. This contradicts the fact that (,00 is labelled by v.

Case (3): similar to case 2. D
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