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PROPAGATION OF SINGULARITIES IN MANY-BODY
SCATTERING

By ANDRAS VASY !

ABSTRACT. — In this paper we describe the propagation of singularities of tempered distributional
solutionsu € 8’ of (H — A\)u =0, A > 0, whereH is a many-body Hamiltoniadl = A + V, A > 0,
V= Za Va, under the assumption that no subsystem has a bound state and that the two-body interactions
V. are real-valued polyhomogeneous symbols of ordire.g. Coulomb-type with the singularity at the
origin removed). Here the term ‘singularity’ provides a microlocal description of the lack of decay at
infinity. We use this result to prove that the wave front relation of the free-to-free S-matrix (which, under our
assumptions, is all of the S-matrix) is given by the broken geodesic flow, broken at the ‘singular directions’,
onS"~! at timer. We also present a natural geometric generalization to asymptotically Euclidean spaces.
0 2001 Editions scientifiques et médicales Elsevier SAS

RESUME. — Dans cet article on décrit la propagation des singularités des solutions tempé& & sle
(H—=X)u=0,A>0,00H estun Hamiltonien & corpsH =A+V,A >0,V = Za V., en supposant
que les Hamiltoniens des sous-systémes n’ont pas de vecteurs proprekidangue les potentiels a deux
corpsV, sont polyhomogeénes réels d'ordrel (par exemple, de type Coulomb, mais sans la singularité
a l'origine). Ici la notion de “singularité” étudiée fournit une description microlocale de la croissance des
fonctions a I'infini. On emploie ce résultat pour montrer que la relation de front d’'onde de la matrice de
diffusion relative auxiV-amas (qui est la seule partie de la matrice de diffusion sous nos hypotheses) est
donnée par le flot géodesique brisé dans les “directions singuliéresSsira tempsr. On présente
aussi une généralisation géométrique naturelle au cas des variétés asymptotiquement euclidiries.
Editions scientifiques et médicales Elsevier SAS

1. Introduction

In this paper we describe the propagation of singularities of generalized eigenfunctions of a
many-body Hamiltoniarff = A + V, A the positiveLaplacian, under the assumption that no
subsystem has a bound state. We use this result to prove that the wave front relation of the free-
to-free S-matrix (which is the only part of the S-matrix under our assumptions) is given by the
broken geodesic flow, broken at the ‘singular directions'SBn' at distancer. We remark that
these results have been proved in three-body scattering, without the assumption on the absence
of bound states, in [36]. Also, Bommier [1] and Skibsted [33] have shown that the kernels of the
2-cluster to free cluster and 2-cluster to 2-cluster S-matrices are smooth, and previously Isozaki
had showed this in the three-body setting [14]. However, as is clear from the smoothness state-
ment, the microlocal propagation picture that is crucial, for instance, in the discussion of free-to-
free scattering, does not emerge in the previous examples when the initial state is a 2-cluster.
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314 A. VASY

In this section we discuss the setup in the Euclidean setting, but in the following ones we
move to a natural geometric generalization introduced by Melrose in [22]. Namely, suppose that
X is a manifold with boundary equipped with a scattering mejrand a cleanly intersecting
family C of closed embedded submanifoldsiX with Cy = 0X € C. Thus,g is a Riemannian
metric in int(X) which is of the formg = 274 dz? + x72h neardX; herez € C>*(X) is a
boundary defining function. We also assume that near every X, C is locally linearizable
(i.e. in suitable coordinates nearevery element of is linear); this holds if every element 6f
is totally geodesic with respect to some metric (not necessayibn 0.X. Let A be the positive
Laplacian ofg and suppose that € C>°([X;C];R) vanishes ab X \ | J{C € C: C #9X},and
H = A+ V —we refer to Sections 2 and 6 for a more detailed discussion of the geometric and
analytic aspects of the setup. We prove under the assumption that there are no bound states for
each of the subsystems (we describe the assumption more precisely in Section 6, but it holds for
example if” > 0) that singularities of solutions € C~>°(X) of (H — \)u € C>(X) propagate
along generalized broken bicharacteristics¥ofvhich are broken af. We also show that this
implies a bound on the singularities of the kernel of the free-to-free S-matrix. In effect, we
show that many-body scattering is in many respects a hyperbolic problem, much like the wave
equation in domains with corners, for which the propagation of analytic singularities was proved
by Lebeau [18]. The geometrically simpler setting, where the elemerii@tceptCy = 0X)
are disjoint, corresponds to three-body scattering in the Euclidean setting, and then the analogy
is with the wave equation in smoothly bounded domains, where the resuli§fsingularities
were proved by Melrose and Sjostrand [23,24] and Taylor [34], and for analytic singularities by
Sjostrand [32].

Here however we caution that another important aspect of typical many-body systémas
presence of bound states of subsystems. While propagation theorems indicate that geometry
plays a central role in scattering, bound states afford a similar role to spectral theory. Thus, in
general, the two interact, even changing the characteristic set of the Hamiltonian. The generalized
broken bicharacteristics are also more complicated in this setting, and, as a quick argument
shows, the ‘timer’ part of our result will not hold if bound states are present. In addition, the
Hamiltonian must possess additional structure (as the Euclidean ones do) so that propagation in
bound states can be analyzed. Hence, in this paper, it is natural to impose our assumption that
there are no bound states in the subsystems.

We emphasize that this assumption holds, for examplé 0. Indeed, theld = A+V >0,
and by an argument generalizing the corresponding result of Froese and Herbst [4] in the
Euclidean setting has no positive eigenvalues. The proof of this fact in the geometric three-
body setting can be found in [40], and it goes through in the geometric many-body setting
since the potentials play a very minor role; they only enter via the Mourre estimate. Moreover,

0 cannot be an eigenvalue since for such&fdg) eigenfunctionu, 0 = ((H + V)u,u) =
ldul|z2 + (u,Vu), which implies thatu is a constant, contradicting it6?> behavior. (The
argument is justified by elliptic regularity.)

We now return to the Euclidean setting. Before we can state the precise definitions, we need
to introduce some basic (and mostly standard) notation. We consider the EuclidearR8pace
and we assume that we are given a (finite) familyf linear subspaceX,, a € I, of R™ which
is closed under intersections and includes the subsface {0} consisting of the origin, and
the whole spac&, = R". Let X* be the orthocomplement df ,, and letr be the orthogonal
projection toX ¢, 7, to X,. A many-body Hamiltonian is an operator of the form

(1.2) H=A+Y (") "Va;

acl
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PROPAGATION OF SINGULARITIES IN MANY-BODY SCATTERING 315

hereA is the positive Laplaciari, = 0, and theV/, are real-valued functions in an appropriate
class which we take here to be polyhomogeneous symbols of erden the vector spac,

to simplify the problem:

(1.2) Vo €S (X%).

In particular, smooth potentialg, which behave at infinity like the Coulomb potential are
allowed. Sincgr)*V, is bounded and self-adjoint amil is self-adjoint with domairf/?(R")

on L? = L*(R"), H is also a self-adjoint operator oh? with domain H2(R"). We let
R(X\) = (H — \)~! for A € C \ R be the resolvent off.

There is a natural partial ordering drinduced by the ordering oX® by inclusion. (Though
the ordering based on inclusion of thg would be sometimes more natural, and we use that for
the geometric generalization of many-body scattering starting from the next section, here we use
the conventional ordering.) Léi = {1} (recall thatX; = {0}); 1 is the maximal element df.

A maximal element of \ I; is called a 2-clustelf; denotes the set of 2-clusters. In general, once
I, has been defined far=1,...,m — 1, we let[,, (the set ofn-clusters) be the set of maximal
elements off/, =1\ UZl:_ll I, if I, is not empty. IfI], = {0} (so1,, , is empty), we callf
anm-body Hamiltonian. For example, if+ {0, 1}, and for alla, b ¢ {0, 1} with a # b we have
X.N X, ={0}, thenH is a 3-body Hamiltonian. Thé& -cluster of anN-body Hamiltonian is
also called the free cluster, since it corresponds to the particles which are asymptotically free.

It is convenient to compactify these spaces as in [22]. Thus, wé&’leto be the radial
compactification ofR™ to a closed hemisphere, i.e. a ball (using the standard Riagiven
here in (2.3)), an@™~! = 9S7 . We writew = rw, w € S"~*, for polar coordinates o™, and
we letz € C*°(S1) be such that = (RC™")*(r~!) for r > 1. Hence is a smoothed version
of ! (smoothed at the origin &™), and it is a boundary defining function 8f . We usually
identify (the interior of)S} with R™. Thus, we writeS}; (S}) and ST . (R™) interchangeably
and we drop the explicit pull-back notation in the future and simply write »—* (for r > 1).

We also remark that we have

13 e (82) =270 (81).

We recall that undeRC, C>(S% ), the space of smooth functions 6f} vanishing to infinite
order at the boundary corresponds to the space of Schwartz fundi@is), and its dual,
C~>°(S%), to tempered distributions’(R™). We also have the following correspondence of
weighted Sobolev spaces

(1.4) HEN(ST) = H* = HMY(R™) = (w) "' H*(R™)
where(w) = (1 + |w|?)!/2. Thus, for\ € C \ R the resolvent extends to a map
(1.5) R(\):HEN(ST) — HEF1(ST).

Similarly, we let
(1.6) X, =c(RC(X,)), Co=X,NOSY.

Hence,C, is a sphere of dimension, — 1 wheren, = dim X,. We also let
a.7) C={C,: a€l}.

Again, we write the polar coordinates af), (with respect to the induced metric) ag = r,wa,
wq € C,, and letz, =1, ! (for r, > 1). We note that ifz is a 2-cluster thex, N C, = () unless

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



316 A. VASY

b < a. We also define the ‘singular part’ 6f, as the set

(1.8) Ca,sing = U (Cb N Ca)7
bga

and its ‘regular part’ as the set

(19) C; = Ca \ U Cb = Ca \Ca,sing-
bga

For example, ifa is a 2-cluster therC, sne = 0 and C!, = C,,. We sometimes write the
coordinates o, ® X* as(wq,w?).

Corresponding to each clusterwe introduce the cluster Hamiltonidr), as an operator on
L?(X%) given by

(1.10) ha =0+ "V,
b<a

A being the Laplacian of the induced metric &rt. Thus, if H is a N-body Hamiltonian and
a is ak-cluster, them,, is a(N + 1 — k)-body Hamiltonian. The.? eigenfunctions of., play
an important role in many-body scattering; we remark that by Froese’s and Herbst's result, [4],
spec,,(ha) C (—00,0] (there are no positive eigenvalues). Moreowgkc,,,(h,) is bounded
below sinceh, differs from A by a bounded operator. Note that® = {0}, ko = 0, so the
unique eigenvalue of; is 0.

The eigenvalues df, can be used to define the set of thresholds,oNamely, we let

(1.11) A, = U spec,,, (hp)
b<a

be the set of thresholds 6f,, and we also let

(1.12) Aj, = Ay Uspecy, (ha) = U spec,,, (hp).

b<a

Thus,0 € A, fora # 0 andA, C (—oo,0]. It follows from the Mourre theory (see e.qg. [5,27]) that
A, is closed, countable, argec,, (h,) can only accumulate dt,. Moreover,R()), considered
as an operator on weighted Sobolev spaces, has a limit

(1.13) R(A£i0): HEL(ST) — HEF2U(ST)
forl>1/2,1' < —1/2, from either half of the complex plane away from
(1.14) A = Ay Uspec,,,(H).

In addition, L? eigenfunctions of., with eigenvalues which are not thresholds are necessarily
Schwartz functions onX® (see [4]). We also label the eigenvalues faf, counted with
multiplicities, by integersn, and we call the pairs = (a, m) channels. We denote the eigenvalue
of the channek by ¢, write v, for a corresponding normalized eigenfunction, ancelebe
the orthogonal projection tg,, in L2(X?).

The definition of the free-to-free S-matrix we consider comes from the stationary theory, more
precisely from the asymptotic behavior of generalized eigenfunctions, see [35], and cf. [22,40].
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PROPAGATION OF SINGULARITIES IN MANY-BODY SCATTERING 317

Apart from the difference in normalization, it is the same as the S-matrix given by the wave
operators, see [39]. For simplicity, we state the asymptotic expansion under the assumption that
V,, is polyhomogeneous of order2 (so it decays asw®|~2). Namely, for\ € (0,00) and

g € CX(CY)), there is a uniques € C~>°(S7}) (i.e. v € S'(R™)) such that(H — A\)u =0, and

u has the form

(1.15) u=e VA =(=1/2, | R(X\+i0)f,

wherev_ € C®(S), v_|gn-1 = g, andf € C>(S™). In addition, thisu is of the form

(1.16) wu= e~ VA =(n=1)/2), ei‘ﬁ‘rrf("fl)mmr, vy €C™ (S:L_ \ CO,sing)-
The Poisson operator with free initial data is the operator

(1.17) Po+(N):CZ(C) —C™=(Sh),  Po+(Ng=wu.

Following [35], we define the free-to-free scattering matfiy (\) as the map

(1.18) Soo(N):C(Cp) — C*(Ch),

(1.19) Soo(AN)g =v+|cy,

so it relates the incoming amplitude |s.-: to the outgoing oney, |s»-1. We recall from
[39] that the wave operator free-to-free S-matrix is then giveni’by* Spo(\)R (as maps
C(C) — C=(CY)) whereR is pull back by the antipodal map daf,.

There are only minor changeslif, is polyhomogeneous of orderl. Namely, the asymptotic
expansions in (1.15) and (1.16) must be replaced by

(1.20) eEVATpmioe—(n=1)/2y, 4 —q, = Ve [2VA€C™(CY), V=aV',

1.21) e~ Y ajax(w)r(logr)’,  aj.- €CF(Ch), ajay €C™(C).

j=05<2j

Note thatay are not defined al sing, but that does not cause any problems even in the
uniqueness statement, (1.15), sincevanishes af" ! nearCj qing to infinite order.

Our main theorem describes the structureésgf(\). We first introduce the broken geodesic
flow (of the standard Riemannian meti¢ on S"~!, broken atC. We denote bySS"~! the
sphere bundle of"~! identified as the unit-length subbundle "' with respect toh.

Let I = [a, 3] C R be an interval. We say that a curye I — S"~! is a broken geodesic of
h, broken atC, if two conditions are satisfied. First, there exists a finite set of paints 1,
a=ty <ty <---<tp_1 <ty =L such that for each, V|[tj,tj+1] is a geodesic of,, and for

all t € (tj,tj41), v/ (t) € SS"~1. Second, for allj, if v(¢;) € C., then the limitsy/(¢; — 0)
and~’(t; + 0) both exist and differ by a vector i’ﬁw(tj)Snfl which is orthogonal td@’, ;) Ca

(i.e. the usual law of reflection is satisfied; see Fig. 1). We saypthat SS”~! are related by
the broken geodesic flow at timeif there is a broken geodesicdefined on[0, 7], such that
~'(0) = p, 7' () = q. Using the metrich to identify SOX and S*0X, this defines the broken
geodesic ‘flow’ at timer on S*0.X. We refer to Definition 6.6 and Section 7 for a more complete
discussion. We then have the following result:
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(-
e

Fig. 1. Broken geodesics @7 starting atp. HereC, = C, N C..

THEOREM. — Suppose that no subsystenfbhas bound states, i.e. far# 0, spec,,, (ha) = 0.
Then the free-to-free scattering matrixSoo(\), extends to a continuous linear map
C.°(Ch) — C=°°(CY). The wave front relation a$o () is given by the broken geodesic flow
at timer.

In the actual many-body problems, € X, means that several particles are close to each other,
namely the ones corresponding to the cluster decompositidhus,w € C, is a statement that
the particles corresponding to clustecollide. Hence, the Theorem describes how many-body
scattering can be understood, modulo smoothing (hence i€ thsense trivial) terms, as a
sequence of a finite number of collisions involving the particles. Namely, each ‘breakthe
broken geodesic describes a collision involving the cluster decompoasitionthe three-body
setting with Schwartz potentials it was shown in [37] that the amplitude of the reflected wave is
given, to top order, by the corresponding 2-body S-matrix; an analogous statement also holds for
short-range potentials. In particular, this shows that the Theorem is sharp as far as the location of
singularities is concerned.

We also remark that in the Euclidean setting, unbroken geodesic flow to distamseunts to
pull-back by the antipodal map @t ~! = §S7, so it corresponds to free propagation: particles
leave in the direction opposite to the one from which they entered.

Our approach to proving this theorem is via the analysis of generalized eigenfunctions of
H,i.e. ofu e C~>°(S%) satisfying(H — X\)u = 0. We prove that ‘singularities’ of generalized
eigenfunctions ofH propagate along broken bicharacteristics in the characteristic sht, of
similarly to singularities of the solutions of the wave equation. Here ‘singularities’ are not
understood as the lack of smoothness: inddead elliptic in the usual sense, so every generalized
eigenfunction i€*° in the interior ofS"?, i.e. onR™. Instead, in this situation singularity means
the lack of rapid decay. Correspondingly, we define a wave front $&tFs.(u), at infinity, i.e.
atoS';, and we will prove its invariance under the broken bicharacteristic flow.

The two notions of singularities are very closely related via the Fourier transform. Here for
simplicity considerA — X in place of H — A\, If (A — X)u = 0, then the Fourier transform
of u, Fu, satisfie(|¢|? — \)Fu = 0 where¢ is the dual variable ofv. Now, the multiplication
operatorP = |£|? — X can be regarded as a Oth order differential operator. Hence, by Hormander’s
theorem, see e.g. [12}VF(Fu) is invariant under the bicharacteristic flow in the characteristic
variety of P, i.e. in the set{(¢,¢*): |€]2 — A = 0} where we have writteg* for the dual
variable of¢, so&* is in factw. Moreover, in the two-body problem, i.e. ¥ is a symbol (of
say order—1) onR", H = A+ V, and if (H — A\)u = 0, we still havePFu = 0 where now
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PROPAGATION OF SINGULARITIES IN MANY-BODY SCATTERING 319

P=£? - X+ FVF~L SinceV is a symbol of order-1, FVF~! is a pseudo-differential
operator of order-1, hence lower order thal§|? — \. Thus, the principal symbol oP is still

|€]2 — X (recall that¢* is the cotangent variable, so this is indeed homogeneous of orider

&* —itis independent of*). Hence, Hormander's theorem is applicable and we have the same
propagation statement as before.

In the two-body setting the relevant wave front set measuring lack of decay at infinity is the
scattering oneWF,.. Foru € S'(R™), WF.(u) is essentially given by the usual wave front set
of the Fourier transform of, i.e. by WF(Fu), after interchanging the role of the base and dual
variables. Since the Fourier transform interchanges decay at infinity and smoot#igsEy)
indeed measures the decayudt infinity in a microlocal sense. Hence, Hormander's propagation
theorem translated directly into a propagation theoren¥@,. (u). This result was described
by Melrose in [22] where he introduced the notion\BF ..

In the many-body setting conjugation by the Fourier transform is much less convenient. Hence,
we will design an appropriate microlocal way of measuring the lack of decay at infinity without
resorting to the Fourier transform. Instead, we introduce an algebra of many-body pseudo-
differential operatorsps.(S';,C) which reflects the geometry, and use it to define the wave
front set at infinity. We remark, however, that for (approximate) generalized eigenfunctiéins of
a characterization based on the Fourier transform is possible; see Remark 5.3 and Proposition 5.5.
We then prove a propagation of singularities theorem for generalized eigenfunctions of many-
body Hamiltoniandd ; here ‘singularities’ are understood in the sense of the new wave front set
at infinity. The proof of this theorem is via a microlocal positive commutator estimate, similarly
to the proof of Hormander's theorem, or indeed to the proof of the propagation theore@is for
singularities of solutions of the wave equation with domains with boundaries [23]. Finally, we
relate such a result to the structure of the S-matrix. This step is comparatively easy as indicated
by our description of the S-matrix in terms of generalized eigenfunctiois. of

Positive commutator estimates have also played a major role in many-body scattering starting
with the work of Mourre [26], Perry, Sigal and Simon [27], Froese and Herbst [5], Jensen [17],
Gérard, Isozaki and Skibsted [6,7] and Wang [41]. In particular, the Mourre estimate is one of
them; it estimates H, w - D,, + D,, - w]. This and some othgjlobalpositive commutator results
have been used to prove the global results mentioned in the first paragraph about some of the
S-matrices with initial state in a two-cluster. They also give the basis for the existence, uniqueness
and equivalence statements in our definition of the S-matrix by asymptotic expansions; these
statements are discussed in [39] in more detail. Correspondingly, these global estimates will
appear in Sections 11-12 of this paper where we turn the propagation results for generalized
eigenfunctions into statements about the S-matrix.

We remark that the wave-operator approach defines the S-matrix as a bounded operator
L3(Co) — L*(Cy). SinceCy sing has measur®, L*(Cp) and L2(C}) can be identified. As
C(CY) is dense inL?(Cy), the asymptotic expansion S-mati$¥,()\) indeed determines the
wave-operator one.

The propagation of singularities of generalized eigenfunction&/ a§ determined by the
principal part of H; terms decaying at the boundary do not change the analysis. As opposed
to this, the precise structure of incoming and outgoing functidi(s\ + 0) f, f € C'°°(Si),
depends on lower order terms; a relatively trivial example is given by the appearerice of
in (1.20) for long-range potentials. Since we considgs(A) and Py 4 (\) as operators on
distributions supported away frof, «ins, We do not need to analyze the precise structure of
incoming/outgoing functions at’y sing, Which is not ‘principal type’, although we certainly
analyze the propagation of singularities there. Thus, we do not discuss what happens when the
support of the incoming scattering data increasesjtceven if the data ar&?. But the behavior
of Py +(X), as the support of the data increase€fg plays an important part in asymptotic
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completeness, which states that all possible outcomes of a scattering experiment are indeed
described by a combination of bound states of the cluster Hamiltonians, with asymptotically free
motion in the intercluster variables. Thus, our results cannot be used directly to supply a proof of
asymptotic completeness. This completeness property of many-body Hamiltonians was proved
by Sigal and Soffer, Graf, Derdmki and Yafaev under different assumptions on the potentials
and by different techniques [28,29,31,30,8,2,42]. In particular, Yafaev's paper [42] shows quite
explicitly the importance of the special structure of the Euclidean Hamiltonian. This structure
enables him to obtain a positive commutator estimate, which would not follow from our indicial
operator arguments in Section 9, and which is then used to prove asymptotic completeness.

Finally we comment on the requirement that the collec@idye locally linearizable. We show
in the next section that it is equivalent to the existence of a neighborhood of everymoihk
and a metric on it, in terms of which all elements(®fare totally geodesic. The importance
of this assumption is closely related to the existence of a sufficient numisnadthvector
fields ondX which are tangent to every element@®fSuch smooth vector fields always exist
once weresolvethe geometry o€, i.e. on the blown-up spadéX;C], but in general, without
our assumption, there are not enough such smooth vector fiel@Xomn the first part of the
paper, we discuss the pseudo-differential algebra associated to many-body scattering. For this
purpose we need to blow up, in part for analyzing the indicial operators (see the following
paragraph). Thus, in this part of the paper, the issue of local linearizability is irrelevant, and we
do not assume it. However, in the second part of the paper, the geometry of the compressed
cotangent bundle, the discussion of generalized broken bicharacteristics and the construction of
the positive commutators would all be more complicated without it, so from Section 5 on, we
assume the local linearizability 6f

This paper is organized as follows. In the next section we describe the geometric generalization
of the many-body problem which was outlined above. This includes a discussion of many-body
geometry and the definition of many-body differential operators. In Section 3 we proceed to
define and analyze the corresponding algebra of pseudo-differential opetgfdrX, C), which
reflects this geometry. It includes many-body Hamiltonians, as well as their resolvent away from
the real axis. It extends the definition of the three-body calculus presented in [40], though here
we emphasize the definition of the calculus via localization and quantization as opposed to the
conormal description of the kernels on an appropriate resolved space. In Section 4 we construct
the indicial operators in this calculus. They provide a non-commutative analog of the principal
symbol in standard microlocal analysis. Our proof of positivity in commutator estimates is based
on replacing the argument of Froese and Herbst [5] by indicial operator techniques. In Section 5
we define the wave front set at infinify Fs.(u), corresponding to the many-body geometry and
pseudo-differential operators. The definition given here differs from the one in [40]; it follows
the fibred cusp definition of Mazzeo and Melrose [19]. These definitions, however, give the same
result for approximate generalized eigenfunctionélof

In Section 6 we discuss many-body type Hamiltonians and their generalized broken
bicharacteristics. This section is, to a significant degree, based on Lebeau’s paper [18]. In
Section 7 we give a much more detailed description of the generalized broken bicharacteristics
in the case when all elements € C are totally geodesic. Of course, this is true in the
Euclidean setting. In Sections 8-9 we build the technical tools for turning a symbolic positive
commutator calculation into an operator estimate. In Section 10 we prove that singularities of
generalized eigenfunctions of many-body type Hamiltonians propagate along generalized broken
bicharacteristics. This is the main new result of the paper. In Sections 11-12 we use this and
adaptations of the global estimates, in particular those of Gérard, Isozaki and Skibsted [6,7], to
analyze the structure of the resolvent and that of the scattering matrix. Finally, in the Appendix
we prove some of the results quoted from Lebeau’s paper, using slightly different methods.
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The propagation estimates of Section 10 lie at the heart of this paper. The reader may want to
skip some of the technical sections when reading the paper for the first time. It may be useful
to keep Mourre-type estimates and especially their microlocalized versions as in [6,7] in mind
while reading Section 10.

I would like to thank Richard Melrose for suggesting this problem to me (in the three-body
setting) as my PhD thesis problem and for our very fruitful discussions. His firm belief that
scattering theory can be understood in microlocal terms similar to the well-known theory of
hyperbolic operators motivated me both during my PhD work [36] and while working on its
extension that appears in this paper. | am grateful to Maciej Zworski for introducing me to the
work of Gilles Lebeau [18], for many helpful discussions and for his encouragement. It was
Lebeau’s paper that convinced me that the results presented here were within reach, and it plays a
particularly central role in Section 6 where the generalized broken bicharacteristics are described.
I would also like to thank the referee for the careful reading of the original manuscript and for
the resulting numerous improvements. | am also grateful to Andrew Hassell, Rafe Mazzeo, Erik
Skibsted and Jared Wunsch for helpful discussions, their encouragement and for their interest in
this research.

2. Many-body geometry and differential operators

Itis convenientto carry out the construction in the general geometric setting. We first describe
the many-body geometry.
Thus, letX be a compact manifold with boundary, and let

(2.1) C={Cp:acl}

be afinite set of closed embedded submanifolds&®fsuch thab X = Cy € C andforalla,be I
eitherC, and(} are disjoint, or they intersect cleanly any N C, = C. for somec € I. We
introduce a partial order afi given by inclusion or€, namely

(2.2) C,<Cy fifandonlyif C, CC,.

This partial order is the opposite of the partial order used traditionally in many-body scattering,
discussed in the introduction, but it will be more convenient for us since it simply corresponds to
inclusion. A chain is defined as usual as a set on wkidjives a linear order.

DEFINITION 2.1.—LetX and(C be as above. We say théX,C) is a space withV-body
geometry (or ariV-body space)N > 2, if the maximal length of chains i — 1. Similarly, we
say thatC,, is ak-cluster if the maximal length of chains whose maximal eleme@t iss k — 1.
We also say thatX,C) is a many-body space if we do not wish to spedify

Thus, if C, is minimal, it is a 2-cluster, and {fX,C) is a space withV-body geometry then
0X is anN-cluster. The numerology is chosen here so that we conform to the usual definitions
in Euclidean many-body scattering, described in the Introduction.

Before defining the algebra of many-body scattering differential operatorsXo&), we
discuss the simultaneous local linearizability of the collectibrAs we have mentioned in
the Introduction, the analysis of generalized broken geodesics as well as the commutator
constructions of this paper become simpleCifs locally linearizable. To make this notion
precise, we make the following definition.

DEFINITION 2.2.—We say that a many-body spdég C) is locally linearizable (or is locally
trivial) if for every p € 0X there exists a diffeomorphismfrom a neighborhood’ of p in 0.X
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to a neighborhood”’ of the origin of a vector spacg such that for eacld’ € C, the image of
C' N U underg is the intersection of a linear subspacédovith U’.

Remark2.3. — In three-body type geometry, where the elementsafceptC) are disjoint,
(X,C) is automatically locally linearizable. The same holds, essentially by definitighisifa
normal collection, see [20, Chapter V].

Local triviality of C is closely related to the question whether every elemeigt isflocally
totally geodesic with respect to some metric. In fact,

LEMMA 2.4.—A many-body spacgX,C) is locally linearizable if and only if every € 0X
has a neighborhoo® in 9X and a Riemannian metriky on U such that for each element
of C, CNU is totally geodesic with respect tg;.

Proof. —Suppose first thap € 90X and U, hy are as above. By shrinking if necessary,
we can make sure that¢ C impliesC N U = () for everyC € C . By shrinkingU further if
necessary, we can arrange that the exponential map @t p € 90X identifies a neighborhood
U’ of the origin inV = T,,0X andU. Moreover, the element§' € C for whichp € C, are
identified withT,,C' N U’, since thes& are totally geodesic. This proves th&, C) is locally
linearizable.

Conversely, if(X,C) is locally linearizable, then the choice of an inner productoimduces
a metric onT'V', hence orUU via the diffeomorphisny, and as linear subspacesiéfare totally
geodesic with respect to this metric 81V, the same holds faf overU. O

After this brief discussion on the local linearizability of we turn to the setting of
most interest, namely to Euclidean many-body geometry. SupposeXthafS’ is the radial
compactification ofR™ and X is a family of linear subspaces d"™ as discussed in the
introduction. Recall from [22] thaRC: R™ — S'! is given by

23)  RCw)=(1/(1+w)"? w/(1+w]?)/?) est cR™, weR™

Here we use the notatidRC instead ofSP, used in [22], to avoid confusion with the standard
stereographic projection giving a one-point compactificatioR'af We write the coordinates on
R" =X, & X* as(wg, w®). Letm = dim X,. We again let

(2.4) X,=cd(RC(X,)),  Co=ZX,N0S".

We next show that polyhomogeneous symbols’@h pulled back taR™ by 7%, are smooth
on the blown-up spacgX; C,]. Recall that the blow-up process is simply an invariant way of
introducing polar coordinates about a submanifold. A full description appears in [20] and a more
concise one in [22, Appendix A], but we give a brief summary here. Thus, suppos¥ tisa
manifold with corners and’ is a p-submanifold (i.e. product submanifold)@X . Thus, near
anyp € C we have local coordinates (i =1,...,r),y; (j=1,...,n—r), n=dim X, such
that the boundary hypersurfaces®fthroughp are defined by:; = 0, X is given byx; > 0,
i=1,...,r, and such thaf’ is locally defined by the vanishing of certain of these coordinates,
e.g.byr;=0,i=1,...s,s<r,andy; =0,5=1,...,p,p<n—r. Atangent vectol’ € T, X,
g nearp, is inward-pointing if(Vz;)(¢) > 0 for all . The normal bundle o€’ is the quotient
bundle

(2.5) NC=TcX/TC.
The inward pointing normal bundle &f, N*C, is the image ofl'* X, consisting of inward
pointing tangent vectors, iiVC'. Thus, neap, X is diffeomorphic to the inward-pointing normal
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bundle ofC. The blow-up ofX alongC is locally defined as the blow up of ttiesection of
NTC, i.e. by introducing the new> structure inN *C given by polar coordinates in the fibers
of the bundle and by the base coordinates pulled back ffowhile this construction depends
on some choices, the resultidg® structure does not. The blow-up &f alongC' is denoted
by [X; C]. The blow-down magX;C] — X is the smooth map corresponding to expressing
standard coordinates on a vector spd@gﬁC, in terms of polar coordinates. It is denoted by
B[X;C). The front face of the blow-up is the inverse image(of(i.e. of the zero section of
N*C) unders[X; C]. Hence, it is a bundle over whose fibers are the intersection of a sphere
with a ‘quadrant’ corresponding to the inward-pointing condition, i.ec;te 0. In fact, it is the
inward pointing sphere bundlg* NC which is the quotient ofV*tC'\ o, o denoting the zero
section, by the natur@®™ actions in its fibers.

We again return to the Euclidean setting. In particitae= S} . We denote the blow-down
map by 3[X;C,]:[X;C,] — X. Now STNC, is a hemisphere bundle ovét,, which can
be identified with the radial compactification of the normal bundl€pfin 0 X whose fibers
can in turn be identified withX*. To see this in more concrete terms, we proceed by finding
local coordinates ofX'; C,] explicitly. It is convenient to do so by using projective coordinates
rather than the standard polar coordinates. N&ain S’} we havejw, | > c[w®| for somec > 0.
Hence, near any pointe C,, one of the coordinate functioris, ); which we may take to be
(Wa)m, satisfied(wq)m| > ¢[(wa);|, [(wa)m| > ¢ |w®| for somec’ > 0. Taking into account the
coordinate form oRC we see that

z=|(wa)m| ™", zj=|((;”“))j| (G=1,...,m—1),
(2.6) ( a) a)m
yj:m (j=1,...,n—m)

give coordinates orS’} near p. In these coordinates’, is defined byz = 0, y = 0.
Correspondingly, we have coordinates

2.7) x, zj (=1,....,m—1), Yi=y;/x (j=1,...,n—m),

i.e.

— Wq )j . a .
= |(Wa)m| L zj = (wa); (G=1,...,m—1), Y;=w*; (=1,...,n—m)

(2.8)
near the interior of the front facé of the blow-up[X;C,], i.e. near the interior off =
B1X;C,)*Cy; see Fig. 2.

Near the cornebs[X; C,]*C, = B[X;C,*Cy N B[X;C,*0X, in the lift of the region
defined for somé by |yx| > c|y;| for somec > 0 and allj # k,

(2.9) F=xlye,  Yi=yilue G#K), w2

give coordinates. In terms of the original Euclidean variables these are

&=l %=%%% Geto o m—1)
(210) Y/J = ((Z((z;i (.] = 1""an_ma .]7£ k)7 Yk = |é;U:))i|
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Fig. 2. The blowup of”, = {z =0, y = 0}; the z coordinates are normal to the page and are not shown.
The thin lines are the coordinate curvEs= const andr = const in the regionY’| < ¢ (which is disjoint
from 5[X; C,]*0X), and their images under the blow-down m#{X; C.].

Since in every region near the Iif{ X ; C, |*C,, of C,, we can use one of these coordinate systems,
and since away from there we can use coordinates as in (2.6) butwyiéimdw® interchanged,
we have proved the following lemma.

LEMMA 2.5.— Suppose thak’ = S7 and let3 = 5[.X; C,| be the blow-down map. Then the
pull-backs*(RC™1)*7® of 7 : R™ — X extends to &> map, which we also denote by,

(2.11) T [X;C,) — X

Moreover, ifz is a boundary defining function oK ¢ (e.g.2® = |w®|~! for |w?| > 1), then
pax = (m®)*z® is a defining function for the lift ad X to [X; C,], i.e. for3*0X.

COROLLARY 2.6. —Suppose thak =S, f € ST, .(X*). Then

(2.12) (1) f € pnC([X; Ca)).

Here, following the previous lemma, we regartlas the map ir{2.11) andpgx is the defining
function of3[ X; C,]*0X, i.e. of the lift ofo X, and the subscripthg refers to classicalone-step
polyhomogeneo)isymbolgsee Fig.3).

This corollary shows that for a Euclidean many-body Hamiltoniein= A + 3" V,, V,
becomes a nice function on the compact resolved sfficeC,,]. Thus, to understanél, we
need to blow umll the C,. In order to analyze this iterated blow-up procedure, it is convenient
to generalize the clean intersection properties to manifolds with cofiers

Let X be a manifold with corners, and lek = {F},..., Fx} be a collection of closed
p-submanifolds ofX . Following Melrose, [20, Chapter V], we say thatis a normal collection
if for any pointp € X there are local coordinates on a neighborhtoof p such that with some
indexsets;, I/,l=1,...,N,

(2.13) peF=FNU={z,=0,7rel,ys=0, sel]};

here ther;, are defining functions of the boundary hypersurfaces througdtis simply means
that there is a common product decomposition for all elements of the collection.
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s 508

Fig. 3. The blowup of’,, in S%; 8 = B[S’ ; C,] is the blow-down map anff = 3*C,. X and X/ denote
translates ofX, in R, X/ = cl(RC(X)), etc. Note that the lifts o, X, and X/ become disjoint on
[Sh;Cal.

Using this definition, we can define cleanly intersecting families of submanifold¥ .of
Namely, given a finite familyF of closed p-submanifolds; of X we say thatF is a cleanly
intersecting family if it is closed under intersection (in the sense that any two members are
either disjoint, or their intersection is in the family) and for arandj, { ¥}, F; } form a normal
collection in the sense of Melrose [20, Chapter V]. As mentioned above, this means that there is
a common product decomposition for any pair of elementg.dh particular, if X is a manifold
without boundary, then this simply means that fygairwise intersect cleanly. HendgY, C) is
a many-body space if and onlydfis a cleanly intersecting family i X which includesh X .

Just as in the case of a many-body space, inclusions give a partial order on a cleanly
intersecting familyF. Thus, F' € F is minimal with respect to inclusion if there is e € F
such thatF” # F, F' C F. SinceF is closed under intersection, this means exactly that for all
F' € F eitherF’ andF' are disjoint, orF" C F"'.

LEMMA 2.7.—LetF be a cleanly intersecting family of p-submanifold®6f. Suppose that
F € F is minimal with respect to inclusion. Then the lifted fami#y, consisting of the lifts of
F;, distinct fromF, to [X; F], is also a cleanly intersecting family.

Proof. -We claim that for anyF;, F; € F the 4-tuple{F, Fy,,F;, F;}, F), = F; N F;, is a
normal collection in the sense of Melrose. Indeed, this is cley i disjoint from F’; otherwise
F C Fj by our assumption.

So assume that' C Fj. By the normality of{ F, F}. }, near any poinp in F' there are local
coordinateg:,., ys, on X such that

(2.14) Frp={z,=0,r€l, ys=0, s€ I} },

(2.15) F={z,=0,rel',y,=0,sel"},

andI, c I, I}/ C I”. Similarly, by the normality of F;, F;} there are local coordinates, v/,
nearp on X such that

(2.16) F={a.=0,relj, y;=0, sel},
(217) Fj:{m;:07refjl.7y;:O,SEIJ/]}7
Thus,

(2.18) Fy={2, =0, re[UI}, y, =0, se I UT}}.
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Thus, the differentials of the coordinatels r € I U I}, andyg, s € I;' U I/, span the conormal
bundle of F},. The same holds for the differentials ©f, r € I, y,, s € I;/. It follows that the
differentials ofx;, r € I; U I}, z,., v & I}, y5, s € I U T}, ys, s ¢ I}/ are independent &ty
in a coordinate neighborhood @f so these functions give local coordinates ¥nnearp in
terms of whichF, Fy, F; andF; have common product decompositidn; F; and Fj, given by
(2.16)—(2.18), and" by

F={a,=0,re[UL, 2,=0,rel'\I, y,=0, seI; U},
(2.19)
ys=0, seI"\ I} }.

This proves tha{ F, Fy,, F;, F; } is indeed a normal collection. Hence, by [20, Lemma V.11.2], it
lifts to a normal collection of p-submanifolds ¢X ; F']. Writing 3 for the blow-down map, and
(B* Fy, for the lift of Fy,, etc., we see in particular th@b* F;, 5*F}; } is a normal collection whose
intersection is3* Fy, if I}, # F', and is empty otherwise. Putting together these facts we see that
we have proved the lemmano

This lemma allows us to defif&; F] if F is a cleanly intersecting family of p-submanifolds
of 0.X. We do this by putting a total order of which is compatible with the partial order given
by inclusion. This can always be accomplished: pick a minimal element with respect to inclusion,
and make it the minimal element of the total order. Proceeding inductively, if we already placed
atotal order o’ C F, we choose any" € F\ ' which is minimal with respect to inclusion in
F\ F’, and extend the total order # U { F'} by makingF' the maximal element with respect to
it. Having imposed a total order gf which is compatible with inclusion, we defin&; 7] to be
the blow up[X; Fy, Fy, ..., F,] whereF = {F, F5,...,F,} andF} < F» < --- < F,,, < being
the total order. Of course, a pridiX ; 7] depends on the total order. The following lemma shows
that this is not the case.

LEMMA 2.8.-If Fis a cleanly intersecting family and, <’ are total orders on it which are
compatible with inclusion, then the blow ups

(220) [X;Fl,FQ,...7Fn}, Fi<F<---<F,,

(2.21) (X;F{,F},...,F)], Fi<F< .. .<F
are canonically diffeomorphic.

Proof. —Since any total order compatible with inclusion can be obtained from any other one
by repeatedly interchanging the order of adjacent elements, but keeping the order compatible
with inclusion, it suffices to show that

(222) [X;Fl,...7Fk,Fk+1,...,Fn] and [X;Fl,...,Fk+1,Fk,...,Fn]

are naturally isomorphic if both of these total orders respect inclusion. Now, &ithei), 1 = 0,

in which case the statement is clearly true fQrN Fj.1 = F; for somej. Since inclusion is
respected, we must haye< k. But upon the blow up of their intersection, any two closed p-
submanifolds with normal intersection lift to be disjoint. Hence,[&n Fi, ..., F_4] the lifts

6* F, and§* Fj.11 are disjoint, and thus they can be blown up in either order. This proves the
lemma. O

Correspondingly|.X; ] is defined independently of the total order used in the definition of
the blown up space, assuming that it respects inclusion, so we can speakXhBuiwvithout
specifying such a total order.
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If F; € F, we can always specify the total order so that everye F with F; < F; satisfies
F; C F;. Then the blow-up of; commutes with all the ones preceding it. Hence, any function
that is smooth oriX; F;] pulls back to be smooth ofiX; F]. Applying this in the Euclidean
many-body setting we conclude that

LEMMA 2.9. -Suppose thaK =S} and &’ is a linear family of subspaces &f* as in the
introduction. The/ =3_ Vo, V, € S, (X ), lifts to be an element of;'y C*°([X; C]) where
pax 1S the defining function of the lift @fy = 9X under the blow-down map

(2.23) Bse = BIX:C):[X;C] — X.

Our main interest is the study of differential operators, in particular the analysis of many-body
HamiltoniansH . For this purpose we next investigate how vector fields lift under the blow up.
First, we defind, (X ; F) as the Lie algebra of smooth vector fields Enwhich are tangent to
the boundary faces of and to each element ¢f.

LEmMmMA 2.10. — Each element of, (X ; F) lifts to an element o, ([ X; F]).

Proof. It suffices to show that” € V,,(X; F) lifts to be an element of, ([X; F|; F') where
F'is minimal with respect to inclusion and

(2.24) F'={BF: F eF\{F}}.

Taking into account that for any’ # F', { F, '} is a normal collection of p-submanifolds &f,
this claim follows from [20, Proposition V.11.1], or it can be checked directly by using projective
coordinates ofiX; F]. O

Remark2.11. — It isnot the case in general that,(X;F) lifts to spanV,([X;F]) over
C>([X;F)). This statement is true, however,Jf is a normal collection (i.e. all elements of
F have product decomposition in the same coordinate system, not just pairs of elements), see
[20, Proposition V.11.1].

We can now introduce the appropriate class of differential and pseudo-differential operators on
many-body spacesX, C). These will include many-body Hamiltonians in the Euclidean setting
as well as their resolvents (in the resolvent set).

First, we recall from [22] Melrose’s definition of the Lie algebra of ‘scattering vector fields’
Vse(X), defined for every manifold with boundagy. Before definingVs.(X), we recall that
V(X)) denotes the set (in fact, Lie algebra) of smooth vector fieldX omhich are tangent to
0X . The algebrdiffy,(X) of differential operators generated by(X) is called the algebra of
b-differential operatordj)iﬁ,’;(X ) denotes the set of b-differential operators of order (at nigst)
here b stands for ‘boundary’. Then we defing(X) as

(2.25) Vee(X) = 2V (X).

Note that this definition is intrinsic; for any other boundary defining function is a positive
multiple of z, henceV;.(X) is independent of such choices(4f, y1, . .., y,—1) are coordinates
on X wherex is a boundary defining function, then locally a basi3’Qf( X) is given by

(2.26) 220,, 20y, j=1,...,n—1
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Correspondingly, there is a vector bunélié’ X over X, called the scattering tangent bundle of
X, such that/,.(X) is the set of all smooth sections 67" X :

(2.27) Vae(X) = €= (X;5TX).

The dual bundle of°T' X (called the scattering cotangent bundle) is denotedt By X . Thus,
covectorsy € *“T X, p neard X, can be written ag = 7 d;” + - d” . Hence, we have local
coordinategx,y, 7, u) on**T*X neardX. The scattering densny buncﬂ%QX is the density
bundle associated %7 X, so locally neadX it is spanned byr—"~! dz dy over C>=(X).
Finally, Diffs.(X) is the algebra of differential operators generated by the vector fields in
Vs (X); Diff (X) stands for scattering differential operators of order (at mast)

To establish the relationship between the scattering structure and the Euclidean scattering
theory, we introduce local coordinates éhnearp € X as above, and use these to identify
the coordinate neighborhodd of p with a coordinate patct/’ on the closed upper hemisphere
S (which is just a closed ball) near its boundary. Such an identification preserves the scattering
structure since this structure is completely natural. We further ide$tifwith R™ via the radial
compactificatiolRC as in (2.3). The constant coefficent vector fiefiys on R™ lift under RC
to give a basis of°T'S" . Thus,V € V,.(S) can be expressed as (ignoring the lifting in the
notation)

(2.28) V=Y a;0u,, a;€C®(S).
j=1

As mentioned in the introductiom,; € C>°(S'}) is equivalent to requiring thaRC" a; is a
classical (i.e. one-step polyhomogeneous) symbol of draderR™. This description also shows
that the positive Euclidean Laplacial, is an element 0Diﬁ’fc(81), and that°QS?"} is spanned
by the pull-back of the standard Euclidean denkity|.

If X is a manifold with boundary then any elementlaf (X) = 2}, (X) is automatically
tangent to any submanifold of 9.X. Hence, due to Lemma 2.10, we can define the algebra of
many-body differential operators as shown by the following proposition.

ProposITION 2.12. —If (X,C) is a many-body space, thén.(X) lifts to a subalgebra of
W ([X;C]). Correspondingly,
(2.29) Diffsc(X,C) = C*([X;C]) ®ce(x) Diffsc(X)

is an algebra.

Proof. —By the first part of the statement, for ary € Vi.(X), f € C*>([X;()]), the
commutatofV, f] =V fisinC>([X;C]). O

In particular, sincéVs.(X) is the set of all smooth sections $fI' X, its lift is the set of all
smooth sections of the pull-back of the buntf&€ X — X to [X;C]. This pull-back bundle will
be denoted by°T[X; C]. Its dual bundle is the pull-back of the bunéi@™* X — X; itis denoted
by S¢T*[X;C].

Since in Euclidean many-body scatterige Diff2, (S%) andV =Y, Vi, € C>([S";C)), it
follows immediately thafl = A + V € Diff§ (S",C).

3. Many-body pseudo-differential calculus

Let (X,C) be a many-body space, agg. : [X;C] — X the blow-down map. There are two
equivalent way of defining many-body pseudo-differential operators. We can either specify their
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Schwartz kernels as conormal distributions on an appropriately resolved space, or we can define
them as the quantization of certain symbols. Here we give both definitions and show their
equivalence. We start with the kernel definition; readers who wish to start with the quantization
definition should directly proceed to the paragraph of (3.8).

First, we recall the definition of Hérmander’'s conormal spaéesén the context of manifolds
with corners; their use originates from Melrose’'s work. A rather brief description of these
conormal spaces appears in [22, Section 20]; a detailed discussion can be found in [20,
Chapter VI]. Thus, suppose thaf is a manifold with corners, and a closed embedded interior
p-submanifold (i.e. product submanifold, discussed in the previous section); here ‘interior’ means
thatY is the closure of its intersection with the interior &f, i.e. thatY is not a subset of any
of the boundary hypersurfaces df. Under this assumption, a neighborhadddof Y can be
identified with a neighborhood of the zero section of the normal bundfeinfA/, hence with the
direct product oft” with a neighborhood of the origin iR°°4™(Y) In particular, Hormander’s
definition, [11, Section 2.4], can be applied: € I7*(U,Y) means that/ € C_*>°(U), and
moduloC>=(U), v/ can be written as a finite sum of terms, each of which has the form

(31) (27T)—(dim M+2codimY)/4 / eiqﬁv(z,()a(z7 C) dC>

Recodim(Y')

where¢ is a linear phase function parametrizing' Y, andsuppa ¢ K x Re4m(Y) for some
K compact, and satisfying symbol estimates

(3.2) ‘ (D?Dfa) (2,0)] < O (¢)mH(dimM—2codimY)/4,

We remark that if we locally embedl/ in a manifold without boundary}/, thenY extends to

a manifold without boundary’, and then elements df” (U, Y') are restrictions of elements of
I™(M,Y)to M, i.e. they are conormal distributions smoothly u@fa . Elements of ™ (M, Y)

are then distributions: € C=>°(M) N C*(M \ Y) which become elements of*(U,Y)

for some neighborhood of Y as above when multiplied by cut-off functions @t°(U).
Similarly, one-step polyhomogeneous (or classical) conormal distributicng’ (M,Y") are

those for whichu above can be chosen one-step polyhomogenenous with leading homogeneity
K‘m-&-(dim]VI—QcodimY)/ll.

If we do not require polyhomogeneous behaviolvatthere is no reason to require it at the
boundary of M. We recall from [20, Chapter 4], see also [21], first tbél{( M) is the space
of conormal functions o/, conormal too M, which have weighted.>° bounds, with a fixed
weight, under application dbiff}, (M), i.e.

(3.3) A (M) ={ueC >(M): VP € Diff,(M), Pue p'L>(M)}.

Herep is a total boundary defining function @f/, i.e. it is the product of boundary defining
functions of the boundary hypersurfaces\df Note that elements ofi! (M) are smooth in the
interior of M. Here we assigned the same orddo every boundary hypersurface 6f; in
general the orders may be different on each hypersurface, and correspondingly we would have a
real number associated to each hypersurface.

Next, A™!(M,Y) is the space of distributions € C~°°(M) N A(M \ Y), which neary’
and modulaA! (M) can be written as a finite sum of terms as in (3.1), witbonormal, order
1, to the boundary of\/, and symbolic ir¢, i.e. the estimates (3.2) hold after replacing by
b-differential operators in, and inserting factorg’ in the right hand side.
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We can now proceed to defining many-body pseudo-differential operators by specifying what
their Schwartz kernels are. Since they will még*(X) to C>(X) continuously, hence in
particular toC~>°(X), they have Schwartz kernels ¢h>°(X x X). To arrive at a reasonable
description of which tempered distributions &ff = X x X are allowed as Schwartz kernels,
we first take an appropriate resolution of this space. For a thorough discussion of the resolution
process in the geometric two-body scattering, see Melrose’s paper [22, Appendix B], and in the
three-body setting [40, Chapter 3].

First, the b-double spacé&?, has been defined by Melrose [@§?%; (0X)?]. The front face of
the blow-up is called the b-front face and is denotedbywhile the lifts of the left and right
boundary hypersurfaces &2, i.e. of0.X x X andX x 0.X are denoted bif andrf respectively.

The diagonalA of X? lifts to a p-submanifold\;, of X2 which intersect® X? in the interior of

the b-front facepf. (The definition of p-submanifolds and the blow-up process were discussed
at the beginning of the previous section.) Moreovgy,is naturally diffeomorphic toX. Hence,

C can be regarded as a collecti@hof submanifolds of\,, and, sincedy, is a p-submanifold of

X2, these submanifolds form a cleanly intersecting familyif. Therefore, the blow up

(3.4) X§. = [Xi;C']

is well-defined by our previous results. Note tivat € C by our assumption, so the definition
includes the blow up of the lift ofAy,. It is easy to see that this space coincides withXfge
defined in [36] if (X,C) is a 3-body space. We also introduce the notaffenfor the lift of
C € C, considered as a submanifoldf,, to X3 . Thus, the boundary hypersurfacestf, are
B*1f, g*1f, 3* bf, as well asf¢, C € C; 3: X2, — X? is the blow-down map.

Noting that everC’ U {Ay} is a cleanly intersecting family, we conclude tha lifts to a
p-submanifoldAg., of X2_, which is disjoint fromif, rf andbf. Correspondingly, we define the
set of many-body pseudo-differential operators by

(85)  WL(X,0)={ke A™ (X2, Asei**Qr): k=0at B bfUB* I UB* rf };

here*(), is the pull-back of the scattering density bundle from the right factorgand2, — X7
is the blow-down map. With the notation of (3.3), by= 0 we mean that the kernel, which is a
polyhomogeneous function id'(X2. \ Asc), hence in particular neat* If, 3* rf and3* bf, is
rapidly decreasing at* If, 3* rf and3* bf, i.e. it is in (pit prt pre) Y p' L for all N, with similar
conditions on the derivativeBx, wherepy; is a defining function off* 1f, etc.

Similarly we define the corresponding one-step polyhomogeneous (‘classical’) operators

(36)  WL(X,C)={rne€pIT (X2, Ase;®QR): w=0atF* bfUS* IfUB* 1f }

wherep is the total boundary defining function &f3.. In particular, conormal distributions of
order—oo are smooth functions, so

B.7)  ws(X,C) = {rep'C®(XE, Ase;*Qr): k=0atF bf U IfUF*rf },

i.e. the kernels of operators 'rns’c“’l(X,C) are smooth up to all boundary hypersurfaces of
X2, (at least if is a non-negative integer), and vanish to infinite order at the lift of every
boundary hypersurface ok?. Tensoring with vector bundles definqé’f:ﬁ(X,C;E,F) and
\I/g”C’l(X,C; E, F) for vector bundle€ andF’ over X as usual.

Since for all ' € ¢’ we haveF C 9Ay, we can do the blow up odAy, € C’ first, before
blowing up other elements @’ (normally we would do this blow up last by our total order
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construction). It follows thaf(2_ is a blow up of the spac&2 = [X?; 9A]. Hence, conormal
distributions onX2 pull back to be conormal oX’3.. Since the kernels of scattering pseudo-
differential operators are conormal th,. and to the boundary o2 with infinite order
vanishing at every boundary face except the scattering front face, we conclude that these kernels
pull back toX2, to be elements of the kernel space defined in (3.5%4¢(X) C \yggg(x, C).

Our alternative definition will proceed via localization and describing the kernels as
quantizations of symbols in the local coordinate patches. Suppose now tha8” and(C is
a cleanly intersecting family of submanifolds 8% = 9S”; = S™~!. Here wedo notassume
thatC arises from a familyt’ of linear subspaces &". An equivalent definition oﬁ/gz’(f(S’fr,C)
is the following. Suppose that

(3.8) a€ AT ([Sh;C) x ST).

Here —m is the order associated to the boundary hypersurfiaiceC] x 0S';, while I is the
order associated to the boundary hypersurfaces comprisiisg ; C]) x S7. We can unravel
the definition (3.3) as follows. We identifint(S7 ) and int([S};C]) with R™ as usual (via
RC™1); then fora € C®(R?, x RE) (3.8) is equivalent to the following property. (Recall first
the definition ofDiff}, from the paragraph of (2.25).) For evefye Diﬁ“’gl([Si;C]), acting on
the first factor ofS’} (i.e. in thew variable), andP € Diff,’;(Si), acting on the second factor of
S% (i.e. in thef variable),k, k' € N,

(3.9) PQa € p"phL=(ST, x ST

wherep,, andpy are defining functions of the first and second factorS’ofespectively, so we
can takepo, = (€)1, ps = (w) 1. Let A = g1, (a) denote the left quantization of

(3.10) Au(w) = (2m)™" /ei(w_w/)'fa(w,ﬁ)u(w/) dw' d€,

understood as an oscillatory integral. Thém \Ilm’l(S:L_,C). Indeed, the kernel oft is

Scc
(3.11) K(w,w')=a(w,w—w)

wherea is the inverse Fourier transform ofin the¢ variable, i.ea = F; 'a. Thus,a(w, W) is
smooth away fromV = 0, is conormal tdV = 0, and it is rapidly decreasing with all derivatives
in . More precisely, the rapid decay means that fokahdQ < Diff},([S"} ; C]) and for alla,

(3.12) sup  (Jw]'|W|¥QuwDjy d(w, W)]) < oo.
[W|>1, weRn

Taking into account the geometry &f2_, in particular thajw — w’|~! vanishes at all faces of
the blow-up (3.4) but the front faces (i.e. it vanishegétf, 5* rf and 5* bf), we see thatk
vanishes to infinite order at these faces. Similar arguments describe the behadvioeafAg,
proving thatd € w2-! (S, C).

Conversely, ifA € \yggﬁ(si,C) then there exista satisfying (3.9) such thatl = g1.(a).

Namely, we leta(w, W) = K (w,w — W) and leta be the Fourier transform af in W. The
conormal estimates fdk (hence fora) give the symbolic estimates (3.9) for
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Similar conclusions hold for the right quantizatiéh= gz (b) of a symbolb:
(3.13) Bu(w) = (21)™" / e W) Ep ! Eu(w') dw’ dE.

In addition, the polyhomogeneous claggf;l(S’}r,C) is given by the quantization of symbols
(3.14) a € p"ppC™ ([S}:C] x ST).

Since differential operators, a, (w)D* are just the left quantization of the symbelsv, ¢) =
> aq(w)E?, it follows immediately that

(3.15) DiffZ (X,C) C WZ(X,C).

This conclusion also follows directly from the description of the kernels since the kernel of a
differential operator is a differentiated delta-distribution associated to the diagonal.

Note that, as usual, one can allow symbalsdepending onw, w’ and ¢, so e.g. if
a€ ,ogom,og,L,og,RCW([Si;C] x [S%;C] x Sh), pa,r. andps, g denoting total boundary defining
functions of the first and second factor @} ;C] respectively (i.e. they are pull-backs of a
boundary defining function " ), then

(3.16) Au(w) = (2m)~" /ei(“’*wl)'sa(w, w', &) u(w') dw' d¢

defines an operatot € w:'*"' (s, C).
This characterization allows the application of the standard tools of the theory of pseudo-
differential operators. In particular, il € q/ggl(x,C) is written as the left quantization of a

symbola andB € \pg;”" (X,C) is written as the right quantization of a symioko
(3.17) a € pphC([ST5CI xS, be p™ phe=([87:¢] x S1),

then the operatad B is given by
(3.18) ABu(w) = (2m)™" / e W=y E)b(w', &) u(w') dw'’ dE.

Here c(w,w’,§) = a(w,&)b(w’,§) is in p;m_m/plaprg’RC"o([Sl;C] x [ST:C] x S%), so we
conclude thatd B € quljm“l“' (X,C). In addition, the adjointi* of A is the right quantization
of a, so A* € \Ilénc’l(X,C). Analogously,Us..(S,C) is also closed under composition and
adjoints. These statements can be seen also from the standard more explicit formulae. For
example, if B is the left quantization of a symbél, the composition formula, including the
remainder terms, only involves derivatives of the folg Dg ', and Df € Diff'si“(Si) C
Diﬁ“La' ([S%;C]), so we see thabs.. (S, C) is closed under composition.

This discussion can be carried over to arbitrary manifolds with boundaryy locally
identifying X with S” and using that our arguments are localSth. More precisely, suppose
that {Uy,...,U} is an open cover o by coordinate patches, and identify edéhwith a
coordinate patclv; of S’ . We write¢; : U; — U] for the identification. LeC; denote the family
given by the image of elements 6fin U;. Then A € \IJ’S”C’Z(X,C) if and only if there exist
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operatorsA; € \I/g’f;l(Si;C’) with kernel supported in the inverse imageléf x U; in (S} ),
andR € (X x X;*Qp) such that

(3.19) A:Z(qs;fA;(qs;l)*) +R.

Note that the support condition of, ensures that this expression makes sense. To see this, just
introduce a partition of unity; € C*°(X) subordinate to the cover, and Ig¢t € C*(X) be
identically1 in a neighborhood ofupp p;. Then

(3.20) A:ZA/% :ZZ/%AM+Z(1 — i) Api.

Itis straightforward to check directly from the definition\pglc’l(X, C) that the last term is given
by a kernel inC>= (X x X;%Qpg), while A} = (¢; 1)y Ap; ot € \pg’i’l(Si,C;) with the claimed
support properties. Thus, our results mggl (S%,C) immediately show the following theorem.

THEOREM 3.1. —Both U5 (X, C) and Us..(X,C) are x-algebras(with respect to composi-
tion and taking adjoints

Since\IJm’O(S’fr,C) C U2 (R™), where¥2 (R™) is the class of pseudo-differential operators

Scc

defined by Hérmander [12, Section 18.1], arising by a quantization of symlo{¥> (R™ x R™)
satisfying

(3.21) | DS DEa(w, )] < Capl€)™ 17!,
and
(3.22) W7 (R™) : (w) " H" (R™) — (w) " *H"~™(R"),

we immediately deduce the boundedness of eIemenﬂsé’@j(X,C) between the appropriate
weighted Sobolev spaces.

THEOREM 3.2. —If A ¢! (X,C) thenA: H:*(X) — HI™*+(X) is bounded.

Scc

There is another way of characterizing the calcui&gﬁc’cl(Si,C) via Hormander's Weyl
calculus (see [12, Section 18.5]). We describe it briefly here, only considering the Euclidean
setting where th€’, arise from linear subspacés, ; it is straightforward to check that it agrees
with the definition we have given above in terms of quantization of symbols as in (3.8). Namely,
Ugen (ST) is just the calculus o™ arising from the metric

dw?  d&?
3.23 © = + =
©29 e GE
Similarly, if we takeC’ to consist of a single element,, a # 0, and if (w,,w*) is the usual

o0, — 00

splitting of the coordinates, thehg,. > (S ,C’) arises from the metric

(o) _ dwg | (dw®)? dE?
w2 wmr T

In the three-body problend;, N C, = 0 if a,b# 0, we define the metric by localizing thg®,
i.e. we consider a partition of unity, € C*°(S" ), a € I, supp ¢, N Cy, = () unlessb = 0, and

(3.24) g
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define the metric

(3.25) 9=3 6a9.

(Here thep, are pulled back to the cotangent bundle by the bundle projection.) Sing&trare
equivalent nea€’;,, it follows thatg is indeed slowly varying. Note that if, is supported close
to C,, which we can arrange by enlarging the suppor@fdw?/{w)? above can be replaced
by dw? /{(wa)?.

In general we simply repeat this procedure. Thus, to define the appropriate mefrickon
if it has been defined o™ X“ for everya with X C X°¢, we define a partition of unity, €
C>°(X ) with supp ¢, NC{ = unlesC¢ C CF. HereX© = X @ X¢ andCS = d X Nel(XE)).
We extend the metrig® on T*X® to a symmetric 2-cotensor dfi* X ¢ using the orthogonal
decompositionX ¢ = X* @ X¢, and let

3.26 (@) = g2 2

320 R R
Then

(327) g°= Z o g(a)

gives the desired metric dii* X °. The weights corresponding to elementslxg’lycl (S%,C) then
are(¢)™(w)~!, i.e. the condition on the ‘amplitude’is a € S({¢)™(w)~!, g°).
After this brief discussion of the relationshipof,* (S’ ,C) with Hormander’s Weyl calculus,
we return to the general setting to describe the principal symbol map and its anal&g at
4. The principal symbol and theindicial operators
Since the inclusion off”.* (X) to H!:*(X) is compact forr’ > r, s’ > s, it suffices to

understandd € \I/gnc’cl(X,C) modulo \Ifgncgl’l“(X,C) to analyze its spectral properties. Now,
Hérmander’s principal symbol map ok (R™) restricts to a principal symbol map

(4.1) Tsem : Wa’ (ST,C) — i (SeT*[ST5.C)),

Sp(5T*[S'};C]) denoting the space of smooth symbols which are homogeneous of degree
Due to its invariance and its local nature, it immediately extends to a map

(4.2) Tsem  Uar (X, C) — Si (°T*[X;;C)).
We radially compactify the fibers 6FT*[X;C] (i.e. replace the vector spaces by balls) and let

S¢S*[X;C] be the new boundary face (i.e. the boundary@f*[X;C] at fiber-infinity). This
allows us to writerg. ,, S a map

(4.3) se,m : Wee " (X,C) = C®(5°S*[X;CJ; (N*5°5*[X;¢)) ™).

The line bundleV*5¢S*[X;C] is locally spanned by the pull-back @f|¢|~1) from ST*[X;C],
so (4.3) is obtained from (4.1) by writing homogeneous functiofs,£) of degreem as
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ao(w, €)[€]™, € = €/|¢|, consideringa, as a function on the cosphere bundle, and using
N*3¢5*[X;C] to take care of the factd¢|™ invariantly. We then have a short exact sequence

(4.4) 0—wg O(X,C) - WE(X,0) — ¢ (S5 [X; CJ; (N385 [X;¢]) ™) = 0

as usual.

An operatorA € \I/g”C’O(X,C) is certainly determined modultpgnc’l(X,C) by the restriction
of its kernel to the front facef, C € C, of the blow up (3.4) — by restriction we really
mean the restriction of the kernel as a section of the pull-back of the density biifidie
from X2_ to ffic (we keep denoting this bundle B2x). Note thatQg is locally spanned
by |dw’|, so locally this amounts to factoring olitw’| from the distributional density kernel
K(w,w") |dw'| = a(w,w — w') |dw'| from the kernel ofA (with the notation of (3.11)), and
restrictinga (i.e. K) to the boundary ofS" ; Cl., x Ry, W =w —w'.

Thus, we define the normal operafe (A) of A atC € C to be the restriction of the kernel of
Ato ff, which, as we recall, is the front face resulting wh&nidentified as a submanifol@’
of Ay, is blown up in (3.4). Sincé\g. intersects this face transversally, the result is a conormal
distribution, conormal to the intersection &fs. with this front face, which decays rapidly at
ffo Nbf, i.e. with respect tdV with the above notation. We let

[.gsl,/bf(fva Agc N o)
(4.5) ={re I (e, Age Nff): & vanishes to infinite order atfNifc}.
Thus, for eactC € C,
(4.6) Ne W’ (X,0) m 11201 (o, Ase N o3 Q)
the new order — 1/4 is due to the change of the dimension of the total space in the defining
equation (3.1), the order of the amplitudas a symbol being unchanged.
There are compatibilty conditions between the normal operafersC € C, and the principal

symbol maprs. .. Namely, the principal symbol of the conormal singularity\af at Ag. must
be the same as the restrictionaf. to the front face, i.e.

(47) Jm,1/4(Nc(A)) :O‘SC,m(A)‘Sch*fc [X;C]'

(Note that with the density factot*QQ g this is indeed invariantly defined.) In addition, if
CyNC, #0,thenN¢, and No, must be equal on the intersectifig, Nff¢, i.e.

(4.8) Ne.(A)lgo, nete, = New(A)lge, ntie, -
(Note that the diagonalg, is transversal tdfc, Nffc., hence one can restrict distributions

which are conormal td\g., to ff¢, NfI¢,.) We denote byV,, the subspace of the joint target
space of these maps which satisfy these matching conditions:

N,y = {(a, {Ky: be ) ec™ (357 (X;c)) x [[ i (e, Ase N e, *Qr):
bel
Vo el a=0m 1/a(Kplses; [x:c))s

(49) Vb,CEI, Kc‘ffcbﬁffcc :Kb|ffcbmffcc}.
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In the special case of = —co, the kernels are smooth functions &, and we define

N oo = {{Kb: bel}e[[Cx(fe,:Qr):

bel
(4‘10) Vb7cel’ Kc|ﬁ'cbﬂﬂ'cc _be‘fcbﬂﬁ'cc};

hereCe (ff ¢, ) denotes the space of smooth functionsien which vanish with all derivatives
atbf.

On the other hand, specifying any element\9f,, i.e. any principal symbol as well as normal
operators satisfying the matching conditions (4.7)—(4.8), one can find a conormal distribution on
X2, with precisely these principal symbol and normal operators siig¢eis a manifold with
corners and\g. is a p-submanifold. Thus, the combined principal symbol and normal operator
maps give rise to a short exact sequence

(4.11) 0— 04 "N(X,C) = Ti°(X,C) = N, — 0.
In casem = — oo, this changes to the analogous short exact sequence
(4.12) 0— UM (X,C) — U™ (X,C) — Nooo — 0,

where the last map is the combined normal operator map.

While the normal operator (together with the principal symbol) suffices to characterize
mapping properties on weighted Sobolev spaces, compactness, etc., so far it is not really an
operator — it does not act (naturally) on any space of functions. In fact, one can associate a partial
convolution action to the normal operators, as was done in [40], but it is more convenient to
perform a partial Fourier transform to arrive at a family of operators, which we call indicial
operators, on functions on each front face. The cost of the partial Fourier transform is that the
range of the combined principal symbol and indicial operator maps, whith,ifor the normal
operators, becomes more complicated, excep@r@’"’o(X,C), since partial Fourier transform
does not have simple mapping properties on conormal distributions. Nonetheless, the resulting
simple and natural operator action makes the indicial operator construction worthwhile.

Our next task is thus to construct a multiplicative indicial operator from the normal operators.
Rather than proceeding directly, we digress and use oscillatory testing for this purpose as was
done in [40]. This approach has the advantage of making the multiplicative properties of the
indicial operator transparent. We start by discussing the effect of conjugatidbpbscillatory
functions.

LEMMA 4.1.-Suppose thatl € ¥27'(X,C) and f € C*°(X;R). Then
(4.13) A=Al e gt (x,0).
Proof. —It is convenient to use the explicit description®§. (X, C) in terms of localization

and quantization (3.10). Thus, we may assume fhat S’}. Note that the pull-back of/x

to R" is a polyhomogeneous symbol of ordewhich we denote by. Then the kernel ofd
is K (w,w') = e!FW)=FW) [ (4 ') where K is the kernel ofA. But by the fundamental
theorem of calculus

n 1
(4.14) Fuw' )= (w) —w;) / i F(w+ t(w' —w)) dt,
0

j=1
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ando; F' is a polyhomogeneous symbol of orderTaking into account the rapid decay &fin
W = w — ' we immediately conclude thdf € A™!((S™)2,, As.; KDL/?) vanishing with all

derivatives af3* bf UB* If US* rf, so, returning to the global setting, e \ygyl(x, C). O

A similar argument in fact shows that the commutator of elementgipt(X, C) with smooth
functionsh on the original spac&, i.e. h € C>*(X) C \IJg’CO(X,C), is in fact one order lower

than expected, i.e. is imé’f;l’”l(X,C). We remark that foh € C*°([X’; C]), the corresponding
conclusion generally fails.

LEMMA 4.2.— Suppose thatd € w2 (X,C) and h € C°(X). Then B = [A,h] €
W$7111+1(X7C)-

Proof. —Proceeding as above, we write the kernel®fas K’ (w, w') = (h(w) — h(w’))x
K(w,w"), whereK is the kernel ofA. Using (4.14) withh in place of ', and thatd;h is a

polyhomogeneous symbol of orded (it is here thath € C>°(X), rather tharh € C*([X;C]),
is used), we reach our conclusion as in the previous proof.

We next discuss mapping properties@n ([X; C]).
LEMMA 4.3.-If Ac v (X,C), u € 2"C®([X;C]), thenAu e 27 tC>([X;C)).

Proof. —This result essentially reduces to the fact thgt (X, C) is an algebra. Indeed, write
u=w-1, and note thatdu = (AU)1 where B = AU denotes the composite of with the
multiplication operatol/ by u. Since the latter is in” Diff3. (X, C), hence in¥g (X,C), we
conclude thatB € \pgg”’”(x,(:). Thus, we only have to analyzgl. Again, we can reduce the
discussion to a local one. But writing as the left quantization of a symbigho, ¢) as in (3.10),

b satisfying (3.14) with/ replaced byl + r, and writing the oscillatory integral explicitly as a
convergent integral, we see that

Bl(w) = (2w)-n/ei<w—w’>'5<w —w') TP T (1 + Ag)

(4.15) < b(w, &) (1 + Ay ) 1 dw' dE

for 2r > n, 2s > n + m. Changing the variables:
(4.16) Bl(w) = (27)™" /eiW'5<W>*2’”<5>*25(1 + Ag)b(w, &) dW dE.

This is a convergent integral witlh dependence only it Since
(4.17) b€ pphmC=([ST:C] x ST,

we conclude thatBl € z!*7C>°([S;C]). Hence, returning to the global settinglu €
2HrC>([X;C)) as claimed.

The previous three lemmas show thatif= ¢///%v, v € C*([X;C]), A € ¥&:"(X,C) then
Au = /%y with v' € C>°([X;C]). Moreover,v’ restricted to the boundary dfX;C] only
depends on the restriction ef to 9[X;C]. It also follows from Lemma 4.2 that ib € 0X
andv € C*=([X;C]) vanishes af3s,' (p) thenv' also vanishes there, i.e. composition is local
in X (though not in the resolved spaf¥;C]). Indeed, ifh € C°(X), v = hvf, u = hu, then
A(hut) = hAu* + [A, hlu, [A,h] € B3 "1 (X,C), hencee™"//#[A, hluf € 2C>([X;C)), so
A(hu) vanishes orBg, (p) whenever (p) = 0; expanding an arbitrary € C*°([X; C]) vanishing
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atﬂs_cjL (p) in Taylor series to first order then proves the descrilietbcality of the composition.
Similarly, if f(p) = f'(p) andd, f(p) = d,f'(p) (which really just mean that the scattering
covectorsd(f/xz) andd(f’/z) agree ap) thene~ /= Acif /=y ande~if'/= Aeif' /=y agree at
p (this can be proved similarly to the previous lemmas; it will also follow from our explicit
calculation below).

This allows us to define the indicial operatorsA4fat the boundary hypersurfaces|af; C].
Thea-indicial operators will be operators on the fibers of the blow-down map resal¥jngo in
the Euclidean setting, which we discuss in this paragraph, they will e.g. act on Schwartz functions
on X ¢, identified as a fiber of the blow-down map. For each ppiatC’,, we will get such an
indicial operator for eaclj, € X/, i.e. the indicial operators will be maps from an appropriate
compactification of°T, X, to operators o5 (X *). Their kernels arise essentially by taking the
(partial) Fourier transform of the normal operafds, in W,. This behavior of indicial operators
corresponds to the fact that ne@f, A € \Ilg"C’O(X,C) can be regarded as a (non-classical!)
pseudo-differential operator in the free variables,,¢,) with values in bounded operators
between Sobolev spaces, e.g.Io1{X,) if m = 0 (in fact, with values irLI/g”C’O(X“,C“)). More
precisely,A € w2:9(X,; B(L*(X®),L?(X%))) then. This allows one to understand the indicial
operator in terms of the operator-valued principal symbol map in the standard scattering calculus.

In the general geometric setting, the indicial operators would depend on certain choices in
general (though the dependence is via unitary equivalence), but if we have a scattering metric on
X they can be constructed canonically, so we assume this in what follows. We will also need a
more thorough understanding of the structur@6fC], so we also discuss this below.

Recall first that a scattering metrgoon X is a metric in the interior o (smooth symmetric
positive definite 2-cotensor) which is of the form

(4.18) g=—

neard X, wherez is a boundary defining function df andh’ is a smooth symmetric 2-cotensor
on X whose restriction to the boundary, is positive definite. Thus; gives a positive definite
pairing on**T' X, so it is (a somewhat special) smooth sectiofi‘@f* X ® s°T*X. We remark
that the choice of such @fixesz up to the addition of functions in?C>°(X).

Next, we recall the definition of the relative scattering tangent butidléC; X) of a closed
embedded submanifold of 90X from [40].

DEFINITION 4.4, —For a closed embedded submaniféldof 0.X, the relative scattering
tangent bundl&T(C; X) of C'in X is the subbundle 6f T X consisting ofv € *°T,, X, p € C,
for which there exists
(4.19) V€ Vse(X;C) CVse(X)
with V,, = v. Here

(4.20) Vee(X;C) =2V, (X;C) = 2{V € V,(X): V is tangent taC'}

and tangency is defined using the (non-injective) inclusion Mag — T X .

Thus, in local coordinatese,y,z) nearp € C such thatC is defined byz =0, y =0,
s¢T(C; X) is spanned by:29,, and 20.;, j=1,...,m — 1, wheren — m is the codimension
onC in 9X. In the case of Euclidean scattering,= S”, C = 0X,, ¢ the Euclidean metric,
seT(C; X) is naturally isomorphic to°TcX,, i.e. it should be regarded as the bundle of
scattering tangent vectors of the collision plane at infinity, spanned /by, j = 1,...,m,

m = dim X,.
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For C = C, € C, the metricg defines the orthocomplemefitT(C; X))* of T'(C; X) in
“TeX.

DEFINITION 4.5.— Givery, a scattering metric o, the subbundle oF T X consisting of
covectors that annihilateT (C; X ))*, is denoted by°T*(C; X ); we say that it is the relative
scattering cotangent bundle 6fin X.

This bundle of course depends gn In the case of Euclidean scattering7™(C; X) is
naturally isomorphic t6°T;;, X, and is spanned by(w,);, i =1,...,m.

We now choose local coordinatés, y, z) nearp € C such thatC' is defined byx =0, y =0,
and such thatd,; give an orthonormal basis ¢f°T'(C; X))*. Note that a basis 6fT'(C; X)
is given byz?0, andzd., , while a basis ofT™*(C; X ) is given byz 2 dz, 2~ dz;. A covector
in ¢T* X can be written in these local coordinates as

dx dy dz

(421) T—2+M'—+V'—.
X X X
We will write this as
d d a d a
(422) Ta—f-‘,—uﬂ. Y +Va'i
X

to emphasize the eleme@t= C, of C around which the local coordinates are centered. Thus,
local coordinates offT}; X are given by(y, z,7, u, ), while on SCT*(C’;)Q by (z,7,v) =
(2a,Ta»va). Note also that a€’ the metric function ofs is of the form|u|? + h(z,v) with |y
denoting the Euclidean length pfandh is the metric function of the restriction éfto 7°C’; the
metric function ofg (also denoted by) is thus

(4.23) g=7%+h+|u?

there.

Now if C'=C,, Cy € C with C, C Cy, we can further adjust our coordinates so thatis
defined byx =0, y’ =0, for some splittingy = (v/,y"). With the corresponding splitting of the
dual variabley = (¢, 1”’), we obtain a well-defined projection

(4.24) Toa TG, (Cp; X) — 5T (Cy; X),

(4.25) a0, 2, 7, 1" v) = (2,7, V).
In the Euclidean setting this is just the obvious projection

(4.26) Tha " Thig, Xy — *Tg Xa

under the inclusioX, C X,. We writer for the collection of these maps.
Before we define the indicial operators, we need to analyze the structure of thedift tof
[X;C]. ForC, €C let

(4.27) Co={CyeC: C\y C Cu},

(4.28) Co={CyeC: Cy CCh).

=

We carry out the blow-ugX;C] by first blowing upC,. Since all elements of, are
p-submanifolds of’,, the lift 5[ X;C,]*C, of C, to [X;C,] is naturally diffeomorphic to

(429) Co= [Ca;ca]'
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Thus, overC?, the regular part of’,, C, can be identified withC,,. The front face of the new
blow-up, i.e. of the blow up oB[X;C,]*C, in [X;C,] is thus a hemisphere (i.e. ball) bundle
over C,, namelyStNC,. We write the bundle projection, which is just the restriction of the
new blow-down map to the front fac;* NC, as

(4.30) pa:STNC, — C,.

In the Euclidean setting, these fibers can be naturally identified Mitlvia the projectionr®
(extended as in Lemma 2.5). Every remaining blow upXnC] concerns submanifolds that are
either disjoint from this new front face or are the lift of element§®f The former do not affect
the structure near the new front facgt NC, = B1X;Cq; Col*Cy, while the latter, which are
given by the lifts of elements @, correspond to blow ups that can be performed in the fibers of
S*+NC,. Note that the lift ofC}, € C* meets the new front face only at its boundary since’gll

are subsets a¥X. In particular, the lift5§ C,, of C, to [X;C] fibers overC, and the fibers are
diffeomorphic to a hemisphere (i.e. ball) with certain boundary submanifolds blown up. More
specifically, the intersection o8[X;C,; C,]*Cs, Cp € C*, with the front faceSTNC, is the
image ofT'3[X; C,]*C}, under the quotlent$3$CC is obtained by blowing these up 81" NC,,.
Hence, the fiber of;.C, overp € C, is given by[STN,Cy; T}, ,C*] whereq = B[X; Co)(p) € Ca.

In particular, in the Euclidean setting, the fibergigfC,, overC, can be naturally identified with
[X ;€% via 7. Thus, we have the following commutative diagrams:

* B‘l ad * =
(4.31) B5.Ca —= C, B.Ca —= STNC,
Bsc i A;Ca] Ba \L /
C. é.

with 3, being the fibration to the bagg,.
We now defineT™*(C,; X ), denote the pull-back ofT*(C,; X) by the blow-down map
B[Ca; Cal:
(4.32) CT*(Ca; X) = B[Ca; Ca]**“T* (Ca; X).
If C, C Cy thenmy, lifts to a map

(4.33) Foa : Thi0yca)+ 00 (Cbi X) = T (Ca; X).

We recall from [40, Section 4] that the interior of the fibess N,C, = p;'(p) of

pa:STNCy — Cq, p € Co, possess a natural transitive free affine action by the quotient
bundle (8[.X; C,] ;> T X ) /*T), (Cq; X). Thus, the tangent space 6f"N,C, at every point

q € int(S*N,C,) can be naturally identified WithH[X;Ca];‘,SCTX)/SCTp(C’a;X), hence with
the tangent space at othgre int(S+ N, C,).

For each operatorl € \I/S’f;l(X,C), the C,-indicial operator ofA, denoted byflayl, will
be a collection of operators, one for eatke SCT;(C’Q;X), acting on functions on the fiber

G, 1(p) of B,. So suppose that € Coo(ﬂ L(p)); we need to definel, (¢)u. For this purpose
choosef € C(X; R) such thatd(f/z), evaluated ap3[C,;Ca](p), is equal to¢. Then let

A= emif/oplAcil/ € wgi?(X,C), and chooser’ € C=([X;C]) such thatu'|; 1, = u.
Then
(4.34) Aai(Qu = (Au) 51,
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which is independent of all the choices we made. This can be shown by an argument which
is analogous to the proof of the preceding lemmas, but it will also follow from the explicit
calculation we make below leading to (4.48). K 0, then/lal would a priori depend on the
choice ofz up toO(x?) terms, but the choice of the scattering metriixes x up to such terms.
We often simplify (and thereby abuse) the notation and drop the ihdex we write A4, Aa I
when the value ofis understood. Before discussing thg-indicial operators ofA € g “(x,0)
in detail, we discuss how we can combine them into a single object.

In the case of Euclidean many-body scatteridg, = 0X, and Aa,l is a function on
BT X, with values in operators ofi(X®); here

(435) ﬂa = ﬂ[ca;ca] :éa = [Ca;ca} — C,

is the blow-down map. Note that, is simply the restriction of3[X,;C,] to the lift C, =
B[Xa;Cal*Cy. In fact,

(4.36) A1 €C™ (BT Xa, WE (X,C%))

as we show shortly. Note that & is a (not necessarily compact) manifold with corners and
(X C) is @ many-body space (in (4.36) we take= j3;T; X and(X®,C%) for the many-

body space), it makes perfectly good sense to talk abtiujﬂ, 24 (X,C)), i.e. about smooth
functions onZ with values in¥3-'(X,C). The topology onyz'(X,C) is the standard one,
namely that of conorrrjal dist[ibutions oiigc, conormal toAg., vanishing to infinite order at
B*bfUB*1fUB*f, B: X2, — X the blow-down map. This is equivalent to the topology arising
by localizing operatoral lIIénc’l(X,é) as in (3.20), and using the topology of the symbol spaces
on the local pieces, i.e., with the notation of (3.14) and (3.8)q;gfng°°([Si;C~] x ST) and
A*mvl([Si;é] x S7), in the polyhomogeneous and non-polyhomogeneous setting respectively
(and that oC> (X x X;5°Qy) for the remainder term).

We need to generalize this example to accommodate the geometric setting. It should be keptin
mind throughout following discussion thatis simply a ‘parameter space’. So suppose first that
¢: E — Z is a fibration of manifolds with corners with fibéf, a manifold with boundargz a
cleanly intersecting family of p-submanifolds Bfwhich is fibered ove# with fiberC, a cleanly
intersecting family of p-submanifolds 6fX that gives rise to a many-body spac¥, C). That
is, we suppose that there is an open cdvér: j € J} of Z such that¢—1(U;),Cz N ¢~ (U;))
is diffeomorphic tolU; x (X,C); we denote the diffeomorphism hy;. Let 9,E denote the
fiber-boundary ofE, i.e. locally it is given byU; x X (under the identificationy;). The
algebrawg, ' °°(E,Cg) is then defined as the algebra of operatédracting on, say, functions
u € C*°(E) which vanish to infinite order al; £, with the following local characterization.

For eachU; there is an operatad’; € C*(U;; wgo' ~*°(X,C)) such that foru € C*(E) with
suppu C ¢~ !(U;) and vanishing to infinite order &, F, Au = YIAL (Y Y*u.

This local descr|pt|on does not depend on any choices. Indeed the local definition is equivalent
to saying that the distribution kerné&l 4 of A on the fiber-productl xz E (with values in
scattering densities on the fibéf from the right factor, to be precise) is conormal on the
appropriate blow-upEgcz of F x z E. Here K 4 gives rise to the operatat by fiber-integration

(4.37) Au(w, z) = /KA(w,w’, 2)u(w', z) |dw'|,
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wherez gives coordinates o#, w andw’ are variables in the left and right factor of the fiber
X respectively, and we wrotl 4 = K 4(w,w’, z) |dw'|. Indeed, following the discussion at the
beginning of the previous section, we takg , to be the blow-up 00, E x z d,E in E x 7 E,
Ay, 4 the lift of the fiber-diagonalds Ay, 4 its fiber-boundary which we identify with, E, C7,
the image o€ under this identification, an#g, , the blow-up[E? ,; Cl;]. Then the definition
of \ygj;;‘”(E,cE) is given by modifying (3.6) the natural way. Since all blowups can be done
in the fibers ovel (i.e. Z can be regarded as a parameter), this description indeed agrees with
local definition given above.

This intrinsic definition of\y;f::;‘”(E,CE) given in the previous paragraph automatically
extends even to the setting where the fibratios transversal to the collectiars, each fiber of
¢ being diffeomorphic taX . Note that in general there are no diffeomorphigmsven locally
such that image of p takes a product form as above, though such diffeomorphisms exist, for
example, ifCy is locally linearizable. In particular, we can take=*°T*(C,; X), E to be the
pull-back of Z to ST NC, by p,, ¢: E — Z the mapp’, induced by the pull-back,

(4.38) E=p:T*(Co; X),  pb:E—*T"(C,; X).

Thus, E is a vector bundle oves* NC, with projectionn. Finally, we letCr consist of the
inverse images under of the lifts of Cj, € C* to [X;Cq; C,] intersected with the new front face,
STNC,; in fact, we also add4 E to Cg to play the role ofC; in C. We are then in the setting
discussed above, so we have defined

(4.39) w3 > (P57 (Ca; X),Ca)y Ca=m (STNC,N BIX;Ca; Cal*C) U{D4E}.

Recall that forC;, € C¢,

(440) S+Nc~’amﬂ[X;Ca;Ca]*Cb:Tﬂ[X;Ca]*va

the right hand side understood as the image of the tangent space under the quotient map. We are
now ready to prove the following proposition.

PROPOSITION 4.6. — Suppose thatl € qu’(f(X,C). Then the indicial operators oA satisfy

(441) ,AAa,l c \I};’Co’pgl (P:SCT* (éa, X), éa) )

Proof. —We prove this statement by findin@(g) explicitly in terms of local coordinates. To
simplify the notation we assume thate \IIE’CO(X,C). We identify X with S’ locally so thatC,
is given byx = 0, y = 0. In the interior of35.C,, we can use the same coordinates as at the front
face of[X;C,], i.e. the ones given in (2.7)—(2.8). So suppose thas supported in the region
of validity of these coordinates. Then

(4.42) A (w) = /K(w, wu' (w') dw' = /d(w, W' (w — W) dW

with @ as in (3.11). Here the integral is understood as a distributional pairing in general, but it
actually converges if < —n. We now consider the coordinates (2.7) on the both factors, i.e. we
take («/,Y’,2’) corresponding tav’ = w — W, and(z, Y, z) corresponding tav. Expressing
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(«',Y',2') interms of(z, Y, z) andW (usingw’ = w — W) gives

-1 ;2 —x(Wa);

4.43) o' =a(l—2(Wa)m) |, Y=Y - (W)

TS Y

j?

where we wroteélW = (W,, W*) and (W,),, (W®), denote the components &, and W*
respectively. Thus, (4.42) yields

/ e (e z W)
(@) (Y20 = [ Y2 W (v - W P ) aw

Evaluating atr = 0 gives
Au'(0,Y,2) = /EL(O,Y7 z, W)u'(O,Y - Wwe, z) aw
(4.45) = /(/ a(0,Y, 2z, W) dWa> W/ (0,Y — W, z) dwe.
Sincea is the inverse Fourier transform in tijevariable of the symbat whose left quantization

is A, and since thé&V/, integral above can be understood as the Fourier transforif iavaluated
at the origin, we deduce that

(4.46) Au'(0,Y, z) = (2m)~(n=m) /eiW“'f“a(o,Y, 2,0,£)u/(0,Y — W, 2) dg® dW®.

Thus, the indicial operatod, ((p,0)) where(p,0) € **T*(C,; X) is the zero covector above
p=1(0,0,2) € C, is given by

(4.47) Aq((p,0))u(Y) = (2r)~ (=™ /eiW“f“a(o,Y,z,o,ga)u(Y — W) der dw,

i.e. by the left quantization ifY, %) = (W*,£%) of a(0,Y,2,0,£%). Similar results hold for
A, (¢) in general, namely

(4.48) Au(z,&)u(Y) = (2m) "™ / M a(0,Y, 2,60, 6 u(Y — W) dgt AW

Though the local coordinates are only valid in the interiopgfC,, hence not aﬁ;@é‘a, the
continuity of Au up to 3:9C, shows that (4.48) also holds withe C,,.

The explicit expression, (4.48) shows, in particular, tﬁa(g“)u is indeed independent of the
extension.’ of u that we chose, and also of the choicefolvith d(f/z) prescribed aBs.(p).
Moreover, also from (4.48), for eache T (Cy; X), p € Cl,

(4.49) Aa(Q) € WEY (pa ' (), T,C);

here we wrotel,,C* for T,,5[X;C,]*C for simplicity. In fact, (4.48) shows the more precise
statement which encodes the smooth dependenég(qﬁ) on¢, namely that

(4.50) Awr ey (02T (Cai X),Ca).
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In the Euclidean setting the many-body spégg' (p), 7,C*) can be identified witf{X¢,C?),
and we can write

(4.51) Aa(Q) € wg. (X7,
and correspondingly
(4.52) Ag 1 €C (B Thg Xa, WL (X,C7)

as we have claimed.O

If A€ wg)(X,C), then the vanishing ofi, (¢) for everya and every¢ € *7*(C,; X)
implies, by our explicit formula, that € C>°([X;C] x S7) vanishes at(9[X;C]) x ST,
so A € UGl (X,C). Thus, the vanishing ofs.,.(A) and all indicial operators together, for
Aecwgl(X,C), say, implies thatl € w5 "' (X,C).

An advantage of the oscillatory testing definition of the indicial operators is that it makes their
multiplicative property clear.

PROPOSITION 4.7. —If A€ ¢! (X,C), Be w" (X,C) then

(4.53) ABq s (Qu= A i(¢)Ba (C)u.

The indicial operators are very closely related to the normal operators. In fact, in the proof of
Proposition 4.6 K (w, w') = a(w,w — w’) is the kernel ofA, and its restriction to the front face
isa(0,Y,z,W). Thus, the kernel ofi,(z, &, ) is the partial Fourier transform afin ,:

(4.54) Ag(2,&) (Y, W) = (Fw,a)(0,Y, 2,6, W?).

This also shows that the range of the indicial operator map is somewhat complicated. Namely,
partial Fourier transform does not respect the conormal singularityadf?” = 0. However, for
operators inA € \1/§C°°’0(X,C) this problem does not arisé:then is simply in Schwartz if/,
including smoothness at the origin, hence its partial Fourier transform will have exactly the same
properties.

Corresponding to the matching condition, (4.8), for the normal operators at the intersections
of the front faces, there is a matching condition for indicial operators. Namely, the indicial
operators are related via the projecti@ng. Thus, if¢ € SCT*(C'a; X), then the indicial operators

of A,1(¢) are Ay, (¢) whereC, C Cp, Cu # Cy, and( € *Tjyc, c1.¢, (Cr; X) is such that
frba(é) = (. This follows easily from the explicit coordinate form of the indicial operators.
The following proposition is the main reason why a multiplicative indicial operator is

important.

PROPOSITION 4.8. - If A € T5”(X,C) is such thaws. . (A) never vanishes and,(¢) is
invertible with inverse inbg° (p; (p), T,C?) (i.e. in T’ (X*,C?) in the Euclidean setting
for everya and for eveny € °T*(C,; X ), then there exists a parametrix € \I/S’CT’O(X,C) for
AsuchthatPA —1d, AP — Id € ¥ .”"*(X,C). Moreover,P has the following properties

(4.55) 0sc,—r(P) = USC,T(A)ila Pu(¢) = Aa(oil-

Proof. —In the construction below we may assume that for egcthe b-indicial operators
of A,(¢)~! are Ay(¢)~1 for ¢ with 7, (¢) = ¢, i.e. they ‘match up’. IndeedA,(¢) €
\I/g’co(pgl(p),TpC“), with non-vanishing principal symbol and invertible indicial operators
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Ab(f), ¢ as above, by the assumption, hence we can apply the proposition inductively, with (4.55)
providing the claimed matching for a parametfix(¢) of A,(¢), hence, by the usual parametrix
argument, for the inverséa(C)‘1 itself. The matching condition on the indicial operators is
vacuous in the two-body type setting, i.eCif= {Cy}, hence we can indeed start the induction
from there.

The only non-standard part of the proof is that we can ché@%\pgf’o(X, C) with principal
symbolos..(A)~! and indicial operatorsl, o(¢)~', i.e. that these are in the range of the joint
principal symbol-indicial operator map. The main issue here is the matching condition involving
the principal symbol, expressed by (4.7) for the normal operators, since, as discussed above,
partial Fourier transform does not behave too well regarding conormal singularities. Thus, we
proceed as follows.

First, note that there is an operat@s € Ug_~ %(X, ) with principal symbobrg, ,.(4)~; this
follows from the short exact sequence (4.11), orindeed from (4.4) (note that wetapecifying
the normal operators at this stage). HerGes Id —Qp A € \yg;?(X, C) has vanishing principal
symbol, soitis m«y‘l %(X,C). Summing the Neumann seriEf’i1 G’ asymptotically to some
Gy e wg,’(X,C) and lettingQ = (Id +G1)Qo givesId —QA € ¥ ™*"(X,C), then a similar
right parametrix construction and the standard argument comparing the two parametrices shows
thatQ satisfies

(4.56) Id—QA, [d—AQ € v (X, C).
In particular, taking indicial operators,

4.57)  T.(Q)=1d-Qu()Au(¢), Id—A)Q(C) € w5 (pa ' (p), T,C%),

and the kernels, which are smooth functions, decay rapidfy-asx. This implies, in particular,
that |7 (Ol s(z2 oz (p))) — 0 @S¢ — oo, henceld —T,(¢) is invertible for sufficiently large;
without any assumption on the a priori invertibility éfa(g), hencefla(()‘1 exists for largel
and differs fromQ), (¢) by a term rapidly decreasing {1 In general, for arbitrary, the standard
parametrix argument, consisting of multiplying the previous expressiods by) ~*, then shows
that

(4.58) (Aa(0)) " = Qul©) € w5 (py (1) T,C™).

Since the inverse partial Fourier transform maps Schwartz functions to Schwartz functions,
we deduce that the normal operators correspondin@itg¢))~! — Q.(¢) are in the space
C>(ff ¢, ;% R) with infinite order vanishing omf, and they satisfy (4.8) as mentioned in the
first paragraph. Thus from the short exact sequence (4.11), or indeed from (4.12), there exists an
operatorR € ¥ ™" (X, C) such that,(¢) = (44(¢)) ™ — Qu(¢).

Let Py = Q + R; thenogc, (Py) = 0se.»(A) "1, and Py, (¢) = (A4(¢))~! as desired. Hence,
proceeding as usualy = Id—FPyA € \I/g’CO(X,C) has vanishing principal symbol and indicial
operators, so it is inp;cl’l(X,C). Summing the Neumann seri@?ilEj asymptotically to
someF € \Ichl’l(X,C) and lettingP = (Id +F') P, gives the required left parametrix. A right
parametrix can be constructed similarly, and then the usual argument shows that they can be
taken to be the same.O

For A e \I/g;’O(X C) self-adjoint,m > 0, with os. ,,(A) never vanishing, we automatically
have tha{ A — \)~! € w"%(X,C) for A € C \ R. Indeed, the indicial operator of — \ at the

free face, i.e. the lift oy = 0X to [X;C], is Ao(zlg) — A, i.e. aC-valued function, which is
non-zero since the self-adjointnessbimplies that4, is real, while on the other harich A # 0.
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Then an inductive argument on the clustés starting withCy, and using the above proposition,
—00,0

shows first the existence of a parametrix fg(¢) — \ insidews % (o, ! (p), T,C), which then
allows us to conclude the invertibility oia(() — A in the same space (since we already know that
the inverse exists as a bounded operatoLd(p, *(p))), completing the inductive step. (This is
essentially the inductive procedure outlined in the first paragraph of the proof.)

Moreover, the blow-up of A — \)~! in qlgc""O(X,C) can be analyzed uniformly as
approaches the real axis, see e.g. [9,40]. Therefore, the functional calculus for self-adjoint
operators4d and the Cauchy integral representatiop@fl) via almost analytic extensions, as in

the work of Helffer and Sjostrand [10], Derézki and Gérard [3], see also [9], gives immediately

PROPOSITION 4.9. —Suppose thatl € w5, °(X, () self-adjointyn > 0, andos.. .. (A) never
vanishes. Suppose also that C2°(R). Theng(A) € g >*"(X,C) and its indicial operators
are (A, (¢)). If instead we assumge Song(R) theng(A) € o ™(X,C).

If m =0, that is A € 15 (X,C), thenp(A) € Tgr (X,C) without any assumption on the
invertibility of og. o(A). We thus have:

PROPOSITION 4.10. — Suppose thatd € w3’(X,C) is self-adjoint. If ¢ € C*(R) then
$(4) € U5 (X,C).

Proof. —Since A is bounded, we can replageby a functiony € C°(R) such thatp = ¢
on the spectrum ofA. Now ogco(A — A) = 0sc,0(A) — A is invertible for A € C \ R, so
(A=)~ ewg’(X,C) for A ¢ R. Again, (A — \)~! can be analyzed uniformly up to the
real axis, and then the Cauchy integral representatiai( dff now proves the proposition.co

Remark4.11. — Following through the Cauchy formula also shows that the principal symbol
of ¢(A) is ¢(0se.0(A)), and the indicial operators arg A, (¢)).

5. Thewavefront set

The Sc-wave front setWFg.(u) of a distributionu, and theSc-operator wave front set
WFg. (A)of Ae \ygj;l(X, C), at infinity will be defined as subsets of the compressed scattering
cotangent bundle

(5.1) X = J*Te, (Ca; X);

we have define® 7*(C,; X) in Definition 4.5. This is very similar to the image of the cotangent
bundle in the compressed cotangent bundle (the b-cotangent bundle) that Melrose and Sjéstrand
used to describe the propagation of singularities for the wave equation in domains with smooth
boundaries [23] and also to the corresponding phase space for domains with chrﬂ'@@,

which was the setting for Lebeau’s analysis of the singularities of solutions to the wave equation
on (. Thus, one may think dVFs.(u) as containing less detailed information tHais. (u), in

the sense that the former is a subset of the compressed bundle, while the latter is a subset of the
non-compressed bundfT; X . However, there is no simple relationship between these two
wave front sets. In particular, neither of these wave front sets can be used to describe the other.
Thus, the picture thafVFg.(u) contains less detailed information is at least partly incorrect; the

two wave front sets are simply different. The fact thidFg.(u) lives on a compressed version of
T3« X corresponds to the singular behavior of element@?@cfl(X,C), as compared to those

of g™ !(X).
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As mentioned in the introduction, we make the assumptionGhatocally linearizable. This
assumption simplifies the geometry, and it enables us to give a rather explicit description of the
wave front sets.

Before proceeding with a discussion of wave front sets, we discuss the basic topology of
sT* X . We topologizé“T* X using the projectiom : T X — *T*X. We say that a function
fon*T5 X is m-invariant if f(¢) = f(¢’) wheneverr(¢) = =(¢’); in this casef induces
a function f, onsT*X with f, o 7w = f. By definition,C' C °T*X is closed if and only if
7~ !(C) is closed, so iff is continuous ori°T*X and-invariant, thenf; is continuous on
seT*X.

Under our assumption thétis locally linearizable, ipp € C!, we can choose local coordinates
(Ya, za) ON OX in terms of whichall the C,, satisfyingp € C, are linear, i.e. they are given by
Apy, = 0 where 4, is a (constant) matrix, and, is given byy, = 0. Let (4, itq, v,) denote
the sc-dual variables dfr,y,.,2,) as in (4.22). Choosing such coordinates, z,, 7., v, are
m-invariant neaf°7;; X.

In particular, there are always continuous functions separating poiiB i : if p(¢) # p({’)
(herep:scT*X — 9X stands for projection to the base), one can use the pull-back of an
appropriate function o®X, and if p(¢) = p(¢’) € Cy, then(, (' € *T¢, (Co; X) are of the
form (Z,,7a, 7a) and (z,, 7., 7.), Ta # T, OF b, # 7, and the functiong — 7,, ( — v,, are
well-defined andr-invariant on a neighborhood pf¢) (this uses that is locally linearizable),
so multiplying them by the pull-back of a cutoff @hX gives globally well-defined separating
continuous functions. Thug;7* X is Hausdorff.

Note that if K is a compact subset 6T} X, then K = n(Kj) is compact, and in fact it
is a compact metrizable space, just as in Lebeau’s setting [18, Section Ill]. (The characteristic
variety of A — X is an example of such a sé&f; that is of interest here.) This can also be seen
explicitly by showing that" is normal, which we proceed to show.

Fix ¢ € SCT&XQ, write ¢ = (24, 74, 7a), and choose a neighborhodd of z, = p(¢) in 6X

such thatUy N C, = O unlessC, C Cy. Let we = w:SCTL’;_OX — R be given by the following
m-invariant function onT=—X (also denoted by):
0

(5.2) W(C) = |ya‘2 + ‘Za - 5a|2 + ‘Ta - 7ia|2 + ‘Va - Da|2 20

in the coordinatesy.,, za;, Ta, fta, Vo). Suppose that/ is open inK, ¢ € U. Thus, K’ =
(KN SC1'“5_0X) \ U is compact, so, unlesk”’ is empty,w assumes a minimum on it which thus
has to be non-negative. Bu{¢) = 0 impliesy, =0, sop(¢) € C,, and there, = Z,, 7, = Ta,

v, = U, Show that¢ = ¢. Since( € U, this shows that there exisfs> 0 such thatu > 6 on
K. Replacings > 0 by possibly a smaller number, we can also assumedfi@t < ¢ implies
p(¢) € Up. We thus conclude that if is a neighborhood of in K, then there exists > 0 such
that

(5.3) {CeK: w(()<d}CU.

These sets are open sineels continuous, hence they form a basis for the topology<oas
¢ andé vary; it is easy to see that if one restricts both of these to suitable countable sets, one
still has a basis. Note that, separating the complement &bm ¢ by a level set ofu shows
explicitly that K is regular, and a simple compactness argument using thef®mposed with
cut-off functions on the reals as in the next paragraph) showgdtiainormal, hence a compact
metrizable space, as claimed.

Composingw with aC* function onR supported ned also shows that given aryc K and
any neighborhood’ of ¢ in K, one can constructa-invariantC> function f ons°T}, X for
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which £, (¢) # 0 andsupp f. N K C U. This also shows the existence of smooth partitions of
unity on K, smoothness understood as smoothness for the pull-b&eK1& .
The definition of WFg.(u) and WFg.(A) will be local in X. Thus, we can always work
on S% instead. Just like when we defindtgg’l(X,C), we will be able to proceed either by
giving an explicit description i$”} via the Fourier transform, or by giving invariant definitions.
Throughout this section we follow the construction of the fibred cusp wave front set by Mazzeo
and Melrose [19, Section 7]; their proofs can be easily modified to accommodate our setting.
We start with the operator wave front sets, which we only define for ‘smoothing operators’
A€ \IJS_COC’I(X,C) to eliminate the necessity of defining the usual operator wave front set on
S¢8*[X;C]. The invariant definition proceeds by oscillatory testing.

DEFINITION 5.1.— Suppose thal € \IJ;COC’I(X,C) and¢ € *°T;(Cq; X), p € C,. We say
that¢ ¢ WF%.(A) if and only if there exist a neighborhodof ¢ in *°7* X and a neighborhood
V of pin X such thatdu € C>°(X) for every oscillatory function, = *//%v, v € C*°([X;C])
with 7(graph(d(f/x))) NIy 5 X C U andsuppv C Gt (V).

This definition implies immediately thaVFj..(A) is closed irF°T* X,

(5.4) WF§, (A + B) C WFg,(4) UWFS(B), A, Bewg™(X.0),

C

(5.5) WF4 (AB) C WF (A) N\WF§.(B), A,Bewg ™! (X,0).

We can also formulate the definition explicitly. We thus locally identywith S} and
considerA € \I/§C°°’Z(Si, C). We also identify*TS"} with S”} x R". So suppose that is the left
guantization of a symbal € p4,C>([S"; C] x S ) that vanishes to infinite order &7 ; C] x 6S";..
Then¢ ¢ WFg.(A), ¢ €T (Cy; X), p € C,,, if and only if there exists a neighborhoddof ¢
in *°7*S" such that vanishes at/’ C (9[S";C]) x R™ to infinite order wherd/’ is the inverse
image ofU under the composite map

Bse xid

(5.6)  (9[st;c]) xR™ (0S1) x R =T, S — " sc*§n

It follows immediately from the usual formulae relating quantizations and the effect of
diffeomorphisms that this definition is independent of such choices. For example, we could have
equally well writtenA as the right quantization of a symbol with similar properties.

The general definition for € \IISZ’Z(X,C), again following the paper [19], in the explicit
guantization form as in the previous paragraph, would also require the rapid deciayasf open
cone (conic in the cotangent variabfej.e. in the second factoR", in (5.6)) that included’’.
ForA e \I/§C°°’Z(X,C), a is rapidly decreasing in every direction g$ — oo, so this statement
is vacuous, and we recover Definition 5.1. The main point is that & w3°(X,C), A,(¢)
is invertible, then there exists a microlocal parametrix fgri.e. there existgs € \pg’CO(X,C)
such thatld = AG + Rg, Id = GA + Ry, with Rg, Ry, € w3 (X,C), ¢ ¢ WFS.(Rg),
¢ ¢ WF§.(Ry); see [19, Lemmas 14-15].

More explicitly, we have the following sufficient condition for ¢ WFg.(A),

A€ wg>?(X,C). Namely, if there is a neighborhodd of ¢ = (0,29,£0) € T (C,;S),
pe Cl,in oSt x R™ such that vanishes to infinite order at every poift, §) € (0[S";C]) x
R™ with (Bsc(¢'), &) € V, then¢ ¢ WFg (A). Note that ag € C’,, we can always assume, by
reducing the size df if necessary, thaiy, £*) € V impliesq € C;, for someb with C,, C Cp. We
can see that this condition is sufficient foi WF§.(A) since for nearby € S*~!, assuming as
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we may thay € Cy, C, C Cy, the restriction ofr to TS} takes the forn{q, &, €°) — (q,&)
and¢, splits as(¢], &) with &, = £,. Thus, the condition of the previous paragraph holds if we
take

(5.7) U= J{(a.6): ¢ Cp, 3¢u, & st.(q,&) €V andg, = (&)}
b

The definition of the wave front set of a distributiare C~°(X') at9X is more complicated.
To determine whethef € *T,(Co; X), p € Cy,, is in WFs.(u), we would like to cut offu
to be supported near, i.e. considerju, ¥ € C*(X), 1» = 1 nearp, identify a neighborhood
of p with an open set ir§} neardS’, and consider smoothness of the Fourier transform
of u, Fyu. Indeed, in the two-body setting, hence in the many-body setting if we consider
(e *Tey (Co; X) = e, X, written as a covectd - dw overp € C{), we have

(5.8) ¢ ¢ WFy.(u) iff i asabove, s.tFyu is smooth neag.

In the general many-body setting,c *7,;(C,; X), p € Cy, ¢ takes the form¢, - dw,, and
correspondingly we would like to say th&w/u is Schwartz in a region including the subspace
S consisting of all points of the forni¢,,&*) where&® is arbitrary. Here Schwartz takes the
place of smooth functions since the region is not compad®’in However, as shown by the
example of ordinary wave front set, we cannot expect that this wave front set behaves reasonably
unless the regio/ is conic near infinity, i.e. unless it is a neighborhood of the closure of
S in the radial compactificatiof’; of R". This however introduces the complication that all
parallel translates of intersect/, and we are exactly interested in separating from each other
the singularities on the various translatesSofThis problem is not too serious, especially for
generalized eigenfunctions of many-body Hamiltonidhsbut it introduces additional terms
into the following definition which is modelled on that of the fibred cusp wave front set by
Mazzeo and Melrose [19].

DEFINITION 5.2. — We say that
¢ & WFse(u) N*T¢g, (Co; X)) iff  FA€ WG (X,C), Aqo(C) invertible in wg,’ (X,C%),
HBj € \IJS_COO,O(X>C)> ¢ ¢ WF/Sc(Bj)7
Ju; €CT®(X), j=1,...,s, f€C®(X),
(5.9) Au=>"Bju; + f.
j=1

Here we used the Euclidean notatiod;’ (X *,C®) instead ofw %" (p; " (p), T,C*) for the sake
of simplicity. Similarly, the filtered version of thec-wave front set is given by

C ¢ WEE (u) N*°Tg, (Cos X) iff JA€ W) (X,C), Aqo(C) invertible in v (X*,C%),
3B, € wg.*(X,C), ¢ ¢ WFe.(B;),
El’lL] € Cioo(X)a .] = 1a s S f € H:cL’Z(X)’
(5.10) Au=>"Bju; + f.
j=1

Thus, ifp € C,, then the part oW Fs. overp lives in*T,(C,; X ). If we define the scattering
wave front setWF,.(u), in terms of operators instead of the descriptiodf.(u) given in
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(5.8) then the extra termB;u; can be dropped. In fact, (5.8) is equivalent to requiring that
Au € C=(S) whereA = F~1¢Fyp € U >0(ST), ¢ as above, ang € C°(R™) is identically
1 near¢. The additional termd3;u; for WFs,(u) thus arise because the invertibility df, (¢)
implies thatog. o(A, (¢)) cannot vanish which in turn means that. o (A, (¢’)) is non-zero for
every (' € *T7(Cy; X) sinceosc,0(Aq(()) = 0sc,0(Aa(¢')). This simply corresponds to the
conic cutoff requirement discussed before the definition.

Remark5.3. — We remark that if, = Pu’ for someu’ € C~°(X), P € U3 (X, C), then
the following is a sufficient condition faf = (p,&,) € SCTgéXa, considered a€” x X,, notto

be inWFs.(u). Suppose that there existse C*>°(S"), ¢(p) # 0, andp € C2°(X,), p=1 near
Ear and((m®)*p) F(Yu) € S(R™) = S(Xp). Then( ¢ WFg.(u). Indeed, let

(5.11) B=(Id—F '((n*)*p)Fy)P, v=u, f=F(x*)*p) FypPu'.

ThenB € \I/§C°°’O(X,C) (see the beginning of Section 9, in particular Lemma 9.1, for a similar
construction),

(5.12) u=Pu = (Id —F! ((W“)*p)}"@/})Pu’ + f=Bv+ f,

¢ ¢ WF4(B), f € C=(S?). Such a characterization is useful for approximate generalized
eigenfunctions: of a many-body Hamiltoniai/; see also Proposition 5.5.

With the topology we put off 7* X, WFg.(u) is closed due to the relationship between the
indicial operators mentioned above. Namely, the invertibilityﬁigfo(g) implies that of[lbp(f)
with 7, (C) = ¢, hence ofd, ¢(¢') for nearby(’. As the complement 6V F} (B;) is open, this
implies that the complement 8 Fg.(u) is also open.

In addition, WFs. has the standard properties one would expect from a wave front set.
However, only (5.16) plays an important role in our positive commutator proofs, so we refer to
[19, Section 7] for detailed arguments; we only need simple modifications of the proofs presented
there. Thus,

(5.13) WFSC(U1 + UQ) C WFSc(Ul) U WFSC(UQ)

and the corresponding result also holds for the filtered wave front set. Moreover, pseudo-
differential operators are microlocal in the sense that

(5.14) Ae v (X,0), ueC™®(X) = WFs.(Au) C WFs.(u),

and similarly

(5.15) Ac U (X,C), ueC (X)) = WFT ™ (Au) c WFT ! (u).

We also refer to the remarks after Proposition 5.5 for connecting this wave front set to the one
discussed in [40] in three-body scattering.

This wave front sefWFs., gives a complete microlocal description of distribution8&t. To
state it generally, we would need to define the extension of the standard wave fronuget of
give a subset of°S*[X; C], but for us the following extension of (5.14) suffices.

PROPOSITION 5.4. —

Pewg™!(X,C), WFj,(P)compact
(5.16) |
u€C™™(X), WFg(P)NWFsc(u) =0= PueC®(X).
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We remark that in [22]WF . (u) (or rather its part oved X) is defined as a subset 6}, X,
the radial compactification 6f77; . X in the fibers. The part at fiber-infinity, i.e. at the boundary
arising from the radial compactification of the fibers, extends the usual wave front set from the
interior. However, for us this extension is not important; the operator wave front set of nearly all
operators we are interested in is contained in a compact regisiok .

Since (5.16) is the main property of the wave front set that we need for the positive commutator
estimates, we briefly outline its proof.

Proof. —Suppose( ¢ WFg.(u). Then there existA¢, B¢ j, uc j, fe, as in Definition 5.2.
Let G be a microlocal parametrix for, soId = G¢A¢ + Re, with G¢, Re € Uar (X, C),
¢ ¢ WF§.(R¢). Then

(5.17) u=GcAcu+ Reu=Y_ G¢Be juc;+ Gefc + Reu.
J

Now, Ue = (WFg (R¢) U (U; WFg.(Bc 7)) is open, andUc: ¢ ¢ WFsc(u)} is a cover of
the complement oW Fs.(u), hence in particular oWF. (P). Since the latter is compact, there
is a finite subcover, sayU;,: k=1,...,N}.

Using a partition of unity, we can writ€ = 3", P, with P, € U5 ™"(X,C), WF§.(Py) C
Ue,. Indeed, as discussed before Definition 5.1, we can finidvariant functionsg;, €
C (T X) with supp(gx)r N WFg,(P) C U, andgy =1 — >, g vanishes identically
on a neighborhood oW Fg_(P). Quantizing these as in Section 9, i.e. quantizipg where
P is the right quantization of, see Lemma 9.1, using € \IJ§C°°’O(X,C) in place ofyy(H),
gives operator®;, € U5 (X,C) with WF§ (Py) C U, for k> 1, Py € 15> (X,C), and
Z,ILO P, = P. SinceP, has empty operator wave front set, it can be added to any of the other
P.; henceforth we drop it from our notation. Then, with = G, , etc.,

(5.18) PkUZZPkaBkJukJ + PGy fr + Py Ryu.

J

oo

SinceP; € Ug, *(X, ), all composite operators on the right hand side are alspgjﬁ’o(X,C).
Moreover, by constructionWFg . (Py) N WFg.(Bg,;) = 0, WFs.(Py) N WF.(Rg) = 0, so
PyGyBy,; and PyRy, are both inwg>">°(X,C), hence mapC~>°(X) to C=(X), while
fr € C®(X), s0 PiGrfr € C®(X) as well. Thus,Pyu € C*(X), which in turn implies
PueC>(X)asclaimed. O

The description of the wave front set becomes simpler for generalized eigenfunctions of many-
body Hamiltoniand?. Namely, we have the following result.

PROPOSITION 5.5. — Suppose thai € (X ), H € w4.°(X,C), m > ( is self-adjoint and
ose,m(H) never vanishes. Let € R, and defind?V C sepx X by

CEWNTTE, (Cos X) it I eCE(R), Y(N) =1,

(5.19) JA€ 03X, C), Ag(C) = (H),, Aue C®(X).
Then
(5.20) WFgc(u) C WFse((H — A)u) UW.

The same conclusion holds withVFs. replaced by WF’S”C’Z and Au € C°°(X) by
Au € HM(X).
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Proof. —Suppose that ¢ WFs.((H — \u) and ¢ ¢ W. With ¢ as above, let)(t) =
(1 —(t)/(t = X), so¢ € SL(R) asp(N) = 1. Thens(H) € wg™*(X,C) and Id =
G(H)(H — \) + ¢(H). With A as above, letd’ = A + (Id—¢(H)) € 03°(X,C). Then
A’ (¢) =1d and

(5.21) Au=Au+(H)(H — \u.
But Au € C*°(X) by assumption, so by (5.14)

(5.22) WFso(A'u) = WFse (Y(H)(H — \u) € WFse ((H — Mu).

Hence, there exist” (in place ofA), B;, etc., as in Definition 5.24” A'u = f + %" B;u,, and
the indicial operator ofA” A’ at C is just the composite of those df’ and A’, hence invertible,
showing that ¢ WFg.(u). O

Remark5.6. — Our definition ofWFg.(u), which is in particular valid if(X,C) is a three-
body space, iglifferentfrom the wave front se?WF5,.(u) used in [40] in the three-body setting.
Indeed, in the definition 0fWF3,.(u), the termsB;u; appearing in Definition 5.2 were not
allowed. Consequently, (5.14), and its filtered analogue did not hold in general. However, for the
positive commutator proofs of both [40] and the present paper, one only needs (5.16), which was
proved forWF3,.. Note thatWFs;,.(A) andWFg,.(A) are compact for all operators appearing
in positive commutator estimates in both papers.

Note that WFg.(u) C WFs,.(u) directly from the definition. Moreover, ifId —P)u €
C>(X) for someP € \11§C°°’°(X,C) (e.g. P =(H) in the setting of the proposition) then
WFsc(u) = WF3s(u). In fact, suppose thaf ¢ WFsc(u), S0 Au =) Bju; + f as in
Definition 5.2. SinceA is invertible near¢, we can arrange (by invertingl nearby, i.e.
by constructing a ‘microlocal parametrix’) that= " Bju; + f' with B’ € \I/§C°°’O(X,C),
¢ ¢ WFg.(Bj) (cf. [19, Lemma 16]; we remove the terfiu stated there by writing it
as CPu + C(Id —P)u, and incorporating them iy Biu’; and f’ respectively). Using the
methods of Section 9, given any neighborhdddof ¢, it is easy to construct an operator
G e w3>"(X,C) such thatWF§, (G) C U and¢ ¢ WF§, (P — G) (hence the same holds for a
neighborhood of). Since the indicial operator 6§ = G + (Id — P) at( is the identity, and since
(Id — P)u € C*(X), we only need to prove thatu € C>(X) to conclude that ¢ WF3,.(u).

But Gu =) GBju; +Gf', soifU is chosen sufficiently small, thefiB’; € W ™™ (X,C), so

Gu € C>°(X) indeed.

6. The Hamiltonian and gener alized broken bicharacteristics

We next analyze the operatélr— A whereH = A 4+ V andA is the Laplacian of a scattering
metric
dz?2 R
2t a2
Recall that:' is a smooth symmetric 2-cotensor &whose restriction td X (i.e. its pull-back),
h, is positive definite. We assume that

(6.1) g=

(6.2) V € C*([X;C];R) vanishes aps.Co,
i.e. V vanishes in the free region. This implies that
(6.3) H € Diff§ (X, ).
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Such a situation arises, for example, in actual Euclidean scattering if the potéftigisthe
notation of the introduction) are classical symbols of ordéron X“. Hence, we make the
following definition.

DEFINITION 6.1. — A many-body Hamiltonian is an operatdr= A + V where A is the
Laplacian of a scattering metric andV satisfies (6.2).

As indicated in the Introduction, from this point on we also make the assumption
(6.4) (X,C) is locally linearizable

this will simplify the analysis. We recall that this is equivalent to the local existence of
Riemannian metrics 00X, possibly different fron, with respect to which all elements of
C are totally geodesic.

Sinceoy. 2(A) never vanishes, the same holds &y »(H) which is the pull-back of the
former. A simple calculation, see [40, Sections 4 and 11] for more details, shows that the indicial
operators off are given by

(6.5) Hoo(€) = Hao((p,0)) + 72+ h(z,v), &=(z,7,v)€*T*(Ca; X),

(66) Ha,O(p70) =Ay +V(p7 Y)

whereY are ‘Euclidean coordinates’ on the interiorgf! (p), i.e. that of3; % (p), andAy is the
Euclidean Laplacian.

More precisely, we have seen in Section 4 I(rﬁ{t)(;ca};scTX)/“Tp(C'a; X) naturally acts
transitively and freely on the interior of, ! (p) = S*Npéa, so it makes sense to talk about
translation invariant vector fields and differential operators on the interiSﬁdeC‘a. Indeed,
the restriction toS*TNC, of the lift of elements oDiff.(X) (undergs.) are such. We can
see this sinc&/s.(X) is given by sections of*T X; the restriction of the lift ofP € V. (X)
is then given by the identification QE[X;CG];SCTX)/SCTP(C*Q;X) with the tangent space at
each point of the fibep, !(p). Using the metricg to identify the quotient bundle with the
orthocomplementoﬁ“Tp(C‘a; X), S*N,,C’a becomes an affine space with a translation-invariant
metric (i.e. ‘Euclidean’) with the metric induced lgy Ay is the Laplacian of this metric.

Egs. (6.5)—(6.6) show theﬁa,o(p, 0) is uniformly bounded below, so for any € C°(R) the
set

(6.7) Uel({& €T (Ca; X): ¥ (Ha(©)) #0})

a

is compact.

The bound states of the subsystemsribfplay an important role in Euclidean many-body
scattering. The appropriate replacement in the general geometric setting is given via the indicial
operators off. Thus, in this paper the statement ‘no subsysterff dfas a bound state’ means
that

(6.8) H, o(¢) has noL? eigenvalues for any # 0 and¢ € °T*(C,; X).
Due to (6.5)—(6.6), this means simply that

(6.9) ha(p) = Ha0((p.0)) has naL? eigenvalues for any # 0 andp € C,.
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In Euclidean scattering, (p) is just the subsystem Hamiltonidn (which is then independent
of p), so in that setting (6.8) indeed means that the (proper) subsystefishafze no bound
states.

If no subsystem off has bound states it can be expected that A governs the propagation
of singularities of distributions: with (H — A\)u € C>(X), except that the flow will break
at the places wher¥ is singular (i.e. where locally ¢ C>° (X)), similarly to boundary and
transmission problems for the wave equation [12, Chapter XXIV], [23,18]. Now, the symbol of
A — N atoX (i.e. itssc-indicial operator) iy — A. Hence, its characteristic variety is

(6.10) S=Yan={£€THyX: (&) —A=0}.

The rescaled Hamilton vector fiettl, = z—* H, of g (or g — )\), introduced in [22], is
(6.11) *H,=27(20; + p-0p +v-9y) —2h0; + Hyp +aW', W eV, (**T*X),
S0 its restriction t@ X, also denoted b{f H, is

(6.12) “Hy=27(-0, +v-0,)—2h0; + Hy,.

Here (y, z,7,u,v) denote coordinates about sonie= C, as before, though notice that
w0, + v -0, is simply the radial vector field ilT*0X, so the above expression is indeed
invariant (as it must be). The bicharacteristics¥of- A are just integral curves 6fH,,.

We divide the imagé: c *°7™* X of & underr into a normal and a tangential part,
(6.13) =%, NUZ(N),
as follows. Letr be the restriction ofr to . We let
(6.14) %, (\) = U{g € *°T¢, (Ca; X) N3: 771 (€) consists of more than one pojnt
and
(6.15) X:(\)= U{g € *°T¢, (Ca; X) N3: 771 (€) consists of exactly one poiht

In terms of our local coordinates arou@y, in view of (4.23) and,|? > 0, this means that

(616) En(>\) = U{(ZaaTaﬂ/a) S SCTEV(/I (Ca;X)C Tg + E(Za,l/a) < )\}
and
(6.17) Ti(A) = U{(Za77-aal/a) € %I, (Ca; X): 724 W(2a,va) = A}

Notice that for = (z4, 74, Va) € X¢()\) and the unique poirﬁ: (0, za; Tas thas Va) € Thx X

with 7(§) =¢ we havey, = 0. As thed,,, component ofH is 24, - 9y, aty, =0 (i.e. atC,),
for such¢ and¢, s°H, () is tangent to°T, X . On the other hand, i € X,,(\), £ € 771(¢),

then®°H, (&) is normal to*T¢, X, hence the choice of our terminology. Notice also that on
°T¢, X, m is the identity map, so
0

(6.18) SN%TE X C (N,
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We also define the radial sefis, (\) as the sets
(6.19) RN =n({(y,z, 7 p,v): 7= +VA, h(y, z, p,v =0}).
Thus,R4(A\) U R_(\) is the image (under) of the set wheré® H, vanishes. Notice that
(6.20) Ri(A)UR_(N) CX(N).

Following Lebeau, we define generalized broken bicharacteristicA of A as follows.
First, recall from Section 5 that we say that a functipe C>°(**7T; X) is m-invariant if for
£, €Th X, m(€) = n(€) implies f(£) = f(£'). A w-invariant functionf naturally defines a
function f, onsT*X by £, (&) = f(€) where€ € °T} X is chosen so that(¢) = ¢.

DEFINITION 6.2.— Suppose thatX,C) is locally linearizable. A generalized broken
bicharacteristic ofA — X is a continuous map :/ — *T*X, wherel C R is an interval,
satisfying the following requirements:

(i) If & =~(to) € X¢(A) then for allr-invariant functionsf € C*° (T X),

d -
(6.21) 7 fro)(to) ="H, f(&0),  &o=7""(%)-

(ii) If Lo =~(to) € Tn(A) N*TE, (Ca; X) then there exists > 0 such that
(6.22) tel, 0<|t—to|<e=(t)¢>*T¢ (Co; X).

The success of this definition (so that it indeed describes what we wish to describe) depends on
a plentiful supply ofr-invariant functions of*T; X . Under our local linearizability hypothesis,
(6.4), there are always many such functions. Recall from Section 5 that by (4 Gf = C/,
we can choose local coordinates z) on 9X in terms of whichall the C;, satisfyingp € C}, are
linear, i.e. they are given byl,y = 0 where 4, is a (constant) matrix, and,, is given byy = 0.
With (7, i, v) denoting the sc-dual variables(@f, y, z), we see thay, z, 7, v arer-invariant near
‘T, X. In general, without the assumption (6.4)would not ber-invariant, and we would not
be able to modify it to make it such, so the definition would be inadequate.

We can also arrange that the metric function is of the férm h(z,v) + hyn(z, 1) at ¢,
by a further change of coordinates= z; + ., Zjk(2)yx, ¥ =y, which preserves the linear
structure of the,. In general we cannot arrange that, (z, 1) = |u|? everywhere along”,
without destroying the product-linear structure of thg However, by a linear change in the
y coordinates we can make sure thata fixedp € C’, h = h(z,v) + |u/?. The continuity
of a generalized broken bicharacteristianeans that ify(to) € °T¢, (C; X), then fort near
to, t— (y(v(t)), z(v(t)), 7(7(¢)), v(7(t))) is continuous, but(~(t)) may be discontinuous. In
terms of Euclidean scattering this means that'atthe external momentum is conserved, but
not necessarily the internal one, whiteage(y) C 3 corresponds to the conservation of kinetic
energy. The latter cannot be expected to hold if the subsystems of the Hamiltonian have bound
states; the relevant broken bicharacteristics in that case exhibit more complex behavior. Another
example of ar-invariant function in this situation ig - u; this will play a rather important role
in the propagation estimates. In fattH,(y - 1) (€o) = 2|pol? if & € *T, X is of the form
(0, z0, 70, 10, o), SO if (&) € £, (N\) and&y € X theny - 1 is a parameter along generalized
broken bicharacteristics ne@y — see also the following proposition.

A stronger characterization of generalized broken bicharacteristigs, @t) follows as in
Lebeau’s paper. Notice that if: I — 3 is continuous then the conclusion of the following
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proposition certainly implies (i) and (ii) ((ii) follows ag; = (y,); are w-invariant), so the
proposition indeed provides an alternative to our definition.

PrRoOPOSITION 6.3 (Lebeau, [18, Proposition 1]). ¥~ is a generalized broken bicharacteris-
tic as abovety € I, & = v(to), then there exist uniqu_, £_ € $(A — \) satisfyingr(£+) = &
and having the property that if € C> (T X)) is m-invariant thent — f(y(t)) is differen-
tiable both from the left and from the right &t and

(6.23) (%) (Fr 0 Mlos = Hy f(&4).

We refer to Lebeau’s paper for the proof in the general setting, but in the Appendix we
give the proof under the assumption that the elements afe totally geodesic. In fact, we
prove slightly more by giving a Holder-type remainder estimate. We present the proof in the
Appendix, but we emphasize that it is simply a minor modification of Lebeau’s proof. We
remark that the most delicate part of the conclusion (under the totally geodesic assumption)
is the differentiability of the ‘normal’ coordinate functions along~, i.e. that ofy; o v. Here
we dropped the projection from the notation (i.e. we did not writgy; ) . o y) to simplify it; we
will often do this in the future for the other-invariant coordinate functions, z;, v;. The proof
proceeds by induction using the order@nThus, we have to understand what happens tigar
if v(to) =& € n(A) N*°TE, (Cq; X). The inductive hypothesis is that we have already proved
the proposition fob with C,, ag Cy. Thus, by Definition 6.2, part (ii), it is true fap replaced by
t # to, assumingt — to| < €. Hence, we need to analyze the behavior of the coordinate functions
using the Hamilton equation, (6.23) which is a little more delicate than the positive commutator
construction in Proposition 10.4, but the two proofs are very closely related via the use of same
function¢ to localize near (and along) the generalized broken bicharacteristics. A rather similar
analogy arises in our tangential estimates in the totally geodesic setting; see Propositions 7.1 and
10.6 respectively.

We now describe some corollaries of this proposition. First, we remark that the role of
the globally definedr-invariant functionr is somewhat analogous to the role played by the
time variable in the wave equation in Lebeau’s paper. In particulgiyes a parameter along
generalized broken bicharacteristics with the exception of some trivial ones (namely the constant
ones inR(\) U R_(X)). To see this, we show the following corollary of the above proposition.

COROLLARY 6.4.— Suppose that: I — ¥ is a generalized broken bicharacteristic. Then
T=7r0v:1—RisaC> function. In addition;I" has one of the following forms. Either
(i) T(t)=+forall t eI, or
(i) T(t)=—+Aforalltel, or
@iy T'(t) <0forall t and if I = R thenT'(t) — F+/\ ast — =+oo.

Proof. —As A =72 + hin ¥a_», we have for allf € X a_» that
(6.24) H,7(€) = —2h(€) =2(1(£)* — ).

Thus, withT = 7. o 7, the previous proposition implies that for any I, T is differentiable

from both the left and the right &t and both of these derivatives are equalt®'(t)2 — \). (We
remark that this is proved directly in the Appendix as a first step to the proof of the proposition.)
Thus, T is C! and it satisfies the ODET'/dt = 2(T% — \). But, given sayl'(ty) = 7o, this

ODE has a unique solution which $&>. The last statement follows by writing down the
solution of the ODE explicitly, which, ifI'(to) € (=X, ) for somet, € I, takes the form

T(t) = —/Atanh(4v/A(t — ¢)), t € I, for an appropriate constant O
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Since for¢ € X with 7(£)? = A we automatically havé € R, (\) U R_()\), in (iii) we see
that (if I = R) ast — +o0, y(t) approache+(\). In addition, in the same case, &S5 never
vanishesT € (—v/)\,v/A) can be used to reparameterizéreversing its direction).

We proceed to examine generalized broken bicharacteristics in more detail, starting with cases
(i) and (ii). Namely, we prove that generalized broken bicharacteristics thrBugh) U R_ (\)
are constant maps:

PROPOSITION6.5.— If ~:I — X is a generalized broken bicharacteristic,
Y(to) = & € Ry (\) U R_()\), theny(t) = & for t € I. Hence,7~! o v is a bicharacteristic
of *°H,,.

Proof. —The previous corollary and the above remarks show that ferall, v(¢) € R, (\) U
R_()\). Let&(t) = #=(y(t)). Thus,* H, vanishes at(t) € 7~ (R (\) U R_()\)) for all ¢.
Since the base variablgsand z are w-invariant, we conclude that((y;)~ o v)/dt vanishes
identically, hencey is constant, and similarly fog, proving thaty(¢) = &, for all ¢. The last
statement of the proposition follows sinté{, vanishes at~! (R (\) UR_(A)). O

Now, we consider case (iii) of Corollary 6.4. Namely, we show that if we rescale and
reparameterizey and project off itst component, we obtain a generalized broken geodesic
(of h) in 09X, broken atC. This is a notion completely analogous to that of our generalized
broken bicharacteristics, and we proceed to define it. Again, we need to introduce a ‘compressed’
cotangent bundle. The metricon 90X naturally identifies the cotangent bundléC of C € C
as a subset df*0 X . The compressed cotangent bundl®af is then

(6.25) 170X = JT¢, Ca.

Itis topologized by the projectiony : T*9X — T*9X . We also define the compressed cosphere
bundle as the image ¢f*0.X underry; hereS*9X is the set of covcectors of unit length:

(6.26) S*0X =7mp(S*0X).

The restriction ofry to S*0X is denoted byry. This plays a role analogous to thatdf We
also define its tangential and normal parts:

(6.27)  S;0x =|J{¢ €Ty CanS*0X: 7, () consists of more than one pojnt

and
(6.28)  S;oX =|J{¢eTe, Can S 0X: 75 (¢) consists of exactly one poiht

Generalized broken geodesics are then defined as follows.

DEFINITION 6.6.— A generalized broken geodesididf a continuous mapy : I — S*9X,
wherel C R is an interval, satisfying the following requirements:
() If Co =~a(to) € S;0X then for allmg-invariant functionsf € C>°(T*9X),

o fra070)t0) = Hyp S o)y Go=75" ()

(6.29)
(i) If Co="a(to) € S,*LZ—)X NT¢, C, then there exists > 0 such that
(6.30) tel, 0<|t—to|<e=s(t) ¢T¢, Ca
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Remark6.7. — Sometimes, with an abuse of terminology, we also say that the projection of a
generalized broken geodesicdX (via the projectionS*0X — 0X inherited fromT'0X) is a
generalized broken geodesic. Indeed, this was the terminology used in the introduction.

The metricg gives rise to a product decomposition
(6.31) Ti X =R, x T*0X.
The compressed scattering cotangent bundle is thus also naturally a product:
(6.32) sT*X =R, x T*0X.
We sometimes write the product variablesas (7, ¢”). We write
(6.33) p:T* X — T*0X

for the projection to the second factor. Note tH4t* X inherits a naturaR-action from** 77, X,
andifé € 3, 7(€)% # A, then¢ = p((A — 7(€)?)~1/2¢) € §*0X sinceh =\ — 72 on ¥,

We also reparameterize generalized broken bicharacteristiatisfying (iii) of Corollary 6.4
by letting s = S(t) where S satisfiesdS/dt = 2(\ — 7(y(t))?)/2, with S(t) = so picked
arbitrarily. We have the following result.

PROPOSITION 6.8. — Suppose that : I — ¥ is a generalized broken bicharacteristic which
is disjoint fromR_ () U R_(\). Thenyo S~1:J — ¥, S defined above, is given by

(6.34) T= \/Xcos(s —$1), "= \/Xsin(s —51)70(s)

wheres, is an appropriate constantang : J — $*9X is a generalized broken geodesic, broken
atC. If I =R, thenJ = (s1,s1 + ), in particular J has lengthr, and correspondingly the
projection ofvys to 0.X is a curve of lengthr.

Proof. —Let

B 7(S7(s))
(6.39) e ‘p< VA=TOE )P )

Condition (ii) of Definition 6.2 implies (ii) of Definition 6.6 immediately. Lg¢te C>(T*0X)
be arg-invariant function. Let

(6.36) F(&) = f(p((A—7(&)*)~1/%¢));

here we slightly abuse the notation and wyite“T; X — T*0X. ThenF is w-invariant, so
(i) of Definition 6.2 applies and give&(F;, o v)/dt(to). Since(Fy o) 0o S~ = f., 0 vs, the
chain rule and a short calculation ¥tH,F" gives (i) of Definition 6.6. The first equation in
(6.34) follows since along, ds/dr = (ds/dt)(dr/dt)~' = —(\ — 72)" /2. As (A — 72)1/2 =
VAsin(s — s1), the second equation follows as well. Since- /) alongy ast — +oo and
7 is decreasing, we deduce the last statement.

It is useful to introduce a relation aff* x () using the structure of the generalized broken
bicharacteristics given in this propaosition.

DEFINITION 6.9.— Supposé € $(\) \ (R_(\) U R, (N\), ¢ € S*0X. We say that ~_ ¢

if there is a generalized broken bicharacteristicR — X(\) with ~(¢9) = £ such that
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vo:(a,a + m) — S*0X, as in the above Proposition, satisfias;_..+ vo(s) = . We define
& ~4 ¢ similarly by replacingz+ in the limit by (a + 7)—.

We also need to analyze the uniform behavior of generalized broken bicharacteristics. Here
we quote Lebeau’s results; they can also be proved completely analogously to the proof of
Proposition 6.3 given here in the Appendix.

PROPOSITION 6.10 (Lebeau, [18, Proposition 5]) Suppose thak’ is a compact subset &f,
vn :[a,b] — K is a sequence of generalized broken bicharacteristics which converge uniformly
to~. Theny is a generalized broken bicharacteristic.

~ PROPOSITION 6.11 (Lebeau, [18, Proposition 6]). Suppose thak’ is a compact subset of
Y, [a,b] CRand

(6.37) R = {generalized broken bicharacteristigs [a,b] — K'}.

If R is not empty then itis compact in the topology of uniform convergence.

COROLLARY 6.12 (Lebeau, [18, Corollaire 7]). # v:(a,b) — R is a generalized broken
bicharacteristic theny extends tda, b).

7. Generalized broken bicharacteristicsfor totally geodesic C

We next examine the generalized broken bicharacteristics if all elemer@isaoé totally
geodesic with respect th. First we prove that generalized broken bicharacteristick — 3
with (to) = &0, &o € E4(A) N *T¢, (Ca; X) are actually bicharacteristics 8fH, (and hence
stay inSCTgé (Cq; X)) for t nearty.

PROPOSITION 7.1. — Suppose that all elements Gfare totally geodesic with respect to
Lety:I — X be a generalized broken bicharacteristic,

(7.1) Ato) = 0 € (V) N*TZ, (Cat X)) \ (Re (W) UR_(N)).

Then fort € J, J a neighborhood of,, we havey(t) € 3,(\) N T, (Cq; X), and~y|; is a
bicharacteristic of°H,

Proof. —Our strategy consists of constructingranvariant functiong with **Hg¢ > ¢ > 0
in a neighborhood ofr~1(&y). Thus, by Proposition 6.3]/dt(¢. (7))t = c>0fort e J, J
sufficiently small, s@p,. o is increasing there. This will allow us to draw the desired conclusion
for the correct choice op. We remark that thig) will reappear in the proof of the propagation
estimate in Proposition 10.6. Moreover, it is essentially the same as the corresponding function in
the three-body propagation estimate [40, Proposition 15.4], though we will use slightly different
methods to estimaté H ;¢.

In fact, first we find ar-invariant functionw such that**H, will be appropriately small
neari—1(&). So introduce coordinates centered’gtas after Definition 6.2. Then the metric
function takes the form

(7.2) h=> hd (g, 2)pipe; +2 ) bl (y, 2)piv; + > hil(y, 2)viv;
with
(7.3) i (0,0) =6, hi3.(0,2) =0,
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and, due to the assumption tt@t is totally geodesic,

(7.4) dyhil(0,2) =0.
We write
(7.5) tht (0, z)vv;

for the restriction of the tangential part of the metric functiortg so

(7.6) hly=o="h+>_ hiJ,(0,2)mip;.
Now, the Hamilton vector field ok is given by

H), = Qthu]ayl +2> hy 0., + QZh iy, +2 ) hilv;os,

1,7 % i,
(7.7) Z 2 P /‘lﬂ']al/k +2 Z Zk nt /"i’/jal/k + Z(azkhg>l/1y]aw + W
i3,k i3,k 1,5,k

with W’ =3 a;0,,. Hence, ifu € C>*(R7*~! x RI",) then

(7.8) Hpwly—o = Hyw+ Y _(0z,(h — 1)) 0y, w
k

Now, 1, henceh — h, is small neatt—1 (&), so to model

(7.9) *Hy=27(-0, +v-0,)—2h0; + Hy,
we introduce the vector field

(7.10) W =27(v-9,) — 2hd, + Hj
locally (nearéy) on*“T*(C,; X). Thus, we have

(7.11) *Hywly—o=Ww = 2(h = B)d;w+ Y (02, (h—h))0y,w
k

which is small ifWw is small.

We definew as follows. FirstWr = —2h, andh., (o) # 0 since&y ¢ Ry (\) U R_()), so
nearéy, Wt #0, i.e. W is transversal to the hypersurface- 7y. Thus, neagy in 7*(C,; X)
we can solve the Cauchy problem

(7.12) Ww=0, Wrmry = (2 — 20)* + (v — 10)?.

Sincew anddw vanish atty, the same holds on the bicharacteristid®fthroughé,, butw >0

and the Hessian is still positive in directions transversal to the bicharacteristics as these hold at
&. Moreover, by [12, Lemma 7.7.2],

(7.13) |dw| < Cw?/2,
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Let

(7.14) ro =172 B() A,
soWry = 0. At 7 = 75 we haverg = h.(v) — h., (), SO
(7.15) ro| < C'|dw| < C"w'/?

whenr = 7y, and theriVw = 0 = Wr( implies that this inequality holds everywhere. Therefore,
(7.16) |h—h|<|A=72=h|+ |A=7> = h| <|A =72 = h| + Cw'/2.

Now,
*Hyw =*Hyw — Ww=—2(h — h)d,w
+2 Zhnt Y, 2) iz, w + 2 Z(hg (y, z) — hg (0, Z))Vjaziw
1,7

Z Oz 3 (Y, 2 ipt O 0 + 2 Z azk (Y, 2)pivj Oy, w

1,5,k 1,5,k
(7.17) + 0, (il (y,2) = b (0, 2))vivOyw.
i,k

Thus, using (7.3)—(7.4), for sonte C’ > 0 we have

" Hyw = Wow| <C' (|7 + h = A + w2 + |y* + [uf* + [ully]) |dw)|

(7.18) SO(|72+h =X + w2 + Jy|* + |p?)w'/2.

Next, note that
(7.19) CHly[* =43 S hibougyi+ 43 hilviys

4,7 2,7

so by (7.3),
(7.20) 1 Hyly|?| < Clyl(ly| + |-

Fore > 0 let
(7.21) ¢ =¢p=mg—7+c |y +ew
Thus,

(7.22) [** Hyop — 20 < O (e yl(lyl + |ul) + 72w 2 (jyl + |uf® +17° + b = Al + 0'7?)).

We next estimatg. First, ash?¥, (0,0) = &;;, hny, is positive definite in a small neighborhood
of (0,0) and

(7.23) uf? < QZh” 2) i
there. On the other hand,

(7.24) Zh” Y, )iy =h—h=>> h(y, 2 mv; =Y (hil(y,2) — hil (0,2))viv;,

,] ,J
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SO

(7.25) > hid (g, 2)pigs | < [h = bl + Calyllul + Calyl*.
%,J

Moving C1|y||| to the right hand side and completing the square gives

(7.26) (In] = Csly))? < |h — bl + Culy|?,
SO
(7.27) lul <C(|h =02 +y]), ie.|ul®><C(|h—h|+|y?).

We can finally estimat& H, ¢, using (7.16) as well:
" Hy¢p— 20| < C (e Myl (lyl +w™* + |72 + h— A['/?)
(7.28) + e 2w 2 (2 + |72+ h = Al + w/2)).
Note thatp, (£o) = 0, so nearmr—1(&y), ¢ is small. So now suppose thak § < 1 and

(7.29) ¢<20 and T—T19<20.
Then
(7.30) e Hy2 4 e 2w < 46,

soy| < (4¢0)/?, w < 4€%6. Hence, under the additional assumption
(7.31) |72+ h— A <éd,
i.e. thaté = (y, z, 7, 41, v) sufficiently close td-A_», we have

(7.32) |°°Hyp — 20| < (e (e6) /2 (£26) /" + 726%6) < C'6%/*,

Sinceh(771(&)) > 0, we haveh(€) > 2¢ > 0 in a neighborhood of ~! (&;). Now choosé > 0

sufficiently small, so thaC’éj/4 < ¢. Note that this requirement is independentof\e thus
conclude that fob € (0, dy), ¢ satisfying (7.29) and (7.31), we have

(7.33) SCH,p(€) = ¢ > 0.

Now, using the result of Proposition 6.3, @(t) € ¥(A — \) be the unigue points such that
(&4 (t)) = ~v(¢) and for allr-invariant f

(734) () o mlis =11 (€500

Choosing a sufficiently small open intervalaroundto, 7(v(t)), hencer (¢ (t)), automatically
satisfies (7.29) fot € J, while (7.31) holds automatically &s.(¢) € (A — X). Thus, applying
(7.34) with¢ in place of f, we see that, with

(7.35) 9(t) = ¢r 0 7(1),
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we have

>c>0.

(7.36) teJ and g(t)<26= <d—g>
dt )|,

As g is continuous ang(ty) = 0, this shows thay is increasing o/ N (—oo, t]. To see this,
first note thay(¢) < 25 onJ N (—oo, ], for otherwisey=1({26}) N (—oo, to] N J is not empty,
g ({26}) N (—o0,to] is closed, so taking; = sup(g~'({26}) N (—oo,to]) < to andt; € J.
Thus, fort € [t1,t0], g is differentiable from either side atind the derivatives are both positive,
Sog is increasing oty to], hencey(t1) < g(to) = 0 contradictingg(¢;) = 24. Thus,g < 26 on

J N (—00,0], sog is increasing here, sg(t) <0 for t € J N (—o0,ty). Taking into account the
definition of » we immediately deduce that

(7.37) ly(v(1))] < Cel’?, teJn(—oo,t).

Sincee € (0,1) is arbitrary, we conclude thaf(y(¢t)) =0 for t € J N (—o0,to], SO(t) €
seT*(C,; X) for sucht. Similarly,w(v(t)) = 0 for sucht, so by the construction af, v(¢) is the
integral curve oW throughé, (for ¢t € J, t < tp). Of course, a similar argument (with a change
of sign iny — 7 in (7.21)) works forJ N [0, c0), so we conclude that|; C *°T¢, (Cy; X') and
7| is an integral curve ofV. As W preserves? + h (being essentially its rescaled Hamilton

vector field),72(y(t)) 4+ h(y(t)) = A, t € J, sov|; C Z;()\), and hence at~'(v|;), **H, and
W agree andy| ; is a bicharacteristic of H, as claimed. O

Next, we prove that i, € X, (A) N *T¢, (Ca; X), ¥(to) = &0, 7 is a generalized broken
bicharacteristic, then for a sufficiently smali> 0, (o 5) is @ generalized broken bicharacteristic
of A — )\, broken aC’ C C, whereC’ is cleanly intersecting and,, ¢ C’. This will notuse that
C is totally geodesic.

PROPOSITION 7.2. — Suppose thaf, € X,,(A) N*°TE, (Cq; X), v is a generalized broken

geodesic withy(to) = & and¢, is as in Propositior6.3. Suppose thag, e scT*(Cy; X)) and
b is minimal with this propertyi.e. C. C C, and¢, € 5°T*(C,; X) imply c = ). Let

(7.38) ¢’ =C\{C.: C.NC,CCL}.

Then for sufficiently smadl > 0, 7|0 5) is @ generalized broken bicharacteristicAf— )\, broken
atC’, and~((0, d]) is disjoint from**T*(C.; X) if C. ¢ C’.

Proof. —Let b be as above and introduce local coordinates centerétf .atVe may assume
that C,, is given byy’ = 0 for a suitable splittingy = (y',y”). Thus, &, is of the form
£, =(0,0,70,0, 1), o), and ast, € 2,,()\), uf # 0. By Proposition 6.3, taking into account
thaty is w-invariant,

(7.39) d(yjon)/dtly,+ =0,  d(yf ov)/dt,+ = (ug);-

Sincey( # 0, there exist > 0, 6y > 0, such thaty” (y(t))| = c(t—to) fort € (¢, %0+ o), while
foranye > 0 there exist9; > 0 such thaty’(v(t))| < e(t—to) fort € (¢o,t0+91). In particular,
for anye > 0 there existd > 0 such that fort € (¢o,to + §) we havely' (v(¥))|/|y" (v(¢))] <e.
By choosinge > 0 sufficiently small we can thus make sure thét) ¢ C. for t € (to,to + 9] if
C. ¢ C'. Hencey|(t,,1,+4) can be regarded as a curvelify, oo, *“7¢ (Cc; X), C¢. taken with

respect taC’, if we let v(to) = mop(€o) € T*(Cy; X). Of course; |, t,+4) is @ generalized
broken bicharacteristic, broken@t(since it has no points abo¢e, C’). Thus, by Corollary 6.12,
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Y (to,t0+4) €XtENds to a generalized broken bicharacteristic, brokéh atefined onto, to + 4];
by continuity of~y this must coincide withy, so~ is a generalized broken bicharacteristic, broken
atC’, as claimed. O

We can combine the previous results to deduce the structure of the generalized broken
bicharacteristics i€ is totally geodesic.

PROPOSITION 7.3. —Suppose thatC is totally geodesic with respect th and v is a
generalized broken bicharacteristic, broken@with §, = v(to) € *°T¢, (Cq; X). Then there

existss > 0 such that bothy|,, +,+.5) and~y|;,—s.+,) are bicharacteristics of°H,.

Proof. —If & € Ry (\) U R_(\) then~(t) = & for t nearty by Proposition 6.5, hence
nearty, v is a (r-projected) bicharacteristic 6f H, (as*“H, vanishes a2 (\) U R_())). If
& € (M) \ (R+(A)UR_ (X)) then Proposition 7.1 applies and proves the resuft, & 3,, (),
then withC" as in Proposition 7.2y|o 5 is a generalized broken bicharacteristic, broken at
C’, with v(t9) € SCTg%(Cb; X)NX,(A) (prime taken with respect t'). Thus, Proposition 7.1
applies again and proves the resulta

A compactness argument gives at once

COROLLARY 7.4.—If v:[a,b] — ¥ is a generalized broken bicharacteristic, brokerCaand
C is totally geodesic, then there exigt=a < t; <tz <--- <t,, = bsuch thaty|t;,t;1] is a
bicharacteristic ofA — X (i.e. it is notbroker).

8. Positive operators

In the following two sections we discuss technical points of the microlocal positive
commutators constructions. In this section we show roughly speaking that the positivity of the
indicial operators ofA \I/§C°°’0(X,C) implies the positivity ofA modulo compact operators.

We prove this by constructing an approximate square roet.dh the next section we examine
commutatorsA, H| in more detail.

Throughout this section we assume tttatis a many-body Hamiltonian. We start with the
basic square root construction.

LEmMA 8.1.—Suppose thatl is a many-body Hamiltonian and € R. Suppose also that
Ae \I/§C°°’O(X,C) is self-adjoint, and for some> 0 and+ € C°(R) which is identicallyl near

(8.1) U(H)AY(H) > e (H)*.
Then for any’ € (0,c¢) and¢ € C2°(R) such that

(8.2) supp ¢ Nsupp(l — 1) =0,

there exists3 € ¥5>*""(X, ) such that

(8.3) $(H)(A—')p(H) = ¢(H)B* Bo(H).
Proof. —Let
(8.4) P=y(H)AY(H) + c(1d —p(H)?) € w30 (X, C).

Note thatP € g, (X,C) follows from o(H) € wg*°(X,C). Thus,P > ¢, sOP — ¢ >
¢ — ¢ > 0. Since the spectrum aP — ¢’ is a subset ofc — ¢/, ) andc — ¢’ > 0, we have

4° SERIE— TOME 34 — 2001 N° 3



PROPAGATION OF SINGULARITIES IN MANY-BODY SCATTERING 365

(P — )2 = f(P—¢')wheref € C°(R) and f(t) = /1 if t is in the spectrum of — ¢’. By
Proposition 4.10,

(8.5) Q=(P—c)' 2= f(P-d)eug(X.0).

Let ¢ be identicallyl nearsupp ¢ and vanish neatupp(1 — ¢). Then

(8.6) ¢1(H)Q2¢1(H) =P1(H)(P — )i (H) =1 (H)(A = )y (H).
Now let¢ € C2°(R) be identicallyl near\ and vanish neamupp(1 — ;). Let
(8.7) B =Qy1(H) € U5 (X,C).

Multiplying (8.6) from both sides by(H) then proves (8.3). O

We now show that under certain additional assumptions, the positivity of the indicial operators
implies positivity of the operator modulo lower order (hence compact) terms in the calculus. We
start by assuming strict positivity of the indicial operators when localized in the spectréim of

PROPOSITION 8.2. — Suppose thatl is a many-body Hamiltonian and € R. Suppose also
that A,C € vg>°(X,C) are self-adjoint and’, (¢) = cq(¢)vo(H,(C))? for everya and
¢ €5°T*(Cy; X) wherec,(¢) is a function withe, (¢) > 0, 9o = 1 near A € R, 1 € C°(R).
Assume in addition that there exists € C>°(R) which is identicallyl near A, suppt¢ N
supp(1 —1)9) = @, such that

(8.8) ¥ (Ha(€)) Aa(O)v (Ha(Q)) = ¢(Ha(C)) calQ)¥ (Ha(C))
for everya and¢ € °T*(C,; X ). Then for any: € (0,1) and¢ € C>°(R) with
(8.9) supp ¢ Nsupp(1l — 1) =0,

there existsR € w5 ™" (X, C) such that
(8.10) P(H)Ap(H) > (1 —e)¢(H)Co(H) + R.

Proof. -We apply a parameter dependent version of the previous lemma to the indicial
operators to conclude that for ea¢lthere exists3, ({) with

(8.11) ¢(Ha()) (Aal(¢) — (1 =€)Ca(€))¢(Ha(C)) = ¢(Ha(C)) Ba(C)* Ba($)d(Ha())-

It follows from the Cauchy integral formula construction of the square root in the calculus,
Remark 4.11, and the explicit formulae (8.4), (8.5) and (8.7) that the indicial opefa{d¢s
match up as discussed before Proposition 4.8, so that there Bxiste; > (X, C) with indicial

operators, (¢). Here note that the set wherg H,(¢)) does not vanish has compact closure,
hencec is bounded below on it by a positive constant. Thus, we can take the same smooth
function f in the expression (8.5) for the square root for ewegnd(. By (8.11),

(8.12) p(H)(A—(1—e)C)p(H)=¢(H)B*Bp(H) + R

with R € \pgc“”l(X,C). Sincegp(H)B*B¢(H) > 0, rearranging this proves the propositiora

Similar conclusions hold if we assume a two-sided estimate on the indicial operatdrs of
In essence, this forces the indicial operators, hence their square roots, to vanish to infinite order
whenc vanishes.
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PROPOSITION 8.3. — Suppose thaf{ is a many-body Hamiltonian and € R. Suppose
also that A,C € vg>°(X,C) are self-adjoint andC, o(¢) = cq(¢)v0(Ha4(¢))? for every
a and ¢ € *T*(C,; X) where c,(¢) is a function withc,(¢) > 0 which vanishes with all
derivatives at eaclj with ¢,(¢) =0, 1o =1 nearA € R, 1o € C°(R), A,(¢) = 0if ¢,(¢) =0,
and for any differential operato€) € Diff (**T*(C,; X)), all seminorms of(c,(¢) ' A44(¢))
in U5 (s N (p), T,C%), ¢ € scT;,‘(C'G;X), are uniformly bounded on the set ¢ with
ca(¢) > 0. (This is almost, but not quite, a statement about the seminormg(6f ' A,(¢)
in \IJS’:Z;,O(,D;SCT*(C’G; X),C.), because we restrict our attention to the region wherg) > 0,

and do so uniformly.
Assume in addition that there exisfse C°(R) which is identicallyl near A, supp¢ N
supp(1 — 1) = @, such that

(8.13) O(Ha(0)) A (C)(Ha(Q)) = % (Ha(C))ea(O)w (Ha(Q))

for everya and¢ € °T*(C,; X). Then the conclusion of the previous proposition holds, i.e. for
anye € (0,1) and¢ € C°(R) with

(8.14) supp ¢ Nsupp(1l — ) =10,

there existsR € Ug™" (X, C), with seminorms bounded by thosedand €' in w5 >°(X,C),
and withWFg (R) C WFg, (A4) UWFg,(C) such that

(8.15) $(H)AG(H) > (1 - £)p(H)CH(H) + R.
Proof. —-We defineB, (¢) = 0 if ¢,(¢) = 0, otherwise we defind3, (¢) as in the previous

proposition. The only additional ingredient is the analysi®pf() near¢ with ¢, (¢) = 0. To do
this analysis, we follow the construction B8f,(¢) in detail. So let

(8.16) Pu(€) = ¥ (Ha(©) A (O (Ha(Q)) + ca(€) (1d = (Ha(0)) ),
and let
(8.17) () = (1—e)caC)-

Thus,P,(¢) — ¢,(¢) = ecq(C). Let

1/2

8.18)  Qu(Q) = (Pu(Q) = h(0)) "% = cal)V2(cal©) " Pu(¢) — (1 =€)

By our assumption, there exist$ > 0 such that the norm af, (¢) in B(L?, L?) is bounded by
Mec,(¢). Now choosef € C2°(R) such thatf (t) = v/t on [l —e, M]. ThenM > ¢, (¢) "' Pu(¢) —
l1+e>¢,50

(8.19) Qa(€) = ca(Q)2 f(calQ) " Pa(Q) — (1 —¢)).

By our assumptions, the seminormsegf¢) ~1 P, (¢) in gy (o, (p), T,C%), ¢ € T (Co; X),
remain uniformly bounded as,(¢) — 0, so the Cauchy integral representationfofvia an
almost analytic extension, shows thdt, ()~ Pa(¢) — (1 — €)) remains uniformly bounded.

Thus,Q,(¢) is continuous as a function ofT*(C,; X) with values inw g, (7" (p), T,C%).
A similar argument also holds for the derivatives@f((). Lett; be identicallyl nearsupp ¢
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and vanish neatupp(1 — ¢), and let

(8.20) Ba(¢) = Qa(Q)vr (H).

Again, the3,(¢) match up so there exisf3 € L\ %(X,C) with these indicial operators. We
can also make sure that the lower order terms also vanish whdoes, i.e. thatVFg, (B) C
supp c. Then the indicial operators ef(H)(A — (1 — ¢)C)¢(H) and¢(H)B*B¢(H) are the
same, so

(8.21) QS(H)(A—(I—E)C)QS(H) =¢(H)B*B¢(H)+ R
with R € w3 >' (X, C), proving the proposition. O

9. Commutators

In this section we discuss the basic technical tool underlying the propagation estimates of
the following sections. Thus, we show how an estimate of the commytatéf] at Cy, which
is essentially obtained by a symbolic calculation in the scattering calculus, can give a positive
commutator estimate under the additional assumptionfﬂg,@t(() has noL? eigenfunctions for
anya # 0 and( € SCT*(C‘a; X). In the Euclidean setting this means simply that the subsystems
have no bound states.

To do so, we extend the notion of a function beinr@variant to functions off 7* X in a trivial
way: g € C*°(**T*X) is w-invariant if ¢ T X is w-invariant. Since the analysis of classical
dynamics, i.e. of generalized broken bicharacteristica\of A, broken atC, is based on the
properties ofr-invariant functions, we will be interested in quantizingnvariant symbols. More
specifically, we are essentially interested in operators of the Qo (H), 1o € C°(R),
where(Q is obtained by quantizing &-invariant functiong € C>°(5°T*X). Since such would
not be in our calculus, we construdtdirectly.

All considerations in what follows will be local, i.e. we will assume that the projection of
the support ofg to X lies near a fixegh € 9.X, so we can always work in local coordinates
and identify X with S’;. The problem with sucly € C>°(St x R") is that they are rarely
in COO(S" x S7), i.e. they are not symbols i§, so @ will not be in ¥%.°(S") or indeed in
o’ (S%,C). This, however, is not a major difficulty. Fixo € C2°(RR; [0, 1]) which is identically
1in a neighborhood of a fixedl. Thus,i(H) € w5 (X, C), so it is smoothing. At the symbol
level, o (H) is locally the right quantization of some

9.1) peC=([sh:C] x8t)

which vanishes to infinite order & ; C] x 0S’}, which will enable us to write dowr directly.
We are thus interested in the following class of symigoM/e assume thate C>°(R”, x Rg)
and that for every multiindex, 3 € N™ there exist constants,, s andm,_ g such that

(9.2) (D D) (w,8)| < Caplw) 1ol ()0,
This implies, in particular, that
(9.3) qge A°(S} xR™),

i.e. thatg is a Oth order symbol inv, though it may blow up polynomially if. Indeed, in
the compactified notation, (9.2) becomes that for every Diff,,(S7} ), acting in the baseu()
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variables, and for every € N" there exisCp g andmp g such that
(9.4) [(PD{)a| < Cpp(g)mre.

It is convenient to require thatbe polyhomogeneous &f x R™:
(9.5) g €C™ (ST x R™);

this stronger statement automatically holds forth@variant symbols we are interested in.
We next introduce the product symbol

(9.6) a(w,w’,€) = q(w,&)p(w’, §),

whereyo(H) is given locally by the right quantization f The main point is

LEMMA 9.1.— The symbok defined by(9.6)is in C*>(S} x [S7};C] x S7}) and it vanishes
with all derivatives afS”;C] x dS”. Hence, it defines an operatot € w5 (X, C) by the
oscillatory integral(3.16)

Proof. —First,a € C>°(S" x [S'};C] x R™) follows from (9.1) and (9.5). Moreover, the infinite
order vanishing op at [S";C] x S"~! implies that for every?’ € Diff},([S'};C]), 8 € N* and
N €N,

(9.7) |P'DYp| < Cpr g n (€)Y

Thus, Leibniz’ rule shows that faP € Diff},(S" ) acting inw, P’ € Diff,([S; ;C]) acting inw’,
6e€N*andN

(9.8) |PP'Dla| < Cpppn(€) .

But this means precisely thatc C>° (S x [S";C] x §}) and it vanishes to infinite order at the
boundary in the last factor. O

The indicial operators ofl are just given by the quantization of the appropriate restriction of
a similarly to (4.48) (except that now depends on the base variables from both the left and
the right factors o ). This takes a particularly simple formdfis 7-invariant, for then, in the
notation of (4.48)q is independent of both™ and¢®. Thus, we can take outside the integral in
(4.48), i.e. it simply multiplies the indicial operator ¢f (H) by a constant.

LEMMA 9.2.— Suppose thay € C*(**T*S"}) is w-invariant and it satisfieg9.4). Let
A e vg>"(X,C) be asinthe previous lemmacdlie 5 T*(C,; X), thenA, (¢) = q(C)iho (H),, (C).

Combining this lemma with Proposition 5.5 gives

CoROLLARY 9.3.-Suppose that) € *T¢, (Co; X) and u € C7>(X). If A is as in
Lemmad.2, ¢(¢) #0, Au e C=(X) and( ¢ WFs.((H — \)u) then¢ ¢ WFs.(u).

Since the indicial operator ¢fA, H] = AH — HA in \IJ§C°°’O(X,C) is just

e ~ ~

(9.9) [A,H], 4(() = [Aa,0(<)7ﬁa,0(<-)] =q(¢) [%(ﬁa,o(C)%Ha,o(C)] =0

for every a and ¢ € *°T*(C,; X), we see that for everyd as in Lemma 9.1A, H] €
q/S_C°°’1(X,C). The additional order of decay corresponds to the one in the scattering calculus.
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Moreover, the indicial operator ¢fi, /] at Cy, as an operator iwg > '(X,C) (so this indicial
operator is just a function otf7*(Cy; X)), is given by the Poisson bracket formula from the
scattering calculus. Sindé vanishes a€, this gives

(9.10) i[AH], o = —*Hy (qt0(9)) = —t0(9)* Hya.

If the indicial operators off at the other faces have & eigenfunctions, then this estimate
combined with a compactness argument suffices to prove an estimaté, #¢f modulo lower
operators (i.e. modul@g >’ 2(X,C)). However, to make the compactness argument work, we

need to estimate the indicial operato[ﬁ for all a. This is facilitated by the following
lemma.

a,l’

LEMMA 9.4.—Letq and A be as in Lemma&.2 For every seminorm in
W5 (0 (p). T,C*)

and for everyl € N there existC > 0 and m € N such that for everya and every
¢ €%T3(Ca; X), p € Ca, the seminorm ofA, H], () in wg>*"(p;(p), T,C*) is bounded
by

(0.11) c(lao1+ X supler) ™ @gan) (.61

lo]<m
where the differentiadq is taken with respect to all variables, ifiI"*S';, i.e. it is the differential
of g e C>(*°T*SY).
Remark9.5. — Similar conclusions hold for every semmormprsj (pr3T*(Co; X),Ca),
which can be seen directly from our calculations in the following proof

Proof. —This can be proved directly from the definition of the indicial operators, i.e.
by computingz~'e~*/[A, H]e'/u/ where f € C>(X) and v’ € C*([X;C]), similarly to
[40, Sections 7,13]. Since this is equal 10 [e~if Aeif e~if Heif|u/, and e~if Aeif €
\11§C°°’°(X,C), we can assume thgt= 0, the calculation being very similar in the general case.
To compute the commutator, it suffices to commute béthand Hv for everyv € C*°([X;C])
modulo terms that vanish with their first derivativesif). C,. A straightforward calculation can
be performed just as in (4.42)—(4.48), where only the Oth order terms were kept. That shows with
our coordinates that

[A%/Ea,l(é“) = [ma,o(o Ha (C)]
(€) ([ ,0(¢)] 0y +YoyH, 0(0)
+(Dva)(¢) (9:Ha,0)(¢) = (8:0) () (D Hay)(€)
(9.12) +(0:0)(Q)(v - Dy Ha0)(Q) = (v - Dua) () (9 Ha0)) ¥ (Ha0(C))-

Hered, A denotes the operator with kernel givendyapplied to that ofd. Since in our notation
the kernel of4 is

(9.13) / w0 g (1 €)p(u ) dE,

with the integral being convergent, rewriting this with the coordinates on the compactification
[S%;Cal, (2.7), so thaiy takes the formy(z, Y, z,£) proves that all terms of (9.12) satisfy the
stated estimate, completing the proof.
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Another approach to computeindicial operators is to use that ne@f, A can be regarded
as a (non-classical!) pseudo-differential operator in the free variglgss,) with values
in bounded operators oh?(X,) (in fact, with values in\ps_cm’o(X“,C“)). More precisely,
A€ U P9(X,; B(L3(X®),L3(X%))). This allows us to use the scattering calculus for the

computation of the commutators to give the stated resuit.

As an application of these estimates, we now show how, under the assumption that the
subsystems have no bound states, a positive Poisson bracket wath give rise to a positive
operator estimate. We thus assume that

(9.14) H, 0(€) has noL? eigenvalues for any # 0 and¢ € *T*(C,; X).

To simplify the notation in the following proposition, we introduce the notatiepp, e C
sT*(Cy; X) for m-invariant functions: € C>(**Tj5 X). This is defined as the support of the
function on**T*(C,; X ) induced bye. Indeed, ag is 7-invariant, its restriction to°T¢, X can
be regarded as a function 6 (C,; X ). Thensupp, e is the support of the pull-back of this
function to>*7™*(C,; X).

PROPOSITION 9.6. — Suppose thafl is a many-body Hamiltonian satisfying.14) and
A € R. Suppose also thaj,b,e € C*°(**T*X;R) are w-invariant, satisfy the bound®.4),
g,b> 0, and that there exist > 0, C > 0, C,, > 0, such that for allf € *°T;5 X,

(9.15) 9(8) = Al <6 = *Hyq(§) < —b(6)* +e(¢)

and
(9.16) [g() — A <6 and ¢ suppe=q(£) <Cb(E)* and |(8%dq)(€)| < Cab(§)®.

LetA € 13 >°(X,C) be asin Lemma.1 For anys’ > 0, a € I and for anyK,, C °T*(C; X)
compact withsupp, e N K = () there existsd’ > 0 such that if¢y € C3°(R) is supported in
(A=0",A+¢")and( € K, then

o —

(9.17) i(Y(H)[A*A HIY(H)), Q) > (2 €)b2qt (Hao(Q)) "
Proof. —Note that the estimate (9.17) is trivialf + |v4|2. > A+ 1 (With ¢ = (24, 7a; a),
0" < 1 arbitrary) since then both sides vanish as

(9.18) V(H),(C) = (ha(za) + 72 + val2,),

h, denoting the subsystem Hamiltonian as in (6.9), Ald> 0 by the assumption on the absence
of bound states dll subsystem Hamiltonians (includirtg. with C, C C..). (H, > Oisreally an
HVZ-type result: it follows inductively by Proposition 4.8 that one can construct a parametrix for
H, — o, 0 <0, and then the absence of bound states implies invertibilit§qrso the spectrum
of H, is disjoint from(—o0,0).)

We prove (9.17) by induction oa. First, (9.17) is certainly satisfied far = 0. In fact, as
A€ p >Y(X,C), we can use the commutator formula in the scattering calculus, (9.10), to find

[A, H], ;. SinceV vanishes at the free facgg Co, it does not contribute @4, H] ,, so we
indeed have, by (9.15),

(9.19) i (H)[A*A, HJ(H)y , = —2¢(*Hyq)tb(9)* > 20°qib(9)® = 26%qp(Ho.o)?
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away fromsupp, e under the assumption that
(9.20) suppy C (A —48, A+ 9).

So suppose now that (9.17) has been proved fanaith C,, C C., C, # C.. This implies that
all indicial operators of[y)(H )A@( H),H],(¢), (= (24,Ta,Va) € K, satisfy an inequality
like (9.17). In fact, the indicial operators are of the fonm/;( )A*Az/J(H),H}C(E) with
Bse($) = (0,2,) € Ca, #ea(C) = ¢. Such a( is of the form{ = (Y, za, 7o, 11}, va) WhereC,
is given byz =0,y =0, so(Y,, z,) give coordinates alon@.. Note that ad(, is compact, so
is
(9.21) K. = {fz (Y7 2y Tas il V) (Zas Tas Va) € Ka, Bse(C) € Cu, || < X+ 1}

and a is independent of.// atC,,, K. Nsupp, e = ), so we can apply the inductive hypothesis.
Taking into account that the estimate (9.17) is trivialatfor ¢ with |u| > X+ 1, we see that
forall ¢ = (0, 24, Ta, plr, va) With (24, 74, v4) € K4, We have

—

9.22) i(W(H)AA, HIW(H)),  (0) > (2 — e WPab(H)2, 5(0)-

Sinceb?q is m-invariant on*T* X, it is independent of for each fixed¢, and if it vanishes

at ¢, then so does{qp(H)AW(H),H]a71(§) by Lemmas 9.2-9.4 and (9.16). Thus, by
Proposition 8.2,

— 2

(9.23) i[(H) A Ap(H), H], () > (2 — " Pqi(H), o(¢) + R(O)
where the seminorms of
R(Q) € U5 (0" (), T,C"), ¢ €Ty (Cus X),

are bounded by those M(H)AW(H), H],,(¢)and byb(¢)%q(¢). By assumption (9.16) and
Lemma 9.4 the former are bounded by the latter260) satisfies the estimate

(9:24) 1RO 52,05 (01,122 0 o) < €U
with C” independent of andb.
We now use our hypothesis on the absence of bound states. So suppasethat C>°(R),

Y = 1 nearsupp 1, 1 = 1 nearsupp . By assumption) — 72 — \ua@a is not an eigenvalue
of the subsystem Hamiltoniah,,(z). Thus,

(925) Y1 (Ha(Q) =1 (ha(2) + 72 + |val2,) — 0
strongly asupp ¢, — {\}. SinceK,, is compact, and the inclusion map
(9.26) T:H (i () = L2 (s ' (p)

is compact, forp; with sufficiently small support we have

(9.27) 11 EDT) Ol errzs (o oy, 22,0072y S E
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forall ¢ € K,. Thus,

— —2

(9.28) i(y1(H)[A* A H]41(H)), (€)= (2 = NPqui(H), o(¢) —€'V%q, (€ Ka.

Multiplying by 2 (H) from both left and right we finally conclude that

— —2

(9.29) i(4o(H)[A* A, H] o (H)),, | > (2 =28\ qn(H),, -
Relabellingy» and2s’ asy ande’ (thereby putting stronger restrictions @rpp 1)) provides the
inductive step and completes the proof of (9.17(n

In the following corollary we add an extra term to the commutator that will enable us to deal
with other terms arising in the propagation estimates.

COROLLARY 9.7.— Suppose that the assumptions of Proposifidhare satisfied and let’
be as in(9.16). Suppose in addition that for any differential operat@ron *¢7*(C,; X ) and
multiindexa there exist constary andC,, ¢ such that

l9(§) = Al <9, b(§) #0 and & ¢ suppe
(9.30) = [Q(b2)(©)| < Co and [Q(b2(05d0)) ()] < Caq-

Foranye’ >0, M > 0, and for anyK C *¢7* X compact withsupp e N K = () there exist’ > 0,
B,Ecy *(X,0), Fevg " (X,C) with

WF.(E)N K =0, WF.(F) Csuppg,
(9:31) Bao(¢) =b(Q)a(Q)*¢(Han((), (€K,
such that ify € C2°(R) is supported inA — &', A+ ¢’) then
i (H)e ™ /?[A" A, a2 (H) — My(H)A® Ap(H)
(9.32) >(2—¢ —MC)B*B+E+F.

Proof. —Let p € C>°(**T*X) be w-invariant, p > 0, satisfy estimates (9.4), and such that
supppNsupp e = @ andsupp(1 — p) N K = . (Herep can be regarded as a functioni™ X .)
Letyo € C°(R; [0, 1]) be identicallyl near[\ — 8, A + ], and letP € w5 (X, C) be such that
P, o(¢) = p(C)bo(H,(¢)) andWF§, (o (H) — P)N K = . For exampleP can be constructed
asinLemma?9.1.

The indicial operators of

ip(H)P*2~YV2[A* A, H|la= Y2 Py(H) — My(H)P*A* APy(H)
are
() Pra=1/2 [A* A, H]w V2PY(H) , () — M (b(H)P*A*APY(H)),, (0)
933) = ip(Q) 0 (H)[A"A, H](H), ,(C) ~ Ma(¢)*p(Q)*v(Han(C))
sinceyyy = 1. Thus, by Proposition 9.6 and a$q < M Cbh?, we have
Wb (H) Pra~ V2 [A*A, H|a=VEPY(H),, o(¢) — M($(H)P*A* APY(H)),, 1(O)
2

(934) > (2—¢ —MCOWq(Hao(())
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Thus, taking into account (9.30) and the remark following Lemma 9.4, Proposition 8.3 gives

ip(H)P*2~Y?[A* A, H|a =2 Py(H) — My (H)P*A* APy(H)
(9.35) >(2-¢)B*B+F,
with B € 05>°%(X,C), F € 93> (X, C),

(9.36) Ba,0(¢) =p(O)b(¢)a(¢)'?,

so the second statement of (9.31) holds. Moreover, writifdH) = Py (H)+
(vo(H) — P)y(H), and expanding the left hand side of (9.32), every term but the one given
in (9.35) has operator wave front set disjoint fré Letting £ be the sum of these terms proves
the corollary. O

10. Propagation of singularities

In this section we prove that singularities of generalized eigenfunctions of the many-body
operatorH propagate along generalized broken bicharacteristics under the assumption that no
(proper) subsystems dif have a bound state. That is, due to our definition in Section 6, we
assume that

(10.2) flbyo(g) has noL? eigenvalues forany#0 and ¢ ¢ SCT*(CN*Z,;X).

The technical reason for this assumption lies in the argument of Proposition 9.6 in which a
symbolic estimate is used to deduce positivity estimates for the indicial operators. However, it
is clear that the generalized broken bicharacteristicA ef A cannot be expected to describe
propagation if the subsystems have bound states since in this situation even the characteristic set
of H (i.e. the set wherél; ,({) is not invertible) changes.

Suppose that € C! = C’ (the regular part of’). As in Section 6, letx, y, z) = (24, Ya, 24) bE
coordinates oX nearp with z definingd X as usual( defined byx = 0, y = 0, chosen so that
everyCy, with p € Cy, (which impliesC, C () is a product-linear submanifold éfX in these
local coordinates, i.e. it is of the forf(y, z): Ayy =0} whereA = A, is a matrix. In addition,
asin Section 6, we arrange thatatd,; = 9,,,), is perpendicular t@'C for eachj (with respect
to k) and they are orthonormal with respect to each othgr ket (, i, v) = (74, fta, 24) dENOte
thesc-dual variables, so we write elements*8l™* X as

d d d
(10.2) R Ry
X X

x

Thus, ap (i.e. on**T;r X) the metric function o is of the form|p|* + h(z,v) with || denoting

the Euclidean length gf andh is the metric function of the restriction éfto 7'C'. When talking
aboutC;,, we sometimes write the corresponding orthogonal splittingasy = (v',3"”), soC
is defined byd,y =y’ =01in 0X.

Recall thatm, :*°T¢ X — *°T*(C; X) is the (orthogonal) projection given by the metric
at C. Thus, in our local coordinate§;, z, 7, u,v) on *°T5 X, moa(0,2,7, 1, v) = (2,7, V).
We use composition with the projectiofiT;, X to **Tg X given by our choice of local
coordinates(y, z, 7, i, v) — (2,7, 1, v), t0 extendry, to a map, denoted byg,,, from T X
tos°T*(C; X). Thus,n§, (v, z, 7, p, v) = (2, T, V).
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The propagation of singularities estimate in directions tangentiél fioceeds much as in
the 3-body case. In fact, essentially the same operator as there gives a positive commutator, see
Propositions 10.6-10.7; the functional analysis part of the argument is much as in the normal
case which we proceed to examine. Recall that the normal part of the characteristié/set)of
over(C’ is

(10.3) Sn(\) N5TE(C; X) = {(2,7,v): T2+ h(z,v) < A}.

Since the characteristic SEt_, of A — X is given byr? + |v|2 4 |u|? = X atp, the condition
m(§) € Bn(A) N*T,(C; X), § € Xa— implies thatu # 0. Since the rescaled Hamilton vector
field *°H, of A (restricted to°T} X) is given by

(10.4) Hy=27(p-0, +v-0,)—2h0; + Hy,

the 9, component of°H, at p is 2u - 9, meaning that bicharacteristics of through¢ are
normal to%°TEX. In addmon withn =y - 1,  is w-invariant and can be used to parameterize
bicharacteristic curves nege= 77(5). In fact, at eaclC;, with p € Cy, n = 1 - y has the property
that if we splity = (v/,3”) so thatz =0, v’ = 0 definesCy, theny -y = p' -/ + p”’ - y" is
independent of/ aty’ = 0, so1 is m-invariant. Moreover;® Hyn(€) = 2|u|? > 0, son can be
used to parameterize the generalized broken bicharacteristicg asalaimed. We remark that
7 is another possible variable to use for the parameterization, as usual.

We now proceed to prove two normal propagation estimates. The first one will be less precise,
but it works under our most general assumptions. On the other hand, the second estimate
requires that all elements @f be totally geodesic, but it locates the incoming singularities
more precisely. Although the consequences are the same, as far as propagation along generalized
broken bicharacteristics is concerned (due to the geometry of these bicharacteristics), the finer
estimate is worth proving since it is closer to the tangential estimates in spirit and it applies in
the setting of most interest, Euclidean many-body scattering.

We only state the following propagation result for propagation in the forward direction along
the generalized broken bicharacteristics. A similar result holds in the backward direction, i.e. if
we replacey(§) < 0 by n(€) > 0 in (10.5); the proof in this case only requires changes in some
signs in the argument given below.

PROPOSITION 10.1. — Suppose thaf! is a many-body Hamiltonian satisfyifg0.1) Let
ueC ™(X), A>0. Let&y = (20,70,10) € n(A) N*TE(C; X) and letn =y - 4 be the
m-invariant function defined in the local coordinates discussed above. If there exists a
neighborhood/ of & in 3 such that

(10.5) ¢eU and 5(é) <0=>&¢ WFse(u)

then&y ¢ WFs.(u).
Remark10.2. — Note that(§) < 0 impliesy # 0, so¢ ¢ °T¢, (C; X).

Remark10.3. — We recall from Section 5 that every neighborh6odf &, = (20,70, 10) €
Y, (X)) N°TE, (C; X) contains an open set of the form

(10.6) {& [y(©F +12(6) — 2o +|7(&) — 7ol +[v(€) — wo|* < 5}

Note also that (10.5) implies the same statement Wwitteplaced by any smaller neighborhood
of &; in particular, for the set (10.6).
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Proof. —The main step in the proof is the construction of an operator which has a microlocally
positive commutator withH near&,. In fact, we construct the symbol of this operator. This
symbol will not be a scattering symbol, i.e. it will not be @ (S x S ), only due to its
behavior ag: — oo corresponding to its-invariance. This will be accommodated by composing
its quantization with a cutoff in the spectrum &f, ¢(H), ¢ € C°(R) supported neah, as
discussed in Lemma 9.1. This approach simply extends the one taken in the three-body scattering
proof of [40], though the actual construction is different due to the more complicated geometry.

Employing an iterative argument as usual, we may assumédi@WFg;f (u) and we need to
show thatty ¢ WF5 /% (u).

First we define a distance functiongg. Thus, we let

(10.7) w=yl>+ |z — 20> + |7 — 70|* + [v — w0o|?,

|.| denoting the Euclidean norm. Thenvanishes quadratically &, so |dw| < Cjw!/2. In
particular,

(10.8) |sc gw| Crw?/

Next, we use the variable=y - 1 to measure propagation. Let
_ 2 2
(10.9) co=\A—15 — |wolz, >0.

Since thed, component of°H,, at (0, zo, 7, i, v) is 2u, we see that

(10.10) *Hyn — 2|u?| < Co(lyl + |2 = 20]) < Caw/?
In addition,

A= 783 —|wol2, — [l <IN =gl + |9 =73 — [wol2, — |ul?|

<IA=gl+C'(lyl + |z — 20| + |7 — 70| + [v — o))
(10.11) <A — g| + Caw'/?
so we conclude that
(10.12) | Hyn — 2¢o| < Ca (| — g| +w'/?).
For 3 > 0, 6 > 0, with other restrictions to be imposed later on, let
B

(10.13) o=n+ 39

so¢ is am-invariant function. Lety, € C°°(R) be equal td on (—oco, 0] andy(t) = exp(—1/t)
for ¢t > 0. Thus,x((t) =t 2xo(t). Let x1 € C°°(R) be0 on (—o0,0], 1 on 1, 00), with x; >0
satisfyingy} € C2°((0,1)). Furthermore, ford, > 0 large, to be determined, let

(10.14) ¢=x0(Ag" (2~ ¢/0))x1(y - /5 +2).

Thus, onsupp ¢ we haveg < 26 andy - © > —24. Sincew > 0, the first of these inequalities
implies thaty - u < 26, SO onsupp ¢

(10.15) ly - 1l <26
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Hence,
(10.16) w<(6/6)(26 —y - p) <45°67L

The role that4, large plays is that it increases the size of the first derivativesefative to the
size ofq, hence it will allow us to give a bound fagrin terms of a small multiple of its derivative
along the Hamilton vector field; see (10.26)—(10.27).

We now proceed to estimatéH ,¢. First, by (10.12) and (10.8),

(10.17) Hy¢p — 2¢o| < Cu(IX — g| +w'/?) +%w1/2.
So let
g coV/B
10.18 =29 d & = .
( ) B (8C1)? and 4o 8C,

Under the additional assumptions

Co
10.19 5 <6 d [A— 0
( ) <dp and | 9‘<4c4

we havew'/? < ¢ /(4Cy), so we conclude that® H,¢ — 2co| < co, hence
(10.20) S Hy¢ > co > 0.

This at once gives a positivity estimate f6¢ ;¢ near,. Namely,

CHgq=—A5"0""x0(A5" (2= 8/8)) x1(y - /6 +2)* Hyop

(10.21) +8 X0 (A1 (2= ¢/8)) X1 (y - /S +2)* Hy.
Thus,

(10.22) “Hyq=—b>+e

with

(10.23) b = A5 0 G (A1 (2= 6/0))xa(y - /0 + 2) Hyop.
Hence, with

(10.24) b = oAy 0 xo(Ag (2= 9/8))xa(y - /5 +2),
we have

(10.25) “Hyq< —b* +e.

Moreover,

(1026) b2 = (C()Ao/lG)q

since¢ >y - 4 > —20 onsuppq, SO

Xo(A5 1 (2 0/8)) = A2 — ¢/8) *x0 (A5 (2 - ¢/5))
(10.27) > (A3/16)x0 (A4 (2 — ¢/9)).
On the other hana; is supported where

10.28 —26 <y pu< -9, w2 < 25—1/2 s,
Y- p
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so, for 6 > 0 sufficiently small, in the region which we know is disjoint frofWFgs.(u).
Moreover, onsupp q,

(10.29) —26<y-n<26,  w/?<2p7124,

so, ford > 0 sufficiently small, we deduce from the inductive hypothesis thigtp ¢ (hence

supp b) is disjoint fromWFéﬁ*l/z(u). In addition, by choosing > 0 sufficiently small, we can

assume that the support@fe andb are all disjoint fromWFs.((H — Au).
Moreover, withd denoting a partial derivative with respect to ondgfz, 7, i, v),

dg=—Ay"6""x0 (A0 (2= 90/0)) xa(n/d +2)0¢
(10.30) — 6 xo(Ag (2= 6/8)) X1 (n/d +2)0n.

As y = 0 is outside the support of the second term, and,as vanishes ay = 0, we conclude
that for any multiindexg,

(10.31) |07dq| < Cb® aty=0.

More generally, at ang, with p € C), defined byx =0, ¢’ = 0, as above¢ is independent of
1/ aty’ =0 so outsidesupp e

(10.32) |07 dq| < Csb®  aty’ =0.

In fact, outsidesupp e, but in the set wherg s positive,

(10.33) b~20q = c; 109,

so the uniform bounds of (9.30) also follow.
Lety € C*(IR) be identicallyl near0 and supported sufficiently close@ao that the product
decomposition ofX neard X is valid onsupp ). We also define

(10.34) q=1(z)q.

Thus,§ € C*°(**T*X) is aw-invariant function satisfying (9.4). Letl be the operator given
by Lemma 9.1 withj in place ofg, so in particular its indicial operators agéC)vo(Hp 0(C)).
Note that (9.16) holds witl' = 16¢, ' A;* by (10.26). So suppose thaf > 0 ande’ > 0.
ChooseA, so large that\/C < &’. By Corollary 9.7 and the hypothesis (10.1), we deduce the
following statement. For anyj’ C 5T* X compact withsuppe N K’ = ) there existy’ > 0,
B,Ec U >*%(X,0), F e ug > (X,C) with

WFg(E)NK'=0,  WFg(F) Csuppq,
(10.35) Ba,0(¢) = b()a(¢)*¥(Hap(C)), CE€K',
such that ify € C2°(R) is supported i\ — §’, A + §’) then

ip(H)a™?[A* A, Hle ™ /2p(H) — My (H)A* Ay (H)

(10.36) >(2-2)B*B+E+F.
Let
(10.37) A =27 72(14 /)Y, re(0,1),
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SOA, € \IJ(S)’C_Hl/z(X,C) for r € (0,1) and itis uniformly bounded iI(I/(S)’C;l_lm(X,C). The last
statement follows fronf1 + r/z)~! being uniformly bounded as a Oth order symbol, i.e. from
(20,)*(1 +r/x)~! < Cy uniformly (Cy, independent of). In particular, note that

20,(1+7r/x) " =ra= (1 +7/z) 2
(10.38) = j_ (I+r/z) ' =1-0+r/z)" A +r/z)""
xr r
Since0 < = <1, (29,)(1 +r/x)~" is a uniformly bounded multiple oft + r/x)~", and in
fact this bounded multiplier is uniformly bounded as a Oth order symbol. This also implies that

(10.39) (1+7r/2)" ! H|(1+7/z)

1,0
Scc

which is a priori uniformly bounded inp
Uk (X,0).
We also define

(X,C) only, is in fact uniformly bounded in

(10.40) A, =ANa"V2)(H),  B.=BA,, E,=A.EA,.

Then, withiyy € C°(R; [0, 1]) identically 1 nearsupp ¢,
it V2 A A, Hla Y2 =i(1 4 r/a) Y (H)a V2 [A* A, Hla Y2 (H) (1 4 7/2) 7
+i(l+r/2) P(H) A (1 +r/z)a T2 [A a2 H]
X 27V 24 (H)AY(H) (1 +7/x) "}
+i(1+r/2) p(H) Ao (H)z ™2 [N a2 H|
(10.41) X (14 r/z)x T V2 Ap(H) (1 +r/z)"" + H,,

—o0,1

whereH,. is uniformly bounded invg " (X, C). Note thatH, arises by commutingl, powers

of  and A,. through other operators, but as the indicial operatorgi gind 2 are multiples

of the identity, A, x and A,. commute with these operators to top order, and in case.pthe
commutator is uniformly bounded as an operator of one lower order (than the order of the product
of A, with such operators). Then, multiplying (10.36) @dy+ r/z)~! from the left and right and
rearranging the terms we obtain the following estimate of bounded self-adjoint operators on
LE.(X):

i 247 Ay, He TP — (14r/2) 7 (G(H)A™ (G + Gr) A (H)
+ My(H)A* Ap(H)) (1 +7/z) "

(10.42) > a2 (2~ BB, + B, + F,) 2?2
where
(10.43) G =ito(H)a™ 2 [Ava ™2 H] (Lt r/a)a’ ™2,

and F, € w3~ ?"!(X,C) is uniformly bounded inwg > *(X,C) as r — 0. Since
(14 r/x)~', H|(1 + r/z) is uniformly bounded inv$! (X,C), we conclude tha, is uni-
formly bounded in&g > (X, C), hence as a bounded operator Bh(X). Thus, if M > 0 is

Scc

chosen sufficiently large, the#, + G > —M for all r € (0,1), so
(10.44) (1+7r/2) "W(H)A*(Gr + Gr + M)AY(H)(1 +r/z)"" > 0.
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Adding this to (10.42) shows that
(10.45) i T2 [Ar A, H]2 Y2 2 2 Y2 (2 - £ BB, + E, + F, )2l T2,

The point of the commutator calculation is thatlig. (X)
(u,[AF A, Hlu) = (u, AL A, (H — Nu) — (u, (H — )AL A, u)
(10.46) =2iIm(u, AL A, (H — \)u);

the pairing makes sense for> 0 since A, € \IIS_COO’_Z(X,C). Now apply (10.42) tar—'—1/2y
and pair it withz—'~'/2¢, in L2.(X). Then forr > 0

(10.47) 1Brull® < [{u, Evw)] + [{u, Fru)| + 2[(u, AL A (H = Nu)l.

Letting » — 0 now keeps the right hand side of (10.47) bounded. In faGt,H — \)u
€ C>=(X) remains bounded id>°(X) asr — 0. Similarly, by (10.35),E,.u remains bounded
in C>(X) asr — 0 if we chose K’ so large thatWFg.(u) C K’. Also, F, is bounded
in B(H™Y(X), H;™YX)), so (u, F,u) stays bounded by (10.35) as well. These esti-
mates show thaB,u is uniformly bounded inL2,(X). Since(1 + r/z)~! — Id strongly on
B(H™'(X),H V' (X)), we conclude thaBz—'~'/?u € L2.(X). By (10.35) and Proposi-
tion 5.5 this implies that for eveny,

(10.48) 0 ¢ WEIH12 (),

This is exactly the iterative step we wanted to prove. In the next step we deéredsslightly
to ensure thatVFj, (F) C supp is disjoint fromWF2 ' "% (u). o

To state and prove the finer estimate under the assumption that all eleménésefotally
geodesic, first note that in geodesic normal coordinates anear@’, h — (|u|? + |v|?) vanishes
together with its first derivatives at= (0,0). Thus,* H,, agrees witi1® on*T; X where

(10.49) W’ =27(u- 0y +v-08,) = 2(|uf* + |[v|?)0r +2v- 8. + 2+ 9.

We will useW’ to model the bicharacteristic flow @f. Note thafiV” is the (rescaled) Hamilton
vector field of the metric function? + |v|* + |u|?, i.e. where we replace the actual meftiby
a flat one.

We remark that it is thé), andd,, components of° H,, that differ fromW" on Ty X if we
do not assume that the element€afre totally geodesic. The former is inconsequential since we
only considerr-invariant functions (in particular, the only-dependence is via=y - 1), but the
latter rules out the more precise location of the singularities given in the following proposition.

PROPOSITION 10.4. — Suppose that/ is a many-body Hamiltonian satisfyind0.1) and
that every element d is totally geodesic with respect fo. Letu € C~>°(X), A > 0. Given
K C ¥,(\) N T4 (C; X) compact withiK N WFsc((H — A)u) = () there exist constants
Cp > 0, 6o > 0 such that the following holds. & = (0,79, vo) € K and for somé) < § < o,
Cod'/? <e<landforalla=(y,z,7,pu,v)€ STix X NEXa—n

a€ SCTE;)X and |7r8a(exp(5Wb)(oz)) — &l <ed and |y(exp(5Wb)(oz))| <é&d
(10.50) = mop(c) & WFsc(u)
thengy ¢ WFEsc(u).
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Remark10.5. — The estimate is stated in the form (10.50) for simplicity of statement. The
proof provides a slightly different estimate, involving the backward flawp(—51W?) (<),
o € 771(&); the two are equivalent up to changiff, see Remark 10.8 for a more thorough
discussion.

Proof. —We again employ an iterative argument, so we assumeg@hﬁtWFg;f (u) and we

need to show thaly ¢ WF5 /2 (w).

We first construct & functionw of z, 7, v, n = u - y ands = |y|> which measures the
distance of bicharacteristics &f in Xy from 7,5 (§)) N Xa_x. Thus, 7% + |v|2 + |u|> —
will be small along these bicharacteristics. We will takef the form

2
2 2 (3/'#)2
(10.51) w=wj+ <y| N2 Tg — |V0|2> ,

wherew, only depends on, 7, v andn =y - . Note that

)2 .
(10.52) lyl* - W i) —ly— L L2
|l |l

is the squared distance of the integral curveslgfi-, which are just straight lines, from= 0,
So neara _y the second term iw gives the fourth power of this distance.

Pushing forward W’ by the map F:(y,z, 7, u,v) — (z,7,v,u - y) at some point
a=(y,z,7,u,v), we obtain the vector
(10.53) F oW’ = 2(tn+ |ul?)0, +21v -9, — 2(|ul* + |v|?) 0 +2v - 0.

Since we are interested in what happens fgar N *°T; X, wherex = 72 + [v|> + |p|?, we
are led to consider the constant coefficient vector field

(10.54) Wo=2(A—15 — |v0]?) 9y + 27010 - 8, —2(A =73 )07 + 119 - 0-
in the variablegz, ,v,7), so
(10.55) FylaW? =Wo + 2(A — 78 — |10]? = [v0]?) (=0, + 87).

Note that thed,, component ol is nonzero. Let

(1056) Zo(t) = MW/Z:]t’ To(t) =70+ %t, Vo(t) =1y + %t,
)
(10.57) vit= (zo((Womt), 7o (Wom)t), vo(Won)t), (Won)t)

gives a curve througft,,0) with tangent vectoi?,. Now we definey, by

(10.58) wo = (2= 20(n)” + (1 = 10(m)” + (v — vo(m))”

Sowy vVanishes exactly quadratically alongand is positive elsewhere, and
(1059) W()wo =0.

4° SERIE— TOME 34 — 2001 N° 3



PROPAGATION OF SINGULARITIES IN MANY-BODY SCATTERING 381
Note that by the triangle inequality
1/2
(10.60) \z\—|—|7’—7’0\+\1/—1/0|—|—\77|gC’(aJO —|—|17D

for sufficiently largeC.
Since fora € #71(&) we haveF,|,*H, = F. | W’ = Wy, we see that

(10.61) “Hg(z—20(n) =0 ata—'(&),

i.e.wheny=0,2=0,7=79, V=19, =\, SO

(10.62) *Hy (2 — 20(n)) | < C(Jy| + wo/* + A — gl).
Hence,
(10.63) [ Hy(z = 20(n)?| < 2Cwq” |yl +wo’® + 1A = g1).

Similar conclusions hold for — 7(n) andv — v (5), so

(10.64) | Hywo| < C1(Jyl +wp/* + A — gl)wy™.

Next, we calculate’*Hy(|y|*> — (y - u)?/(A\ — 7¢ — |w]?)). Since the function we are
differentiating vanishes quadratically @at= 0, the same follows for its derivatives with respect
to any vector field tangent tp= 0. Since the), component of° H,, (and of W) is of the form
24 - 0y + > B3;0,, with 8; vanishing aty = 0, z = 0 (i.e. atp), we conclude that

(10.65)  |(*Hy —2p-8y) (Jy1* — (v~ 1)*/ (A = 78 — |vo]?)) |< Calyl(|yl + |2)).
On the other hand,

A—78 — [wol? — |p?

(10.66) (212-9y) (lyl* = (y-1)*/ (A =75 = |wo[*)) = 4l - y) == 78 — |1o]?

But, asin (10.11),

A =72 — ol = [l <A = g] + C'(ly] + |2 + |7 — 70| + [v — v0))
(10.67) <Cs(IX = gl + Iyl + ).
Thus,

(10.68) [ H,(lyl* — (y-1)*/ (A =75 — [ol)) | < Culyl (1N = gl + [y] +w5®).
Our results thus far imply that

(10.69) [ Hyo| < O (fyl 1A — gl +05/%)”.

Now let1 > ¢ > 0, § > 0, with other restrictions to be imposed on these later, and let

(1070) (;5:’7'0 —T+ 64?(4)

We usery — 7 to measure propagation along the bicharacteristies;y - 1 would also work.
We again lety, € C>°(R) be equal td on (—o0, 0] andx(t) = exp(—1/t) for ¢ > 0 and we let

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



382 A. VASY

x1 € C*(R) be0 on(—o0,0],10n[1,00), with x; > 0 satisfyingy} € C°((0,1)). Furthermore,
for Ag > 0 large, to be determinedg (0,1), let

(10.71) g =q=x0(Ag (L +t—0/6)x1((70 — 7 +6)/(8) + ).

We usually simply writgy in place ofg;. We only usé to slightly shrink the support af in our
inductive proof (i.e. as is increasing), instead of adjustidgs in the proof of Proposition 10.1.
Thus, onsupp ¢ we havep < 26 andry — 7 > —24. Sincew > 0, the first of these inequalities
implies thatry — 7 < 24, so

(10.72) |T— 70| <20 and w<e*$3(20 + 7 — 1) < 4etot.

Hence,wy < 26262, which together withT — 70| < 26 gives|n| = |u - y| < Cg6 since thed,
component of in non-zero. Since we also have

(10.73) yl* = (y- 1)/ (A =75 — [wo])| < 26262,
we conclude thaly| < C-d. Thus, under the additional assumption
(10.74) A—g| <6

we deduce that® H,w| < Cse?4, so

(10.75) |**Hg¢p — 2h| < Csd/e>.

Hence, forcy > 0, Cy > 0 appropriately chosen and ferc (0,1), § > 0 satisfyingd/s? < Cp,
we have
(10.76) *Hgp > co > 0.
Again, this directly gives a positivity estimate f5tH ;¢ nearf,. Now
“Hyq=—Ag' 07 X0 (Ag (L +t = ¢/8))xa (10 — 7+ 6)/(0) + ) Hy)
(10.77) —(e6) X0 (Ag "X+t —¢/8)) X ((ro — T+ 0)/(€8) + t)* Hyr.

Hence, with

b? =coAy 6 xG(Ag (L +t—¢/8))xa((r0 — 7+ 8)/(e6) + 1),

(10.78)

e= —(55)_1X0 (Ao_l(l +t— (;5/5))){1 ((To —7+40)/(gd) + t)SCHqT
we have
(10.79) “Hyq < —b*+e.

In addition, similarly to (10.26)—(10.27), we see that
(1080) b2 > (COAO/].G)q.

Moreover, withd denoting a partial derivative with respect to onégfz, 7, u, v/),
9g=—Ag "6 X (Ag (L +t = ¢/8) x1 (10 — 7+ 6)/(e6) +1) D¢
(10.81) —(e6) "xo(Ag (1 4+t —¢/8)) X\ ((ro — T+ 6)/(e6) + t)Or.
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Thus, (10.31)—(10.33) hold, and hence the uniform bounds of (9.30) also follow. éNisw
supported where

(10.82) —0—ted <10 —T< 06+ (1—t)ed, w'/* <266,

so near the backward direction along bicharacteristics thrgggh the region which we know
is disjoint romWFs.(u). In addition, by choosing > 0 sufficiently small, we can assume that
the support of;, e andb are all disjoint fromWFs.((H — A)u).

From this point we can simply follow the proof of Proposition 10.1. Thus, we conclude that
for everym,
(10.83) o & WEILIH12(y),

C

This is exactly the iterative step we wanted to prove. In the next step we dec¢rslagetly to
ensure thagupp ¢, is disjoint fromWFé’i’l+1/2(u). O

Before proving the general tangential propagation estimate, we first do it in the totally geodesic
case ( totally geodesic). Proposition 7.1 shows that for sufficiently short times there is a unique
generalized broken bicharacteristic through any poinEjf\), namely the integral curve of
*“H,. The simplicity of this description may already give a hint that it is particularly easy
to prove the corresponding propagation estimate for singularities. Indeed, in the proof of the
aforementioned proposition, we have essentially already constructed the pseudo-differential
operatorA to commute throughif by defining ther-invariant functiong (which will play an
analogous role to that af in the proof of normal propagation). The following argument may
also clarify the close relationship between proving results about the geometry of the generalized
broken bicharacteristics and the positive commutator proof of propagation estimates. Again, we
only state it for forward propagation.

PROPOSITION 10.6. — Suppose thatd is a many-body Hamiltonian satisfyingl0.1).
Suppose also that every elementois totally geodesic with respect fo. Letu € C~>°(X),
A> 0. Letgy € 3, (A) N*°TE (Ch X)), C = C,, satisfyéy ¢ WFsc((H — M)u). Then there exists
¢’ > 0 such that if in addition for somee (—¢’,0) we have

Toa (exp (SSCHg) (7?71 (fo))) ¢ WFsc(u)

then&y ¢ WFs.(u).

Proof. —First note that there is nothing to proveiif € Ry (\) U R_(A), so from now on we
assume thagy ¢ R (\) U R_()). The proof is very similar to the previous one and the positive
commutator construction is exactly the same as in three-body scattering [40, Proposition 15.4],
based on ther-invariant function¢ used here in the proof of Proposition 7.1. Thus, we take
local coordinates centered @tas above, i.e. of the forrfy, z), and let¢ = ¢(*) be defined by
(7.21), so in particulap is w-invariant. In the proof of Proposition 7.1 we showed that there
existsdy € (0,1) such that for any € (0,8y) and any € (0,1)

(10.84) P(€) <25, T(€)—7<25 and |[r3()+h(E) - A <ed
imply that*° H,¢ satisfies (7.33), so
(10.85) SCH,¢(€) = co > 0.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



384 A. VASY

We defineg as in (10.71). Then (10.77), hence (10.78)—(10.82) also hold. Sincé can be
taken arbitrarily small, we can choose it ahd (0, o) so thatsupp e is a small neighborhood of
exp(s*“H,)(771(&)); in particular,mo, (suppe) is disjoint fromWFs.(u) for eachb. We can
then apply the compactness argument of Proposition 10.1 to prove (10.42) for the opérators
B, etc., defined in that proof, and conclude tha# WFs.(u). O

We now return to the general setting of not necessarily totally geodesic

PROPOSITION 10.7. — Suppose that{ is a many-body Hamiltonian satisfyind0.1). Let
u€C~>®(X), A>0.Given

(10.86) K C (Z:(\) N*TE&(C; X)) \ (R (A) UR_(A\) UWFsc((H — A\)u))

compact there exist constargis > 0, 4o > 0 such that the following holds. § = (20, 70, 0) € K
and for somé < ¢ < dy, Cod <e <landforalla=(y,z,7,1,v) €T X NEa_x

ae™Te, X and |m6q (o — exp(—0"Hy) (77 (&)))| <ed and [y(a)| <ed
(10.87) = mo(a) ¢ WFsc(u),
then&y ¢ WFs.(u).

Remark10.8. — In the estimate (10.87},H, can be replaced by arg/® vector field which
agrees withi° H,, at the pointi ! (£,), since flow to distancé along a vector field only depends
on the vector field evaluated at the initial point of the flow, up to committing an €¥é?). In
particular, it can be replaced by the vector figld defined below. Similarly, changing the initial
point of the flow by©(62) will not affect the endpoint up to an err@?(52). Thus, estimate
(10.87) can be further rewritten, at the cost of chandih@gain, as

o€ SCTgﬁX and |, (exp(éWb)(a)) —&|<ed and ‘y(exp(éW")(a))’ <ed
(10.88) = 71'01](0[) ¢ WFSC(’U,);

here we also interchanged the roles of the intial and final points of the flow. This relates (10.88)
to (10.50).

Proof. —The proof is very similar to the previous ones and now the positive commutator
construction follows that of [40, Proposition 15.2] in three-body scattering. Thus, we take local
coordinates as above, i.e. of the fofi z) with C,, defined by linear equations in Then we
constructuy € C**(*°T¢, (C; X)) (defined neag,) to measure the squared distance from integral
curves of

(10.89) W#=2rv-98, — 2h0, + Hj;

this is achieved by solving a Cauchy problem as in [40] and in (7.12) here. (Indeed, an
approximate construction, like that @f, in the normal case discussed above, would also work).
Then we extendy, to a function or*°T}; X (using the coordinatey, z, 7, 1, v) neard X), let

1
(10.90) w=wo + |y|?, =70 T+ Zzw,
€2d

and defineg as in (10.14). The difference in the powerssfind § in this definition of ¢

in the (general) tangential setting and that in the normal case (given in (10.70)) arises since
in the normal settingy approximates the fourth power of the distance from the generalized
bicharacteristics while here it approximates the squared distance. The estimétés, ¢rare
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just as in [40, Proposition 15.2], see also the proof of Proposition 7.1 here in the similar totally
geodesic setting (the estimates are simply better but not different in nature under the totally
geodesic assumption since now we do not have (7.4)), giving a slightly better result than in
the totally geodesic normal case: itdge, not /<2, that has to be bounded from above by an
appropriate positive constant. The difference arises as the model integral curves in the tangential
setting are closer to the actual ones than in the normal setting. Thus, one obtains (10.26) here as
well. The functional analysis part, under the assumption that there are no bound states, is exactly
as in the normal case.O

An argument of Melrose-Sjostrand [23,24], see also [12, Chapter XXIV] and [18] allows us to
conclude our main result concerning the singularities of generalized eigenfunctiéhsHsre
we concentrate on totally geodesiqsince that is the case in Euclidean scattering), in which
case the more delicate tangential propagation argument of Melrose-Sjdstrand is not necessary.
The proof presented below essentially follows Lebeau’s paper [18, Proposition VII.1]. We thus
have the following theorem.

THEOREM 10.9. - Let (X,C) be a locally locally linearizable many-body space, and
ssuppose thaf/ is a many-body Hamiltonian satisfyind0.1) Let u € C~°°(X), A > 0.
Then WFs.(u) \ WFs.((H — M\)u) is a union of maximally extended generalized broken
bicharacteristics ofA — \ in ¥\ WFsc((H — \)u).

Proof. —We start by remarking that for evefly C ¥ and¢ € V, the setR of generalized
broken bicharacteristicg defined on open intervals includirlg satisfyingy(0) = £, and with
image inV, has a natural partial order, namelyif (., 5) — V,~": (¢/, 8') — V, theny <+ if
the domains satisf{, 3) C (o/, ') andy =4, 3). Moreover, any non-empty totally ordered
subset has an upper bound: one can take the generalized broken bicharacteristic with domain
given by the union of the domains of those in the totally ordered subset, and which extends
these, as an upper bound. Hence, by Zorn’s lemnfa,ig not empty, it has a maximal element.
Note that we can also work with intervals of the fofm, 0], « < 0, instead of open intervals.

We only need to prove that for evey € WFs.(u) \ WFs.((H — Mu) there exists a
generalized broken bicharacteristic [—zg,c0] — 3, o > 0, with ~v(0) = & and such that
v(t) € WFge(u) \ WFso((H — Mu) for ¢t € [—eg,0]. In fact, once this statement is shown,
takingV = WFgs.(u) \ WFs.((H — A)u), £ = &, in the argument of the previous paragraph, we
see thatR is non-empty, hence has a maximal element. We need to show that such an element,
v:(a, ) — %, is maximal in% \ WFs.((H — A\)u) as well, i.e. if we takd” = ¥\ WFg.((H —
Mu), € = & in the first paragraph. But i’ : (o/, ') — 3 is any proper extension of, with
say o/ < a, with image inYX \ WFs.((H — A)u), theny/(a) € WFg.(u) since WFs.(u) is
closed, and' maps into it, hence by our assumption there is a generalized broken bicharacteristic
Fila—e a+¢e") — WFge(u) \ WFse((H — MNu), & >0, ¥(a) =4/ («); piecing together
Yl(a—e,o) @ndry, directly from Definition 6.2, gives a generalized broken bicharacteristic which
is a proper extension of, with image inWFg.(u) \ WFsc((H — A)u), contradicting the
maximality of-.

Indeed, it suffices to show that for anyif

(10.91) & € WFsc(u) \ WFs ((H —Mu) and & e T (Cas X)

then

(10.92) there exists a generalized broken bicharacteristie-=¢, 0] — 3, e0>0,
Y(0) =&, (t) € WFse(u) \ WFsc((H — Nu), t€[—e0,0],
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for the existence of a generalized broken bicharacteristiclopny] can be demonstrated
similarly by replacing the forward propagation estimates by backward ones, and, directly from
Definition 6.2, piecing together the two generalized broken bicharacteristics gives one defined
on [—&o, €o).

We proceed to prove that (10.91) implies (10.92) by induction.dfora = 0, this is certainly
true by Proposition 10.6, since only element<bE C in a small neighborhood afy, must be
totally geodesic for the proof to go through, afiglis the only such element if the neighborhood
of §o € *°T¢, (Co; X) =T}, X is chosen sufficiently small (in fact, this is really just Melrose’s
propagationo theorem [22]).0

So suppose that (10.98 (10.92) has been proved for dllwith C, C C;, and thaté, €

=

Yn(A) N5CTE, (Cq; X) satisfies (10.91). We use the notation of the proof of Proposition 10.1
below. LetU C Ucaccb SCng(c*b;X) be a neighborhood afy = (0, 29, 70, 29) in ) which is
given by equations of the fory| < &', |z — zo| < ', |7 — 70| < &', [v — 1| < d’, &' > 0, such
that>*H,n > 0 on#~1(U) andU N WFs.((H — A)u) = (). Such a neighborhood exists since
€0 ¢ WFse((H — Nu) and* H,n(&) = A — 73 — h(z0,10) > 0 for everyéy € 7~ (&). Also let

U’ be a subset of/ defined by replacing’ by a smalley” > 0, and letsy > 0 be such that for
any generalized broken bicharacteristigvith (0) € U’, v|[—<,,,] € U. By Proposition 10.1,
there is a sequence of poirgts€ 3 such that,, € WFs.(u), &, — & asn — oo, andn(£,) < 0

for all n, so we may assume thgt € U’ for all n. By the inductive hypothesis, for eaehthere
exists a generalized broken bicharcteristic

(10.93)  Fu:(~€}. 0] = (WFsc(w) \ WEso(H — Nu)) N ] *TZ, (Ch: X)
CaCCh

with 4,,(0) = £,. We now use the argument of the first paragraph of the proof with
V = (WFse(u) \ WFse(H = N)u)) N\Ug, co, *T¢, (Cr; X), andg = &,. Thus 7, € R, which
is hence non-empty, hence has a maximal element. We let

(10.94) 7y (—2n, 0] = (WFse(u) \ WFse (H = Nu)) 0 | T (C; X)
CaCCy

be a maximal element &2; it may happen thate,, = —cc.

We claim thate,, > 9. For suppose that,, < ¢o. By Corollary 6.12,~, extends to a
generalized broken bicharacteristiclere,,, 0], we continue to denote this by,. Sincezs,, < ¢,
v, IS & generalized broken bicharacteristic with imagé/inindeed the closure of the image
is still in U. Taking into account that is increasing on generalized broken bicharacteristics
in U since®*Hyn > 0 there, we conclude that(vy,,(¢)) - u(vn(t)) = n(vn(t)) < n(7,(0)) <0
for ¢t € [—e,,0], hencey(y,(t)) # 0. Thus, v,(—¢,) € Uc.ce, SCTgé(Cb;X). Moreover,
Yn(—en) € WFsc(u) since WFsc(u) is closed, andy,|_., 00 maps into it. Thus, by the
inductive hypothesis, there is a generalized broken bicharacteristic,

(10.95)  Fp: (@, —en] = (WFsc(u) \ WFsc (H = Nu)) N | *T¢, (Cr; X)
CoaCCh

with a < —&,, n(—en) = 7m(—ex). Hence, piecing together,, and~,, gives a generalized

broken bicharacteristic mapping inVFs.(u) \ WFsc((H — \u)) NUe, co, *Ter (Co; X)
and extendingy,,, which contradicts the maximal propertyof. Thus,e,, > ¢ as claimed.
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By Proposition 6.11, applied wittk' = WFs.(u), there is a subsequence of|_., o
converging uniformly to a generalized broken bicharacteristi¢—c(,0] — WFgc(u). In
particular,y(0) = &, and~(t) € WFs.(u) for all t € [—&y, 0], providing the inductive step.

We now turn togp € X,(A\) N*°T¢, (Cq; X). If every element of is totally geodesic, then due
to Proposition 10.6, (10.91 (10.92). (Again, we only need that, be totally geodesic fof’,
with C, C C}, since the result is local.)

The general case, when elemen€aire not totally geodesic, repeats the argument of Melrose—
Sjostrand, as presented in Lebeau’s paper [18, Proposition VII.1]. We very briefly outline the
proof below; the detailed version follows Lebeau’s closely, with some changes in the notation.
Let U C Ue, cc, SCTgé(C’b;X) \ WFs.((H — A)u) be a neighborhood ofy, Uy a smaller
neighborhood, as above. We take> 0 small. Suppose théit< € < g¢, £ € Up. Let

Rég = {generalized broken bicharacteristics—¢, 0] — WFs.(u),
Y(0) =&, ¥(t) & Se(N) N*T¢, (Cos X) for t € (e, 0]},

R? . = {generalized broken bicharacteristic—¢’,0] — WFgc(u), £ € (0,¢),
7(0) =& (1) € Ze(A) N™Tg, (Co; X) for t € (=", 0],
v(=€') € Be(N) N*TE, (Ca; X) }-

Moreover, reflecting the inequalities in (10.87), let

(10.96) B(¢,e) = {¢ €5 max{|r§, (&) — €. ly(€)} <<}
Let Cy > 0 be as in Proposition 10.7. Fere X;(A) N*°T¢, (Co; X), let
(10.97) D(&,e) = B(exp(—e*°Hy) (77 (€)), Coe®) N WFgc(u),
and for¢ ¢ 3, (A) N*T¢, (Ca; X), let

D(£’€) = {7(_5): v E R%,E}
(10.98) U {B(exp(~(c — &) Hy) (7" (1(¢)), Cole = ')*)) N WFsc(u): 7 € RE ..}

The reason for introducing (¢, ¢) is that it is a good candidate for the beginning point of a
generalized broken bicharacteristic segmentMiis.(u), defined over an interval of length
and endingirt.

Indeed, for¢ € X, (A) N *T¢, (Ca; X) N WFsc(u), we deduce from Proposition 10.7 that
D(&,e) # 0. For § € WFgc(u) \ (E4(A) N*T¢, (Ca; X)), by the inductive hypothesis, the
previous part of the proof concerniig, (\) N TEy (Cq; X), and the first two paragraphs with
V = WFgc(u) \ ((Z¢(A) N%TE, (Co; X)) U WFso(H — MNu), € = &, there is a maximally
extended generalized broken bicharacteristigith image inV. By the argument of the second
paragraph, this is either defined on all fe, 0], or only on (—¢’,0] with 0 < &’ < ¢, in
which casey(—¢’) € X,(A) N*T¢, (Cq; X ), hence again by Proposition 10.7 we conclude that
D(&,e) # 0. Thus, for allé € U N WFs.(u) we have deduced (¢, e) # 0.

For each integeN > 1 now we define a sequenced¥ + 1 points¢; v, j €N, 0 < j <2V,
which will be used to construct points(—j2-"e;) on the desired generalized broken
bicharacteristicy : [—&¢, 0] — WFs.(u) through&,. Namely, lete = 27 V¢, & n = &, and
ChOOS%j_H,N S D(fij,E). Let Iy = {—j?iNEQZ 0<s< 2N} C [—60,0], J = UJOVO:1 JIN-

We write vy (t) = & for t = —j27Ne,. For eacht € J, the sequence (t) (defined for
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large N) stays in a compact set. Hence there exists a subsequgncich that for alt € 7,
v, (t) converges to some(t).

This definesy: [—¢¢,0] — WFg.(u) at elements of7. One can check exactly as in Lebeau’s
proof (which we have been following very closely) thaextends to a continuous map defined
on[—eg,0], and that it is a generalized broken bicharacteristic. This completes the inductive step
for tangential pointg, € X:(\) N *Té, (Cy; X) in the non-totally geodesic setting, hence the
proof of the theorem. O

We remark that the result is optimal as can be seen by considering the Euclidean setting, taking
potentials singular at a specifi€d,, thereby placing ourselves into the three-body framework.
As [37] shows, singularities do reflect in all permissible directions in general, the reflection being
governed to top order by the (two-body) S-matrix of the subsystem.

11. Theresolvent

Before we can turn Theorem 10.9 into a result on the wave front relation of the S-matrix, we
need to analyze the resolvent. More precisely, we need to understand the boundary values

(11.1) R(A£i0) = (H — (\%i0)) "’

of the resolvent at the real axis in a microlocal sense. To do so, we also need estimates at the radial
setsR4 (). Since the rescaled Hamilton vector field of the megn@nishes aR  (A\) UR_()),

the estimates must utilize the weights'~! themselves. In this sense they are delicate, but on
the other hand they only involve and its sc-microlocal dual variabte so they do not need to
reflect the geometry af. The best known positive commutator estimate is the Mourre estimate,
originally proved by Perry, Sigal and Simon in Euclidean many-body scattering [27], in which
one takes; = 2~ 7 with the notation of Section 9. Since it is easy to analyze the commutator

of powers ofx with H (in particular, they commute witl), the functional calculus allows

one to obtain microlocal estimates from these, as was done by Gérard, Isozaki and Skibsted
[6,7]. Thus, nearly all the technical results in this section can be proved, for example, by using
the Mourre estimate and Theorem 10.9. In particular, apart from the propagation statements, they
are well-known in Euclidean many-body scattering. The generalization of these Euclidean results
to our geometric setting is straightforward; the arguments essentially follow those in three-body
scattering that were used in [40].

We first state the weak form of the limiting absorption principle, namely thaf foC>(X),
R(\+it)f, t >0, has a limit inH™!(X), m arbitrary,l < —1/2, ast — 0. To simplify the
asymptotic expansions aR(A £ i0)f which we also describe, fok > 0 we introduce the
functions

(11.2) o4 =04 )=

|4

GCOO X\ C sing /s

e (X \ Co,sing)

and the set of polyhomogeneous functiotﬁlg(X \ Co sing) ON X \ Cy sing With index set

(11.3) K={(m,p): m,peN, p<2m}.

Recall from [21] that € Aphg(X \ Co sing) Means that is C> in the interior ofX and it has a

full asymptotic expansion &t{, which in local coordinateéz, y) take the form

(11.4) Z Z (logz)"aj,(y), aj, €C>(CY).

7=07r<2j
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Thus,v € CO(X \ Cp sing) and|v(z, y) — ao0(y)| < Cz|logz|?.

THEOREM 11.1. — Suppose thal/ is a many-body Hamiltonian satisfyiri0.1) A > 0. Let
feC®(X), uf = R\ +it)f, t >0. Thenui has a limituy = R(\ 4 40)f in H(X),
I < —1/2,ast — 0. In addition,

(11.5) WFsc(us) C Re(N).

If V is short-range, i.eV € 2%C>°(X \ Cy sing), then

(11.6) ug = e=VMEEmD20 g € (X Cosing),
while if V' is long-range, i.e} merely satisfie$6.2), then

(11.7) Uy = e:l:i\/X/mx(nfl)/Q%»iaivi’ vy € A§hg(X \ C0.sing)-
Remark11.2. — The first statement in the theorem also holds if we merely asgume
H™V(X) with I > 1/2, but thenWFg.(u+) has to be replaced by the filtered wave front set

WF' = (u4). Moreover,R() + i0) give continuous operators frofi™-!' (X) to Hm+2!(X).

Proof. —This result is a weak form of the limiting absorption principle and can be proved by a
Mourre-type estimate. In the Euclidean setting, it is a combination of the Mourre estimate, proved
by Perry, Sigal and Simon [27], and its microlocalized version obtained by Gérard, Isozaki and
Skibsted [6]. In the geometric setting, the Mourre estimate describes the commutataviti
a self-adjoint first order differential operatdre ' Diff}, (X) such thatd — 2D, € Diff.,(X)

(this is of course a restriction only &£X). Namely, it says that fop € C2°(R; [0, 1]) supported
sufficiently close to\, we have

(11.8) ip(H)[A, Hlp(H) =2\ —e)p(H)> + R, £>0,

whereR € \IIECOC’I(X,C), hence compact o2.(X). It was proved in the geometric three-
body setting (with an appropriate adjustment to allow bound states of subsystems) in [40],
following the Euclidean argument of Froese and Herbst [5]. The proof given there goes through
essentially unchanged for more than three bodies. Under our assumption (10.1), the symbolic
commutator calculation in the scattering calcutti#l, (z~17)+2g € zC°°(**T* X ), and a slight
modification of Corollary 9.7, prove the Mourre estimate. The argument of [27] then proves the
existence of the limits.. in H%!(X), 1 < —1/2, and(H — M\)uy = f € C*(X) shows that the

same holds if{™!(X) for everym and for everyl < —1/2.

To show the flavor of the arguments, we prove here a version of the estimate of Gérard,
Isozaki and Skibsted [6]. Such arguments as this can be combined to prove the limiting
absorption principle without a direct use of the Mourre estimate as was done in the geometric
two-body type setting by Melrose [22] and in the geometric three-body setting in [40]. Here,
however, we concentrate on proving the wave front set result. The major difference between the
propagation estimates of the previous section and the onedday) is that** H,, is radial at
R (N)UR_()):ithasthe form27zd,. Thus, we need to use a weight!~! to obtain a positive
symbol estimate. So fdr> —1, let

(11.9) g=z""""x(T)Y(z) 20

where) € C°(R) is identically 1 near0 and is supported in a bigger neighborhoodafit
is simply a cutoff nea® X), x € C>(R;[0,1]) vanishes or{—oc, vV — 2¢), identically 1 on
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(VA —e,00),e >0, X' >0, andy vanishes with all derivatives at everyith x(t) = 0. Then
for sufficiently smalls > 0, |g — \| = |72 + h — A| < § implies

“Hyq=—2((l+1)7x(7) + hX/(T)):I?_Z_l < b2t
(11.10)
b= (2([ + 1)TX(T) + (>\ _ 7_2)X/(7_)/2)1/2.

Thus, bothz!*1¢ andz!*1b arer-invariant. LetA € w5 ™' ~!(X,C) be a quantization of

as in Lemma 9.1, except that napis not supported in a single coordinate chart, so we need
to define A as the sum of localized operators (of course, this is not necessary in the actual
Euclidean setting). Thus, roughly speakingis the product of a quantization gfand, (H ),

Yo € C°(R). The fact thay € x~!~1C°°(°T* X) does not cause any trouble, and the argument
of Corollary 9.7 shows that fap € C°(R; [0, 1]) supported sufficiently close tbwe have

(11.11) s 2p(H)[A* A, Hlp(H)a" T2 > 2512 (2 - )B*B + F)a' T2, & >0,

where

(11.12) Fe \Ilgcoo’_zl(X,C), WF§.(F) C supp(ml+1q),

(11.13)  Bewy ™ TVA(X,C), Buii12(¢) = b(Q)a(¢) 20 (Han(Q)).
Let
(11.14) A= Ap(H) € 551X, 0).

Since

(11.15) (u,i[A§Ao, H]u) ) = —2Im(uf, A5 Ao (H — (A +it))u; ) — 2tHA0ut+H2,
we conclude that

(11.16) || Buf|1° + 26 Aouif | < {uf, Fu )| + 2|, A5 Ao (H — A+ i)

Since t > 0, the second term on the left hand side can be dropped. Sifices u. in
HY%'(X) for I < —1/2, we conclude that fat € (—1,—1/2) the right hand side stays bounded
ast — 0. Thus, Bu; is uniformly bounded inL2 (X), and asu;” — u, in H%(X), we
conclude thatBu, € L2, (X). But then (11.13) shows that for agywith ¢(¢) # 0, we have

¢ ¢ WF’S”C’Hl/z(ug for every m. This proves that the incoming radial se®,()), is
disjoint from WFglc’Hl/z(qu), l+1/2€(-1/2,0). lterating the argument, as in the proof
of Proposition 10.1, gives tha®Fs.(u4+) N R4 (A) = (. Since WFg.(u4) is closed, the
same conclusion holds for a neighborhood Bf (\). Finally, as all generalized broken
bicharacteristics oA — A tend to R, (\) ast — —oc and (H — MNu; = f € C™(X), the
propagation of singularities theorem, Theorem 10.9, implies Wik (uy) C R_(\). The
existence of the asymptotic expansions is a local question Spwe can work in the scattering
calculus to prove it, see [35] for details of the proofa

A pairing argument immediately show&(\ + i0)v also exists for distributions € C~>°(X)
with wave front set disjoint from the incoming and outgoing radial set respectively. Combining
it with the propagation theorem, Theorem 10.9, we can deduce the following result; as usual, we
assume thatX,C) is locally linearizable.
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THEOREM 11.3. — Suppose that? is a many-body Hamiltonian satisfyind0.1) A > 0.
Suppose also thate C~>°(X) and WFs.(v) N Ry (\) = 0. Letu;” = R(\ +it)v, t > 0. Then
uy” has alimitu; = R(A +i0)vin C~>°(X) ast — 0 and WFs.(uy) N R4 ()\) = (). Moreover,
ifees \ R_()) and every maximally backward extended generalized broken bicharacteristic,
v (=00, to] — X, with y(tg) = ¢ is disjoint fromWFs.(v), thené ¢ WFs.(uy). The result
also holds withR (\) and R_ () interchangedR(\ + it) replaced byR(\ — it), (—oo, t] by
[to,00) and correspondingly ‘backward extended’ by ‘forward extended’.

Proof. —As mentioned above, the first part follows from the self-adjointnes# pso that
fort>0,veC(X), f € C®(X), we havev(R(\ + it) f) = R(\ + it)v(f); recall that the
distributional pairing is the real pairing, not the complex (L&) one. The wave front statement
of Theorem 11.1 and the assumption @show the existence of the limit; = R(\ + i0)v
in C~>°(X) and that in additiodNF’;Z’l(u+) N Ry(A\) =0 for everyl < —1/2. The positive
commutator argument of Theorem 11.1 then applies and show®tfgt(uy) N Ry (A) = 0. In
the Euclidean setting these results follow from a microlocalized version of the Mourre estimate
due to Gérard, Isozaki and Skibsted [7]; see [9] for a detailed argument.

Finally, sinceWFs.(u ) is closed, a neighborhood &, (\) in ¥ is disjoint fromWFs (u. ).

Since all generalized broken bicharacteristics apprdach\) ast — —oo by Proposition 6.8,

the last part follows from{H — A\)u+ = v and Theorem 10.9. It can be also proved by modifying
the argument of Propositions 10.1-10.7 along the lines of our proof of Theorem 11.1. Namely,
we consider the family;" € C~>°(X), t > 0, and note that fot > 0, R(\ + it) € w3 °(X,C),

s0 WFs.(u;") € WFs.(v). Let Ay, etc., be defined ad, with r = 0 where A, is given by
(10.40) (i.e. we do not need to use the approximating fadterr/x)~1). Then

(11.17) (ugf,i[A§Ao, Hlu) = —2Im(uf, A§ Ao (H — (A +it))uy) — 2t Aou ||

Note that the pairings make sense since MW, (Ay) is disjoint fromWFs.(u;"), t > 0. Thus,

(11.18) [ Boug”||* + 2t ]| Ao ||* < [{uif, Bou)| + |(u, Fouy)|
+2|(uf, AgAo(H — (A +it))u )|

Sincet > 0, the second term can be dropped from the left hand side. Thus, knowing that
u — uy in C~°(X) ast — 0, and assuming tha} ¢ Wng’l(ug has already been proved

and (10.50) is satisfied by, we conclude thaf, ¢ WF’S”C’Hl/z(qu). The iteration of this
argument of Proposition 10.1 and the similar arguments for tangential propagation allow us to
conclude the forward propagation estimates which can then be turned into maximal statements
as we did in Theorem 10.9. This argument also shows the influence of the sigh bk 0, the
inequality (11.18) cannot be used to derive results.@ninstead, the signs are then correct in

the backward estimate, just as expected.

We conclude this section with the following uniqueness theorem on solutig¢#s-ef\)u = 0.
It is essentially a geometric version of Isozaki's uniqueness theorem [16, Theorem 1.3], though
we allow arbitrary growth ofs away from one of the radial sets, s&y. ()).

THEOREM 11.4. — Suppose that/ is a many-body Hamiltonian satisfyind0.1) A > 0.
Suppose also that € C~>°(X), (H — A\)u =0 and WF’S”C’Z(u) N R4 (\) =0 for somem and
somel > —1/2. Thenu = 0. The same conclusion holds if we repla@e()\) by R_ ().

Proof. —Just as in the proof of Theorem 11.3, the positive commutator estimate of Theo-
rem 11.1 (but now applied with a regularizing factorzipshows thatWFs.(u) N R4 (A\) = 0,
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and then Theorem 10.9 shows that
(11.19) WFse(u) C R_()).

We remark that although we need a regularizing factor here which requires some changes
in the proof, e.g. see the argument of the paragraph below, the regularizing factor (whether
(1 +r/x)~! or another one) commutes wihi, so the additional arguments for dealing with
it are essentially the same as the two-body ones. Thus, the regularization part of the proof of
WFs.(u) N Ry (N\) = 0 essentially follows [22, Proposition 10].

We proceed to show that

(11.20) meR, 1<-1/2=WF&'(u)nR_(\) =0.

We give the details below since regularity arguments for distributions which are large at infinity
seem to appear less often in the literature than the ‘finer ones’; in particular, [16, Theorem 1.3]
assumes € H™!(X) with [ > —1. We essentially follow the proof of [22, Proposition 9] below.

So suppose that (11.20) has been shown for some-1; we now show it withl replaced by
I+ 1/2. This time we consider

(11.21) g=z""Ix(Mb(x), 1<-1,

where € C>*(R) is identically 1 near0 and is supported in a bigger neighborhood)afit
is simply a cutoff neapX), x € C=°(R; [0, 1]) identically 1 on (—oo, —v/A + ¢), vanishes on
(—vV A+ 2¢,00), £ > 0, andy vanishes with all derivatives at everyith y(¢) = 0. Then

(11.22) “Hoq=—2((1+1)7x(7) + hy/(1))a " = (=b* + e)z ™71,

(11.23) v =2(1+ 1)7x(7).

The first key point now is that oWFs.(u) we haver = —v/\, S0 WFs.(u) N 7(suppe) = 0.
LetA e \Izgc‘”"l_l(X, C) asinLemma9.1. Corollary 9.7 again shows thatfat C>°(R; [0,1])
supported sufficiently close towe have

i T2 (H)[A* A H (H)2' T2 > 212 (2 - €)B*B + E + F)a! /2,
(11.24) £ >0,
where
Bews™ " TVAX,0), Baio12(0) = b(Qa(Q) 4 (Ha (),
(11.25)  Eewg ™ 27NX,C), WFs.(E)NWFs.(u) =0,
Fe W;OO’_QZ(X,C), WF§ (F) C supp(zq).

C

Let

Ay =A(l +r/x) " Y(H), B, =B +r/z)7,
(11.26)
E.=0+7r/z2) 'EQ+r/x)"",

so
(11.27) A, € lIJS_COO’_Z(X,C) for r > 0, A, is uniformly bounded in«ps_c"o’_l_l(X,C);
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analogous statements also hold f§yrand E,.. Thus,
T2 A A, H)a Y2 = i(1 4 r o) Y20 (H)[A* A, H (H)2 Y2 (14 7))~
(11.28) +ip(H)A* 2" (G, + G T A (H) + H,

whereH,. is uniformly bounded inlfgf"’l(X,C) and
(11.29) Gr = itpo ()2 (1 /) [+ 7/2) ™" H],

o € C°(R;10,1]), 9o = 1 onsupp ), SOG, is uniformly bounded inygc‘”’l(X,C). Thus, we
need to estimate the commutator + r/x) !, H], and now we do not have a largé as in the
proof of Proposition 10.1 to help us deal with it.

The other key point is thus that we hafél +r/z)~!, H| =i[(1 + r/z)~', A] and

1/2
sc -1 _ r _ .2 — _\1/2 T‘_
(AL30)“Hy (14 /) =2r— &b, =)

x1 € C°(R; [0, 1]) identically 1 on (—oo, —v/X + 3¢), vanishes off—v/A + 4¢,00), £ > 0. Let
C, be the quantization of, multiplied by )o(H) as in Lemma 9.1, and defin@, similarly
but with 1o (H) replaced by (H)?. Thus, ag1 + r/x)~! is uniformly bounded in the symbol
classS°(X),

(11.31) io(H)x 2 [(1 4 r/ax)! H]z™"/*o(H) = C;C\ + D, + H],

with C, and D, uniformly bounded inwg>"(X,C), C. € w5 ""/*(X,C) for r > 0,

D, € \11§C°°’1(X,C) for » > 0, and H’ uniformly bounded inw_°'(X,C). Moreover,
D, A € ¥ > (X,C) uniformly due to the disjoint operator wave front sets. Thus,

(11.32) Gr+Gr=2(14r/z)"Y*(CCr 4+ D)1 4 7/2)" Y2 + H!

with H” uniformly bounded inpgcm’l(X,C), S0
Y(H)A* (G, + G2l T Ap(H)
= 2(H)A* 21 (1 + r/x)_l/Q(C:CT +D.)(1+ 7’/56‘)_1/2.’L'l+1A’(/J(H) + Hf,
(11.33) > H},
H?, Hf uniformly bounded irnpgj"’l(X,C). Combining (11.24), (11.28) and (11.33), we see
that fore’ > 0 we have

(11.34) i T2 [Ar A, H]2 Y2 2 2 Y2 (2 - £ BB, + E, + F, )2l T2,

We deduce as at the end of the proof of Proposition 10.1\1\?\@@2’”1/2(@ NR_(\) =0 for
everym and for everyl +1/2 < —1/2, so (11.20) holds. In particulan, € H™'(X) for every
m and for every < —1/2.

In the Euclidean setting we can now simply refer to Isozaki's uniqueness theorem [16,
Theorem 1.3] to conclude that= 0. Here we give some details to indicate how this conclusion
can be reached in general. The crucial step is improving the estimate past the critical regularity

H§5_1/2(X). In the Euclidean setting this was done by Isozaki [15, Lemma 4.5] and his
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argument was adapted to the geometric setting in [40, Proposition 17.8]. We thus conclude that
WFZ- (w) N R_(\) =0 for Il € (0,—1/2). This is the point wher¢H — \)u = 0, and not just

(H — M\)u € C>=(X) is used. Now we can apply a commutator estimate like that of Theorem 11.1
but nearR_ (\). Thus, we conclude thaVFs.(u) N R_(\) =0, sou € C>°(X). The theorem

of Froese and Herbst [4] on the absence of bound states with positive energy adapted to the
geometric setting, as discussed in [40, Appendix B], concludesitaad. O

12. The Poisson operator and the scattering matrix

Just as in [36,40] where three-body scattering was analyzed, the propagation of singularities
for generalized eigenfunctions df implies the corresponding result for the (free-to-free)
scattering matrixS()), of H. Note that this is the only S-matrix under our assumption of the
absence of bound states of the subsystems. We start by discussing the Poisson operator, then we
use it to relate the propagation of singularities for generalized eigenfunctions to the wave front
relation of the S-matrix.

The result that allows us to define the Poisson operator is thét i§ short-range, i.e.

V € 22C%°(X \ Co sing), then for € (0,00) andg € C°(C}), there is a unique € C~*°(X)
such tha{ H — X\)u = 0, andu has the form

(12.1) w=e VMo (n=1/2 | R(X+i0)f,

wherev_ € C™(X), v_|ax = g, andf € C>(X). For long-rangé’ the same statement is valid
with the asymptotic expansion replaced by one similar to that of Theorem 11.1:

(12.2) u=e VMegn=1)/2iay, 4 RA+i0)f, v-€ AEhg(X)-

The Poisson operator with initial state in the free-cluster is then the map
(12.3) PL(X):CZ(Ch) —C~>=(Sh), Pr(Ng=u.

(Note that the subscriptfor the free cluster has been dropped here in contrast to the introduction
and [39].) To see that suchuais unique, note that the differenoe= v — «’ of two distributions

u and u’ with the above properties satisfiés — \)v = 0 and WFR"(v) N R (\) = 0 by
Theorem 11.1, s = 0 due to Theorem 11.4. To see the existence of suchote that as
supp g C C},, we can construct

u_ =e VMrgn=1/2, oy C™(X),
(12.4) —f=(H = Nu_ €C*(X),

by a local calculation as in [22], i.e. essentially in a two-body type setting. (We need to make
slight changes in the asymptotic expansion for long-ravigas described above.) Thus, we
construct the Taylor series af_ at 0X explicitly, so we can even arrange thatppv_ N

Co sing = 0. Thenu = u_ + R(A+10) f is of the form (12.1) and satisfi€& — \)u = 0 indeed.

We need to understand the Poisson operator better before we can extend it to distributions.
So first recall from [40, Section 19] that the Melrose—Zworski [25] construction of a parametrix
for the Poisson operator in the two-body type settiigs( empty) gives ‘the initial part’ of a
parametrixﬁ+(>\) for the Poisson operator with free initial state in the many-body setting (for
three bodies in that paper, but this makes no difference). Although the construction is performed

U—‘@X =g,
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there for short range potentials, it can be easily adjusted to long range potentials decaying like
see [40, Appendix A] and [38, Section 3]. In particular, the kerndPot)) is of the form

(125) Kbi (Ll?, n y/) — e:Fix/Xcosdist(y,y/)/gvxia¥ (y/)ai (Ll?, v, y/) |dh|,

wheredist is the distance function of the boundary metkic|dh| is the Riemannian density
associated with ity,. are given by (1.20), andy. € C*°(X x C{) are cut off to be supported near

y =1'. Herey' is the ‘initial point’ of the plane waves, 36 € C{, corresponds to considering free
incoming particles. In Euclidean scatteriig. takes the form¥V v g (w,y')|dh|, w=1y/z

is the Euclidean variable arjdh| the standard measure on the sphere; and e.g. if the potentials
V, are Schwartz then.. are just cutoff functions supported nea« 3’ which are constant in a
smaller neighborhood af = ¢'. In generala (0, y,y) is determined by the condition that

12.6) PL(\)g = eFiVA/egiaz+(n-1)/2, ,
( g ES

vy € Aghg(X), vrlox = g, and thena+(0,y,y’), as well as the other terms of the Taylor

series ofay atz = 0 can be calculated from transport equations neary’. Finally, we cut

off the solutions to the transport equations close te y’ before reaching’ «ing; We do this

by multiplying the asymptotically summed solutions of the transport equations by a function
@ € C>(X x C{) which is identicallyl near diagonal o’y x C{. (Note that such a function

is not smooth orX x Cy.) This defines the kerndl’. as a distribution i =>(X x C}). Thus,

for ¢ in a fixed compact subsét, in C}, K’ (z,y,y’) is supported away frory sy, SO for

g €C-2(Ch), supp(Py(N\)g) is disjoint fromCo ging-

The most important properties a. ()\) are summarized in the following proposition.
Although we state them foP, (\) only, they also hold forP_(\) with the appropriate sign
changes. Here we us€/, as the relation or$*90X x Y a_, defined analogously te-,. (see
Definition 6.9), but with ‘generalized broken bicharacteristics’ replaced by ‘bicharacteristics of
A — X'. Note that generalized broken bicharacteristics are simply bicharacterisﬁ&@gionX

which is where we will apply to following result.

PrROPOSITION 12.1 ([40, Proposition A.1]). —Ki € C~(X x C};QR), constructed above,

is the kernel of an operatoP; (\):C>°(C}) — C~°(X), which extends to an operator
Py (N):C7%°(Ch) — C°°(X), and forg € C°°(C})

(12.7) supp(Py (\)g) N Co sing = 0,

WF. (ﬁ+()\)g) C {(y7 \/X,O): y € suppg}
(12.8) U{¢ex\ (RL(NUR-(N): 3¢ e WF(g), £~ (Y,

(12.9) WF.((H —A\)Pr(N)g) C {¢€€ 2\ (RL(N)UR_(N): 3 € WF(g), £~ (}.

The actual Poisson operator is then given by

(12.10) Pi(\) =Py (\) — RO +i0)(H — A\ Py (N),
with a similar definition ofP_ (\):

(12.11) P_(\)=P_(\) — R(A—i0)(H — \)P_()).
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Indeed, ifg € C2°(CY) then(H — \) P, (\)g € C>°(X) and Py (\)g has an asymptotic expansion
as in (12.6), so by Theorem 11.4H — A\)P,(\)g = 0 and P(\)g has the form (12.1) (with
changes as indicated in (12.2)Wf is long-range). In addition, fog € C; *>°(C})), WFs.((H —

M) P.(N)g) is disjoint from R.()\) by Proposition 12.1. Hence, by Theorem 11.3, (12.10)—
(12.11) indeed make sense. We also immediately deduce from Theorem 11.3

PROPOSITION 12.2. — Suppose thatH is a many-body Hamiltonian satisfyin(lL0.1)
Then the Poisson operatd?, ()):C2°(Cp) — C~°°(X) extends by continuity to an operator
Py (N):C>°(Cf) — C~°°(X). Moreover, forg € C;>°(C{) we have

WFse(Py(M)g) C{(y, VA,0): y €suppg} UR_ ()
(12.12) U{€eX(\)\ Ry(\): I e WF(g), £~_(}.

Our definition of the free-to-free S-matrix is based on asymptotic expansions of generalized
eigenfunctions. So leg € C°(C})) and letu = Py (\)g. By (12.1) (modified as in (12.2) for
long-rangé/) and Theorem 11.%; has the form

(12.13) w=e VMo (n=1)/2 4 VA a(n=1)/2y,

with v_ € C®(X), vy € C°(X \ Cosing), V—|ox = g. We then define the free-to-free S-matrix
by
(12.14) S(N):CE(CH) = C=(Ch), S(Ng=v4ley.
We need a better description of the S-matrix to describe its structure. This can be done via a
boundary pairing formula analogous to [22, Proposition 13]. It gives the following alternative

description of the S-matrix, see [39, Equation (5.7)] (or its analogue from [36] in the non-
Euclidean setting):

PROPOSITION 12.3. — For A > 0 the scattering matrix is given by

fL(
2\

Here ((H — A\)P_(\))* denotes the formal adjoint, i.e. the meaning(d2.15)is that for all
fr9€C(Co)

(12.16) (f, S(Ng)ox = <<H ~ NPV, ﬁmu@

(12.15) S(\) (H = N)P_(\)) "Py()).

X

Proof. —The following pairing formula was proved by Melrose [22, Proposition 13] for short-
rangeV/, but the same proof also applies wh&nis long-range. Also, the proof can be easily
localized, see [39, Proposition 3.3]. Suppose thajferl, 2, u; € C~*°(X),

u; = ei\/X/xx(n—l)/2+ia+Uj s e—i\/X/xx(n—1)/2+ia,vj

(12.17)
v+ € A§hg(X \ Cosing), supp(vz,+) € X \ Co sing,

andf; = (H — \uj € C*(X). Leta; + = v; +|ox- Then
(12.18) 2i\/X/(a1,+m —ay,_ Gy _)dh= /(Ulﬁ_ f1uz)dyg.
ox X
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We apply this result withu; = Py (\)g, uz = P_(\)f, f,g €C>(C}). By the construction of
P(—\) we conclude thaty = f, az,— =0, while foru; we see directly from the definition of
S(A) andP()) thata; — = g, a1+ = S(\)g. Substitution into (12.18) proves the proposition.

Propositions 12.1 and 12.2, when combined with (12.15), allow us to deduce the structure of
the S-matrix.

THEOREM 12.4. et (X,C) be a locally linearizable many-body space. Suppose Hiat
is a many-body Hamiltonian satisfyir(@0.1) Then the scattering matrix§(\), extends to a
continuous linear mag_ > (Cy) — C~>°(Cy). The wave front relation of ()) is given by the
generalized broken geodesic flow at time

Proof. —Let f,g € C.>°(C{,). Suppose also that there is no generalized broken geodesic of
length 7 starting at some& € WF(g) and ending at’ € WF(f). That means that for any
£e ¥\ (R (\) UR_()\) we cannot havg ~_ ¢, ¢ € WF(g), and¢ ~4 ¢/, ¢ € WF(f),
at the same time. Proposition 12.1 (withsigns instead of-) implies that

(12.19) WFsc((H =N P-(\)f) CE\ (Ry(A\) UR_(N));

indeed, we also hav®Fs.((H — \)P_(\)f) C *T¢, X, so we can even replac®’Fg, by
WF,.. Thus, by our assumption W F(f) andWF(g), and by Propositions 12.1-12.2, we have

(12.20) WF ((H = \)P-(\)f) NWF (P (\)g) = 0.

But the complex pairing

(12.21) (u,u') x :/umdg

extends by continuity from, v’ € C*°(X) to u,u’ € C~>°(X) satisfyingWFy.(u) N WF(u)
= (. To see this just letd € ¥%°(X) with WF/ (A) N WFy.(u) = 0, WF. (Id—A*) N
WFg.(v') = (), and note that

(12.22) (u,uyx = (Au,u’) x + (u, Id—A")u) x

extends as claimed. Hence, the pairing

(12.23)  (Pr(Ng,(H = NP-(Nf) = ((H = N)P-(\) Pr(Ng, f)

defined first forf, g € C°(C})) extends by continuity tgf, g € C>°(C}) satisfying our wave
front condition. In other wordsy can be paired with every distribution whose wave front set
has no elements related WF(g) by the generalized broken geodesic flow at timeThus,

for any A € ¥9(Cj) with WE’(A) disjoint from the image oWF(g) under the generalized
broken geodesic flow at time, and for anyf € C_>°(Cy), (AS(N)g, flax = (S(N)g, A* fax

is defined by continuity frony € C2°(Cj), so AS(\)g € C*>°(C}). But this states exactly that
WEF(S(X\)g) is contained in the image &V F(g) under the generalized broken geodesic flow at
timer. O

Appendix A. The proof of Proposition 6.3

In this appendix we prove Proposition 6.3 under the assumptiorCtiigtotally geodesic,
roughly following Lebeau’s original proof in [18]. As noted after the statement of the proposition
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we can proceed inductively, using the order @nSo assume thaf(tg) = & € X, (A) N
SCTa,l(Ca;X). The inductive hypothesis is that we have already proved the propositian for
with C, C C,. Thus, by Definition 6.2, part (ii), there exists > 0 such that the conclusion
of the proposition holds if we repladg by ¢ # t,, assumingt — to| < 0. Let . () € Sa_»,

t # to, be the points given by the inductive hypothesis. We often write

(A1) Ex(t) = (y(1), (1), 7(t), n(y), v(1))

in local coordinates, so e.g(¢.(t)) = 7(t). Note thatr (£ (t)) = ~(t), hence the independence
of the r-invariant coordinates;, z, 7 andv, of the + signs.
Notice first thatr is w-invariant, so fott # ¢, we have

(7o) /dt|es = Hyr(E4(t)) = —2h(Ex(t)) = 2(T(£i(t))2 - )

(A.2) =2(r(4(t)* = X)

where we used thaf +h = \in ©a_ . Thus,7(t) = 7(y(t)) is differentiable or{to — &', ¢y + J’)
except possibly atg, it is continuous at,, and its derivativer’(t) extends to a continuous
function on(to — &', to + &'). Hencer(t) is differentiable at, andr’(to) = 2(7(tg)? — ) =

se gr(éo) for any &y € ¥a_». Notice also that, with the notation of (10.54) in the proof of
Proposition 10.17' (to) = WoT = (* H,7)(&). In particular,

(A.3) |7(t) — 10| S Ci|t —to| if |t —to| <&

In fact, the ODEr’(t) = 2(7(t)? — \), satisfied forlt — ¢o| < &, has a uniqu€> solution, so
on(tg — o' to +¢'), 7(t) isC> and

(A.4) |7(t) — (70 + (Wor)(t — to))| < Clt —to|*.

From now on we only consider differentiability issues from the left@gtof course, the
situation on the right is similar. We define thenvariant functions) = y - 1, wo, w ande = ¢(=:%)
as in the proof of Proposition 10.1. It is shown there that there ékist 0 anddy > 0 such that
if £€(0,1),8€(0,8), 6 < Coe? andé = (y,z,7,1u,v) € Ba_y satisfiesry — 7 > —24 and
gb(é) < 26 then**Hy¢ > ¢o > 0. So suppose that we fixed some

(A5) 0<T< min(é’, 01(50)
and let
(A.6) §=CT, e=2(5/Co)"/2.

Thus, fort € [to — T, to), |7(t) — 70| < 20. As ¢ is ar-invariant function which vanishes &, we
see tha¥' = ¢, o~y satisfiesF'(t) < 0 anddF/dt|;. = Hyp(Ex (t)) = co > 0fort € [to—T, to)

(cf. the proof of Proposition 7.1 after (7.35)). Taking into account the form ahd (A.3), we
deduce that fot € [to — T, to), w(t) = w(~(¢)) satisfies

(A7) w(t) < C1e*d3 |t — tol.

Applying this witht = t, — T we see that

(A8) a)(to - T) g 02T6.
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Sincew is independent of andd, we have deduced that there exi&ts> 0 such that
(A.9) to— 01 <t <tg=w(t) <Clt —tol°.
In particular, under the same assumption,
(A.10) wo(t) < C't = tof?,

SO

(A.11)

Wor 1" 3/2
_ < — .
T(t) (T0+ ( On)’r](t))‘ <C ‘t t0|

SinceWyT # 0 andr(¢) is C>, this shows that(t) is differentiable from the left at; and
[1(t) = (Won)(t —to)| < Ot —to] 2,

(A.12) Won="Hgn(§), &er (&) arbitrary

Using this and the definition af, we also conclude that
(A.13) |2;(t) — (Woz;) (t — to)| < Clt —to|*/2,

(A.14) |v(t) — (Wov;)(t —to)| < C|t — to] /2.

This proves the proposition for theinvariant functionsr, z;, v; andn, and indeed it provides
a better error estimate. However, we still need to estimate
To do so, we consider the second ternvirsee (10.51). Thus, from (A.9),

(A.15) ly(0)2 = g ()| < Clt —tol®, o= (A =72 — h(z20,10)) /.

Taking into account (A.12), we deduce that

(A.16) r(t) =[y(t)]

satisfies

(A.17) |r(t)? — 4pd(t — to)?| < Ot —to|*/2.
Thus,

(A.18) |7 (t) + 2p0(t — to)| < C|t — to[*/2.

Hencer(t) is also differentiable from the left &g, and in particular

(A.19) (1) =r(t) < Clt — to].
Now,
2 9 - )
a20) o) - Do) = oy - WL e oD,
0 Ho 1)

By (10.67), (A.10) and (A.19),
(A.21) [2(6)2 = 23] < C(ly(0)] + wo(H)/?) < C'Jt — to].
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Thus, by (A.15),

2
t
(A22) ) - 20| <cle-up
0
In particular, for each we have
2
t
(A23) Yj (t) — %2),[1,]‘71(15) < C|t — t0|3.
0
Let
(A.24) 0; =y;/r,

sof; is ar-invariant function away front’,, and we havéd;| < 1. Also let

(A25) 9]‘ (t) = Yi (t) to — (51 <t <ty.

By the inductive hypothesig, (¢) is differentiable fort € (to — d1,to) from both the left and the
right and

dgj N _ dyj ) _ ﬁ

(A.26) @, =0T g 7
with
(A.27) dy;/dt];+ =24+ (t)
and
(A.28) dr/dt|is = %Iy(t)\’l(dly\z/dtlti) = 2%~
Thus,

gl o yi(tn()
(A.29) E o = 27"(t) ! (,uj,i(t) T‘(t)72 )7

so by (A.23) and (A.12),

(A.30) ;

L= 2r(0) 7y (1) (i) = (@) < Clt —to] 7.

tE

But, by (A.18) and (A.12), this gives

d6;

<Ot —to] /2.
dt [t = tol

(A.31) ’
t+

Integrating froméy — 61 to ¢o gives that; _(to) = lim,_.,— 6, (t) exists and
(A.32) 105, (o) = 0;() < C'|t —to'/2.

Returning to the original notatiof; =y, /r, we see that

(A.33) [, (£) + 21085, (t0) (t — to)| < C'|t — to[*/?,
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soy;(t) is differentiable at, from the left. We then let

(A.34) £ (to) = (0, z(t0), (o), v(to), —poby,—(to))-

Then the compositions of the-invariant coordinate functiong;, z;, = andv; with ~ are all
differentiable from the left at, and the derivative is given by H, applied to the appropriate
coordinate function, evaluated&t (0). Note also that from (A.23) and (A.33) we have

(A.35) s (t) — p—(to)| < CJt —to?,  te (to— b1,to).

Since a general smoothinvariant functionf has the form

(A36) f(y, 2,7 p,v) = folz: ) + Y yifi (Tt v) + D ysun fin (2,75 1, 0),

fos [, fix all C*°, this finishes the proof of the proposition.
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