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ON DETERMINING A RIEMANNIAN MANIFOLD FROM
THE DIRICHLET-TO-NEUMANN MAP

By MATTI LASSAS! AND GUNTHER UHLMANN 2

ABSTRACT. — We study the inverse problem of determining a Riemannian manifold from the boundary
data of harmonic functions. This problem arises in electrical impedance tomography, where one tries to find
an unknown conductivity inside a given body from voltage and current measurements made at the boundary
of the body. We show that one can reconstruct the conformal class of a smooth, compact Riemannian
surface with boundary from the set of Cauchy data, given on a non-empty open subset of the boundary, of
all harmonic functions. Also, we show that one can reconstruct in dimemsjpr3 compact real-analytic
manifolds with boundary from the same information. We make no assumptions on the topology of the
manifold other than connectedness.
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RESUME. — On étudie la détermination d’'une variété riemannienne a partir des valeurs au bord de ses
fonctions harmoniques. Ce probléme apparait dans la tomographie d'impédance électrique, dont le but
est de trouver une conductivité inconnue dans un corps a partir des mesures de voltage et de courant
sur la frontiere de ce corps. On démontre que la classe conforme d'une surface de Riemann compacte
lisse peut étre reconstruite a partir des données de Cauchy de toutes les applications harmoniques sur un
sous-ensemble non vide et ouvert de la frontiere. On démontre aussi qu'en dimensidhes variétés
compactes analytiques avec bord peuvent étre reconstruites a partir de la méme information. La seule
hypothese topologique sur les variétés est qu’elles sont connexes.
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1. Introduction

In this paper we study the inverse problem of determining-@mensional,C>°-smooth,
connected, compact, Riemannian manifold with boundafyg) from the set of Cauchy data of
harmonic functions given oR, an open non-empty subset of the boundary. More precisely, let

f € C>®(0OM) with supp(f) CT'. Letu € C>°(M ) be the solution of

Agu=0 in M,
(1.2 { '

ulonr = f.
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772 M. LASSAS AND G. UHLMANN

We assume that we know the Cauchy datd'af all possible solutions of (1.1), or, equivalently,
the Dirichlet-to-Neumann mapping

Ag,F : f i— 8L/U|F7

whered, is the exterior normal derivative af and f € C3°(T"). In this paper we address the
question: is it possible to determiq&/, g) by knowing a non-empty open subset of the boundary
I' c OM as a differentiable manifold and the boundary operaipr?

This problem arises in Electrical Impedance Tomography (EIT). The question in EIT is
whether one can determine the (anisotropic) electrical conductivity of a medimniEuclidean
space by making voltage and current measurements at the boundary of the medium. Calderén
proposed this problem [3] motivated by geophysical prospection. EIT has been proposed more
recently as a valuable diagnostic tool since tissues in the human body have quite different
electrical conductivities. The electrical conductivity in an open sufsef R" is represented
by a positive definite matrix = (7). The Dirichlet-to-Neumann map is the voltage to current
map, that maps a voltage potential at the boundary of the medium to the induced current flux at
the boundary of the medium. Note that in the study of EIT the usual metii¢' qflays usually
a crucial role. We recall now some previous results on the problem for the case of a Riemannian
manifold (M, g) and for the EIT problem in Euclidean space. In all the cited results bElewv
the whole boundary and we denatg = A, sas. In [7], it is observed that in dimension> 3
the EIT problem is equivalent to the problem of determining a Riemannian ngefram A,
with g;; = (det v*)1/("=2) (%)~1_ Let us denote the closure Bfby Q. Then, ify: Q — Qis a
diffeomorphism which is the identity at the boundaty,-, = A4. The natural conjecture is that
this is the only obstruction to unique identifiability of the Riemannian meséeConjecture A
in [7], p. 1098).

For isotropic metrics iR™ (i.e. g;; = a(x)d;; with §;; the Kronecker delta and a positive
function) the conjecture in dimension> 3, is that the metric can be identified uniquely from
the Dirichlet-to-Neumann map. This was proved for smooth isotropic mejyjcs Q2 C R”,

n > 3 in [11] and forC3/2 isotropic metrics in [1].

In the anisotropic case in dimensier> 3 Lee and Uhlmann proved in [7] that the conjecture
is valid for simply connected real-analytic Riemannian manifolds with boundary which are in
addition geodesically convex.

In the two-dimensional case, since the Laplace—Beltrami operator is conformally invariant, we
have that iy is a diffeomorphism of2 which is the identity at the boundary than,,,-, = A, for
all smooth functiongy having boundary value one @\/. The natural conjecture is that this is
the only obstruction to unique identifiability of the metrse€Conjecture B in [7], p. 1099). Lee
and Uhlmann proved in [7] that this is the case for simply connected domains of Euclidean space.
We remark that the EIT problem for domains of Euclidean space was solved in two dimensions
by A. Nachman in [8] foiC2-conductivities for domain® C R2. This was extended to Lipschitz
conductivities in [2]. The problem for anisotropic conductivities can be reduced to the case of
isotropic ones by using an analog of isothermal coordinates as observed in [10].

In this paper we extend the results mentioned above of [7] in two directions. First, we assume
that the Dirichlet-to-Neumann map is measured only on part of the boundary which is assumed
to be real-analytic in the cagse> 3 andC*°-smooth in the two-dimensional case. Second we do
not assume any condition on the topology of the manifold besides connectedness. Furthermore,
we do not assume that the manifold is geodesically convex obthabr I C 9 M are connected.

Throughout the paper we assume that one of the following conditions is satisfied:

(i) M is a connected Riemannian surface;
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THE DIRICHLET-TO-NEUMANN MAP 773

(i) n>3and(M,g)isaconnected real analytic Riemannian manifold and the bourdddry

is real analytic in the non-empty open $et OM.

Before stating the results, we explain what we mean by the reconstruction of a Riemannian
manifold (M, ¢). Since a manifold is an ‘abstract’ collection of coordinate patches our objective
is to construct a representative of an equivalence class of the set of isometric Riemannian
manifolds to(M, ¢g) or a metric spac& which is isometric tq M, g).

In the two-dimensional case the inverse problem cannot be uniquely solved for the following
reason. Assume that we have two Riemannian surfgeg) and(M, §) with the metricgy and
g in the same conformal class, ig= g;;(z) andg = o(z)g;;(z), o € C*(M), olr =1,0 > 0.

Since

(1.2) Ayou=0"tAyu
9 9

we see that the solutions of equations (1.1) corresponding to the metaied § coincide, as
well as the mappingd, r andA; r. However, it turns out that this is the only source of non-
unigueness. Our main result is:

THEOREM 1.1. — Assume that conditiofi) or (ii) is satisfied. Then

(i) fordim M = 2theA, r-mapping and" determine the conformal class of the Riemannian
manifold (M, g);

(ii) for a real-analytic Riemannian manifol@l/, g), dim M > 3 which boundary is real
analytic inT", the A, r-mapping and” determine the Riemannian manifdl, g).

The outline of the proof for the cadé= 0M is the foIIOW|ng Using [7] we reconstruct the
metric at the boundary and enlargé to a manifold}. For the corresponding problemM
using that we know the Dirichlet-to-Neumann map, we can reconstruct the Green kernels in
M\ M. In the two-dimensional case we use isothermal coordinates so that the Green kernels are
real-analytic in these local coordinates. In dimension 3, since the manifold is real-analytic,
the Green kernels are real-analytic in local coordinates. We use these Green kernels to define local
coordinates. Then we continue the family of the Green kernels analytically in these coordinates.
More precisely, we consider the sheébf sequences of real-analytic functionsidh, define an
equivalence relation in this sheaf and define the sppamfeequivalence classes j. After this the
reconstruction procedure of the manifold is very simple: et be the element corresponding
to the germs of the Green kernels at a pairg M\ M. Then the unknown manifold can be
constructed by taking the path-connected componeBtadntainingp.

The outline of the paper is as follows. In Section 2 we extend the mettica manifold
M so that the Green kernels are real-analytié/fnin appropriate coordinates. In Section 3 we
show that the Green kernels can be used as local coordinates and in Section 4 we introduce some
sheaves in order to obtain a maximal analytic continuation of the Green kernels. In Section 5 we
continue analytically the Green kernels, reconstruct the manifold as a path connected component
of B, and we prove the main result. In Section 6 we discuss some possible extensions of the
results.

2. Construction of the metric on the boundary and continuation of the manifold

We assume first thaf = 0M and introduce later the modifications for the case when the
Cauchy data is given on a part of the boundary. NéAf we use the boundary normal
coordinates(s, h) wheres € 9M is the point nearest ta and h = dist(z, s). Let £ = £(s)
be local coordinates adM near a given boundary poigty € OM. Thus nears, we have in
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774 M. LASSAS AND G. UHLMANN

M coordinateg¢, h) € R"~1 x R,.. In these coordinates we represent the metric by the tensor
gw(ﬁ,h), i, j: 17...771.

By results of [7] (pp. 1105-1106), the operaty determines in the two-dimensional case
the tangential componemt(£,0) of the metric tensoy on the boundary. Correspondingly,
in the case of the real-analytic manifold, n > 3, A, determines all the normal derivatives

% 9:5(£,0), k > 0, of the metric tensor at the boundary. Thus we define a marﬁﬁ)by gluing

to M a boundary collabM x | — r,0] with metric described as follows. In dimensian> 3,
whenr is small enough, we can continue the metric so that the new metric is real-analytic. In the
casen = 2 we use the product metric B\ x | — r, 0], which gives us a Lipschitz metric on the

manifold M, that is, M hasC-coordinates for which the metric tensor satisfigse Coﬁl(J\A/f).
We denote the new metric @ff also byg. Next, let

(2.1) UcM\M

be the closure i/ of an open neighborhood il (seeFig. 1). We will use later a family of
open neighborhoods, C M \ M,

(2.2) U.={zeM: dz,U)<r}, 0<r<r,

whererg > 0 is small enough.
We use the Green functions of the Laplace—Beltrami operator which are solutions of the
equation

(2.3) { AyG(-,y) =8, inM,

G(ay)|aﬁ :Oa

wherey € M. As usual, we denote by, the Dirac distribution which satisfig$,,, f)12(ar,q) =
f(y). In the following we consideg as a parameter and use the notation

(2.4) hy (@) = Gla.y).

oM

Fig. 1. ExtensiomVI of M, the neighborhood’ of AM and the neighborhoo®l” where the continuation
procedure is started/{ will be defined in Section 5).
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THE DIRICHLET-TO-NEUMANN MAP 775

LEMMA 2.1.—Every pointx € JT/f\ U has a coordinate neighborhoddV, ¢), ¢: W — R"
where the Green functioris, o ¢!, y € U, are real-analytic.

Proof. —For the reaI—anaIytidef, n > 3 by definition, each point has a neighborhood with
real-analytic coordinate functiop. Since the metric is real-analytic and the Green functions
hy(z), = # y satisfy the Laplace—Beltrami equation which is a differential equation with real-
analytic coefficients, it follows by [4] (Theorem 9.5.1) thiaf(x) are real-analytic functions in
the ¢-coordinates. . .

In the two-dimensional case the metricf is Lipschitz. Then every (interior) pointe M
has a neighborhodd with isothermal coordinates

(2.5) p(x) = (¢1(2),d2(x)), ¢€C"*, a<l,
such that the metric tensor is of the form:
(26) g”(ﬁﬂ) :O'(l‘)(sij, O'(I) >0

(see[16], Sections 11.2 and 11.6.1, or alternatively, [10], Lemma 2.2 and [16], Theorem 2.1).
In theseCh-coordinates the Laplace—Beltrami operator is well defined in weak sense, and
particularly the formula (1.2) is valid. Thus we obtain

A(hy o qﬁfl) (gi)(x)) =o0(x)Aghy(z)=0 fory¢ W,

whereA = 97 + 05 is the Euclidean Laplacian. This implies thtato ¢~! is harmonic inR?
with respect to the Euclidean metric. Thugis real-analytic in the)-coordinates. O

Our first goal is to determine Green'’s functions in the boundary layer.

LEMMA 2.2.—The Dirichlet-to-Neumann map @hV/ and the metrigy in ]\7\ M determine
the values of Green’s functiothg () for z, y € M \ M.

Proof. —Lety € JT/f\ M andu be a function inﬁ\ M. Thenu has a continuation; to M/
which satisfies the equation

@7 {Agul =45, inM,
ul‘@ﬁ =0,
if and only if
Agu=4, in M\ M,
(2.8) Ovulan = Ag(ulonr),
ul, 5 =0,

wherev is the unit normal vector o M pointing towardsZAV[/\M. In other words, (2.8) means
thatu solves Eqg. (2.7) irYAV[/\ M and its Cauchy data coincides with the Cauchy data of some
solution in M. Thus we can consider (2.7) and (2.8) as equivalent equations.

Since we know the metrigin A \ M and we know the Dirichlet-to-Neumann MAp, we can
uniquely solve (2.8). Since this solution has an extensidﬁmlving (2.7), we have determined
hy(x) for , ye M\ M. O
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776 M. LASSAS AND G. UHLMANN

3. Propertiesof Green’sfunctions

First we show that the values of Green’s functions aieterminer uniquely.

LEMMA 3.1. - The mapping

reM — (hy(x))yeU
is injective.

Proof. —Assume thati(z,y) = G(z',y) for all y € U. By the symmetry of the Green kernel,
G(y,z) = G(y,2") for all y € U. By the unique continuation principle, this holds for all

y € M\ {z,2'}. MoreoverG(z,y) is at leastC“-smooth when: # y and whery is near to a
givenz it has the asymptotics ([12], Section 7.11 using the coordinates (2.5) in the ea8g

(3.1) { Gly,2) = cad(y,2)>" + O(d(y,2)"™"), n>3,
' G(y, o) = e log d(y,x) + O(1), n=2,

where the constanis, # 0 depend only om andd is the distance inZ. Thus for givenz,
G(y,z) is singular aty = = and at this point only. Similarly(y, «’) is singular at the unique
pointy = 2’ which implies thatt = 2’. O

We denote bys M the sphere bundle of vectofs, ) € TM, |¢€] = 1 and we use the notation
d.h = dh|, for differential ofh atz. In the following two lemmas; €10, 7] is a fixed number.

LEMMA 3.2.—There iscy > 0 such that for anyz, ) € S(M \ U,) there isy € U such that

| dahy (6] = co-

Proof. —In the casen > 3 the Riemannian manifold is a real-analytic. Thus for a given
(x,&) € S(M \ U,.) there is a real-analytic path: [0,¢;] — M such that

3.2) Y(0) =z, F(0)=¢ A1) U™

Correspondingly, in the case= 2, let v; be a smooth simple path frome U™ to 2 andV/
be a small neighborhood of the path. Since M is a C*°-manifold, we can considér as a
coordinate neighborhood’, ¢)) with a coordinate function) € C*. For instance, whef is
small enough, we can define tubular coordinateg inmrhen~; has a neighborhootd; C V on
which we can construct isothermal coordinatesatisfying (2.5) and (2.6). Indeed, 4f;(z),
z € (V) is the metric tensor in theé-coordinates, there are functiofig € C%!(R?) which
coincide with g;;(z) in (V1) and with §;; in R? \ (V). The existence of the isothermal
coordinates neaty; follows then from [16] éee Section 1.2 and Theorem 2.12). Indeed,
by solving a Beltrami equation ifk? corresponding to the metri¢;;, we can construct in
Vi1 coordinates in whicly;; has the form (2.6). In these isothermal coordinates the Green
functions are real-analytic. By using the Weierstrass theorem, we find in these coordinates a
real-analytic pathy which approximates; and satisfies conditions (3.2).

Thus in both cases = 2 andn > 3 we can define a real-analytic function

bit —— dyhy(§), te(0,ty].
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THE DIRICHLET-TO-NEUMANN MAP 777

Assume that this function vanishes identically for auch thaty(¢) € U. SinceU™ is an
open setp vanishes identically and in particular neae 0. However, the functiot?(z, y) has
asymptotics (3.1). This is a contradictiorbifanishes for alt near zero. Thus, for evefy, ),

H(,€) = sup | duhy ()] > 0.
)

The claim follows sinced is continuous irS(]\7 \ U,) which is a compact set.O
Next, we denotd(z,r) = {2/ € M: d(2/,z) <r}.
LEMMA 3.3. - There exist pointgy, ..., ¥, € U such that

Q:M\U, — R, z— (hy(2))"_

is bi-Lipschitz mapping to its image. In particuldy, is injective.

Proof. —Obviously, for anygs,...,%, the mappingQ is Lipschitz. Next, we show the
existence ofj, .. ., g, such that) is injective and its left inverse is Lipschitz.

Letz € M \ U,. Then there are points = y1(z), ...,y = yn(z) € U such that the vectors
dghy;, j=1,...,n, are linearly independent 'ﬁﬁ;ﬁ. Indeed, in the opposite case we obtain
a contradiction with Lemma 3.1 whefis a vector vanishing in the space spanneddiy:,,

y € U. Sinceh,,, are at leas€'-*-smooth, it follows from the inverse function theorem that the
functionz — (h,;)’_, has alocal inverse function which@"*-smooth. Hence there js, > 0
such that forr’, =" € B(z,2p,)

(3.3) Crd(2',2") < || (hy, (2") — hy, (z"))

n

j:lHR" <o d(@,2"),

whereCy, Cy > 0. Since]\7\ U, is compact, we can choose a finite cover of bBl(s, p., ),
¢=1,...,L, such that (3.3) is valid with uniformd; andC,. Let p = min p,,. Moreover, by

using the compactness &7\ U, and Lemma 3.1 we can choose points..., 2z, ande > 0
such that

(3.4 (e (2") = Pz, (@) 1 g 2> 5
whend(2’,2") > p. Thus by choosing
{g: k=1,...,p}={y(ze): j=1,...,n, £=1,... . L}U{z;: j=1,...,m}

we prove the claim. O

4. Sheaf of families of analytic functions

In this section we do the preliminary work so that we can use real-analytic continuations of the
Green functions in the next section. We first explain informally the ideas on how the construction
of a manifold from the Dirichlet-to-Neumann map can be done in the two-dimensional case.

The basic idea can be seen in Fig. 2. For every fixed)M there is a neighborhodd” of z
and pointsy;, y» € U such that,,, andh,, form regular coordinates

H-W — R?, z+— (hyl(z),hw(z)).

Moreover, inW we have isothermal coordinatgsW — R?. Then the functioné,, o ¢—! and
hy, o ¢~ ! are real-analytic. Hence by the inverse function theorem the mapping

QSOHil:(h’yl(Z)?hyQ(Z)) L ¢(Z)
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778 M. LASSAS AND G. UHLMANN

Fig. 2. Isothermal coordinateson a coordinate neighborhoddi” and the Green functiors, .

is real analytic in the neighborhoddl(W) C R? of (hy, (z), hy,(z)). Lety € U be an arbitrary
point. Sinceh, o ¢~ : (W) — R andgo H~': H(W) — R? are real analytic, we see that also
their compositionv, = h, 0o H~!': H(W) — R,

(4.1) Wy * (hyl (Z)7hv2(z)) U hu(z)

is real analytic ¢eeFig. 2). In other words, the Green functions corresponding to paints
andy, form coordinates in which all other Green’s functiolg are real-analytic. Hence all
the Green functions,, (y € U) can be analytically continued as functions of the given Green
functionsh,, (x) andh,,(x) as long as these Green functions form a coordinate system. When
Green functiong:,, (z) andh,, (z) do not form any more regular coordinates, we choose new
pointsy; andy}, use the corresponding Green functions as coordinates, and continue analytically
the other Green functions. This procedure can be repeated arbitrarily many times until the
constructed neighborhoods cover the whole manifold. In other words, we continue the Green
functions analytically as function of themselves and show that the maximal analytic continuation
is equivalent to the desired manifold which we want to construct.
To make this approachrigorous we analyze the maximal real-analytic continuation by applying
the theory of sheaves which is very useful in going from local information to global information.
Now, we return to rigorous analysis in dimensioa= dim(A) > 2. SinceU is compact, for
anyr; > 0 there ism < oo with

m =m(r1) = max {|hy(z)|: y €U, x € 9U,, }.

By (3.1),m(r1) — co whenr; — 0. We define the set
(4.2) Kpn={zeM\U: |h(z)| <mforallyeU}.

SinceU is compact, for any ¢ U the functiony — h, (x) attains its maximum at some Since
the differentialsd, i, are uniformly bounded whepe U andd(z,U) > ¢, we see thaf{,, is
open. Moreover, when € 0K,,,, this shows that there is€ U such that

(4.3) hy(z) =m.
Whenm is large enough)/ C K,,. Thus we can define:

(4.4) let M,,, be the connected componentisf,, containing) .
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THE DIRICHLET-TO-NEUMANN MAP 779

Next we define the sheaf which is needed for maximal real-analytic continuation (for the
standard definitions and properties of sheaves, we refer to [14]). As usual, the maximal analytic
continuation is a connected component of the sheaf of analytic functions.

We denote byS a pair ((f,)yev,w) corresponding to the family of real-analytic functions
fy 1w —]—m, m[ which are indexed by € U and defined in a domain C R", n = dim(}M).

For instance, in the case= 2 the Green functions,, : H(W) — R given in formula (4.1) define
the pair((wy)yev,w) with w = H(W).
These pairs define a pre-shéaf= (H.,, p.’ ) Where

(4.5)  Ho={((fy)yev,w): fy:w— R arereal-analytic|f,(z)| <m, z €w}.

Here w ¢ R™ are open connected sets apd ., « C w are the restriction mappings
Puw’ w (fy) = (fy|w’): Pu’w Hy — Hyy.

Let S be the associated sheaf corresponding(twith stalksS., z € R™. We recall that the
sheafs is the disjoint union of stalkss, and the elements af., called germs, are the direct
limits

s= li_{n ((fy)yeww) = wl\iﬁﬂz} ((fy)yeU7W)~
Roughly speakings corresponds to the Taylor expansions of the functifrat 2. We define the
natural projections
.S — R", s+ zforsesS,,

and
Prw Ho — S., S= ((fy)yean) — S :w/h\r?z} ((fy)yeU7W/)7
wherez € w. We recall that the usual sheaf topologydris the topology generated by the sets

Ysuw= {pZ,W(S) €S: z¢€ w}

corresponding to an open domainC R™ and a pairS = ((fy),w) € He.
We define the evaluation mappings

(46) S — RU7 Szpz,w((fy)yEU’w) €S — (fy(z))yEU’

and&?:s— f,(z). The mapping is continuous wherY has the usual product topology.

Next we do the constructions which enables us to use the Green functions as coordinates. For
this, let us define
4.7) H7":M — R", @+ (hy, (),
wherey = (y1,...,yn) iS an-tuple ofn different pointsy; € U. We denote by) the set of
7’s and use the notatio = HY when there is no danger of confusion. Assume now that
HY:W — R" defines regular coordinates i C ]\7\ U. We consider the paitS =
(wy)yer,w) wherew, = h, o (HY)~ andw = HY(W). In other wordsS corresponds to the
Green functiong,, in the HY-coordinates. Then for = (t1,...,t,) € HY(W) C R™ we have
hy, o H~'(t) = t;. This means thatw,, ,...,w,, ) is the identity mappingZ (W) — H(W).
Motivated by this observation, we define the gétc S as follows. Let

AV ={s: s=p..((f,),w) wheref, (t)=t;fort cw, j=1,...,n}.
Also, we denote by the disjoint union
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780 M. LASSAS AND G. UHLMANN

(4.8) A=TJ A7

yeY
Using the sheaf topology &, the topology ofA4 is generated by the open sets
(4.9) Ysw,7={5:=p:0(9) € AV: 2 e w},

wherew C R™ is open,S = ((f,),w) andy € Y.

We are going to use certain equivalence classes of the sheaf as the points of the desired
reconstructed manifold. This equivalence relation reflects the fact that we can represent a
manifold using different coordinate systems.

For s1, s2 € A we define the following relation: we say that ~ s, if and only if there
exist representations; = p. ./ ((fy),w’), s2 = p w((gy),w”) and there is a real-analytic
diffeomorphismF': w” — w', F(2") = 2’ such that

(4.10) fyoF =g, foralyeU.

Note that, ifs;, so € AY, i € ), then the relatios; ~ s, yields

(411) fy|w’ﬂw“ :gy‘w’ﬂw’U ye U.

The relation~ is clearly an equivalence relation. Let us denotddjythe equivalence classes,
B=A/~and

e:A— B, s+ [g].

The setBB has the topology co-induced bythe setB C B is open if its pre-image itd is open.
This makes: continuous and open mapping. Since @i~ so we havef(s;) = £(s2), we can
define the evaluation mappitgalso ons.

5. Construction of the unknown manifold

After the previous preparations we now realize our ‘construction procedure’. In the first
place, letx € M,, \ M. Then by Lemma 3.2 there age= (y1,...,y») € Y such thatH (z) =
(hy,(z),...,hy, (x)) given in (4.7) form regular coordinates in some neighborhbpaf .
Moreover, by Lemma 2.1 there is a coordinate neighborhdédy) of = such thatH o ¢—*
andh, o =1, y € U, are real-analytic. Thus there is a neighborhdod Vi N V5 of = where
h, o H~! are real-analytic for alj € U. The setl is where the analytic continuation is started
(seeFig. 1). Secondly, let

and define a germ

SO:Pz,w(SO)7 S():((f??)yeU7W)7 f_;):hyonl,

whereh,, are the Green functions defined in formula (2.4). So, this gereorresponds to the
Green functions at.

With the above preliminaries our reconstruction procedure of the unknown manifold is quite
simple.

DEFINITION 5.1. — LetN be the connected component®fcontaining[sy]. We call V the
maximal analytic continuatioof s.
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We will show thatN is homeomorphic to the manifold/,,, defined in formula (4.4) and
construct later an appropriate metric &n

First we show that the seY' has a manifold structure. Sindé€ is open, anys] € N has a
neighborhood(Y"), whereY C AY is as in (4.9). In the set(Y') we have coordinates

(5.1) U:[s] — w(s), se€Y.

Notice that everyy such that[s] € e(AY) defines coordinates neds]. If [s] € N has two
representations; ~ sg, s; € AV ands, € A7, the functionF given in formula (4.10) define
the real-analytic transition function between the corresponding coordinate chartsVThasa
real-analytic manifold structure.

THEOREM 5.1. —There is a homeomorphis®: M,,, — N. Moreover, inN the evaluation
mapping€ gives the values of the Green functions,

(5.2) ER@)] = (hy(2)) ey © € M.

Proof. —The proof consists of several steps.

Stepl: for everyz € M,, there are pointg; = y1(z),...,yn = yn(x) € U andy(z) =y =
(y1,-..,yn) such thati¥ forms regular coordinates in neighborhddd of . We denote next
H = HY. Now the Green functions define the family

(5.3) S(x,ﬁ):((fy)yeU,w), fy:hyonl, w=w(x)=H(W).

Also, we denote(z) = H(z).
For giveny = (y1,...,¥,) we consider the set af at which HY defines regular coordinates.
We denote this set by

(5.4) MY ={x € M,,: det(d,HY) #0}.
Step2: we defineR to be the mapping which mapsto the germ of the Green functionsat

R:M,, — B, z+—— [pz(m),w(m)(5($>27($)))]~

Obviously R(z) is independent of the choice gfz).
Next, we show thaf? is continuous and open ii/,,,. Letz’ € WW. Then also the point’ has
a neighborhood where the coordinatés corresponding t@ = i(x) are regular. Hence

R(LL'/) = e(PH(:c’),w(m) (S(LL‘, 27(95))))

with e as in Section 4. By the definition of topology Bf R is continuous and open i/, .

Step3: next, we study the bijectivity aR. By Lemma 3.1, the mapping is injective. We show
the surjectivity ofB in the next steps. We note that the connected componeftsoihcide with
the path-connected components. Thusjdet NV and lety: [0, 1] — B be a path fronjs,] to [s].
Let

(5.5) K ={te€|0,1]: forall t' € [0,¢[ we havey(t') € R(Mmn)}.

ObviouslyK is a closed set. We are going to show that it is also opent;Letsup K andB C B
be a neighborhood of(t;). The pathy defines a patl§(y(¢)) onRY. Our aim is to map this
path to a path: on the manifold\,,,.

Our construction procedure of finding the maximal analytic continuation can be now
interpreted as continuation along pathsidp,. However, there are two problems which can be
schematically shown in the Fig. 3. In the first place, the pattan leave)M,, as in case (i).
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oMy,

Fig. 3. Paths which can cause the wrong kind of continuatiorts, of

Secondly, as in case (ii), the path{[0,t'[) can have infinite length. In this case the Green
functionsh, (1(t)) might have a continuation over the potnt ¢’ which would not correspond
to the Green functions of/,,,. These two problems will be dealt with below.

Step4: we show that the patp([0,¢;[) has a limit point. LetQ be the mapping defined
in Lemma 3.3, with corresponding poings, ..., 7,. Next, let P:RY — RP be the projection

(fy)yGU = (fgl S fgp). Let

(5.6) 3(t) = PE(~(t))
be a path oiR?. Since¥(¢) is in the range of) whent < t;, we can define a path
(5.7) p(t) =Q7PE(y(1), t<t,

on M,,,. Note that now we have three corresponding paths, namely the mathhe sheaB, the
path¥ in R? and the path: on M,,,.

SincePE&~ is continuous near, and( is bi-Lipschitz, we see that maps Cauchy sequences
of [0,¢,[ to Cauchy sequence @f,,,. Hence there exists a limit

(5.8) p(ty) = Jim pu(t) € M.

We denoter; = pu(t1).
Step5: next, we show that; € M,,. SinceM,,, is open, it is enough to show that ¢ OM,,,.
Since&«y is continuous, we know by definition (4.5) of sétg, that

(5.9) Jim E(y(1) =& (v(tr) €]=m,m["

exists. However, itr; € 9M,,, by formula (4.3) there ig such thath,(x:)| = m. Then we
would have

lim |£Y(y(t))| = lm |hy(y(t))|=m

t—>t]— t—>t]—

which is a contradiction with (5.9). Thus, € M,,, and~(t1) = R(x1) € R(M,,). This means
that the case (i) in Fig. 3 cannot happen.
Step6: next, we choose a representative§¢t; ). By definition, there is & € ) such that

(5.10) v(t) =[s1], s1 €AY
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Let B C N be a neighborhood of(¢;). We can assume th#& = e(Y"), where
Y ={p:00(50): zE€wo} C AV,

wop C R™ is open, and

(5.11) So = ((gy)yev,wo) € Huy-

In the next stepg, H = HY and B are fixed.

Step7: we know thaty(t) € R(M,,) and~(t) € B C e(AY) for t =t; — e whene > 0 is
small enough. To combine these facts we show nextttiate R(M7). At first, lets; € AY be
a representation of(t), that is,[s1] = v(¢) where

51 = Pz1,w1 ((f;)’wl)

Sincey(t) € R(M,,), there isyj, andsy € R(M¥2) such thats; ~ s, and

52 = Pzo,ws ((h‘y o (H.%)_l)yEU’wQ).

By using the diffeomorphisnf’ in formula (4.10), we see that

hy, o (H?) '=fLoF, j=1,..n
Sincefl}j(zl,...,zn) =zj, 2= (21,...,2n) €w1, j=1,...,n, whereg = (y1,...,yn), this
implies

F=H"o (H")"' or H'=FoH%,

SinceH: is invertible neay.(t), alsoHY is invertible and it defines regular coordinateg.&t).
Thus~(t) € R(MY).

Step8: next, we show that near; = u(t1) we can use the coordinatés= HY. For this it is
enough to consider the differential

dH:TM,, — TR"

and show thatl,, H is invertible. Assume that this is not true. Then theré T, (M,,) such
that d,, H(£) = 0. By Lemma 3.2, there exists,, y € U, such thatd,, h,(§) # 0.

Lett =t — e, € €]0,¢1[ wheree; is so small thaty(t) € B. By step 7 we know that
v(t) € R(MY), that is,

(5.12) ¥(t) = [pruen.w ((hy o H™Y),w)].
Moreover;y(t) € B and formula (5.11) imply that
(5.13) Y(t) = [P (u()) wo ((9y)yev,wo)]-

The relations (5.12) and (5.13) together with (4.11) show that the @ipi(t)) € R™ has a
neighborhood); ¢ R™ such that

gy(2)=hyo H (), z€uw.
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Let
v=|J H'(w)cM,

te ]t] —€1,t1 [

be a neighborhood of the patti]t; — £1,¢1[). Then
(5.14) gyo H(z)=hy(z), zeV.

Note thatz; is not necessarily ift. Let£(¢) be a smooth vector field alongd]t; —e1,t1]) such
that{(t1) = £. Since both sides of (5.14) are continuously differentiable ngawe conclude
using the chain rule that

0= dH(xl)gy o dmlH(g)
= lim dpu)) gy 0 dun H(E(?))

t—>t] -

= Tim dyhy (£(1)

t—t,—

which is a contradiction. Hencé,, H is invertible implying thatd forms regular coordinates in
some neighborhood af; . This fact means that the ‘wrong’ kind of continuations in the case (ii)
in Fig. 3 cannot happen either.

Step9: let us define a germ corresponding to the Green functions,at

(5.15) 82 = Py ((hy o H™Y),wo) € AY,

wherez, = H(z1). Letws C wp Nwy be a connected neighborhood Az ) (see(5.11)) and
¢ be small enough. As we saw in step 8, there is a neighborheadws of H(u(t; —€)) such
that

(5.16) gy(2) =hy o0 H™'(2)

for z € wy andy € U. Since both sides of Eqg. (5.16) are real-analytic functions, this is valid for all
z € wy. This implies thaty(¢;) has a neighborhood iR(MY) C R(M,,). Thust, is an interior
point of K. HenceK is an open set anf’ = [0, 1]. Thus we have shown thét is surjective.

Final step we have shown thaR is a bijection. Since it is continuous and open, it is a
homeomorphism. O

Proof of Theoremi.1. —First, we give the proof in the cadé= oM. By Theorem 5.1 we
know M,,, up to a homeomorphism and the values of the Green functions. By Lemma 2.2, we
know the values of the Green functionid,, \ M. Hence we can find the set

R(M) =N\ R(M,, \ M).

Thus we can identify/ andR (M) by using the homeomorphisi Moreover, we can cover the
manifold N with finite number of coordinate neighborhod@ds$Y; ), ¥;) given in formula (5.1).
These coordinates define a real-analytic structur&amhich makes the mapping : M,,, — N
real-analytic diffeomorphism.

Next, we construct the metric aN, denote by letter{ = R(x) andY = R(y) the points of
N and writeG(X,Y) = G(z, y).

Now, the Green function is symmetric in the sense HaX,Y) = G(Y, X). Therefore we
can do continuation respect of paramétetoo. By Lemma 2.2 we know the values@{X,Y")
for eachX,Y € N \ R(M). SinceG(X,Y) is a real-analytic function o whenX #Y,
we can findG(X,Y) for X ¢ N\ {Y} andY € N \ R(M) by using analytic continuations
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in ¥;-coordinates. By using analytic continuation again and the fact@af, V') is analytic
respecttd” whenY # X, we findG(X,Y)for X, Y e N, X #Y.

Finally, we show that the values of Green'’s functions determine the metric tensor. To keep the
notations simple, we identif§/ and R()M) and construct the appropriate metric tensor from the
Green functions.

In dimensionn > 3, we see from (3.1) that the Green function has a singularity of the type
cn d(x,y) "2, with ¢, # 0, whenz is near tay. Thus by studying the behavior 6f(z,y) when
x goes toy along a smooth path, we can find the metric tensgt &t two dimensions the Green
function has a singularity of the typgog d(z,y) with ¢ # 0. To construct the conformal class of
the metric, let us choose some smooth positive measarel/ . This measure corresponds to the
Riemannian volume measure of some unknown metgicr () > 0. Then, for anyf € L2(M),
the function

u(w) = [ Gla.2)1) ducz)
M
satisfiesA,qu = f. Let U C M be a neighborhood where the pair= (h,,,h,,) defines
coordinates. By choosing with supp(u) C U andv € C5°(U) we can compute the integral

0 0
/gl/zg”ﬁuwv dh = (Aog(u)/u)LZ(]ngg) = /f(Z)U(Z) d/'L(Z)>
U U

whereg;; is the metric tensor in the-coordinates. By choosing andwv such that the supports
of » andv shrink to one point appropriately, we find the functighi?¢% . Thus we can find the
conformal class of the metric.

In the case where the Dirichlet-to-Neumann map is given only on a hon-empty open subset
I" of the boundary we just need a small modification of the arguments in the previous sections.
Namely, we define a smooth extensi&by gluingtoM asetV C I'x | — r, 0] in the boundary
normal coordinates. Then we choose a compact V' and define the pre-sheaf,, as in (4.5)
with the additional condition that:

(5.17) for any z € w there isy € U such thatf, (z) # 0.

By using the asymptotics of the Green functions near their singularity and the maximum
principle, we see that the Green functions are strictly negative in the interidd off his
modification implies that the point; in the formula (5.8) cannot be a boundary point. Otherwise,
the proof is analogous to the calSe= 9M . Thus Theorem 1.1 is provenO

6. Remarksand open problems

First, we consider a possible extension of Theorem 1.1 part (i).

Remark6.1. — The method of proof of Theorem 1.1 given above is quite flexible and can be
applied to other inverse problems involving a real-analytic structure. We mention, for instance,
the problem of finding obstacles inside real-analytic structures. Indeed, a real analytic manifold
M with obstacleD can be considered as a manifald; = M \ D where the Dirichlet-to-
Neumann mapping is given on the known part of the boundary, that is erOM C OM;.

Hence the construction of the boundary/; gives the boundary D of the obstacle. For other
results in this direction, see e.g. [5]. Another likely extension of the result is to piecewise-
analytic Riemannian manifolds. See [6] for the corresponding result in the isotropic case in two
dimensions for domains in Euclidean space.
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Remark6.2. — The method of proof of Theorem 1.1 in two dimensions depends on the fact
that we can use local coordinates so that the Green kernel is real-analytic in these coordinates
and the fact that the Laplace—Beltrami operator is conformally invariant. In dimensiohthe
conformally invariant Laplacian is given by

n—2
6.1 Agu— — =
( ) gl 4(’]’],— 1) gU O7
whereR, denotes the scalar curvature. Here conformally invariant means that
n—2 n—2
6.2 Agg — —=R, Yu)=0"?| Ay — —=Ry |u,
62 (S g o) =r (8- R )

whereos > 0 andw,, wy are appropriate powers.
We can define the Dirichlet-to-Neumann mapfor (6.1) as before under the assumption that
0 is not a Dirichlet eigenvalue for the conformally invariant Laplacian (6.1).

CONJECTURE 6.1. —Assume that ), g) is an n-dimensional,n > 3, smooth, connected
Riemannian manifold with boundary, locally conformal to a real-analytic manifold. Assume
that 0 is not a Dirichlet eigenvalue for the conformally invariant Laplacighl1). ThenAg
determines a Riemannian manifddwhich is conformal tq M, g).

Remark6.3. — In dimensionn > 3 we only used the fact that in local coordinates the
Green kernel is real-analytic. Einstein manifolds are real-analytic in harmonic coordinates [9].
Therefore it is natural to conjecture the following result:

CONJECTURE 6.2. —Assume that}M, g) is an Einstein manifolddim (M) > 3. ThenA,
determines a Riemannian manifaldwhich is isometric td M, g).
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