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A GERSTEN-WITT SPECTRAL SEQUENCE
FOR REGULAR SCHEMES

By PauL BALMER AND CHARLES WALTER

ABSTRACT. — A spectral sequence is constructed whose non-Zerterms are the Witt groups of the
residue fields of a regular schem¥g arranged in Gersten—Witt complexes, and whose limit is the four
global Witt groups ofX. This has several immediate consequences concerning purity for Witt groups of
low-dimensional schemes. We also obtain an easy proof of the Gersten Conjecture in dimension smaller
than5. The Witt groups of punctured spectra of regular local rings are also computed.
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RESUME. — Nous construisons une suite spectrale dont les teffne®n nuls sont les groupes de Witt
des corps résiduels d'un schéma régulierorganisés en complexes de Gersten-Witt. La suite spectrale
converge vers les quatre groupes de Witt globauXde&eci a plusieurs conséquences immédiates sur la
pureté des groupes de Witt de schémas de basse dimension. Nous obtenons également une preuve facile de
la Conjecture de Gersten en dimension inférieuseMous calculons aussi les groupes de Witt des spectres
épointés d’anneaux locaux réguliers.
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Let X be a regular integral separated noetherian scheme of finite Krull dimension in 2vhich
is everywhere invertible. (We will maintain these hypotheses throughout the introduction.) The
Witt groups of the residue fields d&f are known to form a cochain complex

(1) Wx:0-W(K)— @ Wkiz)—-— P W(k))—0

z1eX (D) ze.€X (@)

called aGersten—-Witt complekereX () denotes the set of points of codimensjoin X, while

K is the field of rational functions o, ande = dim(X). This Gersten—-Witt complex is only

the tip of an iceberg; below the water level lurks a coniveau spectral sequence, similar to the
Gersten spectral sequencefintheory, but having a rather special form.

THEOREM (Gersten—Witt spectral sequence) kere exists a spectral sequence converging to
E™=Wm™(X) such thatE?? = 0 unless) < p < dim(X), and such that the horizontal line

) 0 g 4 pla 4 g2 di 4 pdim(X.g
of the spectral sequence vanishesdet 0 (mod 4), while the line is the Gersten—Witt complex
forall g =0 (mod 4).

This is a slightly simplified version of our main Theorem 7.2.
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128 P. BALMER AND C. WALTER

The Witt groupsiW™(X) identified by the theorem as the limit of the spectral sequence
are the derived Witt groups of Balmer [1-3]. Briefly, these groups classify p&irs) where
£ is a bounded complex of vector bundles &h where&*[n] is the shift byn of the dual
complex, and where: & — £*[n] is a symmetric isomorphism in the derived category. The
group W™ (X) classifies such&, ¢) up to isometry and modulo the metabolic classes, i.e.
modulo thosé&, ¢) which admit a totally isotropic ‘sub’-complex which divides them evenly in
two. The groups¥V™(X) depend only om modulo4. Moreover, the even derived Witt groups
have been identified via

3) WHX)=W(X), W*(X)=W(X),

as the usual Witt groups of symmetric and skew-symmetric vector bundiés (Balmer [3,
Theorem 4.7]), while the odd derived Witt grougs**+1(X) and W**3(X) are isomorphic
to the Witt groups of formations described in Fernandez-Carmena [9], Pardon [18], and Ranicki
[23,22] (see Walter [27]).

The periodicity of the Gersten—Witt spectral sequence and the fact that three out of every four
lines vanish allow us to give quick proofs of a number of results concerning Witt groups of
low-dimensional schemes. The following one is part of Theorem 10.1.

THEOREM (Low dimensions). -Suppose thatlim(X) < 7. Then the derived Witt groups
W := W"(X) and the Witt cohomology groupg8™ (W) := H"(Wx) fit into the following
exact sequence

0 —> HY(W) —= W0 —= HO (W) —= H3(W) — 1 —= H'(W)

0<— H3W) <~ W3 <—— H'(W) ~<—— H*(W) < W2 < HS(W)

We also establish that the first differenti#l : WS — W in our Gersten—Witt complex is
the classical residue map, so dif (Wx) is the unramified Witt groupV,,,(X). The next two
results (Corollaries 10.2 and 10.3) then follow without any additional work.

THEOREM (Weak purity in dimension4). —If dim(X) < 4, then the natural map
W (X) — Wiy (X) is surjective.

THEOREM (Purity in dimensior8). — If dim(X') < 3, then the natural mapl/ (X) — W, (X)
is an isomorphism.

We can also use the spectral sequence to prove the Gersten Conjecture for Witt groups of
any regular local ring of dimension up tg even a regular local ring which does not contain
a field! For this we augment the Gersten—Witt complex of a sch&nigy adding the natural
homomorphisnV (X)) — W (K) at the beginning.

@ 0-WEX)-WE)— @ W(k))—-— @B W(kiz)) —0.
z1€X M) z.€X ()
The following result is Corollary 10.4.

THEOREM (Gersten conjecture in dimensian4). —Let X = Spec(R) with R a regular local
ring of Krull dimensiore < 4 and containing%. Then the augmented Gersten—Witt comjfgx
is exact.
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A GERSTEN-WITT SPECTRAL SEQUENCE FOR REGULAR SCHEMES 129

The above results include and improve most of the known Gersten—Witt related results in low
dimension. Nevertheless, they are all immediate no-work consequences of the existence and form
of the Gersten—Witt spectral sequence and of the identification of certain componentglpf the
coboundaries with classical residue maps. Morever, the periodicity and vanishing in the Gersten—
Witt spectral sequence gives the first indication of a reason behind the way that low-dimension
Gersten—Witt results start to get more complicated beginning in dimedsiOnr construction
of the spectral sequence also gives a new construction of the Gersten—Witt complex, and it is
high time that at least one construction of that complex gets into print.

All the results of this paper can and will be proven for twisted Witt grad3s X, L). Twisting
the duality by a line bundl& changes the global Witt groups, and it changes the differentials (but
not the groups) of the Gersten—Witt complex. These twists are useful for applications in algebraic
geometry and are indispensable for defining transfer maps for Witt groups of projective varieties.

Purity was known for Witt groups of affine regular schemes of dimension Bp(Rarimala
[20], Ojanguren et al. [16]), but the global result (for any regular integral noetherian separated
scheme of dimensiod 3 with 2 everywhere invertible) is new, as is weak purity in dimension
Ojanguren and Panin [17] have established purity for Witt groups of retpdat rings of any
dimension which contain a field of characterisic2. As far as we know, the ‘plain’ Gersten
Conjecture up to dimensiof is totally new. We have been informed that Barge, Sansuc, and
Vogel worked on both the Gersten—-Witt complex and a spectral sequence several years ago
although no paper ever appeared, while Pardas recently informed us that he has some new
results [19] related to the complex, some of which overlap with this paper.

The Gersten—Witt complex

For discrete valuation rings and Dedekind dons, the Gersten—Witt complex reduces to a
single mapW (K) — @ W (k(x)), the classical (second) residue, which has been around for
quite a while (cf. Milnor—Husemoller [14, Chagy IV]). More recently, a Gersten—Witt complex
in higher dimension has been constructed for schemes of finite type over a ground field in
unpublished work by Schmid [25], Ettner [8], Rost [24]. Pardon’s new paper [19] also contains
a Gersten—Witt complex for regular schemes of finite type over a field.

This paper produces the Gersten—Witt complex asithéerm of the spectral sequence. One
complication, however, is that the identification of the groups in the Gersten—Witt complex
as @ W(k(xp)) is not entirely canonical but rather requires one to choose a system of
isomorphisms between one-dimensional vector spﬁmgxyzp (k(xp),Ox.2,) = k(xp). This
is because in our approach the groups writterf1a@:(x,,)) that appear in the Gersten—-Witt
complex or spectral sequence are really Witt groups of finite-length modules over the local ring
Ox,z, (Proposition 6.2) for the duality functdixt%xymp(—,(ﬁxywp). Thus the Gersten—Witt

complex forX (with the trivial twistOx) is ‘canonically’

(5) 0= P W)= P Wa)—— P W)—0

z0eX (0 reX ) z.EX(€)

where e = dim(X), where the coboundaries are as in Proposition 8.5, and where each
W(xy) == W(k(zp),w,,/x) is the Witt group of the residue fielt(x,) twisted by the one-
dimensional vector space

(6) wl’p/X = EXt%X,Ip (kj(:ﬂp), OX’IP) = AP (mmp /mip)*'

If there is a global twisf., then the ‘canonical’ local coefficients have a further twistbyvery
single Witt group of a field in this paper is ‘canonically’ one of these twisted Witt groups, except
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130 P. BALMER AND C. WALTER

briefly in the proof of Proposition 9.2(c). Hower, we do not wish to burden the reader with
complicated notations, so we will writd (k(x)).

The strategy of the article is not very complicated. It relies on the triangular Witt groups
of [1-3], which we discuss in Sections 1 and 2. In those papers the Witt groups are presented as
invariants of triangulated categories with duality, and a ‘short exact sequBnee’C — C/D
of triangulated categories with duality yields achdization’ long exact sequence of derived Witt
groups. Confronted with a filtration of a trigulated category with duality, we can assemble
the localization exact sequences into a spectral sequence using an exact couple. This is done in
Section 3.

The idea is to apply this construction to the coniveau filtration of the derived categdfy of
The categorical generalities give immediately the existence of some spectral sequence, periodic
in ¢ and converging to the derived Witt groups Xt The problem is to identify the terms}?
with either the Witt groups of the residue fields Xfor with 0. This dévissages the technical
core of the article and is developed in Sections dnd 6. The pieces fall into place in Section 7,
where we establish the main Theorem 7.2. Although this type of local computation is not terribly
new or surprising, its coalescence with theided-category approach to Witt groups is fertile
and is the real point of this article.

In Section 8 we include more details on the differentials appearing in our Gersten—Witt
complex. For the moment we do not know whether our differentials are the same as those of
Schmid [25] and Pardon [19], although we hope to treat this problem in our next paper.

The article ends with several applications of the results of the central sections. The first is the
computation of the Witt groups of the punctured spectrum of a regular local ring (Theorem 9.1).
This was described in the Introduction of [2] as one of the motivations for the derived-category
approach to Witt groups. It requirevissagédout not the spectral sequence. In Section 10, the
short proofs of global purity for Witt groups in dimensidnof weak purity in dimensiod and
of the Gersten Conjecture in dimensignt illustrate the quiet power of the spectral sequence.

This paper is part of an ongoing project on derived Witt groups whose next installment [4]
should include among other things a Gersten—¥yitictral sequence for Witt groups of coherent
sheaves on singular schemes.

1. Review of triangular Witt groups

We will recall a number of definitions and results from Balmer [1,2]. We begin by fixing some
basic terminology for categories, and thea move on to dualities on triangulated category and
to triangular Witt groups.

We will say that an additive categocpntains% if its Hom groups are uniquelg-divisible,
or equivalently if the category i&[3]-linear.

We will use the following definition of exacuhctors between triangulated categories. It is
more restrictive than the official definition (which only assumes that the functor commutes with
the translation up to a specified natural ismphism), but it suffices for this paper. L€t and
D be triangulated categories, and fet= £1. We will say that a covariant functdr: C — D
is 0-exactif it is additive, commutes with the translatiofiy, F' = F'T¢, and if for every exact
triangle inC

(") X5y 575 TeX
the triangle

§-Fw
—_

Fx X py I Py TpFX
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A GERSTEN-WITT SPECTRAL SEQUENCE FOR REGULAR SCHEMES 131

is exactinD. An exact functois a functor which is eithef+1)-exact or(—1)-exact. Amorphism
of exact functorgs a morphism of functore : F' — G such thafl'a = oT if F' andG are of the
same parity, but such thdin = —a7" if F' andG are of the opposite parity.

A contravariant functo€ : C°? — D is §-exact if it is additive, commutes with the translations
TpG = GTS', and if for every exact triangle (7) i€ the following triangle is exact iiD

Gz S qy 9 gx LGy,

TvGZ.

DEFINITION 1.1.— Aduality on a triangulated catego® is a triple (*, 6, z) with § = +1,
with *: C°P — C ad-exact functor, and witho : 1 — ** an isomorphism of functors such that
Tw = wT and such that for all object§ the mapswx-: X* — X*** andwy : X" — X*
are inverse isomorphisms.

A duality (*, 4, w) inducesshifted dualitieg D,,, 6,,, @, ) for all n € Z by
(8) D, :=T"o", O := (—1)"6, @y, o= (=1)M D/ 25n 0,

(The point of these signs is the recurrence relatigpns —4,,_; andw,, = d,,@, _1.) Fixing an

n, let B¥ = T"(B*) = D,,(B). A map of the formu: A — B# has atransposeu': B — A%
given byu' := u* o w,_p. Morphisms of the formy: A# — B also have transposes. One has
utt = for all u. Amorphismw: A — A% is symmetrigf w' = w. A symmetric objeatf C with
respect to the shifted duality is a pdit, w) with w: A -~ A# a symmetric isomorphism. Two
symmetric object§ A, w) and (B, s) areisometricif there exists an isomorphism: A — B
such thatw = r# sr.

ProPOSITION 1.2 (Balmer [2, Theorem 2.6]). et (*,d, ) be a duality on a triangulated
categoryC containings, and let(#,6,,,w,,) be thenth shifted duality. If

u:A— T 1 A#) = (TA)*

is @ map which is symmetric with respect to {he— 1)-st shifted duality, then there exists a
commutative diagram with exact rows

u v w

A (TA)# B TA
© &
t w ot
A (TA)# B# TA

and with¢ a symmetric isomorphism with respecttoMoreover,( B, ¢) is uniquely determined
by (A4, u) up to isometry.

In the situation of Proposition 1.2 we writ@one(A,u) := (B, ¢). A symmetric object is
metabolicif it is isometric to aCone(A,u). The object(T'A)# is a Lagrangianof (B, ).
Two symmetric object§F, o) and(F, 1) areWitt-equivalenif there exist metabolic symmetric
objects(My, 1) and(Ma, o) such that

(10) (E,0) L (My,p1) >~ (F,7) L (M2, p2).

DEFINITION 1.3.— If C is a small triangulated category with a duality, ¢, o) and with
% € C, then thenth derived Witt groupf C is the set of Witt-equivalence classes of symmetric
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132 P. BALMER AND C. WALTER

objects ofC with respect to theath shifted duality(D,,,d,,w,). It is written asW”(C) or
Wn™(C,*,d,w). The class of E,c) in W™ (C) is written [E, o]. Addition is induced by the
orthogonal direct sumi_, while —[E, o] = [E, —0].

The derived Witt groups satisfy’(C) = W +4(C), while W"*2(C) = W"(C,*, 6, —w)
is the derived Witt group of skew-symmetric objectdbfor thenth shifted duality.

A duality on an exact categoly is a pair(*, ) with * : E°? — E a contravariant exact functor
andw : 1 — ** an isomorphism of functors such thag- : E* — E*** andw}, : E*** — E* are
inverse isomorphisms for any objefet Transposes and symmetric object&imre defined as in
a triangulated category. A symmetric objéét, ¢) is metabolic if there exists an exact sequence

of the form0 — L -~ E 2% L* — 0. ThenL is alagrangianof (E, «). Witt equivalence and
Witt groups are now defined as in (10) and Dgfom 1.3. The Witt groups of symmetric and of
skew-symmetric objects @& are writtenV (E) andW — (E), respectively.

A duality (*,zo) on an exact categoiy induces a triangulated duality, 1, w) on the derived
categoryD(E) in a natural way (without fancy signs). There is the following resuilt.

THEOREM 1.4 (Balmer [3, Theorem 4.3]). tet E be a small exact category with duality
and with € E. Then for anyr there exist natural isomorphismi¥ (E) = W**(D"(E)) and
W~ (E)=W*"+*(D"(E)).

We will show in another paper that’*"*'(pD®(E)) and W*"+3(DP(E)) are naturally
isomorphic to Witt groups of skew-symmetric and symmetric formatioris,inespectively, as
defined in Pardon [18] and similar to those of Ranicki [23,22].

Theorem 1.4 was proven in [3] for semisaturated exact categories. (These are the same
as Gabriel-Roiter exact categories, cf.llge [12].) However, Theorem 1.4 actually holds
for all (Quillen) exact categories with duality. This is because any exact category has a
semisaturatiorEe*™ satisfying a universal property that allows one to extend an exact duality
from E to E**. The derived categoriep®(E) and D(E*) are equivalent (Neeman [15,
Remark 1.12.3]), while the Witt group® (E) andV (E**) are isomorphic. So the general case
of Theorem 1.4 reduces to the semisaturated d&lseomit the details. All the exact categories
of sheaves and modules which appear in this paper are semisaturated.

2. The long exact sequence

We now review the localization long exact sequence for Witt groups in the triangulated version
given in Balmer [2]. In particular we will prove this long exact sequence exists under slightly
more general hypotheses than those givd@jnwe begin by recalling some definitions.

A saturated full triangulated subcategoly of a triangulated categor¢ is a full additive
subcategory which is closed under translations, mapping cones, direct summands, and isomor-
phisms. The quotient triangulated categ@hyD of such a subcategory is obtained frérby us-
ing a calculus of fractions to invert the claS®f maps inC with cone inD (Verdier [26, § 111.2]).

The following result holds for triangulated categories satisfying a refined version (TR4+) of the
octahedral axiom. For a description of this axiom, see [2, 8§1] or [5, Remarque 1.1.13].

THEOREM 2.1 (Balmer [2, Theorem 6.2]). et C be a small triangulated category with
duality satisfying(TR4+) and with % € C. Let D ¢ C be a saturated full triangulated
subcategory stable undthe duality. Then there is a long exact sequence of derived Witt groups

(11) S WD) — W"(C) —» W*(C/D) -L WD) — - .
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The coboundary mag is defined as follows. Any symmetric object @/D is isometric to
a symmetric object of the formA, f) with f the image inC/D of a symmetric morphism
f:A— A% in C. Sincef is assumed to be an isomorphisnGi D, the mapping cone of lies
in D. One set$)| A, f] := [Cone(A, f)].

The pair(A4, f) could be called &-lattice of (4, f).

If E is an exact category, then the homotopy cate@0(¥) and all its subquotients satisfy
(TR4+). This include®(E) and its subquotients and therefore all triangulated categories used
in this paper.

Proof of Theorem 2.1.Fhis theorem was proven in Balmer [2, Theorem 6.2] under the
hypothesis thaC/D is weakly cancellative. We show here how to remove this assumption.
Actually, the only place where this condition is used in [2] is to prove exactnd$s'a€):

W™ (D) — W"(C) —» W"(C/D).

We can suppose = 0, replacing the duality by its shifted dualities to get the result fomall
Most of the proof of [2] extends here, and we will only present a slight modification of the final
portion.

Let S be the collection of those morphisms @fwhose cone is iD or equivalently those
morphisms inC which become isomorphisms {d/D. ThenC/D = S~!C.

Let (P, ) be a symmetric object representing an element of the kernel:

[P, ¢] € ker(W(C) — W(C/D)).
By [2] Lemma 6.4, there exists a commutative diagram with exact rows

Yo vi v2

M* L P M#
(12) i h* J/h l@ l n#
L - M 7 pP# 7 L#

where* =T~ o # and wheréh: L — M = L belongs taS.

This (L, 1) is by definition a sublagrangian 6P, ¢). By [2] Lemma 4.13 applied tg, = h
we get the existence of a morphismZ — L* such that (A)v§ Avp =0, and (B) po := h+v§ A
is very good which mainly means that we can construct a symmetric form on its cone which is
Witt-equivalent to( P, ).

We claim thaty = h + v A is in S, which implies that its cone is iD.

To see this, we localize everything /D = S~1C, which means thak, which was inS,
becomes an isomorphism. We prove thatalso localizes into an isomorphism. @/D define
z:L — L by z = h~'yz A. Applying h~! on the left to the localization of (A), we have
zvy =0 so that there eX|s'r$ P — L with x = zv;. On the other hand, we have by (12) that
= (p~ h)x = 1/2 v A by the very definition ofz, and this implies that; « = 0 since
vivg = (Tuo 1/2)# O

Thereforer? = z v, = 0, and thus the endomorphismt- z is an isomorphism. Finally, (B)
gives directlyuo = h(1 + ), and soug is an isomorphism irC /D, which was the claim.

Now it suffices to apply [2, Theorem 4.20] to the very good morphigrto have a symmetric
form ¢ on R := cone(ug) € D making it a symmetric object Witt-equivalent {@, ¢). This
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implies that
[P, ¢] =[R,9] € Im(W (D) — W(C)). ]

3. The spectral sequence in a categorical context

We now show that the long exact sequence of derived Witt groups of Theorem 2.1 generalizes
to a spectral sequence when one has a triangulated category with duality with a finite filtration
by saturated full triangulated scétegories invariant under the duality.

THEOREM 3.1. — Let C be a small triangulated category with duality satisfyifidR4+) and
with % € C and with a finite filtration by saturated full triangulated subcategories invariant
under the duality

C=D’>D's.-->D°O>D*"' ~0.

Then there exists a spectral sequence of derived Witt groups convergkig+ol/ " (C) with
terms

p+a (TP p+1 i
(13) Efq_{W (DP/Dr 1) if 0<p<e,
0 otherwise.

Proof. —The filtration of C can be extended formally by settidg? := C for p < 0, and
D? := D" ~ 0 forp > e. We now construct a spectral sequence it := W»+¢(D? /Dr 1)
for all p, ¢ which converges t&™ = W"(C).

For anyp, q, let AP? := Wr+4(DP), and letEr? .= WP*4(D? /DP*1), By Theorem 2.1, the
derived Witt groups oD?*!, DP, andD? /DP*! fit into a long exact sequence

s APTLa=1 _ gpa _, gra O, gptla

If A:=¢p, AP andE =P, , £, then we deduce an exact sequence

(14) A Al g A A

with ¢ of bidegree(—1, 1), with j of bidegreg(0,0) and withk of bidegreg(1,0). Then (14) is
an exact couple (cf. Weibel [28, § 5.9]), and it determines a spectral sequence which starts with
EY? = EPa = 1WPta(DP/DP+L) and which abuts to

E":=lim AP P =limW" (D"?) = W"(C).

The exact couple is bounded below becau$é = 0 for p > e. So the spectral sequence is
convergent. O

It is clear from the proof of the theorem that the spectral sequence exists even for an infinite
filtration indexed by € Z, and it converges to/" (C) if | J ., DY = C andD” ~ 0 for p > 0.

Theorem 3.1 can also be proven by applying the construction of Cartan—Eilenberg [6]
Chap. XV § 7 to the groupH (p, ¢) = @,, W"(D?/D?).

4. Functoriality lemmas

In the next two sections we prove some technical (and unsurprising) lemmas about Witt groups
of triangulated categories which we will need when we discuss Witt groups of finite-length
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modules. We begin with some lemmas about the functoriality of derived Witt groups. We use
the following definitions.

A duality-preserving functoifrom (C,D,d,w) to (C’,D’,é’,=’) is a pair (F,n) with
F : C — C’ an exact functor and with: FD — D’F an isomorphism of exact functors such
thatT’n = £nT ! and such that the left-hand square

F—= > FDD FD—1>pD'F
(15) w'l lUD aD\L TD’O(
! / D/'f] / C !/
D'D'F —>D'FD GD ——=D'G

commutes. Arisomorphism of duality-preserving functars (F,n) — (G, () is an isomorphism
of exact functorsy: I’ — G such thatT = +=7"« and such that the right-hand square commutes.
The sign inT'n = £nT ! (resp. inaT = +T"a) is + if D andD’ (resp.F andG) are of the
same parity, while it is- if they are of opposite parity.

Part (a) of the next lemma is a generalization of Balmer [1, § 1.19].

LEMMA 4.1.— (a@)A duality-preserving functor induces morphisms of derived Witt groups
wW™(C,D,s,@w)— W"(C',D',§, =)

(b) Isomorphic duality-preserving futars induce the same morphisms.

(c) A duality-preserving equivalence induces isomorphisms of the derived Witt groups.

Proof. —(a) Givena map: A — D, B in C, Ietﬁ(gb) be the composite map

FAL% FD,B -2 D FB.

Sincen commutes withl™ up to sign, the left-hand square of (15) commutesigrand D),
as soon as it commutes f@ and D’. One easily checks that this commutativity implies that

F(¢') = F(¢)" and thatF preserves Lagrangian diagrams of the form of (9). In addifion
preserves isomorphisms becayse an isomorphism. So the mag” (C) — W™ (C’) sending
(B, ¢] — [F(B), F(¢)] is well-defined.

(b) If «: (F,n) — (G, ) is an isomorphism of duality-preserving functors, andnf, ¢) is
a symmetric object irC, then the commutativity of the right-hand square of (15) implies that
(F(B),F(¢)) and(G(B),G(¢)) are isometric inC’. So[F(B), F(¢)] = [G(B),G(9)].

(c) If F is fully faithful and essentially surjective, and if: A — D/ A is a symmetric
isomorphisminC’, then there exists B8 in C and an isomorphisrfi: F'(B) — A. Consequently
(A, ) is isometric to (F(B), (D, f)¢f). But since F is fully faithful, there exists an
isomorphismg: B — D, B such thatﬁ(g) = (D), f)of. So the map on derived Witt groups
is surjective. A similar argument shows that the map is injectiva.

We leave the proof of the next lemma to the reader.

LEMMA 4.2. — The spectral sequence for Witt groups of filtered triangulated categories with
duality of Theoren8.1is functorial for duality-preserving functors which are compatible with
the filtration.

The statements in the next lemma apply both to exact and to triangulated categories. Despite
the obvious-sounding statements, complete proofs require diagram chases to verify all the
technical details.

LEMMA 4.3.— (@)A contravariant exact functor isomorphic to a duality can be made into a
duality.
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(b) An exact functor isomorphic to a duality-preserving functor can be made duality-
preserving.

(c) A category equivalent to a category with dit\acan be equipped with a duality so that the
equivalence is duality-preserving.

(d) An equivalence quasi-inverse to a duality-preserving equivalence can be made duality-
preserving.

Sketch of proof. Parts (a) and (b) are straightforward and are left to the reader. Parts (c) and
(d) require the use of adjoint equivalences. We sketch the proof of (d).

(d) Let (F,n):(C,D,é,w) — (C',D',d',w") be a duality-preserving equivalence, and let
G:C’ — C be a quasi-inverse df. We need to find an isomorphism of functersGD’ — DG
so that(G, v) is duality-preserving.

By Mac Lane [13, IV.1],F and G can be completed to an adjunction of equivalences, i.e.
there exist isomorphisms of functorslc — GF and(:1¢- — F'G such that in each pair of
isomorphisms

eG Fe
G____ GFG F__Z FGF
G¢ CF
the two arrows coincide. Moreover,and ( commute with the translation up to sign in the
triangulated case.
Now lety~! be the composite isomorphism

DG —=P%, arpG -S"S, ap'ra S ap'.

A long diagram chase (which we omit) shows thatjifmakes the left-hand square of (15)
commute, then the left-hand square of

FGF FGD'D'F G —=ap' D
l \L wG\L l'\/D'
D
FDDGF — FDGD'F DDG —> DGD'

commutes. Sincé’ is an equivalence, this implies that the right-hand square also commutes, i.e.
(G,~) is duality-preserving. O

5. Witt groups of abelian categories

We now discuss derived Witt groups of abelian categories with an exact duality. With our
definitions an exact duality is left and right exact and is reflexive on all objects, so many functors
commonly called ‘duality’ do not fit the bill. Foren Witt groups, there is the following result.

PROPOSITION 5.1 (Quebbemann—Scharlau—-Schulte [21])Let A be a small abelian
category with an exact duality in which all objects are of finite length, and\lét- A be the
full subcategory of semisimple objects. Then the inclusion induces isomorphisms of Witt groups
W(A%) =W (A)andW~(A%) =W~ (A).

Proposition 5.1 is a consequence of the symmetric Jordan—Hdolder Theorem. Itis provenin [21]
Corollary 6.9 subject to a condition which is verified in [21] Theorem 6.10 when all obje&s of
are of finite length.
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The result concerning the odd Witt groups of an abelian category requires some basic facts
about canonical truncations. For any integdet D> <"(A) andD»>"(A) be the full additive
subcategories db®(A) such that

obD”<"(A):={X | H(X)=0foralli>n},
obDPZ"(A) = {X |H'(X)=0foralli<n}.

Then for any complex” in DP(A) and anyn there exists an exact triangle
(16) 71 (T>n+1Y) —7SY Y — 2ty

with 7S7Y in D”S7(A) and with7>"*1Y in p»>"*1(A). This triangle is unique up to unique
isomorphism (Beilinson—BernsteiDeligne [5], Proposition 1.3.3).

PROPOSITION 5.2. — Let A be a small abelian category with an exact duality and v%iteh A.
Then its odd derived Witt groups ar&?"*(DP(A)) = 0.

Proof. —Let C' + C7# := T?"+1(C*) denote the shifted duality op®(A), and suppose that
(C, ¢) is a complex which is symmetric with respect to this shifted duality. We will show that the
TS7n=1C of (16) is a Lagrangian ofC, ¢), so[C, ¢] = 0. The details are as follows.

Using the truncation exact triangle (16) and applying {thé )-exact duality gives a diagram
of solid arrows whose rows are exact triangles:

f g

T-Y(r>="C) 7<=l C rZ—nC
(17) T I &lqﬁ—(f I
\ =1 e# \ # \
T (r< o) L (oL ok T (r<onmio)#

Since the duality onA is exact, the derived duality acton the cohomology objects as
Hi(X#) = [H~2"~1=/(X)]*, and so it exchangep®><~""!(A) and D> "(A). As a
result, we see thatS—"~1C and (7>~"C)# are in the first subcategory, white*>~"C and
(rS—n=1C)# are in the second subcategory. Since a truncation exact triangle (16) is unique
up to unique isomorphism, there exist unique isomorphisrasd 3 making the diagram above
commute. Moreover, sinag= ¢!, the diagram also commutes if we replages by 3¢, o*. Since

a andf are unique, this give§ = o'. Taking into account that' = a#w,,; by definition,

that s, = —wa,1 by (8), and thafl' ~'w,,, = ws,, by Definition 1.1, we get a commutative
diagram with exact rows

« (03 1
T (>nC) ! )} p— C b r2one
g ¢:¢t
T (af)#)w # Won (9o )#
T_1(7_2_nc) (( f) ) 2 (7’2_”0)# h C# 2n+1 7—2_710

The last map on the bottom row is the transposegcof!, while the first map on the bottom row
is the transpose af f with respect to th@nth shifted duality. Therefore our diagram is of the
form of diagram (9). S&C, ¢] = [Cone(A,u)] =0in W2 T1(A). O
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6. Witt groups of finite-length modules

Let O be aregular local ring, and I&35(VBe) be the derived category of bounded complexes
of free@-modules with finite length homology, equipped with the ‘usual’ duality defined below.
This section will be devoted to proving the following result:

THEOREM 6.1 (Dévissage). -Let O be a regular local ring with residue field such that
char(k) # 2. ThenW™(DE(VBo)) = W (k) if n =dim O (mod 4), andW"(D§(VBo)) =0
otherwise.

In the course of proving the theorem, we will also prove the following known result. Let
O-fl-mod be the abelian category 6f-modules of finite length. It has a ‘standard’ duality which
we also define below (19).

PROPOSITION 6.2. — LetO be aregular local ring with residue fielld such thathar(k) # 2.
ThenW (O-fl-mod) = W (k), while W~ (O-fl-mod) = 0.

The ‘usual’ duality onVBo is (*,w) whereE* = Home (F, O), and wherewg : E — E**
is the evaluation map. This duality extend3§(VBo).

The ‘standard’ duality onO-fl-mod is defined as follows. Let := dim©, and let
MY = Exty, (M, O). Definew,, : M — MYV using the commutative diagram between pro-
jective resolutions

d d

0 P, P, Py Py M 0
(18) wl W\L W\L W\L l;

a* a*

The ‘standard’ exact duality of?-fl-mod is the duality with sign
(29) (V7 (_1)6(6*1)/2 z%).

Now let k-mod be the category of finite-dimensional vector spaces oveequipped
with the duality given byV’ := Homy(V,k) and the evaluation mapsv:V — V”. Let
O-fl-mod” ¢ O-fl-mod be the full subcategory of semisimple objects. The main step in the
proof of Proposition 6.2 is the following lemma.

LEMMA 6.3.—Thereis an equivalence of semisimple abelian categories with duality between
(O-fl-mod”, v, (—1)¢(¢=1/2 &) and (k-mod,’, ev).

Proof. —In order to make the various dualities and equivalences more concrete and less liable
to try to wriggle away when we try to work with them, we will replace the natural isomorphism
of categories-mod = O-fl-mod® with a diagram of equivalences

Skel u R

T

k-mod % O-fl-mod”

which we will define in a moment. However, we will hav& = Hyx. S0 once we show that
i, k, and Hy are duality-preserving, then the quasi-inversef i is also duality-preserving
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by Lemma 4.3(d). SaoF, being isomorphic toHyx/3, will also be duality-preserving by
Lemma 4.3(b).

Let Skel C k-mod be the full subcategory whesbjects are the vector spadéswith n > 0
and whose morphisms are matrices. The funtimm Skel fixes the objects and transposes the
matrices. The restriction afv to Skel is the identity. One checks that the inclusiois duality-
preserving. Its quasi-inverse: k-mod — Skel amounts to choosing a basis for every vector
space.

LetR Cc K*(VBo) = DP(VBo) be the full subcategory of complexes

0= Re— - — Ry~ R -5 Ry — 0

of finitely generated fre®-modules such thatl; (R) = 0 for i # 0 and such that - Hy(R) =0
for m C O the maximal ideal. The®" is the complex

da* da*
0—R;—--—R, o— R, {— R, —0

while @:R — RYY is as in (18). The functorH, is clearly duality-preserving from
(R,Y,(=1)(c=D/2 %) to (O-fl-mod?, v, (—1)e(e=D/2 ),

Let K be a minimal free resolution of th@-modulek. Let x : Skel — R be the functor which
sends:” — K" and which sends an arraw: k" — k™ to the homotopy class of maps between
the minimal free resolutions®” — K®™ which lift «. To check thak is duality-preserving, we
need an isomorphism of functajsx o’ — v o x such that the left-hand square of (15) commutes.
Sincex is compatible with the direct sum, it is enough to give an isomorphisni” — KV such
that

K—Y K
(20) <1>€<“>/2%l lnk

K\/V T KV

commutes, i.e. we wanfj, to be an isomorphism which is symmetric for the duality with sign

(_1)6(6—1)/2.

We now describds explicitly. Let " be a freeD-module of ranke with basisfi, ..., f., and
letxy,...,x. be aregular sequence generating the maximal ideal®. Let K be the complex
(22) 0-0—=F—AF—. .. -S> AFSAF-0

with differentiald(m) = >";_, z; f; A m. We will give the chain isomorphism, : K — K with
components; — K, by specifying the corresponding bilinear maps

(22) i Kjx Ke_j=(A“7F) x (MF)— 0.

We fix an isomorphism\® F' = O and setp; (m, n) = ;(m An) with e; = (—1)%—70U+1)/2_ The

induced mapd(; — K;_; are compatible with the differeials of the chain complexes because

forall j and allm € K; and alln € K. ;11 we havep;(m, dn) = ¢; 1 (dm,n) or equivalently

5.j(m/\2xifi/\n) zaj_l(infi/\m/\n).
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SotheK; — K, are the components of a chain magp K — K. Moreover, the map&’; —
K;_; areisomorphisms because the exterior monomial§;in- A°~/ F" and the complementary
exterior monomials inK._; = A7F form module bases which arg;-dual up to sign. So
N, : K — KV is a chain isomorphism. Finally, one checks that

012 m,m).

Pe—j(n,m) = (=1)
Son,: K — KV is symmetric for the duality with sigi—1)¢(¢=1)/2, j.e. the diagram (20)
commutes. This completes the proof of the lemma.

Proof of Propogtion 6.2. —Apply Proposition 5.1 and Lemma 6.30

To complete the proof of Theorem 6.1 we require the following lemma.

LEMMA 6.4.— There is an equivalence of triangulated categories with duality between
(D} (VBo), De, 6, @) and (D" (O-fl-mod), v, 1, (—1)e(¢=D/2 55),

Proof. —There are natural exact functors
(23) D5L(VBo) — DL(O-mod) «— D" (O-fl-mod).

The first functor is an equivalencé triangulated categories becaus®» C O-mod is the
full subcategory of projectives, ar@@-mod is of finite global projective dimension. The second
functor is an equivalence of triangulated categories by Keller [11] § 1.15, Example (b).

Let T,.,s be the unsigned translation functor which translates a complex to the left one place
without changing the sign of its differential. LEX, := T _o* be the unsigned shifted duality on
DP(VBo). Itis 1-exact. We claim that there are natural equivalences of triangulated categories
with duality
(24) (D"(0-fi-mod), ¥, 1,@) ~ (D§(VBo), D., 1, @),

(25) (D§(VBo), D¢, 1,@) = (DE(VBo), De, (1), (=1)°w).
Multiplying by (—1)¢¢=1/2 will then give the lemma becaus& = (—1)° and w, =
(~1)l+1/2 by (8).

The second equivalence (25) is given by the duality-preserving fu(ﬂ:g%r(VBo),n) where
n: D! — D, is the isomorphism of functors of the form
T P - ;iﬂ — >

*
o > Pefifl e—1

(26) (—1)ﬁ“+1>l (1)“i l(—l)ﬁ“”

* * *
o > Pe—i—l (—1)°d" Pe—i (—1)°d" e—i+1 =

The first equivalence (24) will be obtained from a diagram of duality-preserving equivalences
p
(27) DY (O-fl-mod) =—= C —— D} (VBo)
7

which we will define below. We will show thatandq are duality-preserving equivalences. The
quasi-inversg of p will then be a duality-preserving equivalence by Lemma 4.3(d) gl
be the equivalence of (24).
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We now specify the catego. Its objects are bounded double complexes with commuting
squares of the form

d

My M; M;_y Mg ——---
6;1 8}1 ah
Piiio Pio P Popg——---
Oy Oy Oy Oy
6;1 8}1 ah
P)iJrl e Pi,e P)ifl e 372 e >
0 0 0 0

in which theM; are inO-fl-mod, the P;; are inVBo, and theith column is a free resolution
of M;. We denote such an object B> — M ). Write Tot(P) for the complex with terms
Tot(P)n = @D, j—, Pi; and with differentiab such thab)|, = (0 + (—1)i8U)|PU . The group
of morphisms from P — M) to (P’ — M’) is defined to be

Homp (0-f-moa) (M, M") = Hompp (v, ) (Tot(P), Tot(P')).
The two sides of the equation are the same because of the equivalence (23). The projection

functors given byp(P — M) = M andq(P — M) = Tot(P) are clearly equivalences.
The duality" on C sends the double complé® — M) above to

e MV LA VAN AN ¥ s A | A
—i—1 —i —i+1 —i+2
oy oy oy
* h * h * h *
T sz;l,e Pfi,e P7i+1,e - Pfi+2,e -
oy oy oy oy
o oy o
* h * h * h *
i szeLo sz‘,o Pfi+1,0 I Pfi+2,0 —
0 0 0 0

Thenp((P — M)V) = MY andq((P — M)") = D, Tot(P). The isomorphismic — V" is
defined by sewing togethér: M — MYV andw: P — P**. The equivalences andq clearly
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preserve the dualities. Thus the functors of the diagram (27) are duality-preserving equivalences,
establishing the equivalence (24) and proving the lemnma.

Proof of Theorem 6.1. Fhe duality-preserving equivaleaf triangulated categories of
Lemma 6.4 produces natural isomorphisms
W™t (DR(VBo)) = W™ (D"(O-fl-mod))

for everyn. SinceO-fl-mod is abelian, Theorem 1.4 and Proposition 5.2 give

W (O-fl-mod)  if n=0 (mod 4),
wn (Db(O-ﬂ-mod)) =< W= (O-fl-mod) if n=2 (mod 4),
0 if n=1o0r3 (mod 4).

Apply Proposition 6.2 to complete the proof

7. The Gersten—Witt spectral sequence

In this section we obtain our Gersten—-Witt spectral sequence by applying the abstract
construction of Theorem 3.1 to the derived category of bounded complexes of vector bundles on
a regular separated noetherian schemeéNe also show that the spectral sequence is functorial
for inclusionsU C X with U an open subscheme or with= Spec(Ox ;).

Let X be aregular separated noetherian schemevVBet be the exact category of locally free
sheaves of finite rank o, and letD®(VBx ) be its bounded derived category. A line bundle
L on X induces a duality Dy, @) on VBx whereD € := Homo, (€, L), and wherewy, is
the evaluation map. This duality extends to a ‘derived’ dualityg®H{VBx). If € I'(X,Ox),
then thenth derived Witt group o with respect tal. is

(28) W™(X,L):=W"(D"(VBx),Dpr,1,@p).
If £ is a bounded complex of vector bundles, then set
Supp(E") :=|_J. Supp H'(£") = {w € X | £" is not exact atr}.

For each integep > 0 let D%, € D" (VBx) be the full triangulated subcategory of complexes
with support of codimensio: p. If dim X = e, then we have a filtration by saturated full
triangulated subcategories

(29) D°(VBx)=D% 5Dk >--- 5D% > D% ~o.

Let X ) be the set of points of codimensiprof X. The following result is well known.

PrRoOPOSITION 7.1.— If X is a regular separated noetherian scheme, then there are
equivalence®”, /D ~ Il exm Dj(VBo, ) of triangulated categories.

Proof. —Let M% be the category of cohere@y -modules with support of codimensignp.
Itis easy to see that the functor sending a sheaf to its stalks gives an identification of the quotient
abelian category:

(30) M2 /ME ~ O, -fl-mod.
X X P
zp,eX®)
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The argument of Keller [11] §1.15, Lemma and Exden({p), applies to a separated noetherian

and shows that the bounded derived category of the lefthand side is equivalent to
D" (M%)/DP(M%™). The same criterion shows thBt” (M%) ~ DR,I;(Cth), and this is
equivalent taD%. becauseX is regular, separated, and noetherian. By Lemma 6.4 the bounded
derived category of the righthand side of (30) is equivalerDﬁcéVB@mp ). O

THEOREM 7.2. — Let X be a regular separated noetherian scheme of finite Krull dimension
such that2 € T(X, Ox) is invertible, and letZ. be a line bundle onX. Let X be the set of
points of codimensiohin X. Then there exists a spectral sequence with terms

P D.,cxwm W(k(zp)), if 0<p<dim(X),andg=0 (mod4),
Lo otherwise,

which converges t&" = W" (X, L).

Proof. —Since Supp(DE") = Supp(&"), the filtration (29) is invariant under the derived
duality. The decomposition of Proposition 7.1 is also invariant under the derived duality.
So applying Theorem 3.1 and Proposition Qives a spectral sequence converging to
E"=W"(X, L) with terms

B =Wrt(Dh /DR L) = @@ WPH(DR(VBo, ), L)
$peX(P)

if 0 <p < e, while EY = 0 for other values op. Now over the spectrum of a local rir@, ,, the
duality induced byl and the ‘usual’ duality induced b§? are (non-canonically) isomorphic. So
we may apply Theorem 6.1 to see that

PHa(pDR(VB )~ [ W(k(zp)) if p+q=p(mod4),
wr(DiVBo.,). L) {0 otherwise.

This completes the proof of the theorenta

Now consider an inclusiop: U — X with U an open subscheme or with = Spec(Ox )
whereOx , is the local ring of a point of. The restriction functoi* is exact and duality-
preserving and compatible with the filtrations

D?(VBx)=D% DD D --- >DD% >D{' ~0

1]

D’(VBy)=DY DD}, >--- DD§ >Ditt ~0

Applying Lemma 4.2 now gives the following result.
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LEMMA 7.3.—1fi:U — X is as above, theft induces a morphism of Gersten—Witt spectral
sequences whodg, -term is the natural restriction map of Gersten—Witt complexes

0— P Wkiz)) — P Wk(y) —— @ W(k(z) —=0

e X (0) yeXx @ zeX(e)

l | l

0—= P W) — P Wky) —— P W(k(z)) —=0
zcU©) yeUu zeU(e)

Remark— Theorem 7.2 is also true for nonseparafédvhich satisfy the other hypotheses
of the theorem. In the proof, one replace®(VBx) by the categoryD,..t(X) of perfect
complexes onX. The spectral sequence is unchanged except that it converges to the triangular
Witt groups ofDypere (X).

If X is noetherian and regular and hgs= I'(X, Ox) but is of infinite Krull dimension,
the Gersten—Witt complex and the spectral sequence exist, but we do not know whether the
spectral sequence converges (see the discussion at the end of § 3). Nagata’s famous example of a
noetherian ring of infinite Krull dimension is regular (see Eisenbud [7, Exercise 9.6]).

We hope to treat Gersten—Witt complexes on singular schemes in [4].

8. More on the Gersten—Witt complex

In this section we try to decorticate the coboundaries appearing on the first page of our spectral
sequence and forming our Gersten—Witt complex. The reader will probably benefit from the
comparison with the classical (second) residue homomorphism presented in Lemma 8.4.

We use the notations introduced at the beginning of Section 7. For simplicity we abbig¥iate
the subcategory of the derived categoryXobn those complexes whose homology have support
of codimensior> p. Then the backbone of the Gersten—Witt complex is

(31) 0—-w°D"/D') - - = WP(D?/D?*) = ... - W*(D°) =0

obtained from the ling = 0 in the general categorical spectral sequence of Theorem 3.1. The
coboundary?’ : W»(DP /DP+1) — WP+ (DP+! /DPH2) is simply the composition

WP (DP/DPH1) 9 e+t (DPHY) — Wt (DPHl/DPi?)

where the first map is the connecting homomorphism in the long exact sequence associated
to DP*! — DP — D?/DP*! as in Theorem 2.1, and where the second homomorphism is the
natural localization.

On the backbone (31) we graft isomorphisms which iderifify(D? /D?+!) in local terms.
These isomorphisms are those of Theorem 7.2 and they depend on choices of local parameters.
Any two choices give isomorphic complexegdause they are both isomorphic to the above
fundamental one. For instance, the exactness of the (augmented) Gersten—Witt complex is
consequently independent of the choices.

The next part of the section will be spent showing that the differedftalV§ ;, — Wk ; in
our spectral sequence has the expected form. We first recall some definitions.

Let A be a discrete valuation ring with residue fidld fraction field /', and uniformizing
parameterr, and such thathar(k) # 2. Any quadratic space ovéT is isometric to a diagonal
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space of the fornf /"™ diag(a, 7b)) wherea = (a4, ...,a,) andwb = (7by, ..., 7b,,) with
thea;,b; € A*. Thefirstandsecond residue map¥ (F') — W (k) are given by

Res, ([F"*™, diag(a,7b)]) := [k, diag(a)],
Resi‘ ( [F"er, diag(a, wb)]) = [k:m, diag(E)]

(cf. Milnor—Husemoller [14], Chap. IV (1.2)—(1.3)).
As a first step toward twisting Witt groups by line bundles, we study the twisted duality
Dyra:=Homy(—, 7" A) on freeA-modules. Thus let

C:=D"(VB4), D:=D}(VB.), C/D ~ DP(F-mod).

The quotient functolC — C/D can be identified with the localization functer ® 4 F. If
C and D are given the twisted dualityD 4,1, 4), then the induced duality o/D
is Homp(—, F'), and the morphism between the dualities@rand onC/D comes from the
inclusiont” A C F.

LEMMA 8.1.—If C andD are equipped with the twisted dualify.r 4 = Hom 4 (—, 7" A4),
then the long exact sequendel) of derived Witt groups

(32) = W(C) = W(C/D) = W' (D) = -
reduces to the short exact sequence

(33) 0— W (A, 7" A) 25 W (F) 225 W (k) — 0

where i 4, is the natural localization map and whem, , = ResQA if r is even, while
Oar = Resxlé‘ if  is odd.

Proof. —The same argument as in the proof of Theorem 9.1 shows that (32) reduces to a
short exact sequence of the form of (33). The inclusion M&pl, 7" A) — W (F) is clearly the
localization map. We need to show that the ndap.: W°(C/D) — WY(D, Dyra, 1, @, 4) Of
derived Witt groups is given b§ 4 . = Res’, if r is odd and byd ,. = Res? if r is even.

Give D = D} (VB4) the unsigned shifted dualityD’,1,w,-4) of (25). The derived Witt
group map is really a composition

W°(C/D) -5 W(D, Dy, 1, @xra) — W°(D"(k-mod)),

> T

wheren is the composition of the coboundary of the long exact sequence (11) with the sign-
changing equivalence (25)—(26), and wharis induced by a functop® (k-mod) — D sending

[~-~—>O—>0—>k’—>0—>-~-]H [...HOHALH)WTA_)()_)...]_
If » =2s is even, them sends
[F™t™ diag(a, 7b)] = [F™T™, diag(n**a, 7*"'b)]
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to the class of the symmetric complex

diag(n?°a,n2°t1b)

..HOHAner 7T25An+mﬁ.oﬁ....
i 1l: :ll l
diag(n?°a,n2*t1b)
%O%Anﬁ-m 7T25An+m%0%...

This symmetric complex is isometric in the derived category to

p28+1
0 A™m W2sAmHOH...
l diag(b)i: Z\Ldiag(b) \L

a2+
0 Am 71.23Am%.0H....

so its class is\([k™, diag(b)]). Thus the derived Witt group mapy ,: W (F) — W (k) is the

same aRes? if 7 is even. A similar calculation shows th@j . = Res!, if 7 isodd. O

Now let X be a regular integral separated noetherian scheme with functiorffietds (X).
A divisor on X is a formal linear combinatio® = > n,x with thez € X® and then, € Z
and all but finitely manyn,, = 0 (cf. Hartshorne [10, 11.6]). For each € X! the local ring
Ox . is a discrete valuation ring with uniformizing parameter gayand valuatiorord,,. Let
Opm,  W(K)— W(k(z)) beasinLemma 8.1, i.e.

5 Resy, . if n, iseven,
ot Resy . if n,is odd.

DEFINITION 8.2.— Theunramified Witt groupf (X, E) is defined as

(34) W (X, E) :_ker(W(K)M D W(k(x))).
zeX ™)

Associated to a divisor is a sheaf of fractional idedls= Ox(—FE) C K with fibers
L,=m"0x, C K. SinceX is regular, this sheaf of fractional ideals is invertible, i.e. is the
sheaf of sections of a line bundle. Two diviséfsand E; correspond to isomorphic line bundles
if and only if they arelinearly equivalenti.e. if and only if there exist® # g € K such that
E, = E + div(g) wherediv(g) := >, ord,(¢g)z. Such linearly equivalent divisors generate a
commutative diagram with exactws and vertical isomorphisms

(Oz,nz)

0—— Wnr(X7 E) —_— W(K) ®xEX(1) W(k('x))

1

am,nx ordy
0> Wi (X, By) — W(K) Zmteteo) qy W (k(2))

Q

This allows us to define the unramified Witt group of a divisor class or of a line bundle
W (X, L), although to give an inclusioW,,, (X, L) C W (K) we must choose a divisor within
the divisor class.

4€ SERIE— TOME 35— 2002 -N° 1



A GERSTEN-WITT SPECTRAL SEQUENCE FOR REGULAR SCHEMES 147

If, as above,L is a line bundle with fibersL, = 7 Ox ., then for eachr the map
W(X,L) — W(K) factors throughW (Ox ;, L) = ker(dy,.,), SO there is a natural map
W(X,L)— Wa(X, L).

DEFINITION 8.3.— One says thaturity holdsfor the Witt groups of( X, L) if the natural
mapW (X, L) — Wy, (X, L) is an isomorphism, and we will say thatak purity holdsf the
map is surjective.

LEMMA 8.4.—LetX andL be as in Theoreri.2

(a) The residue magd,.,,, ) of (34)is the same as the differentidj : W% ; — W% ; of our
Gersten—Witt complex. ' '

(b) The natural magh' (X, L) — Wy, (X, L) is the same as the map (X, L) — H°(Wx 1)
which is the spectral sequence edge ni&p— E9°.

Proof. —(a) For anyz € X(!) the Gersten—Witt complex fofOx ,, 7= Ox ) reduces to
0— W(K) — W(k(z)) — 0. The differential is the residue map. ,,, by Lemma 8.1. So if
we project the Gersten—Witt complex &f onto that ofOx ., using Lemma 7.3, we see that the
general componemt’ (K) — W (k(z)) of thed, -differential for X is alsod, .., . This proves (a).
Part (b) is left to the reader.c

We now describe the componenids W (k(x)) — W (k(y)) of the coboundaryi; of the
Gersten—Witt complex.

Suppose thay is in X®). If we apply Lemma 7.3 tBSpec(Ox,) C X, we see tha®)
factors throught®. cg,ec(o .,y 0 W (k(2)). S0 0 =0 if y ¢ {z}. If y e m then using
the same lemma we reduce 3 = Spec(O) with O a regular local ring of dimensioa= p
whose maximal ideain corresponds ta; and with a prime ideap ¢ O of heighte — 1
correspondingte. ThenA = O/p is a Cohen—Macaulay local domain of Krull dimensiowith
dualizing modulev 4 = Ext$; ' (4, ©) and fraction fieldk(z). There is a natural isomorphism
@ Exts H(wa, 0) = A.

Now 0 is really a coboundariy’ (O, -fl-mod) — W (O-fl-mod). Any class inWW (O,-fl-mod)
can be represented by a symmetric isomorphjs#(x)®" = Extg‘pl(k(x), 0, )®". Replacingy
by an isometric map if necessary, we may assume that it lifts to a symmetrig mjs — wa.
There is then a commutative diagram with exact rows

|

0 A®r w§" M 0
(35) (1)(€1><"‘2>/2%l: mlh
Ext¢~1(g,0
0 — Ext$ ' (wa, 0)®7 a7 w§" Exth (M, 0) ——0

Comparing this diagram witthe definition given for the coboundary of Theorem 2.1 and with
diagram (9) completes the proof of the following proposition.

PROPOSITION 8.5. — Letd: W (k(x)) — W (k(y)) be a component of the coboundaty of
the Gersten—Witt compl€).

(@)lf y ¢ {x}, thend = 0.

(b) If y € {x}, then for any{k(z)®", g] € W (k(x)) the maph defined above is a symmetric
isomorphism, and([k(z)®", g]) = [M, h] in W (O-fl-mod) = W (k(y)).
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9. The punctured spectrum of a regular local ring

We now describe the derived Witt groups of the punctured spectrum of a regular local ring.
We will prove the following theorem, and then give some sufficient conditions for the splitting
of the short exact sequence (36) appearing in the theorem.

THEOREM 9.1. — Let O be aregular local ring of dimension> 1 with maximal ideain and
residue fieldk. Suppose thathar(k) # 2. LetU = Spec(O) \ {m} be the punctured spectrum.
If e 21 (mod 4), then

W(O) if n=0 (mod4),
Wn(U)g{W(k) if n=e—1 (mod4),
0 otherwise.

If e=1 (mod 4), then there exists a short exact sequence
(36) 0—-W(O)-WU)—W(k)—0,

while W™ (U) =0 for n # 0 (mod 4).

All the identifications of Theorem 9.1 are isomorphisms or exact sequentés®@j-modules
because all the constructions used are comleatilith tensoring with (the restriction of) a
quadratic vector bundle dfpec(O).

Proof. —The triangulated categor§ := D"(VBe) contains the saturated full triangulated
subcategoryD := D5(VBp), and the quotient triangulated category can be identified with
D"(VBy) (see for example Balmer [3, Remark 4.9]). The long exact sequence (11) is then
of the form

(37) = WD) - W(C) - W(U) - W (D) —---.

Now by Theorem 6.1 one hd®™ (D) = W (k) if n =e (mod 4), andW"(D) = 0 otherwise.
By Balmer [3, Theorem 5.6] one h&&™ (C) = W(O) if m =0 (mod 4), while W™ (C) =0
otherwise. So the long exact sequence (37) simplifies, but there are several cases to analyze.

If e=1 (mod 4), then the long exact sequence (37) degenerates into the short exact sequences

0—W(O)—-W*U)—-W(k)—0

plus identificationdV™(U) = 0 for n # 0 (mod 4). If e =2 or 3 (mod 4), then (37) degenerates
into isomorphisms

W(O) = WHU),  WHNU) S W k),
plus identificationsW™(U) = 0 for n # 0, e — 1 (mod 4). This proves the theorem for
eZ0 (mod 4).

If e=0 (mod 4), then one gets the same vanishings abéimmediately preceding case plus
exact sequences

0— W) = W (k) -L W(0) - WHU) — 0.

It is enough to show tha = 0. Now the restriction map’(O) — W (k) is surjective and, as
we said before beginning the proof of the theorem, it is a ma@/¢f)-modules. Similarlyd
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is a map of ¥ (O)-modules. So for any: € W (0O) we haved(z) =z - (1). Now 1 is the
class[k, (1)], and it is sent to the minimal free resolutipfi, n;,] of (21). So it will be enough
to show that)(1) = [K, nx] = 0 in W¢(O) for evene > 2. The free module (21) can be written
asF = O @ G with G free of ranke — 1. The moduleA*/2F in the middle of (21) contains a
Lagrangian submodulé/?G, so the Koszul complex contains a Lagrangian subcomplex

0 0 e 0 A¢2@ Ae/PHR e A°F 0

0 o - A¢/?LF A°/2F A¢/PHLE oz A°F 0

Thereford K, n;] = 0, andd = 0, completing the case=0 (mod 4). O
There are several situations in which we know that the exact sequence (36) splits:

PROPOSITION 9.2. — Let O, k, andU be as in Theorer.1, and suppose that
e=dim(0O) =1 (mod 4).

Then the exact sequen(6) splits andW (U) = W (O) & W (k) if any of the following holds
(a)if O contains a field and > 5, (b) if O is complete or henseliafg) if O is a k-algebra, or
(d)if O = Z,) with p an odd prime and/ = Spec(Q).

Proof. —(a) The natural mapV — W, from the Witt group to the unramified Witt group
(described in (34) and Lemma 8.4(b) above) is functorial for inclusions of open subschemes. So
we have a commutative diagram

W(O) —— Wi (0)

L

W({U) —— Wy (U)

Sincee > 2, the vertical magh,,,(O) — W, (U) is an identity, since both groups are the kernel
of W(K) — @yp)—1 W(k(p)), where K is the field of fractions of0. The horizontal map
W(0O) — Wy, (0) is anisomorphism by the Ojanguren-Panin purity theorem ([17, Theorem A]).
Hence the vertical mapV (O) — W(U), which is the same as the inclusion map in the
exact sequence (36), is retracted by the compositigit/) — Wy, (U) = Wy, (0) = W (0).
Moreover, all the maps are all compatible with tensoring with a quadétinodule, so the
identificationW (U) = W (0O) @ W (k) is an isomorphism of’ (O)-modules.

(b) Itis well known that the natural restriction m&8ip(©O) — W (k) is an isomorphism wheh
is the residue field of a complete or henselian local ring. The exact sequence (36) is therefore an
extension of freéV (k)-modules and so is split. Thu& (U) = W (k)®2, and the identification
is an isomorphism of modules ovBr (O) = W (k).

(c) The morphisnmk — O defining thek-algebra induces a morphisii (k) — W (QO) which
makes (36) into an extension &F (k)-modules. Since the quotient module is projective, the
extension splits. So there isVE (k)-linear isomorphisnW (U) = W (O) & W (k) in this case.

(d) This follows from Milnor—Husemoller [14] Chap. IV (2.1), whel®(Q) is calculated
using a split exact sequencen
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10. Purity and Gersten Conjecture in low dimensions

In this section we prove our immediate applications of the Gersten—-Witt spectral sequence,
among which the Low Dimensions Theorem 10.1 and the Purity Corollaries 10.2 and 10.3. The
notion of (weak) purity is recalled in Definition 8.3.

THEOREM 10.1 (Low dimensions). Let X and L be as in Theoreni.2 The derived Witt
groupsW" := W™ (X, L) and the Witt cohomology group8™ (W) := H"(Wx, ) have the
following relationships

(@) If dim(X) < 3, thenW”™ = H™(W) for0 <n < 3.

(b) If dim(X) < n < 3, thenW™ =0.

(c) If dim(X) < 7, then there is an exact sequence

0—— H*W) ——= W0 —— H°W) —= H*(W) —= W' ——= H'(W)

l

0<~— H3(W)<=—W3<~—H'(W) <~— H*(W) =— W2 <=—HW)

Proof. —(a) The only nonzero termg?? are those with; = 0 (mod 4) and with0 < p <
dim(X). So if dim(X) < 3, and if 0 < n < 3, then the only potentially nonzero term on
the diagonap + ¢ =n is B0 = W% r» and the only potentially nonzero differentials going
into or out of anyE"® are thed; differentialsWy ' — Wy — Wil So the abutment
E™ =W"(X, L) is isomorphic tof3° = H"(Wx1.).

(b) One had?V" (X, L) = H*(Wx, 1) by part (a), whileH™ (Wx 1) = 0 because the Gersten—
Witt complex vanishes in dimensions> dim(X).

(c) If dim(X) <7, and if0 < n < 3, then the only potentially nonzero terms on the diagonal
p+g=nareEy’ =Wy | andE; T % = Wit and the only potentially nonzero differentials
are thed; andds. So the abutmenE™ = W"(X, L) is an extension

0—>Eg+4"4—>E"—>Ego—>0

where
Byttt = coker(ds : H" ™ (Wx,r) — H" M (Wx 1)),
Eg’o = ker(d5 CH"Wx 1) — Hn+5(WX-,L))'
This can be put together to form the exact sequence of the theoram.

COROLLARY 10.2.—Let X and L be as in Theoreri.2 If dim(X) = 4, then weak purity
holds for the Witt groups afX, L). More precisely, iflim(X) < 4, the complex

P wk=)— @ Wk@) WXL -WE)— P W(kx))

zeX®) reX @) zeX @

is exact at the three middle groups.

COROLLARY 10.3.—Let X and L be as in Theoreri.2 If dim(X) < 3, then purity holds
for the Witt groups of X, ).

Proof. —Those corollaries follow from our identifying @ff®: W% | — W ; as a ‘twisted’
residue map (Lemma 8.4), thus obtainiig (Wx. ) = Wy, (X, L). Using then Theorem 10.1,
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the definition of H*(Wx 1) and the observation th&f®(Wx 1) = 0 whendim(X) < 4 leads
immediately to the result. O

Another application of Theorem 10.1 is the following result.

COROLLARY 10.4.—Let X = Spec(R) for R a regular local ring of Krull dimensior < 4
and containing%. Then the Gersten Conjecture holds, namely the augmented Gersten—Witt
complex(4) is exact.

Proof. —Let us identify as many groups as we can in the exact sequence of Theorem 10.1. First
of all, observe that the dimension hypothesis foreE$W) = HS(W) = H"(W) = 0. Recall
from Balmer [3, Theorem 5.6], th&t' ! (R) = W2(R) = W3(R) = 0. We also havél*(W) = 0.
This is obvious ife = dim(R) < 4. If e = 4, observe that we always ha¥e!™ % (W) = 0. In
fact, if O is a discrete valuation ring, the second resithié/') — W (k) is obviously surjective.
Now, letxy,...,x. be a system of regular parametersiyfthenR/(x, ..., x.) is a discrete
valuation ring and one deduces immediatBly™ % ())) = 0 from Proposition 8.5.

Now, we deduce from the exact sequence of Theorem 10.1, that

H'W)=H*W)=H*W)=0

and thatH°(W) = W (R). This is the claim. O

11. Concluding remarks

The special significance of dimensidrior the purity of Witt groups has been observable for
some time. For instance, whéhis a regular domain with fraction field and% € R, thenit has
been known that the map'(R) — W (K) is injective ifdim(R) < 3 butis not always injective if
dim(R) = 4. The Gersten—-Witt spectral sequence exgdhis ‘dimension gap’ as a consequence
of the vanishing of three out of every four lines of the spectral sequence, with the effect that the
coniveau filtration of the Witt groupy’ ( R) has contributions only from codimensiahst, 8, . . ..
At a deeper leveldévissageeduces the computation of the spectral sequence to the derived Witt
groups of fields, and three out of four derived Witt groups of a field vanish, while every fourth
one is the usual Witt grouy/#¢ (k) = W (k).

Thus the special geography of the Gersten—Witt spectral sequence gives a convincing reason
why purity holds until a first gap after dimensi8nand it brings to light the long exact sequence
of Theorem 10.1(c), which works until a second gap after dimengidrhe spectral sequence
also reveals that ‘weak purity’ holds at the first boundary dimengjdiut we have no idea how
long that phenomenon goes on.
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