Ann. Scient. Ec. Norm. Sup.,
4° série, t. 37, 2004, p. 223 a 269.

SERRE-TATE THEORY FOR MODULI SPACES OF
PEL TYPE

By BEN MOONEN!

ABSTRACT. — We develop a Serre—Tate theory for moduli spaces of PEL type. This leads us to study
Barsotti-Tate groupX equipped with an action of aZ,-algebra and possibly also a polarizatibnwe
define a notion of ordinariness for such tripfEs= (X, , \). If we work overk = k and fix suitable discrete
invariants, such as the CM-type, we prove that there is a unique ordinary object, up to isomorphism. We
introduce a new structure, calledcascadethat generalizes the notion of a biextension, and we show that
the formal deformation space of an ordinary triple has a natural cascade structure. In particular, our theory
gives rise to canonical liftings of ordinary objects. In the final section of the paper we apply our theory to
the study of congruence relations.
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RESUME. — Nous développons une “théorie de Serre—Tate” pour les espaces de modules de type PEL.

Ceci nous méne a étudier les groupes de Barsotti-Xateunis d’'une action d’'une Z,-algébre et
éventuellement d'une polarisatioh Nous définissons une notion d'ordinarité pour de tels systémes
X = (X,1,)). Nous démontrons que, str= k, en fixant certains invariants comme le “type CM”,
il n'existe qu'un seul objet ordinaire, a isomorphisme pres. Nous introduisons une nouvelle structure,
appeléecascadegénéralisation de la notion de biextension, et nous prouvons que I'espace de déformations
formelles d'un objet ordinaire admet une structure naturelle de cascade. En particulier, notre théorie donne
des relévements canoniques des objets ordinaires. Dans la derniére section nous appliquons notre théorie a
I'étude de relations de congruence.
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Introduction

0.1. Let A be an abelian variety over a perfect figid of characteristipp > 0. The “Serre—
Tate theory” in the title of this paper refers to dlection of results about the formal deformations
of A in caseA is ordinary. The first main results are described in the Woods Hole report of Lubin,
Serre and Tate [19]. Related results were obthlmeDwork and were shown to agree with those
of Serre and Tate. As references we cite Deligne [4], Katz [13], and Messing [21].

One of the main points in Serre—Tate theory is the statement that, i ordinary, its
formal deformation space has a canonical structure of a formal group (in fact, a formal torus)
over W (K). In particular, this leads to a canonical liftingf** over W (K), corresponding to
the identity section of the formal group. K is finite then this canonical lifting is characterized
by the fact that all endomorphisms dflift to endomorphisms ofi¢2".

1 Research made possible by a fellowship of the Rbigherlands Academy of Arts and Sciences.
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224 B. MOONEN

The main goal of this paper is to generalibesttheory to moduli spaces of PEL type. Roughly
speaking these are moduli spaces for triples (A, ¢, \) where.: & — End(A) is an action of
a given ringd by endomorphisms andlis a polarization. The precise formulation of the moduli
problem is somewhat involved; see Section fbd details. Let us remark that one also fixes
certain discrete invariants, such as the structure of the tangent Epded as and-module.
This invariant, classically referred to as the CM-type, plays an important role in this paper.

0.2. Let .7, be the moduli stack of principally polarized abelian varieties. In some cases the
classical Serre—Tate theory “induces” results for Shimura subvarieties.diamely, letE be a
number field and suppose— 7, ® E is an irreducible component of a Shimura subvariety. If
v is a prime ofE’ abovep, consider the integral modet’ — %7, ® Ok, obtained by taking the
Zariski closure ofS insidegr;. If x € . ® k(v) is ordinary as a point af7;, we obtain, taking
formal completions atr, formal schemess, C 2, over W(x(v)). Now 2, has a canonical
structure of a formal torus, and it is known that, is a formal subtorus of(,. (At finitely
many placew this requires a slight refinement.)dfis of PEL type this follows from the results
of Deligne and lllusie in [4]; in the general case this was proven by Noot in [27]. T&us,
“inherits” a formal group structure frof,.

However, in the situation just considered it may happen that the special fibrédides not
meet the ordinary locus of7,. In that case the previous results give us nothing. To arrive at a
meaningful theory we need a new notion of ordinariness. This is where the work starts.

0.3. Definition of ordinarinesd.et A be an abelian variety over a fiekd of characteristip.

For simplicity assume that admits a prime-tg> polarization. There arseveral ways to define
what it means forA to be ordinary. One possible definition is based on the classification of
Barsotti—Tate groups up to isogeny over an algiehitly closed field (Deudonné, Manin). So, if

K C k =k thenA with dim(A) = g is ordinary if A, [p>] is isogenous t6Q,/Z,)? x GY,.

Another approach uses only thekernel of A. Namely, we haved[p](k) = (Z/pZ)f for some
fe€A0,...,g}, called thep-rank of A. Then another definition of ordinariness is given by the
condition that they-rank is maximal, i.e.f = g. This is equivalent to the statement tht[p] is
isomorphic, as a group scheme(1/pZ)9 x 3.

Itis well known that the above two definitions of ordinariness are equivalent. What is more, if
Ais ordinary themd,,[p>] is even isomorphic t6Q,,/Z,)? x GY,.

The two approaches to ordinariness are best viewed in terms of stratificatioris 6in the
one hand, the classification of BT (Barsotti—Tate groups) up to isogeny gives risddatan
Polygon stratificatiorof <7, in characteristipp. Two moduli points are in the same NP-stratum
iff the associated BT are isogenous. On the other hand, there is a classificatiterofel group
schemes ovek = k up to isomorphism, due to Kraft. This gives rise to the so-caflkedahl—
Oort stratificationof <7y ® F,,, in which two points are in the same stratum iff the associated
p-kernel group schemes are isomorphic. For maits about these stratifications we refer to
Oort, [28] and [29] and Rapoport’s report [30]. Although the two stratifications are in many
respects very different, they each have a unigpen stratum (the ordimalocus), and part of
what was said above can be rephrased by saying that these two open subsggts Bf, are
actually the same.

Let us now consider a PEL moduli problem. We restrict our attention to primes of good
reduction. Essentially this means that we work in charactepisti@ such that (with’ as in 0.1)

0 ® Z, is a maximal order in a product of matrix algebras over unramified extensio@s.of
The PEL moduli problem is represented by a stac¢k which is smooth over a finite unramified
extensiorOg ,, of Z,,; here the subscrig¥ refers to the precise data that have been fixed in order
to define the moduli problem.
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SERRE-TATE THEORY FOR MODULI SPACES OF PEL TYPE 225

To atripleA = (4,,\) we can associat& := A[p*] with its induced action 0¥’ ® Z,, and
polarization\. A classification theory for such triplg$ := (X, ¢, ) up to isogeny was developed
by Kottwitz [16] and Rapoport and Richartz [31]. Their results give rise to a stratificatiorn,of
we refer to this as the (generalized) NP stratification. A peiatey is said to bes-ordinary if
it lies in an open £ maximal-dimensional) NP stratum.

On the other hand, we may consider:= A[p|] with its induced action of¢ @ F, and
polarization\. A classification of such triples := (Y, ¢, A\) was given by the authorin [24]. (This
extends results of Kraft [18] and of Oort [28] in the Siegel modular case; in the Hilbert modular
case our results had previously been obtained by Goren and Oort [9].) Again this gives rise to
a stratification ofezy, referred to as the (generalized) EO stratification. See also Wedhorn [38].
We say that a point € «75 is [p]-ordinaryif it lies in an open EO stratum.

Ourresults in [24] include a completely explicit description of the tripfethat occur, in terms
of their Dieudonné modules. In particular, we can describe the frigheat corresponds to thg]-
ordinary stratum directly in terms of the dataused in the formulation of the moduli problem.
What is more, we can also give an explicit Barsotti-Tate graiifi'(2) with polarization and
0 ® Z,-action such that itg-kernel is of the[p]-ordinary type. We refer tox"*(2) as the
standard ordinary objectletermined by the dat&; it should be thought of as taking the role
that is played by(Q,/Z,)? x G4, in the classical theory. With these notations the main result
obtained in Sections 1.3 and 3.2 is the following.

THEOREM. —Letk be an algebraically closed field of characteristicLet A correspond to a
k-valued pointr of the PEL moduli spaceZy. Write X := (A[p™], ¢, \) andY := (A[p],¢, A).
Then the following are equivalent

(a) A is p-ordinary, which means thaX is isogenous t&°"4(2);

(b) A is [p]-ordinary, which means that is isomorphic to the-kernel of X" (2);

(c) X is isomorphic taX°"4(2).

This theorem gives us a well-defined ordinary locus#n in characteristigp. We remark that
if Aisordinarytheningeneralitis nottrue thatthe underlying abelian vadiétyordinary in the
classical sense. In fact, given the PEL datét is very easy to decide whether the underlyitig
is ordinary or not; see 1.3.10.

In [25] we have proven a dimension formula for the Ekedahl-Oort strata ol particular,
we show that the[p]-ordinary stratum is the unique EO-stratum of maximal dimension.
Combined with the theorem this gives a new proof of the main result of Wedhorn [36]:

COROLLARY (Wedhorn). —The ordinary locus is Zariski-dense .ify.

0.4. Deformation theory of ordinary objectt = € @73 (K) is an ordinary moduli paint
(in the “new” meaning of the term) then we have, at least dver k, a completely explicit
description of the corresponding tripfé. Note thatX , is independent of the ordinary point
This becomes particularly relevant when we study deformations of ordinary objects, as it implies
that the structure of the formal deformation splice= Def(A4,,) is (geometrically) the same for
all ordinary pointsc.

In order to explain our results on deformation theory, it is perhaps best to look at an example.
So, let us suppose that we have a CM-figdldof degree2m, with totally real subfieldZ,.
Suppose is a prime number that is totally inert in the extens@rc Z, and that splits inz.
Consider an orde¢’ C Z which is maximal ap. If ¢ =p™ thend ® Z, = W (F,) x W(F,),
and the non-trivial automorphism &f/Z, acts by interchanging the two factorg (F,). The
triples X = (X = A[p], ¢, \) arising in our moduli problem are of the following form. We have
X=X;x XID, whereX is a BT with a given action ofV’ (F, ), WhereXlD is its Serre-dual with
inducedW (F,)-action, and where the polarization is obtained from the duality between the two
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226 B. MOONEN

factors. Hence we are reduced to the study of BT Wit(IF, )-action, without any polarization.
We shall from now on use the lettéf for this somewhat simpler object.

At this point we can make the role of the “CM-type” more visible. Namely, suppose
X = (X,.) is a BT with W (F,)-action, over a fieldk = k with char(k) = p. Let M be the
Dieudonné module oX. Let .# be the set of embeddings, — k. Note that this is a set of
m elements that comes equipped with a cyclic orderingsif# then we writel + 1 := Froby o4
for the successor of. Now M, being a module oveiV(F,) ®z, W(k) = [[;c, W(k),
decomposes into character spaces:

M:@Mi.

€S

Frobenius and Verschiebung restrict to mdpsiM; — M;; andV : M; «— M;,1. An easy
lemma shows thad := rkyy () (M;) is independent of; we call it the height ofX'. Next we
define themultiplication typeto be the functiori: # — {0, 1,...,d} given by

f(l) = lel}C (Ker(F : Mi/pMi — ]\/[i+1/p]\/[i+l))-

In the formulation of the moduli problen¥, the invariants! andf are fixed. The structure
of the ordinary objectx°™ = X°(d, ) can be made fully explicit and depends only on the
pair (d,f). We find a natural slope decompositigif™ = X x ... x X This is analogous
to the decomposition afQ, /Z,)? x G4, into its ind-étale partQ,/Z,)? (slope0) and its ind-
multiplicative parl(f}gn (slopel). But, in contrast with the classical case, we can have any number
r > 1 of slopes. (In facty — 1 is the cardinality of the se{.#) N [1,d — 1].) The biggerr, the
more complex the structure that we find on the formal deformation space

One slopelf r = 1 then we find thaff ¢ = XM is rigid, meaning that its formal deformation
functor is pro-represented By (k). In particular, there is aniquelifting X “*" of X4 toaBT
with W (F,)-action overiV (k).

Two slopes.In this case we find a nice generalization of the Serre—Tate formal group
structure on the formal deformation space. Suppo&d = XM x X _If R is an artin local
W (k)-algebra with residue field then the factorst ) each admit a unique liting” ) overR.
The first thing we show is that every deformationXfis an extension oz by 2@ Asin
the classical case, it follows that the formal deformation sgades the structure of a formal
group overW (k). The W (F,)-action on the two factor& ) induces an action on the formal
groupD.

Now comes the best part. Each of the two facttif&’ is isomorphic to a product of a number
of copies of an ordinary object of heightSo, we have integerd andd? with d* + d? = d, and
we have functiong!, g?: .# — {0, 1}, such thatX ) is isomorphic to the product @ copies
of the objectX°™(1, g*). Moreover, the slope decomposition is such tigt) < g2(:) for all
i € #. Now we form a new multiplication typ§:.# — {0,1} by “subtracting”g! from g?:
let /(i) = 0 if g'(i) = g%(i) andf' (i) = 1 if g*(i) = 0 andg?(i) = 1. The associated ordinary
objectX°™(1,§') is isoclinic (one slope), so by the above it has a canonical liffiffg" (1, ')
overW (k). The result that we find is as follows.

THEOREM. —With notation as above, the formal deformation spéice- Def (X°™9) has a
natural structure of a BT withV (IF,,)-action overlV (k), and we have

D 2 Kcan(l’ f/)dld2 .
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SERRE-TATE THEORY FOR MODULI SPACES OF PEL TYPE 227

It is nice to compare this with the classical ordinary case: If the underlying abelian vdriety
is ordinary in the classical sense then we habg) = 0 and g?(i) = 1 for all i € .#, hence
(i) = 1 for all 5. This is precisely the case whebeis a formal torus.

More than two slopedf X = XM x ... x X with » > 2 then we no longer find the
structure of a formal group on the formal deformation sp@caVe introduce a new notion,
called anr-cascadeand we show thad naturally admits such a structure. Aok a < b < r, let
us introduce the notatioX (> := [["__ X(*). A key observation is that for any deformation
of X we can lift the slope filtration. More precisely: # is a deformation ofX then there is a
unique filtration by sub-objects

0 CZ(T,T) Cz(rfl,r) C e Cz(l,r) :Z

such that the special fibre of (*™ is X(*™). As a consequence we find that we can arrange the
formal deformation space®(e:) := Def (X (**)) in a “tower":

D)

e

]D)(l.,rfl)

\./

]D)(l.,r72) 2,r—1) 3,r)

Sed”T S
PN NP

Saying thatD(™") = Def(X) has the structure of an-cascade essentially means that in each
diamond

/

D7)

D/Il

in the tower, viewingD"”’ as the formal base scheni®, andD” have the structure of a relative
formal group, and thdD has the structure of a biextension ol#rx D”. The structure groups
occurring in these biextensions can all be made explicit in terms of “subtraction of multiplication
types”, as in the case of two slopes.

Even though am-cascade is (for > 2) a more complicated object than a formal group, it has
a number of “group-like” features that play a role in Serre—Tate theory. Thus, for insiahees,
an origin, corresponding to a canonical lifting 4f Also we have the notion of a torsion point,
and we show, fok = T, that the torsion points db correspond precisely to the CM-liftings
of A, as in the classical theory.

0.5. As is well-known, PEL moduli problems break up in three cases, labelled A, C and D.
The example that we have taken in 0.4 is of type A, which tends to produce the most interesting
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228 B. MOONEN

new phenomena. In Case C we essentially omy fstructures that are already covered by
classical Serre-Tate theory. Case D, finally,ashinically the most problematic. Despite the
extra work, we have included type D throughout tla@er. This requires that, in addition to the
invariantsd andf, we keep track of a further discrete invariant,

0.6. In the final section of this paper we discuss an application of our theory. In 4.1 we
introduce the moduli spacegy, and we discuss how they decompose as a union of Shimura
varieties. We discuss the possible values that the discrete invatiaifif§) can take on these
components, and we give some results on their fields of definition.

In Section 4.2 we study congruence relations. The conjecture, as formulated by Blasius and
Rogawski in [1], is that the Frobenius correspondedoan (the Shimura components afjy
in characteristip satisfies a certain polynomial relation of which the coefficients are Hecke
correspondences. This Hecke polynomigl, ,- is defined in a purely group-theoretic way,
starting from a Shimura datuf®, 2").

Most of the material in Section 4.2 closely follows Wedhorn’s paper [37]. The approach taken
here is the one of Chai and Faltings in Chapter VII of their book [7]. The main result of this
section is that the desired relatiéhy, 5-)(®) = 0 holds over the ordinary locus. We refer to the
body of the text for a precise statement.

Notation. We typically use the lettetX for Barsotti-Tate groups an®f” for BT;. The
Dieudonné module o (respectivelyY) is called M (respectivelyN). In discussions about
BT,, for arbitraryn € NU {oo} we use the letteX . For deformations we often us&” and#'.

For abelian varieties we use the lettér Underlined letters represent objects equipped with an
action of a given ring and possibly also a polarization.

1. Ordinary Barsotti—Tate ¢-modules
1.1. BT; with &-structure

1.1.1. We fix a prime numbep. For the definition of a Barsotti—Tate groug p-divisible
group) and a truncated Barsotti—Tate group werrefdllusie [11]. We abbreviate “Barsotti—Tate
group” to BT, or simply BT, and “truncated Barsotti—Tate group of lex&to BT,,.

Let & be aZ,-algebra. Letn € NU {oo}. By a BT,, with &-structure over a basi§ we
mean a paitX = (X, ) whereX is a BT,, overS and:: & — Endg(X) is a homomorphism
of Z,-algebras. (An alternative name would be “BT-module”, which is less satisfactory for
typographical reasons.)

We shall study BT, using contravariant Dieudonné theory as in Fontaine [8].

1.1.2. Let B be a finite dimensional semi-simplg,-algebra. Letk be an algebraically
closed field of characteristje The first problem studied in [24] is the classification of,Bfith
B-structure ovek. This generalizes the work of Kraft [18], who classified group schemes killed
by p without additional structure. We shall briefly review our results.

Write « for the center ofB. Thenk is a product of finite fields, say = k1 x -+ X k.
Let ¥ = . U---U.Z, be the set of homomorphisms— k.

Consider pairg N, L) consisting of a finitely generatedl @r, k-module N and a submodule
L C N. Note that the simple factors o @, k are indexed by.#, so we get canonical
decompositionsV = P, , N; and L = P, , L;. Define two functionsl, f: . — Zo by
d(i) = length(N;) andf(i) = length(L;), taking lengths a$3 ®r, k-modules. The paifd, f)
determines the paiiV, L) up to isomorphism.
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SERRE-TATE THEORY FOR MODULI SPACES OF PEL TYPE 229

To the pair(V, L) we associate an algebraic grogpover k and a conjugacy clas¥ of
parabolic subgroups d@¥. First we define

G:= GLB@ypk(N) = H GLd(i),k-
€S

Then the stabilizeP := Stab(L) is a parabolic subgroup @f, and we define
X :=the G-conjugacy class oP.

1.1.3. LetY = (Y,:) be a BT, with B-structure ovek. Write N for the Dieudonné module
of Y and letL := Ker(F) C N. Let(d,f) be the corresponding pair of functions. It can be shown
(see [24], 4.3) that the functiohis constant on each of the subsefs C .#7. We refer to(d, f)
as thetypeof (Y,.).

1.1.4. Fix a type(d,f) with d constant on each subset, C .#. Fix a pair of B ®f, k-
modulesLy C Ny of type (d,f). Let (G,X) be the associated algebraic group and conjugacy
class of parabolic subgroups. Iéf; be the Weyl group of7, and letiWx C W be the subgroup
corresponding téX.

To a pairY = (Y,.) of type (d,f) we associate an element(Y) € Wx\Wg. This is
done as follows. Writg N, F, V') for the Dieudonné module df . As Y is a BT; we have
Ker(F) =Im(V) andIm(F') = Ker(V'). Using this, one can show that there exists a filtration

Ge: (0)=%0CEC1CEC---CE6 =N

that is the coarsest filtration with the properties that
(i) foreveryj there exists an indef(j) € {0,1,...,7} with F(%;) = G (;y;

(i) for every j there exists an index(j) € {0,1,...,r} with V=1(4}) =€, ;.
We refer to this filtration as theanonical filtrationof V.

SetL := Ker(F) C N. Choose an isomorphisgn N —— N that restricts ta, — L. This
allows us to viewé, as a filtration of Ny. Choose any refinemen¥, of ¢, to a complete
flag. The relative position of, and.%, is given by an element(Lg,.%.) € Wx\Wg. It can
be shown that this element is independent of the choiceasfd the refinemen#,; see [24],
especially 4.6 for details. Now defingY) := w(Lg, Z).

With these notations, the first main result of [24] can be stated as follows.

1.1.5. THEOREM. — Assume thak = k. The mapY’ — w(Y) gives a bijection

isomorphism classes ¢f ~
{ Y of type(d, f) } — MW

1.1.6. We retain the notation of 1.1.2. Note thatit (k) naturally acts on the s@” .

Fix a type(d,f). Assume that the functiod: .# — Zs, is constant on each of the subsets
4, C ; this is equivalent to the condition thdtis invariant underAut(k). Next consider
Stab(f) := {a € Aut(k) | *f = {}. We defineE(d, f) C k to be the fixed field oBtab(f). For
instance, ifB is a simple algebra, letiy be the smallest positive integer with the property that
f(i +mo) = f(¢) for all i € .#; thenE(d, f) C k is the subfield withp elements. We refer to
E(d,f) as the “modp reflex field”; see Remark 4.1.11 for an explanation of this terminology.

Let K C k be a perfect subfield. L&t be a BT, with x-structure ovetd of type (d, f). We
claim that the existence of such an object implies #iat, f) C K. To see this we may replaée
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230 B. MOONEN

by the separable closure &f. If o € Aut(k) then®Y has type(d, *f). The assumption that
is defined ovel” therefore implies thatial(k/K) C Stab(f).

1.1.7. The study of BT with B-structure easily reduces to the case tRat  is a finite
field. Indeed, as the Brauer group of a finite field is trivial we hBv& M,., (k1) X - - - x M., (1),
where thex,, are finite fields,char(x,) = p. Fixing such an isomorphism, every BWwith
B-structure decomposes #s= (Y ;)" x --- x (Y;)™, whereY , is a BT; with x,,-structure.

If B =k is a finite field, .# is simply the set of embeddings — k. This set comes
equipped with a natural cyclic ordering:ite .# we writei + 1 := Froby o for its successor.
The type(d, f) of a BT, with k-structure consists of a non-negative intedeand a function
f:.# —{0,...,d}. The integed is also referred to as theeightof the truncated Barsotti—Tate
xk-module. (The underlying BTwithout additional sucture has height - [ : F,].)

1.2. Thelpl]-ordinary type

1.2.1. Situation — Letk be an algebraically closed field of characterigtic 0. Let o be the
Frobenius automorphism &F (k). Let x be a field ofp™ elements, and writ& = W (). Recall
that.# := Hom(k, k) = Hom(&, W (k)).

Let X be a BT with&-structure ovek. Write Y := X [p], which is a BT, with x-structure.
Let (d,f) be its type. Le{G, X) be as in 1.1.4. We fix a maximal torus and Borel subgroug;in
this gives us a set of generators for the Weyl gridp.

1.2.2. DEFINITION. — Letw®™® € Wx\W¢ be the class of the longest elementl&f;. We
say thatY’ is [p]-ordinary, and also thak is [p]-ordinary, ifw(Y) = w°™d.

By Theorem 2.1.2 of [25]Y is [p]-ordinary if and only ifAut(Y) is finite.

1.2.3. We define a BT with7-structureX°¢ = X°™(d, f) that is[p]-ordinary. We refer to
X° as thestandard ordinaryBT with &-structure of typdd, f).

Let M be the freeW (k)-module with basise; ; for i € .# and j € {1,...,d}. Write
M; = Z?:l W (k) - e;;, and leta € € act onM; as the multiplication by(a) € W (k). Next
define Frobenius and Verschiebung on base vectors by

ey if 7 <d—§(3); o prey i j<d—i(i);
F(ez,g)—{p.em_j iti>d—i), V)= e, iG> d— ).

These data define a Dieudonné modul&< = 1/°"(d, §) with &-structure, and we defing ™
to be the corresponding BT withi-structure. It is easily verified th& ™ is indeedp]-ordinary;
of. [24], 4.9.

We writeY ™4 = y°rd(d, f) := X°*[p]. Its Dieudonné module i&/°* = prord /pprerd,

1.2.4. Remark— Taked =1 andf(i) = 0 for all i. We write X , for the corresponding
standard ordinary BT. If{ is the fraction field of¢’ then X ., is none other than the ind-étale
p-divisible groupK /& with its natural&'-structure. The underlying BT without-structure is
isomorphicto(Q,/Z,)™. Let X, be the standard ordinary object correspondingte1 and

f(i) =1 for all 7; it is the Serre dual oKX .. The underlying BT in this case {§&,)™.

In general, we do not know a description &P" as a functor, other than using the “inverse
Dieudonné functorM — X as in Fontaine [8], IlI, 1.3.
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SERRE-TATE THEORY FOR MODULI SPACES OF PEL TYPE 231

1.2.5. We fix a type(d, f). Letr — 1 be the number of values in the intenjal d — 1] that
occur agf(z) for somei € .#. Define integere < a; <as <--- < aq by

aj :=#{ie 7 |f§i)>d—j}.

Let 0 < A\ < A2 < --- < A, be the integers occurring ag for somej; note that there are
preciselyr of them. Letd” := #{j | a; = A\, } and define functions

v v v O If f(Z) < Z 1/ ’
f j%{oad} by f (Z)_{du |ff(l) ZJ d]_
With the obvious meaning of the notation we hawef) = > _, (d”,f").
Finally we defineOrd(d, f) to be the polygon with slopes; (j =1,...,d).

1.2.6. Consider the Dieudonné moduly°™® = N°"(d,f) as in 1.2.3. For eacly ¢
{1,...,d} the subspac®_,_ , k - e; ; of N is a Dieudonné submodule, stable under the action
of . We find thatV°*¢ is a direct sum ofl objects of height.. Grouping together isomorphic
layers we get a decompositiinto isotypt components

N(d, f) = N (d' i) @ - @ N (dr, 7).

ForY° this gives a decompositidi®(d, f) = [T,,_, Y.°"!(d*, ). Similarly we have slope
decompositionX 4 (d, §) = [T/ _, X°"(a”, ).

v=1

1.2.7. LEMMA. — Notation asinl.2.6
(i) We have

End(Xord) _ End(zord(dl,fl)) % -+ x End (Xord(dr7fr))
> Mg (k) X -+« X Mgr(K).

(i) If Y is a [p]-ordinary BTy with k-structure of type(d,f) then we have a canonical
decompositio’ =Y ) x ... x Y such thaty ) = y°rd (g~ ).

Proof. —By definition, Y being [p]-ordinary means that it is isomorphic 16°"4. As such
an isomorphism is unique up to an elementAJit(X‘”d) we see that (i) is an immediate
consequence of (i). The proof of (i) is an easy exercise, using arguments as in [25],
Section2.2. O

As mentioned in 1.2.6Y is isomorphic to a product af objects of heightl; note however
that this finer decomposition st canonical, unless = d.

1.3. Ordinary BT with &'-structure

1.3.1. Situation asin 1.2.1. Letdd = (M, F,V,.) be the Dieudonné module & . We have
a natural decomposition into character spadés= @,_ , M;. Frobenius and Verschiebung
restrict too-linear mapsF; : M; — M, ando~!-linear maps/; : M; « M, .
Let #x = p™, so that# hasm elements. Fof € .7, define thes"-linear endomorphisn®;
Fifm—1

B; = (M; 5 Mijy 255 o My g~ My, = M,).
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Then (M;,®;) is a o™-F-crystal overk. By construction,F; induces an isogeny from
o*(M;, ®;) to (M;41,®;+1). In particular, the Newton polygon d¢f\/;, ®,) is independent of

i € Z. We refer to this as the Newton polygon®f (This must not be confused with the Newton
polygon of X'.) By contrast, easy examples show that in general the Hodge polydd;o®;)
does depend on

1.3.2. PROPOSITION — Let X and X’ be BT with&-structure overk. ThenX and X’ are
isogenous if and only if their Newton polygons are the same.

Proof. —This is an application of the theory of isocrystals with additional structure; see
Kottwitz [16] and Rapoport and Richartz [31]. We sketch the argument.

Let K be the fraction field of7. Write Q for the fraction field ofit (k). Setd := height(X),
and letl" := Resg g, GL4. The isogeny class ok is classified byM ©z, Q,, which is an
isocrystal with['-structure. This isocrystal, in turn, is classified by-@onjugacy class il (Q).
The setB(T") of sucho-conjugacy classes is studied by means of a so-called Newton map
B(I') — #(T'); in our situation this is simply the map which associatesftez, Q, the Newton
polygon of (M;, ®;). Letb € B(T') be thes-conjugacy class df € I'(Q). To the element one
associates an algebraic grafip and it is shown (see [31], Proposition 1.17) that the fibre of the
Newton map that contairtsis in bijection WithHl(Qp,Jb). Further,.J, is an inner form of a
Levi subgroup off". In our situation this means thdt is an inner form of a product of general
linear groups. Henc&*(Q,, .J,) = 0 and the Newton map is injective.0

1.3.3. DEFINITION. — Let X be a BT with&-structure ovek, of type (d, ). We say thatX’
is u-ordinaryif its Newton polygon equals the polygd@nd(d, f) defined in 1.2.5.

The terminology #:-ordinary” follows Wedhorn'’s paper [36].

1.3.4.LEMMA. — Let X be as in1.3.1 Then its Newton polygon is on or above the polygon
Ord(d, f) defined inl1.2.5 and the two polygons have the same end point.

Proof. —This is [31], Theorem 4.2, (ii), takingito account loc. cit., Proposition 2.4, (iv) O
1.3.5. LEMMA. — Let X be as in1.3.1 Definea; as in1.2.5 Fix i € .7, and let

o<l <l <o <bl)

be the Hodge slopes (M;, ®;). Thenb\” > aj.

Proof. —By [12], 1.2.1, we have to show thdt;(M;) C p* - M;. By definition, a; is the
number of indices’ € .# such thatf(v) = d. But §(v) = d just means, writingV := M /pM,
that the Frobeniug), : N, — N, .1 is zero, which is equivalent to saying that : M, — M,
lands insidev - M,, 1. As ®; is obtained as a composition of &}, the lemma follows. O

1.3.6. LEMMA. — Let R be ap-adically complete ring. Leb be an automorphism oR. Let
C4, Cy, C3 and C4 be matrices with coefficients iR, of sizesr x s, s x s, s x r andr x r,
respectively. Assume thét is invertible. Then the matrix equation

Ch+ XCo+pCs-PX +pXCy-PX =0

has a solution forX € M.« s(R).

Proof. —The idea is simply that a solution has the forn= —0102‘1 +p- X', whereX’
satisfies an equation

Ol 4+ X'Cl 4+ pCl - X' + pX'Cl - PX' = 0.
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Writing T := C1C; !, the coefficients of the new equation are given by
C{ =C3°T + FC4PF, Cé =Yy —pC4pF, Cé =(C35— 1—‘04, and Czll ZpC4.

Note thatC/ is again invertible, as its determinant is a unit modpl@and R is p-adically
complete. lterating this we obtain a power series developmentXorconverging to a
solution. O

1.3.7. THEOREM. — Let X be a BT with&-structure overk. Let (d, f) be its type. Then the
following are equivalent

(@) X is p-ordinary;

(b) X is [p]-ordinary,

(©) X =XYd,f).

Proof. —Recall the definition of (= the number of slopes) in 1.2.5. We first prove the theorem
under the assumption that it is true fo 1.

We have (c)= (b) by definition of X°"(d,f). Now assume thak is p-ordinary and that
r > 1. The first assumption means, by definition, that the Newton polygghedualOrd(d, f).
Let ¢ be index such thai; = ax = --- = aq < aq+1. (Note that not alk; are equal, as > 1.)
By Mazur’s basic slope estimate (see [12], Theorem 1.9iJ(d, f) lies on or above the Hodge
polygon of (M;, ®;), for everyi € .#. Combining this with Lemma 1.3.5 we find that the figst
slopes of these polygons are equal, i®g.= bgl) == bgz). Katz [12], Theorem 1.6.1, then
tells us that M;, ®;) decomposes:

in such a way that
Newton slopeg)M;, ®;) = Hodge slope$M;, ®}) = (a1, as,...,aq);
Newton slopegM,’, @) = (ag+1, .-, aq);
Hodge slope$M/’, @) = (bgﬂ)rl, ey bf;)).

By construction,M; and M/’ , have no Newton slopes in common. Therefdrgmapsi/;]
into M/, ; and M/ into M/, ,. This means thak’ decomposes a& = X' x X", such that the
Dieudonné module ok (respectivelyX") is &M/ (respectivelybM!"). It easily follows from
Lemma 1.3.4 thak’ and X" are againu-ordinary. By induction on the numberwe may then
assume that each is isomorphic to a standard ordinary BT #itttiructure. (Here we use the
assumption that the theorem is true foe 1.) This readily implies tha¥X is isomorphic to the
standard ordinary BT of typ&l, f) and thatX is [p]-ordinary.

Next assume thaX is [p]-ordinary. As usual we writ&/ = M /pM for the Dieudonné module

of Y. Our assumption means that = M”d(d, f). Defineq as above. By 1.2.7 we have a
canonical decomposition

ﬂ:ﬂ(l)@...@ﬂ(ﬂ.

Let N := N andN" := @”_,N). The decomposition&; = N/ @ N/ are such that, for all
1€ 7,

(1.3.7.1) eithet”; : N; — N, is injective onN/, or F; = 0 on all of V;.

We want to show that there is a sub-crystg] C M; that reduces té&V; modulop. As we have
seenin Lemma 1.3.9; is divisible byp®*; hence we can definesd™-linear endomorphisn¥;
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of M; by ¥, :=p~* . ®,. (Herem = #.7.) If y € M;, write g for its class inV;. We need two
properties ofl;. Firstly,

This is shown by the same argument as in 1.3.5; note that the number of elergertsfor
which F': N}" — N/’ is zero is> a1, by construction ofV". The other property we need is that

(1.3.7.3) if0£7€ N/ then0 ¥, (y) € N..

To see this we have to look back at the definitiongf For eachF,, : M,, — M, 1 (with v € .¥)
there are two possibilities. EithéF, mod p) # 0. If this happens ang € M, with0#75 € N/,
then it follows from (1.3.7.1) that also # F, (y) € N, ,. The other possibility, which occurs
preciselya; times, is tha{ £, mod p) = 0. In this case, ley’ = p~! - F, (y), which is the unique
element withV, (/) = y. Looking at the structure of the Dieudonné moddle= N°*4(d, f), as
made explicit in 1.2.3, we see that# ¢’ € N} ,. Completing one full loop through the index
set.# we arrive at (1.3.7.3).

LetW =W (k). Choose &V-basisfi, ..., fq, fq+1,- -, fa for M; such that

W-fit-+W-f)owk-—N, and (W- fop1+---+W- fa) @w k— N/"
Properties (1.3.7.2) and (1733) imply that the matrix ofl; with respect to this basis has the
form

( By sz)
pBs  pBa
with B; an invertible matrix (of size x ¢). Further, the chosen basis gives rise to a bijection

~ | W-submodule$/ C M; of rankg,
Mia—gxa(W) — { with U/ (pM; N U) > N }

by sending a matri¥l = (at ) g+1<t<d, 1<u<q 10
d d
UA :—Span<f1 —|—p- Z ajlfj,...,fq —|—p- Z ajqu>.
J=q+1 J=q+1

A straightforward computation shows thif(U4) = U 4, with

A'=(Bs+pBy-7"A)(B1 +p*By -7 A) 7"
HenceU, is stable undeny; if and only if A - (B; + p?By - 7" A) = (B3 + pBy - 7" A).
Lemma 1.3.6 tells us that there existsAmvith this property.

We proceed as follows. Choose a matrixsuch thatd := U4 is stable unde®;. Define
submodules\/; , C M;,, by aninductive procedure: # =0 on M, let

My =p ' F(Mig);

otherwise letV/;, , | := F(M;, ). By construction), , = M;, so that we have well-defined

K3

submoduleds; C M; foralli € .#. The direct sum\" := &, , M is a sub-crystal ofi/. On
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the level of BT with&-structure we find thak’ sits in an exact sequence
(1.3.7.4) 0-X"-X—-X —0,

such that the Dieudonné moduleXf is M. Thep-kernel of X’ (respectively ofX"') is the one
given by the Dieudonné modul€’ (respectively the Dieudonné modulé/N’ = N"’). Hence
X’ and X" are both[p]-ordinary. By induction on the numbemwe may assume thaf’ and X"
are y-ordinary, and asy is isogenous toX’ x X" it follows that alsoX is p-ordinary. (Note
that (1.3.7.4) splits, as now follows using €)(c).)

To finish the proof of the theorem we have to consider the easd. If » = 1 then for all
1 € #, eitherf(i) = 0 or f(¢) = d. But for such a type there is only one BWith x-structure,
up to isomorphism. So X is any BT with &-structure withr = 1 then X is [p]-ordinary. On
the other hand, in the first part of the proof we have seen_Xhad also u-ordinary. Finally,
in the last part of the proof we have seen thgt= p* - ¥, with ¥, : M; — M; a ¢"-linear
bijection. (If r = 1 thenM = M’.) As k = k we can choose ® (k)-basise; 1, ..., e; 4 for M;
such that¥;(e; ;) = e; ;. Now we choose bases for the character spaégs,, forn=1,...,m,
by induction:

Fiyn(€ign,j) if Fiyp #0mod p;

€; [ p— _ .
intl,j {p 1Fi+n(ei+n_’j) if F;4,, =0 mod p.

Our choice of the:; ; is such that; ., ; = e; ;. The conclusion is that/ is isomorphic to the
standard ordinary Dieudonné module of the given type. This completes the proof.

1.3.8. DEFINITION. — Let K be a field of characteristip. Let & be a finite unramified
extension ofZ,. If X is a BT with&'-structure overs then we say thak is ordinaryif X @ k
satisfies the equivalent conditions of 1.3.7 for some (equivalently: every)field > K.

1.3.9. Remark— Thus far we have defined ordinariness only for BT wdtkstructure, where
0 is a finite unramified extension @,. We can extend this, in an obvious way, to the situation
where ¢ is a maximal order in a product of matrix algebras over finite unramified extensions
of Q,. We leave this to the reader.

1.3.10.Remark— Let X = (X,:) be an ordinary BT with/-structure ovetk = k, of type
(d,f). As usual we letn = [0 : Z,]. ThenX, the underlying BT (without’-structure), is1ot, in
general, ordinary in the classical sense. In fact, using our explicit descripti#i"6fd, f) and
the notation of 1.2.4, we find

(@) X =2(Q,/Z,)"™ e X=X% ofi)=0 forallic.7;

(b) X2 (Gpn)™ e X=Xt  oif6i)=d foralic.7;

(c) X is ordinary if and only iff is a constant function ot .
In terms of the “mog reflex field” E(d, ) defined in 1.1.6 we find thaY is ordinary if and only
if E(d,f) =TF,. This resultis to be compared with [36], Theorem 1.6.3.

1.3.11.LEMMA. — Let & be a finite unramified extension Bf, with residue fields = Fpm.
Fix a type(d, ), and let

X(d, f) = XU 1) x o x XU ).

be the decomposition of the corresponding standard ordinary BT lovek, as in1.2.6 Then
End(X°"(d,f)) = End(X°"(d", ")) x - - x End(X°™(d", "))
= Mgy (W(K)) x -+ X Mgr(W(k)).
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Proof. —Easy exercise. O

1.3.12. COROLLARY. — Let K be a perfect fieldchar(K) = p. Let & be a finite unramified
extension ofZ,. Let X be an ordinary BT with&-structure overK. Then there is a unique
decomposition

XZKO)X-"XX(T)

over K such thatX ") is isoclinic of slope),, and fork > K algebraically closed we have
X(V) QK = Xord(du’ fu)

Proof. —This follows from 1.3.11 using descent. Note that the slopes satisfy
A1 <)\2<"'<)\r7

and that there are no nonzero homomorphisms between BT of different slapes.

2. Deformation theory of ordinary objects
2.1. Deformation theory of BT with endomorphisms

2.1.1. Let K be a perfect field of characteristic> 0. Write Cyy (i for the category of
pairs (R, 3), with R an artinian locallV (K )-algebra and3: R/mp — K an isomorphism.
Morphisms inCyy (k) are local homomorphisms ¥ (K')-algebras which are compatible with
the given isomorphismg.

Let (R, 3) € Cw (k). If X isa BT, with &-structure overs then by adeformationorlifting,
of X over(R,3) we mean a pail(Z’,«) where. 2" is a BT,, with &-structure overkR and
a: 2 ®@rps K — X.In practice we often omijt from the notation.

The formal deformation functor oX is the covariant functor

Def(X): Cw (k) — Sets

whose value on a paitR, 3) is the set of isomorphism classes of deformation¥ ajver R.

2.1.2. Situation — Let K be a perfect field of characteristic> 0. Let & be an unramified
extension ofZ,, of degreem with residue fields; in other wordsx = F,~ and& = W (k). Let
X be anordinary BT with &'-structure overs, of type(d, f). LetY := X[p]. We writer for the
number of slopes, as defined in 1.2.5.

2.1.3. PROPOSITION(Wedhorn, [38]). —Situation as above. Writ& (respectivelyl'?) for
the tangent space of (respectivelyX ) at the origin.

(i) The functoMef (X) is pro-representable and formally smooth o¥&( K).

(i) The functoDef(Y) is formally smooth oveV (K). The canonical map

v:Def(X) — Def(Y)
is a hull.
(i) The tangent spaces d@bef(X) and Def(Y) are both canonically isomorphic to the

K-vector spacel'”? Or@s, &k T, and via these identificationg induces the identity map on
tangent spaces.
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2.1.4. Inthe situation of the proposition, the tangent spacBf X') can also be described
in terms of the Dieudonné modulé of Y. Namely, there are natural isomorphisms

T= N[F]:=Ker(F) and TP = (N/N[F])".

This gives that ovek = k the tangent space @fef(X) is isomorphic to

@D Hom (N;/Ni[F], N;[F]).

ics
In particular, the relative dimension def(X') overW (K) is equal to) . , (i) - (d — f(4)).

2.1.5. COROLLARY. — SupposeX is isoclinic, meaning that = 1. ThenX is rigid, i.e.,
Def(X) is pro-represented biy/ (K).

Proof. —The assumption means that for a#f .# eitherf(i) =0orf(i)=d. O

2.1.6. Let k£ be an algebraically closed field¢har(k) = p. Write o for the Frobenius
automorphism of¥ (k). Let A be a formally smoothV (k)-algebra. Fix an endomorphisgy
lifting the Frobenius endomorphism df, := A/pA and with(pa)w ) = o

Consider-tuples(.#, Fil' (.#),V, F. ) with

— ./ afreeA-module of finite rank;

— Fil'(.#) C .# adirect summand;

-Vl - MR QA/W an integrable, topologically quasi-nilpotent connection;

—Fy: M — M apa- Ilnearendomorphlsm
such that, writing# := .# + p~ ' Fil' (/) and.#o == A @4 Ao,

— F/// induces an isomorphist# ®4,,, A = #,and

— Fil' () @4 Ag = Ker(F 4 @ Froba, : My — M).

With the obvious notion of a morphism, sudftuples form a categorMF[%_rl] (A). Crystalline
Dieudonné theory establishes an anti-equivalence

(2.1.6.3 (BT overA) U MFY | (A).

See [23], Section 4 for further discussion.

2.1.7. We need a description of thietuple (.7, Fil'(.#), V, F. 4 ) corresponding to the uni-
versal deformation of an ordinary BT withi-structure £ a finite unramified extension @,. We
use a construction due to Faltings [6]. We start with the Dieudonné maduié X. If (d,§) is
the type ofX then on the standard bagis; ;} for M (asin 1.2.3) the Hodge filtration is given by

Fil'(M)= @ W(k) e
€S ,5>d—f(3)
The submodulé/? := <a—iiy W eZ ; is a complement foFil' (M) in M.
Inside the algebraic groudLﬁ& W(k) =[I,c.» GLa,w ), the stabilizer ofM? is a

parabolic subgroup. Léf be its unlpotent radlcal. In down-to-earth terris= [ [, , U; with

U, = group of matrices ((1) T) ,
where the upper right-hand block has sf#e- §(i)) x f(i).
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Let A be the completed local ring d@f at the identity element. Thugl is a formal power
series ring

A=w i) [[u2]].

where the indices range ovee .#, overr € {d + 1 — {(i),...,d} ands € {1,...,d — (i) }.
It will be convenient to formally pu'uﬂf% =0 if » or s is not in the specified range. Define
pa:A— Ato be the lifting of Frobenius witly 4 )jw k) = o and<pA(u§f)s) = (uﬂf)s)i’.

Note that we have a tautological elemeht™ € GLow, w (k) (M)(A).

2.1.8. PrRoPoOsITION(Faltings, [6], & 7). —Define
M =M ®wpy A, Fil'(4) :=Fil'(M) ®wuy A, and
Fp=g"Vo (FM ® cpA).

Then there is a unique topologically quasi-nilpotent connecvon# — .# ® QA/W(k) that
is compatible withF ,, and this connection is integrable. The ring acts on the4-tuple
(., Fil'(#),V, F 4) by endomorphisms. Via the anti-equivalence of categ@ieis6.1)this
4-tuple corresponds to the universal deformation¥ofis a BT with&-action.

This result is also discussed in [23], § 4.

2.1.9. ProposITION(Lifting of the slope filtration). —Let K be a perfect field of characteris-
tic p > 0. Let & be a finite unramified extension @f, with residue fields = F,~. Let X be an
ordinary BT with&-structure overK . Consider the decomposition &f as in1.3.12 and define
(for1<a<bgr)

b .
x(ab) . X(J)’
xe =1, X
so that we have a slope filtration

0 CK(’I‘,T) CK(T—I,T) C--- CK(I’T) =X.
Let R be inCyy (). If (£, ) is a deformation ofX over R then there is a unique filtration of
Z by sub-BT withw-structure,

0 Cz(r,r) Ci(r—l,r) Coee Cz(l,r) :z

such thatn: 2 ®r K —- X restricts to isomorphismg (“") @ r K — X (@),

Proof. —To prove unicity we use Grothendieck—Mesggdeformation theory; on request of the
referee we give some details. S@}, := R/m™ and consider the natural mdp, ;1 - R,,. Its
kernel is an ideal of square zero, hence it carries a nilpotent PD structure. Suppose we are given
a lifted slope fiItrationZﬁl"T) of Z° ® R,. On the level of crystals, as in Messing [21], this
corresponds to a chain of quotientsiof. 2" ® R,,). Under the bijection of [21], Theorem V.1.6,
the given lifting 2~ ® R,4+1 of 2 ® R, corresponds to an admissible filtratidril'
D(Z ® Ry)r,.,- But then it is clear that there is at most one lifting 8f(*" over R,, 1,

corresponding to the image Bfl' in the various moduIeB(ZSl’””)Rnﬁ .

It suffices to prove the existence in the case that k is algebraically closed; the general
case then follows by descent, using the unicity of the lifted filtration. Further it clearly suffices

4€ SERIE— TOME 37 — 2004 N° 2



SERRE-TATE THEORY FOR MODULI SPACES OF PEL TYPE 239

to show that the desired filtration exists in cagéis the universal deformation of . Finally it
suffices to show thal(“) lifts to a sub-object ofZ".

We use the description of the universal deformatioXafivenin 2.1.7 and 2.1.8. Lét/’ ¢ M
be the submodule corresponding to the quotient X /X7 = XM et

d'=min{d—f(i)| i€ 7}

be the rank of\/’ over& @z, W (k), so that

= @Span(em;j =1,...,d).
€S

Set.st' := M’ @y ) A andFil' (.#') := Fil'(M') @y () A= .#4' NFil' (). Note that the
tautological elemeng"™" acts trivially on.#’, soF 4 restricts toF 4 := Fap @ o4 OnNA'.
We claim thatV(.#") C 4’ ® QA/W(k), i.e.,V restricts to a connectiok’ on.#’. If this
is true then(.#',Fil' (.#"),V', F ) is a sub-object of #, Fil' (.#),V, F.,) and the desired
lifting of X@7) is the one corresponding to the quotient-crystal.
In the proof of the claim we use the standard bésis; } for the module# . Let{f; ;} be the
corresponding basis for/ ® 4,54 A; concretely,

fii= €, 1 ifj>d—f(i);
W\ p ey @1 ifj<d—f(i).

With respect to these bases Frobenius is given by

univ univ 1 US‘lerl)
w(fig) =g (eivay), gt = (0 | ) :

The connectiorV decomposes into factoig, : #; — #; ® QA/W(k); let D@ be thed x d
matrix of 1-forms ofV; on the basis; 1, ..., e; 4. Similarly, let D) be the matrix of the induced

connectiorV; on.Z, ® 4,04 Awith respecttothe basi 1, ..., fiq. ThenD® is obtained from
D by applyingde 4 to all coefficients. )
By definition, V is compatible with Frobenius, meaning thi&t ® id) o V.=V o F. But

Vo F(fi;) Ze“rlvu ®D, ZH) + Z “(lH eit1,, ® DT 4+ Zez-'rl r® du(Hl),

r,u=1 r=1

whereas

d

(F®id)o V (fis) Z {ez+1,u + Zu(”l €z+1,s} ®@dea (D;(f)g)

p=1

Here recall that we formally pumifs =0 if either r < d — (i) or s > d — f(i). Comparing
coefficients ofe; 11, (for fixedv € {1,...,d}) we find

(2.1.9.1) DUV 4 Z (D DD 4 4yl = dips (DX) +Zuz+1> dpa (D).

22%)
pn=1
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Now we specialize to the case thatd @’ andj < d’. Asu('T") = 0 andu!"7" # 0 only for
r>d,(2.1.9.1) becomes

d
Dl(f;rl) — dSDA (Dl(j;) + Z (H—l) d(PA Z ul z+1) H—l)
n=1 r=d’+1

By induction onn this readily implies that for ali € .#, all v < d’ andj > d’ we have

(l) emy - QA/W(k) But A is noetherian, sf),,-, m’ - QA/W(k) =0, soD( ) = 0 whenever
v < d’ andj > d’. This is what we wanted to proveD

2.2. Cascades

2.2.1. DEFINITION. — Let.7 be a topos with final object. Let r be a positive integer. An
r-cascaden .7 consists of the following data:

(1) commutative7 -groupsG“9) for 1 <i < j <r;

(2) objectsI"() for 1 <i < j < r; if i > j then we pul(»7) := §;

(3) morphisms\(4:7) : T(5:7) — T(i=1) and p(@-3) . (7) — T(+1.7) satisfying the commuta-
tivity relation p(i-1=1) o \(0:3) = \(41.3) o p(0.);

(4) the structure o' (“7) of a biextension of '(»/—1) T(+1.3)) py G(1:7) x T(+15=1) jn the
category. pe+1,-1) -

Part (4) of the data is meaningful by induction ¢n- 4. If j =i + 1 then, by convention,
r@i-1) = p@+li) — § and (4) means thaf) is to be equipped with the structure of a
commutative.7 -group isomorphic ta77) . If j =i + m and data as in (4) are available on
all 13" with j' — i’ < m thenT'(:3—1) andI'(i+1.9) both have the structure of a commutative
group overl'‘'t1.i—1) (as part of their structure of a biextension), so that (4) is meaningful
for 149,

2.2.2. Example— A 1-cascade only consists of the final objett A 2-cascade is just a
commutative7 -group. A3-cascade is a biextension.4Acascade is a commutative diagram

4

@3 4

F(1’2) F(2,3) F(3 4)
with

— TG+ commutativeZ -groups isomorphic t6:(+1) (fori =1, 2, 3);

— T(13) a biextension of '*:2) T(2:3)) by G(1:3);

— T34 a biextension of '?:3) T(3:4)) by G(24);

— 1Y a biextension of ((1*), T(24)) by G114 x T(2%) in the categoryZpc.s) .

We often refer to a cascade by the single lefteWe call theG(*9) the group-constituentef
the cascade anid®?) the (i, j)-truncation

If T is anr-cascader > 2, thenT'(*=1) andT(27) both inherit a natural structure of an
(r — 1)-cascade.
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2.2.3. DEFINITION. — LetI" andA ber-cascades, with group constituedt§-)) andH (/)
respectively. Ahomomorphisnf : T — A of cascadess a collection of maps

£ PGI) _y A

and homomorphisms of groups
RG3) . qld) _y pr(ed)

satisfying the following two conditions.

(a) The mapg (/) are compatible, in the obvious sense, with the given morphisarsd p;
symbolically we may write this as the conditions tifat \r = Aa o f andf o pr = pa o f.
_(b) Forall1 <i<j<r leta " denote a base change vigitti—1) and write
f) D) — Alv) for the morphism over (“+1:7-1 induced byf (#+). Then the quadruple
(f@a=1 fat19) pG.0) §(19)) is a homomorphism of biextensions ow&f+17—1

2.2.4. DEFINITION. — LetT be anr-cascade. Let € I'1:")(R) be anR-valued point, for
someR € 7. By induction onr we define what it means far to be atorsion point If r =1
then everyr is torsion. Ifr > 2 then we say that is a torsion point if

@ A(z) eTE=D(R) andp(z) € T(>7)(R) are torsion points;

(b) z is a torsion point of'(*:") viewed as a group ovedr(*~1) and also a torsion point
of (") viewed as a group ovér?7).

Note that if (a) holds then in (b) it suffices to require thas a torsion point for one of the two
group laws. To see this one uses that a biextension of a pair of gfBups,) by a third group
has a canonical trivialization ov¢f} x I'; and ovel’; x {0}.

2.2.5. Anr-cascad@ has a natural zero sectiore I'(.S). As above we define it by induction
onr. We leave the details to the reader.

2.2.6. DEFINITION. — LetI' be anr-cascade. Then we define tleal cascadenotationl™",
to be ther-cascade obtained afteplacing all index pairéi, j) by (r+1 — j,» +1 —4). Thus,
the group constituents af@”-(-7) .= G(r+1-7.7+1-9) the truncations are

F\/,(i,j) — I‘(T"'l—jar-l-l—i)’

and the biextension structures are the same (after re-indexing) as those occurring in
2.3. The cascade structure on the deformation space

2.3.1. Situation as in 2.1.2. We first study the case that the Newton polygal dias
precisely two slopes, i.er,= 2. By 1.3.12 we have a decompositiah= X ) x X where the
factors are both isoclinic. As shown in 2.1.5Jifc Cyy (k) then there is a unique Iifting@:(”)
of X) overR, for v € {1,2}. If we want to indicate over which rin§ we are working we use
the notationz%’).

Consider the categoiyXT(2 M, 2 ¥) of extensions of2” ") by 2" ¥ as fppf sheaves of
¢0-modules oveR. If there is no risk of confusion we simply writeXT r, for this category, and
Extg denotes the set of isomorphism classeBXil' .

Let 2" be an object oEXTp. It follows from [21], I, (2.4.3) that, forgetting the structure of
an extensionZ’” is again a BT withZ-structure. By looking at the Newton polygon, using [12],
Lemma 1.3.4, we see th& ® r K is ordinary. Applying Theorem 1.3.7, and using that there are
no non-trivial homomorphisms froli () to X it follows that there is a unique trivialization
a: X op K5 XM x X as extensions.
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2.3.2. Let X be as in 2.1.2, and assume= 2. Let (d,f) = (d',§) + (d?,§%) be the
decomposition of the type of as in Section 1.2.5. Define a new ty@&, {') by d’ =1 and

0 if f1(i) = (i) = 0;
fi)y=4 0 if f(i) =d" andf?(i) = d2;
1 if §1 (i) = 0 andf? (i) = d*.

As functions on# we havef? = f! + (d* — d') - f'. The corresponding ordinary obje&t(1, ')
is isoclinic, so by 2.1.5 it has a unique liftilg“*" (1, f') to a BT with &-structure oveiV (k).

2.3.3. THEOREM. — Let X be as in2.1.2with » = 2. With notations as above, the category
EXTpg is equivalent to the categorEFr(X) of deformations ofX over R. The functor
Def(X) has a natural structure of a BT witly-structure oveV (K). If k is an algebraically
closed field containings then

(2.33.1) Def (X) @w(x) W (k) = X (1,§)" "

as BT with&-structure.

Proof. —If 2" is an object ofEXTx, let a: 2 @r K =5 XM x X® pe the unique
trivialization of .2~ ® K as extension. Forgetting the structure of an extensionZonthe
pair (£ ,«) is a deformation ofX over R. One easily checks that this defines a functor
h:EXTr — DEFg(X). In the opposite direction, suppose’, 3) is a deformation ofX
over R. By 2.1.9 and rigidity ofX® we have2 ¥ — 2°. By [21], I, (2.4.3) the quotient
2 /2 ? is again a BT with¢-structure. By rigidity of X(!) it then follows that2  is an
extension ofi(l) by 1(2), in such a way that the given identificatich 2" ®p K — X
becomes a trivialization of the extension ové€r This gives a quasi-inverse to the functor

We find thatDef r (X)) = Ext g, which has a natural group structure. Hefze (X') has the
structure of a smooth formal group oviéf(K'). Further,& acts on it through its action o (.

Let us now show thabef(X) is a BT. By [21], II, (4.3) and (4.5) it suffices to show that for
every R € Cyy k) multiplication byp is an epimorphism oDef(X) ® R to itself. For this it
is enough to show thab := Def(X) @ (k) K is a BT overK. Further we may assume that
K = k = k. (Another proof of these reduction steps can be found in Conrad’s notes [3], § 3.1.)
By the classification theory of formal groups (see Manin [20], 11.4), in order to concluddxthat
is a BT it suffices to show thdP[p] is a finite group scheme.

As usual we write'*) for the p-kernel of X®); similarly, let (") .= 2% [p]. If Ris a
k-algebra the@g) =YY" @, R.
Let R be an artinian locat-algebra. We have an exact sequence

(2.3.3.2) Hom (), 27} — Extp ~2 Extg — ---,

where theHom( ) denotes homomorphisms of sheavesdimodules overR. Clearly we
haveHom(@g),Zg)) = Hom(gg),g?), and as a functor irk-algebrask the latter is
representable by a group scheiie= Hom(Y ", Y®). But G is isomorphic to a closed
subgroup scheme of the group scheAwt(Y), which is finite by [25], Theorem 2.1.2 and our
definition of the[p]-ordinary type. Hence we have a finite group sch&frand a homomorphism
G — D[p] which is surjective onR-valued points for every® as above. This is easily seen to
imply that D[p] is finite.
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In order to prove the last assertion of the theorem we may assumg that, and one easily
reduces to the case thélt = d> = 1. If we can show thaD := Def(X) @y () k is isomorphic
to X(1,f) then (2.3.3.1) follows from the rigidity result 2.1.5.

From now on we assume that = d2 = 1 and K = k. We haveY' ™) = y°"(1,§*). Let N,
be the Dieudonné module d¥[p] and N = N(1,f) that of Y(1,§). We know thatNp[F] is
isomorphic to the tangent space bfat the origin, so 2.1.4 gived'p[F] = N[F] as modules
over & ® k. By our classification results the proof is complete if we can showAhatwhich
is a free module over’ ® k, is of rank1. We shall use a result of Raynaud [32] to prove
that the affine algebra off := Hom(Y YDy 2>) has k-dimension (at most) equal tp™.
Loc. cit., Corollary 1.5.1 tells us that the affine algebrasydt) and Y® are of the form
AW = klzi;i € #)/aand AP = k[y;;i € .#]/b with

a=(af — (1—§(8)zip1;i€#), and b= (y) — (1 —§(i))yis1;i €.7),

anda € k := 0 /p0 acts onz; andy; as multiplication byi(a) € k. If R is ak-algebra then
a homomorphisn’l_/g) - Xg) is given by a homomorphisd® @, R — AM) @, R with
y; — i - x; for certainy; € R. For each there are three possibilities.
(@) If§1(i) = 0=172(i) then the relations? = z;;1 andy? =y, 11 give that%H VP,
(b) If §1(i) = 0 andf?(i) = 1 then we havec =x;41 andy? =0, hencey? =
(c) The third possibility is thag' (i) = 1 = f2( ). We claim that in this case agml =
To see this we can use Cartier duality, which interchanges cases (a) and (c). Alternatlvely,
we can see that; .1 =7 by using the explicit formulas for the comultiplication given by
[32], Corollary 1.5.1.
The conclusion is that the affine algebta of G is a quotient of the ring[z;;7 € .#]/c with

¢= (2} = (1-7(0)zir1;1€ 7).

This shows thatlimy (A¢) < p™, as claimed. But thedV, which is free, has rank 1 over
0 ® k. On the other handYp[F] # 0. HenceNp, is free of rankl. This completes the proof of
the theorem. O

2.3.4. Remarks— (i) Let X = (X,:) be as in the theorem. By 1.3.18, is ordinary (in the
classical sense) if and onlyfifis a constant function, which means tifdt) = 1 for all 7. This is
precisely the case thBef (X) is a formal torus. Of course, the formal group structur®efy( X)
is in this case the same as the one defined by Serre and Tate.

(i) As a corollary of the proof we find thaHom(X(l),X@)) is a K-form of the group
scheme}_/(l,f’)dldz, and that the first map in (2.3.3.2) is injective. This last result also follows
from the fact that forR € Cyy (i) we haveHom(Xg),gg)) =0, as can be shown using [11],
Theorem 4.4.

2.3.5. Let K be a perfect fieldchar(K) =p > 0. Let W = W(K). Write FSyy for the
category of affine formal schemé&s over W with the property thal' (X, Ox) is a pro-finite
W-algebra. By a theorem of GrothendiedkSy is equivalent to the category of left-exact
covariant functor€y — Sets.

On FSyy we consider the flat topqli)gy; see [5], ¥lI1.5. This topology is coarser than the

canonical topology. Hence if we wrileSy;, for the topos of sheaves (for the flat topology) then
we have a natural functer FSy, — FSyy.

2.3.6. Construction— Let X be asin 2.1.2. We are going to define the structure of a cascade
on the formal deformation space &f. More precisely, writeX = X x - .- x X" asin 1.3.12.
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Fori<a<b<r letX@®b .= H?:a XY and define
1@ .= Def (X ().
Using Proposition 2.1.9 we obtain natural morphisms
A:T@Y) L @b=1) and p.p(@b) _ pletib)
Finally, define

G(®?) .= Def (X x X1),

viewed as a BT witho-structure ovetV = W (K). We shall define the structure of arcascade
on the collection of datdT'(**) X, p}, with group constituent&(*:*). Here we work in the

categoryF'Syy .

To begin with, fix indices: < b. We claim that we can choose coordinates such that

I(as:b) Alug, vi,wi, ..., wr]
r(ab-1) ratid) isgivenby  Afuy, ..., u4] Alvs, ..., ve]
I\(a+1,b71) \ A /
whereA = Wz, ...,z;] is the affine algebra df(»+1.*~1)_ This is an easy algebra exercise;

one uses that eadH*? is formally smooth oveFV’, and computes the induced maps on tangent
spaces in terms of Dieudonné modules. In particular we find that the natural map

W:P(a"b) — I‘(a"bil) X(at1,b—1) F(aJrl’b)

is formally smooth, hence topologically flat and surjective.

We want to define oi(#:?) the structure of a group ovéi®*—1) as well as the structure
of a group ovel(®*1%), et R € Cy, with W = W(K). Letn € T(*»*~V(R) correspond to
a deformation(.Z, 3) of X(**~Y over R. With similar arguments as in the proof of 2.3.3, one
shows that there is a bijection

{Cer (@) ¢} = Bxt (Z. 2).

The desired group structure @i*?) overI'(**—1) is then obtained by transporting the group
structure orExt(z,Zg)). For the group structure di(>*) overI'(¢t1.%) the construction is
similar.

The next point is to show, fdr > a + 1, thatI'(*?) has a natural structure of@(*" -torsor
overIT := T(@b=1) x i1y T(@H10) For this we use Grothendieck’s notion of a blended
extension (“extension panachée”); see [10], IX, 9.3. We wIite) for the fibre of? € TI(R)
underr:T'(R) — II(R).

4€ SERIE— TOME 37 — 2004 N° 2



SERRE-TATE THEORY FOR MODULI SPACES OF PEL TYPE 245

An R-valued point); x¢ i, of IT is given by:

— adeformationf, o) of X(¢*1:*=1 overR;

— the class of an extension— ¢ — ., — z%’) — 0;

— the class of an extensiéon— Zﬁij’ —F,—Y —0.

(The extensions live in the category of sheaveg'ahodules overR.) With similar arguments
as before we find that the fibf&n, x¢ 72) is in natural bijection with the s@xtpan(.Z,, .%,)
of blended extensions ¢f ; by .%,. As shown in loc. cit., this set is either empty or it is principal

homogeneous under the groEpt(igg),ig’)) = G(»Y(R). Butwe have already excluded the
first option. Using the obvious functoriality with respectRpand using that: T(*?) — ITis a
flat covering, we find that, indeef(*?) is aG(*? -torsor overl.

Finally we have to givd'(“:?) the structure of a biextension. We use a pointwise notation.
Let ny, 7, € T(@=D(R) and 1, n, € T(@+tL)(R), all mapping to the same poirgt €
[(et+1b=1)(R), The pointsy; andn, correspond to extensiong, and.#) of z%’) by ¢;
the points), andrn) to extensions”, and.#,, of & by zgﬁj).

A point of I'(m1 x¢ n2) can be viewed as an extensifirof .#, by Zg): similarly for points
of I'(n} x¢ n2). This interpretation gives rise to maps

(1, m1im2) :T(m xe n2) x T(nf xem2) = T((m Anp) Xen2)

by ([E], [E’]) — [E AE']. Apointof I'(n; x¢n2) can also be viewed as an extensioof gﬁ?
by .#,, and similarly forT'(1; x¢ 7). This interpretation gives rise to maps

Y(n;m2,m5) :T(m xen2) x T(m x¢ nh) = T (m xe (2 Anj))
by ([F], [F']) — [F A F']. These map(n1,n};n2) andy(ni;n2,m5) give the desired structure
of a biextension; we leave it to the reader to verify that they satisfy all required compatibilities.
2.3.7. Remark— If X? is the Cartier dual ofX thenDef(&D) is naturally isomorphic, as a
cascade, to the dual @fef(X).

2.3.8. Situation as in 2.1.2. Write- for the Frobenius automorphism &F (K). For any
n > 1 we have a canonical isomorphism of forni&l( K')-schemes

(2.3.8.1) Def (X)) % Def(X)"),

For simplicity, writeD) := Def(X) and D := D®W(K)K. If 2 is a deformation ofX over an
algebraR € Cy, of characteristip then (Frob’)*.2 is a deformation oft (”"). Via (2.3.8.1)
this gives a morphism

On:D— D).

This morphism is none other than théh power relative Frobenius dp over K.

Fix an algebraically closed field containingK’. Definem, to be period of, i.e., the smallest
positive integer such thét: + mg) = f(¢) for all : € .# = Hom(k, k). (Cf. 1.1.6.) We are going
to define a lifting

o — D)

of ., Recall that we have a decompositidh= XD o XM with X@) isoclinic of
slope), . Using thatX is a K -form of the standard ordinary object of typé f) we see that
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X[Fme] = XO[Fm] o x X0 [F]
=xM [p)\lm()/m] X eee X &(T) [phmo/m]_

Note that\,mq/m € Z for all v. Now supposeZ” is a lifting of X over someR € Cyy k. As
shown in 2.1.9 we have a slope filtration

Ocz(r,r) Ci(rfl,r) C--. CZ(LT) — .

Define a finite subgroup scherieC 2" by
Q — z(r,r) [p)\rmo/m} +£(r71,r) [p)\r,lmg/m} 4ot Z(l,r) [p)\lmg/m] )

Note that
Q®er K =X[F"].

One easily verifies tha?” /() is again a BT with/-structure oveR, which is a lifting of X ("%,
This construction defines a functbef (X)) — Def(X“"")), and by composition with (2.3.8.1)
we get a morphisndca : D — D) that lifts p,y,, .

2.3.9. PROPOSITION — With respect to the cascade structure Bn= Def(X) defined in
2.3.6 the morphismde@® : D — D) is a homomorphism of cascades.

The proof of the proposition is tedious but straightforward; we leave it to the reader. We do not
know if one carcharacterizethe cascade structure @ef(X) by its property thatb<®* defines
a homomorphism, as in the “classical” ordinary case — cf. the appendix by Katz to [4].

2.3.10. DEFINITION. — Situation as in 2.1.2. Theanonical lifting X “*" of X overW (K) is
the lifting corresponding to the zero section of the casdadé X ). Concretely, if

X=XD %o x0

is the slope decomposition &f as in 1.3.12 then by 2.1.5 each isoclinic fackd?’ has a unique
lifting .2~ :z%)(l() overW(K), and
&can ::Z(l) NI, z(r)

2.3.11. Let R be a complete locdlV (K)-algebra with residue fiel& . If 2" is a lifting of X
over R then the natural mapndg(2°) — Endk (X)) is injective; this follows from lllusie [11],
d) of Theorem 4.4.

Write L for the fraction field of&. Recall that(d, f) is the type ofX. Given a lifting 2~
overR, write R := R®W(K)W(F). We say that?” is of CM-typeif End ;(2") ®z, Q, contains
a commutative semi-simple-subalgebra& with dim, (&) = d.

2.3.12. PROPOSITION — (i) The canonical liftingX“*" is the unique lifting ofX with
the property that (geometrically) all endomorphisms lift. More precisely, suppose k is
algebraically closed. Le2” be a lifting of X over R € Cyy (). Then the map

Endgr(Z2") — Endi(X)

is an isomorphism if and only i” =~ X*" @y () R.

4€ SERIE— TOME 37 — 2004 N° 2



SERRE-TATE THEORY FOR MODULI SPACES OF PEL TYPE 247

(i) LetD := Def(X) have the structure of an-cascade defined i2.3.6 Let R be a complete
local W (K)-algebra with residue field(. Lets € D(R) correspond to a liftingZ” of X overR.
Then the following properties are equivalent

(a) sis atorsion point

(b) 2 isisogenous toX“*";

(c) Z is of CM-type.

Proof. —(i) Write ¢’ := End(X). Then &’ is a product of matrix algebras over finite
unramified extensions df,,; see 1.3.11. WriteX’ for X viewed as a BT witho”-structure.
On the one hand, using the explicit description of the ordinary type/ovek, it is clear that all
endomorphisms ok lift to endomorphisms off “**. On the other hand, it is not difficult to see
that X’ is again ordinary, ashthat it is rigid.

(i) To see that (a}= (b) we argue by induction on the number of slopes. We use the notation
of 2.1.9. Ifr = 1 thenX is rigid and there is nothing to prove. FoE= 2 we have an extension

(2.3.12.1) 0— 22" _}zng) _o0.

By induction we may assume tha (>"), which is a lifting of X(>), is isogenous to the
canonical lifting

K(Q"T)’Can Qw ) R= Zg) XX Zﬁ?-

But if the class of the extension (2.3.12.1) is torsion ti#hnis isogenous ta2”(>") x Zg).
Hence (a) implies (b).

That (b) implies (c) is immediate. For (e} (&) we may assume thaf = & is algebraically
closed. LetL be the fraction field of¢. Suppose thatZ” is of CM-type, i.e., there is a
commutative semi-simplé-subalgebr& c Endo(z) with dimy, (&) = d. Again we are going
to use induction om. Forr = 1 there is nothing to prove. Far> 2 it suffices to show that the
extension class of (2.3.12.1) is torsion and tRat>") is of CM-type, too.

AsEndg(Z") ® Q, maps injectively to

(2.3.12.2) Endi(X)®@Qp= Mg (L) x --- x Mgr(L),
the algebra¢ is a products} x --- x &, with &; a field extension of degre# of L. If O; is the

ring of integers ing; then& N Endr(Z) is a subring of finite index i, x --- x O,.. Further,
everya € Endg(Z) maps2 > ¢ & into itself; indeed, the composition

2Oy L )
is zero, as it is zero on the special fibre for slope reasons. Of course, under the decomposi-

tion (2.3.12.2) the resulting homomorphismEndg (2" ) — Endg(2 (7)) is given by the
projection onto the lagt- — 1) factors. The kernel ok maps injectively to

Endz(2°'V) = Mgy (0).
Combining these remarks we readily find th& (>") is of CM-type. Finally, because
& NEndgr(Z) is of finite index inO; x --- x O, there are non-zero integers such that
(n1,0,...,0) and(0,ns,...,n,) are both inEndz(2"). This implies that the class of (2.3.12.1)

is torsion. O
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3. Ordinary polarized Barsotti-Tate ¢-modules
3.1. Generalities on BT, with (&, , ¢)-structure

3.1.1. From now on we assume that> 2. If X is a commutative finite locally free group
scheme over some basisthen we writeX ” for its Cartier dual. IfX is a BT overS then we
write X © for its Serre dual. In both cases there is a canonical isomorphisnX — X PP,

Letn € NU{oo} ande € {£1}.If X is a BT, over a base schentéthen by are-dualityof X
we mean an isomorphisin: X — X P such that\ = ¢ - AP o kx. Such are-duality induces an
involution f — fT on the ringEnds (X ). We also refer to an-duality as a polarization.

Let (0, ) be aZ,-algebra equipped with &,-linear involutionb — b*. Lete € {£1}. By a
BT,, with (&, *,)-structure overS we mean a tripleX = (X, ¢, A\) where(X, ) is a BT,, with
O-structure and\: X — X P is ane-duality, such that(b*) = «(b) forall b € 0.

Let K be a perfect fieldshar(K) = p. Leto be the Frobenius automorphismidf, (K). Then
a BT,, with (&, %, ¢)-structure ovel’ corresponds to &-tuple (M, F,V, ¢, ), where

— M is a freeW,, (K )-module of finite rank,

— F:M — M is ac-linear endomorphism,

— V:M — M is ac~!-linear endomorphism,

- ¢: M x M — W, (K) is a perfecte-symmetric bilinear form, and

— 1:0 — End(M, F,V) is aZ,-linear homomorphism.

In addition to the relatiod” o V = p - idj; = V o F we should have

(3.1.1.2) o(Fmy,msy) = cr(cp(ml, Vmg)) for all m1, mo € M;
p(bmi,m2) = p(mq,b"me) forallbe & andmy, ms € M,

and forn = 1 we have the additional requirement thétr(F') = Im(V") andKer (V') = Im(F).
We shall mainly use this in the cases-= 1 andn = occ.

3.1.2. We call aQ,-algebraunramifiedif it is isomorphic to a product of matrix algebras
over finite unramified field extensions @f,. We are interested in BTwith (&, x, ¢)-structure,
where? is a maximal order in an unramifi€@,-algebra. By Morita equivalence (see e.qg. [14],
Chapter I, § 9), the study of such objects reduces to the following four special cases.

Case C:0 = W (k), with « a finite field,* = id ande = —1.
Case D: 0 = W (k), with « a finite field,« = id ande = +1.

Case AU: 0 = W (&), with £ = F . a finite field of even degree oveéy,, with + = o™ the

unigue non-trivial involution, and = +1.

Case AL: 0 2 W (k) x W(k), with « a finite field, with* given by (z,y)* = (y,z), and

e=+1.

In case AL every BT, with (&, *,+1)-structure is of the fornk =~ X, x &f’, whereX isa
BT, with W (k)-structure, and where thel-duality of X is given by switching the factorX ;
and&f’. This reduces case AL to the study of BT wifiistructure.

3.1.3. Let us now briefly review the second classification theorem proved in [24]; this
concerns a variant of Theorem 1.1.5 for polaripbjects. We shall state the result in its general
form, not only for the basic cases C, D and A.

Let (B, %) be afinite dimensional semi-simgdig-algebra equipped with an involutién— b*.

Lete € {£1}. Letk be the center oB andx := {z € & | z* = z}. We can decompoge, %) as
a product of simple factors, sdyB, ) = Hl (B, *y). Accordingly we have decompositions

n=1

k=]]&n andk =[] kn. Thek,, are finite fields. We hav®,, = M,. (k) for somer,, > 1.
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If %, is an involution of the second kind then eithgy = k,, x x,, Or &,, is a quadratic field
extension ofk,,. We say in this case th&B,,, x,,) is of type A. Next suppose,, is of the first
kind; in this casek,, = k,,. Sets,, = +1 if *,, is orthogonalg,, = —1 if %, is symplectic. We say
that(B,,, *,) is of type C ife - £,, = —1 and thatitis of type D it - £, = +1.

Let.# = .# U---U.7 be the set of homomorphisms— k. ForX € {C,D, A}, [eth cs
be the union of all subset¥,, C .# for which (B,,,*,) is of type X. Let ¥ = 4 U---U .9
be the set of homomorphismis— k. We have a restriction mags:.# — .#. Forr € .# define
Fi=7ox Ific #°U.#P thereis aunique € .# with res(7) = i, andr = 7; if i € .#* there
are precisely two elements 7 € .# that restrict to the embeddirign .

3.1.4. Let k be an algebraically closed fieldhar(k) = p > 2. Consider tripleg N, L, )
consisting of a finitely generatdél ®r, k-moduleN, ane-*-hermitian form

Y:NxN— By, k,

and a maximal isotropic submodule C N. With a similar construction as in 1.1.2, such a
triple is classified, up to isomorphism, by a pédt f) consisting of functiond: .# — Z>, and
f: . — Z>o such thaf(r) + §(7) = d(i) forall 7 € .# andi =res(7) € ..

3.1.5. Notation as above. Lét be a BT; with (B, *, ¢)-structure ovek. ToY we associate
a triple of invariantgd, f, ¢), referred to as its type.

Let N = (N, F,V,.,¢) be the Dieudonné module &f. There is a unique-+-hermitian form
¥:N x N — B ®p, k such thatp = Trdov, whereTrd: B ®r, k — k is the reduced trace.
SetL :=Ker(F). Let(d, ) be the pair of functions corresponding{@, L, ¢). It can be shown
([24], 4.3 and 6.5) that the functiahis constant on each of the subsets C .#. Note that for
i€ .7 U P thereis a unique = 7 with res(7) = i, henced(i) = 2 - f(7).

Finally we define a function

5:.9° - 7)27.

Giveni € .#P, letr € .7 be the unique element witfes(7) = 4, and writeN; := N, C N. Then
let

8(i) =length g, i (Ker(Flw,) / Ker(Flw,) 0 Ker (Vi) ) mod 2.
If there are no factors of type D theA® = () and the invariand is void.

3.1.6. Fix atriple (Ny, Lo,v0) as in 3.1.4, corresponding to a péit, f) with d constant on
each subset’,, C .#. DefineG := SpB®Fpk(N0, o), the algebraic group (ovéf) of B ®r, k-
linear automorphisms ofV, that preserve the formy,. We haveG = [],. , G;, with G;
isomorphictoSpd(WC ifie #C, to Ogyrifie P and toGLg() . if i € 7.

Let G° C G be the identity component. Defing® to be theG°-conjugacy class of the
parabolic subgrouftab(Lg). Write Wgo for the Weyl group ofG?, and letWyxo C Weo be
the subgroup correspondingXd.

Let Y be a BT, with (B,x,¢)-structure overk, of type (d,f,0). To Y we associate an
elementw(Y’) € Wxo\Wgo. This works essentially the same as in 1.1.4: Choose an isometry
€:(N,) = (Ng,v0) that restricts tal. — Lo. Then we choose a Borel subgro@pc G°
that stabilizes the canonical filtratisfi (viewed as a flag iV via &), and we definev(Y) to
be the Weyl group coset measuring the relative positidgtab(L,) and@. This is independent
of the choices of and@.

With these notations the second main theorem of [24] is the following.
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3.1.7. THEOREM. — Letk be an algebraically closed fieldhar(k) > 2. Sending a BT with
(B, *,¢)-structureY” to the elementy(Y") gives a bijection

{isomorphism classes of of type (d, §,6) } — Wxo\Wego.

3.1.8. Remark— In [24] we have given two versions of the above theorem: the result as stated
here, and a version working with the possibly non-connected gty his is only relevant if
there are factors of type D.) In this paper we shall exclusively work with the connected@foup
The notationG® andX° should remind us of this.

3.2. Ordinary BT with (&, *,¢)-structure

3.2.1. Situation— We assume > 2. Let # be an unramified semi-simpl@,-algebra,
equipped with an involutior. Let ¢ C % be a maximal order that is stable underWrite
B := 0'/p0, which is a finite dimensional semi-simdig-algebra on which we have an induced
involution *. Letk = k, char(k) = p. Lete € {#1}.

Let X = (X, ¢, \) be a BT with(&, *,e)-structure ovek. Write Y := X|[p|, which is a BT,
with (B, *, €)-structure. Le{d, f, §) be its type. Le{ G, X°) be as in 3.1.6.

We should like to have a notion of ordinariness for the polarized obfectWe shall take
the same approach as in the non-polarized case. Thus, we define a ngdmiinariness,
depending only on the structure of thekernel, and a notion gi-ordinariness, depending only
on the isogeny class df. Our main goal is then to show that the two notions are equivalent, and
that, working ovek = k and fixing(d, f, §), there is a unique ordinary object, up to isomorphism.
For factors of type C or A, most of this is a rather straightforward extension of the results in the
non-polarized case. The factors of type D require some extra work.

3.2.2. DEFINITION. — Situation as in 3.2.1. Let°™ € Wxo\Wgo be the class of the longest
element o 0. We say thaf{, as a BT with( &, x, £)-structure, is[p]-ordinaryif w(Y) = w°™d.

3.2.3. We define alp]-ordinary objectX ¢ = X°"(d,f,8) over k. We shall only do this
in the basic cases C, D and AU. As explained in 3.1.2, case AL reduces to the study of BT
with @-structure (without polarization), and®*¢ corresponds to the standard ordinary object
described in 1.2.3. In the general case we can defif¢' by “reversing” the reduction step
discussed in 3.1.2, based on Morita equivalence; we leave the details of this to the reader. In the
cases C and AU the invariafipplays no role, and we simply omit it in the discussion.

Case C.n this case the paifd, f) has a very simple form: there is a natural numpeuch
thatd = 2¢ andf(i) = ¢ foralli € .#. Let X , andX  , beasin1.2.4. TheX , x X . has
a natural-1-duality, andX ™ = (X _, x X )%

Case D.The pair(d,f) is as in case Cd = 2q andf(i) = ¢ for all ¢ € .. Further,d is an
arbitrary functions? — Z/27Z.

First we do the casg= 1. Up to isomorphism there is a unique BWith (x, id, +1)-structure
of type(2,1,4); we call itY (§). The Dieudonné module of the corresponding standard ordinary
object X (8) = X°4(2,1,4) is given as follows. LetM be the freelV’ (k)-module with basis
{e;;} for i € # andj € {1,2}. Let b € & act one; ; as multiplication byi(b) € W (k).
Frobenius is given on base vectors by

{F(ei,l):ei+1,l if 5(i) = 1; {F(ei,l):p'ei+l,2 if 5(i) = 0.

mult

Flei2)=p-€it12 Flei2)=eit1.1

Verschiebung is determined by the rule ti8t = p = V F'. The formy is an orthogonal sum of
the formsyp; on M; = Span(e; 1, e;,2) given by the matrix({ ;).
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Forg > 1we haveX°™ = (X, x X, )¢ " x X(8), where this time we equii ,, x X
with its natural+1-duality. Note that ifs is the constant functioh then X (§) = X, x X
so in this case we hav”* = (X ., x X,..10)%

Case AUWe haved € N, andf:.# — Z, is a function withf(r) + j(7) = d for all 7 € .7.
Sincer is a finite field,.7 is a finite set with cyclic ordering. Le¥/ be the freelV’ (k)-module
with basis{e, ;} for 7 € .# andj € {1,...,d}. DefineF andV by

mult

mult?

ey ifi<d—i(r) Vo pren; iTi<d—f(r);
F(ef’-’)_{p-em,j ti>d—fr; ) T ey iG> d— ().

The pairingy can be chosen in such a way thate. j,e. ;) #0 only if 7/ =7 andj = j’,

and such thap(e, ;, ez ;) =: ¢, only depends om. In order for this pairing to satisfy (3.1.1.1)

we should then choose the functien— ¢, such thate.; = o(c,) for all 7. In particular, if

E C k is the subfield withp®*™ = ##« elements ther, € W (E)* for all 7. The choice of the
constants:; is not unique, but it can be shown that, up to isomorphism, the resulting Dieudonné
module) is independent of this choice.

3.2.4. Our next objective is to define the notionefrdinariness for BT witl{ &, x, )-struc-
ture, analogous to the definition in 1.3.3. In th&larized case we cannot give the definition in
terms of a single Newton polygon; instead we have to go deeper into the theory developed in
[16] and [31]. We closely follow Wedhorn [36], to which the reader is referred for more details.
For simplicity of exposition we shall assume that we are in one of the basic cases C, D or AU.
Let ¥ := 2%, with its natural structure of a lef#-module. Lety): ¥ x ¥ — % be an
e-+-hermitian form. Writey — 7 for the associated involution of th@,-algebraEndz(7),
and let¥ = CSp4(¥, ) be the algebraic group ovél, given, as a functor o, -algebras, by

9(A)={y€Endg(¥)®q, A|v7€ A*}.

Let (X*,R*, X,,R.,A) be the based root datum of. We have a natural action of
I':= Gal(Q,/Q,) on X,. Let Wgo be the Weyl group of/° (= the Weyl group of the root
datum). The closed Weyl chambeérC (X, ® Q) corresponding to the root bage is stable
under the action aof and is a fundamental domain for the actiori@fo.

We define a subsédrd(d, f) C (X. ® Q)/Wyo of ordinary points. Choose a decomposition
(v ®Q,) = #o® #1, where#;, and#; are(#®Q, )-submodules, totally isotropic with respect
to v, with # of typef. Define a cocharacter: Gm_’@p — %@p by the requirement that(z) acts
as multiplication byz7 on #;. The setc of all cocharacters obtained in this way is a union of
%O(QP)—conjugacy classes, say=c; U---Uc,. (Of courses > 1 occurs only if(&, +,¢) is of
type D.) Letfi; be the unique representativegfin C. If T C I is the stabilizer ofi; in the
Galois group then we defing € (X, ® Q)/Wxo to be the image of the “averaged” element

1 -
[1’\:1'\/] Z RANE

~yel'/TV

Finally, define
Ord(d,f) :={fi1, .-, fis} C (Xx ® Q)/Wego

to be the set of classgs; thus obtained. As the notation suggesisd(d, ) takes the role
of the Newton polygorOrd(d,f) defined in 1.2.5. If(&,*,¢) is of type C or type A then
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Ord(d,f) consists of a single element; in case D we may get a set of moreltiedement.
See Wedhorn [36], Section 2.3, for an explicit calculation of theset(d, ).

3.2.5. To X we can associateMewton point(X) € (X, ® Q)/Wgo. For the definition we
refer to [31]. (One needs to combine loc. cit. (1.8), (3.4) and (3.5).) The Newton point takes the
role of the Newton polygon in the classical theory. Note however, that in gemgkgl does not
determineX up to isogeny, as the Newton map need not be injective.

3.2.6. DEFINITION. — Situation as in 3.2.1. We say th&t, as a BT with(&, x, ¢)-structure,
is p-ordinaryif 7(X) € Ord(d, f).

3.2.7. THEOREM. — Situation as ir8.2.1 Then the following are equivalent

(a) X is p-ordinary;

(b) X is [p]-ordinary,

(©) X = XI(d,f,6).
If there are no factors of type D or if the function .#P — Z /27 is the constant function
then(a)—(c)are equivalent to the condition th&, .), the underlying BT witho-structure, is
ordinary in the sense of Sectidn3.

We divide the proof into a couple of steps.

3.2.8. As usual we can reduce to the basic cases C, D, AU and AL. In case AL there is a
further reduction to a statement about non-polarized BT, and the result follows in this case from
Theorem 1.3.7.

We sketch the argument if we are in one of the cases C or A, &r.if® — Z/2Z is the
constant functionl. Write X’ for the underlying BT with&-structure, without polarization.
Similar notation forY” := X |[p]. If X is [p]-ordinary then by inspectioof 1.2.3 and 3.2.3 we see
that X' is [p]-ordinary too. Conversely, suppo3g is [p]-ordinary. Up to isomorphism there is a
unique polarization o’ that makes it into a BTwith (B, , ¢)-structure; see [24], 5.5 and 6.7.
HenceX is [p]-ordinary. In particular this proves the last assertion of the theorem.

SupposeX is p-ordinary. It can be shown that then al&d is p-ordinary. By Theorem 1.3.7
this implies thatX' is [p]-ordinary, and by the above it follows that is [p]-ordinary.

If X is [p]-ordinary then by Theorem 1.3.7 and the above we know ifat X"°*(d, ).
We claim that up to isomorphism there is a unique polarization fornX6f(d, f) making it
into a BT with (&, *,e)-structure. In the cases C and D (still assuming théat the constant
functionT) we haveX"°(d,f) = (X ., x X,,.,;)? for someg, and the claim follows without
difficulty. In case AU we may assume thﬁf’”rd(d, f) is isoclinic (one slope), which means that
it is isomorphic to thel-fold product of a height object. The polarization forms then correspond
to the isometry classes of ramkhermitian forms ovefV (k). But there is only one such class,
by [14], Chapter Il, (4.6.5) and the fact that the norm miEpx)* — W (k)* is surjective. Our
claim follows.

The implication (c)= (a) follows by direct computation of the Newton pointﬁf’rd(ch f,0).

3.2.9. Let us now assume that we are in case D &mglnot the constant functioh Recall
that & = W (k) for some finite fieldsx = F,~ and that the typéd, f) is given byd = 2¢ and
f(1) = ¢ for all . The implication (c)= (a) is again done by direct computation of the Newton
point. Next suppos& is u-ordinary. To prove thak is [p]-ordinary it suffices to show that,
the underlying BT, hag-rank > m - (¢ — 1); the point is that°™d(d, §) is the only BT, with
(k,id, 4+1)-structure which is of typ€2q, ¢, ) and for which thep-rank is> m - (¢ — 1). We
use the notation of 3.2.4, applied to case D. (In particuars the fraction field ofiV(x).)
Let ¥’ .= GL»(?), write X for its coroot lattice andVy. for its Weyl group. The inclusion
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¢ — ¢’ gives rise to a map: (X. ® Q)/Wgo — (X, ® Q)/We . If X =(X,,)\) is a
BT with (W(x),id,+1)-structure andX’ = (X,.) is the underlying non-polarized BT with
W (k)-structure then3 maps the Newton point ok to that of X’. But the Newton point of
X' can be represented by a single Newton polygon (cf. the proof of 1.3.2), apeatsk is
simply m times the multiplicity of the slopé in that polygon. Hence everything boils down to
verification that in each of the polygom&i), for i € Ord(d, f) C (X, ® Q)/Wgo, the slope)
has multiplicity> ¢ — 1. This easily follows from the computations by Wedhorn in [36], (2.3.4).
Finally, assumeX is [p]-ordinary. With the notation of 3.2.3, case D, we have
Y2, xY

—et =—mult

)7 X Y (6).
By p-rank considerations we have a similar decompositiorfosay
X2 (X o X Xpuae)F x X,
whereX ® is BT with (&,id, +1)-structure of typ&2, 1,). Hence to prove that
X = X"(d,f,9)

we may assume that= 1. As usual we writeM for the Dieudonné module oX. We have a
natural decomposition/ = EBieﬂ M;; write ¢; for the restriction ofp to M;. Let N = M /pM
and writep; = ¢; mod p. AsY = Y (§) we can choose a bas{s; ;} for N (with ¢ € .# and
j€{1,2})such thab € x acts onN; =k - e; 1 + k - ¢; o as multiplication byi(b) € k, such that

Flei1) =€it11 ¢ o/ 7 Fei2) =€i+11 ¢ o/ &
, L e() =1, , 1 it 5(i) =0,
{ V(€i+1,2) = €4,2 ! (z) V(€i+1,2) =€i1 ! (2)

and such that the form, on IV; is given by the matrix® ).

We claim that for every € .# there exists an orthonormal bagi 1,¢é; 2} for M; such that
é;,; reduces te; ; modulop. Further, this lifted basis is unique up to a scalar: any other such basis
is of the form{cé; 1,c'¢€; 2} with c € 1 + pW (k) C W (k)*. To prove the claim, let; ; € N;
be the vector generating the Frobenius kernel (jies 1 if §(i) =0 andj = 2 if §(i) = 1).
Clearly it suffices to show that ; can be lifted to a vecta¥; ; € M; such thatp;(é; ;,¢;;) =0,
and that this lifting is uniquely determined up to a scalat in pW (k). Start with an arbitrary
u € M; reducing toe; ; modulop. Choose any such that{u, v} is aW (k)-basis ford;. As
vi(u,u) =0 mod p we havey;(u,v) € W(k)*, so after rescaling the vectorwe can assume
thaty; (u,v) = 1. Lety = —p;(u,u)/2 and setw’ := u + yv. Note thaty = 0 mod p, asp # 2;
henceu’ lifts e; ; and{v’,v} is again a basis fabs;. Finally, p; (uv/,u") = @;(u, u)?p;(v,v)/4,
which is p-adically closer to0 than ¢;(u,u). As M; is p-adically complete, the existence of
the desired liftinge; ; follows by approximation. That this lifting is unique up to a scalar is
straightforward to check, again using that 2.

The rest of the argument is easy. Choose a starting pgiat.#. As just shown we can
choose an orthonormal bas{g;, 1,¢;, 2} for M;,. Let jo € {1,2} be the index such that
F(éi,.5,) = 0mod p; let [, be the other index. Note that there is a unique vectoiin
which maps te;, ;, underV; hence we can defing, 1 := F(&;,,) andé;, o :=V (&, jo)-

It readily follows from (3.1.1.1) thafé,, 1, ¢,, 2} is an orthonormal basis fa¥/;, . Iterating this
construction we arrive, after, steps, at a second orthonormal bagis, 1,¢é;,, 2} for M;, =
M;,. As shown above, this second basis differs from the first one by a scalar+ pW (k).
But if we rescale{é;, 1,€;,,2} by a factory € 1 + pW (k) then this affects the resulting basis
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{&i,..1,€i,, 2} by afactore™ (v). Choosingy such thaty = 0™ () - ¢ (such ay exists!) we have
brought the Dieudonné module in standard form. This completes the proof of 3.2.71

3.2.10. DEFINITION. — Let K be a field of characteristip. Let (0, ,¢) be as in 3.2.1. If
X is a BT with (&, ,)-structure over then we say thak is ordinaryif X ®x k satisfies
the equivalent conditions of 3.2.7 for some (equivalently: every) algebraically closedkfield
containingK .

3.3. Deformation theory of ordinary polarized objects

3.3.1. To finish this section we describe the defmtion theory in the polarized case. Let
X =(X,,\) beanordinary BT witf &, x, £)-structure over a perfect field of characteristig.
Let us first assume that we are in one of the basic cases C or AU; case D shall be discussed in 3.3.3
below. (As always, case AL reduces to a study of non-polarized BT with given endomorphisms
and requires no further explanation.) Writé = (X, :) for the underlying non-polarized BT with
O-structure, and leb := Def(X’). The given duality\: X’ —~ X"** induces an isomorphism
of cascades

v:D 5 Def (XP) =T pv.

Note thatDV has the same underlying spacelsthe duality “V " only involves the cascade
structure. Clearlyy satisfiesy" o v = id. Define a formal subscheni* ¢ D of “symmetric
elements” byD*(R) := {z € D(R) | v(z) = z}. Then we find that we have a natural
isomorphism

Def (X) = D*,
and thatfD* is stable under the Frobenius liftidef>" defined in 2.3.8.

3.3.2. Example— Consider an example of type AU, with = W (%) as in 3.1.2. LetX be
an ordinary BT with(&, %, +1)-structure overk = k. The building blocks for the underlying
non-polarized objeck”’ are the standard ordinary objects of heighte., theX°™(1,), where
f:.# — {0,1}. The dual ofX°*4(1,), as a BT with&-structure, isX°"(1, "), wheref” is
given byfP (1) =1 — (7).

If X’ has one slope then we find thBt = ID. Next assume there are two slopes, so
X' = X" x X"® |t follows from the unicity in 1.3.12, combined with slope considerations,
that \ restricts to an isomorphisgi”® = x"(1-P Taking this as an identification we have
that

A:X/,(l) X X/,(l),D ;’X/’OLD % X/"(l)

is given by reversing the two factors. For simplicity, wrife= X"M_ The formal deformation
spaceD is described as the functdt — ExtR(zg,zR), where %, is the unique lifting
of Z over R. The symmetryy is the automorphism o that associates to an extension its
Serre dual (which is again an extension@f}g by Z ). We find thatD* C D is a formal
subgroup ove#V (k). However, in generaD” is only stable under the action of the subring
W (k) C 0 =W (k) of x-symmetric elements i, not under the full action of.

If there are3 or more slopes the®* does not inherit a cascade structure fildorHowever, in
the case o8 slopes one may still descrifiz* as a torsor under a formal group over the diagonal
of another formal group; cf. point (d) at the end of this section.

3.3.3. Assume now we are in case D. L@&yq, ¢, ) be the type ofX. If § is the constant
function 1 then X, the underlying BT, is ordinary in the classical sense and the structure
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of Def(X) is fully explained by the classical theorlfrom now on we therefore restrict our
attention to the case thati) = 0 for somei. Note that in this case the underlying objéct is

not ordinary in the sense of 1.3.8, so we cannot directly use the theory developed in Section 2.
With some easy modifications we have a similedry in this case, though. We outline the main
features.

(a) To begin with, recall that the ordinary objektof type (2¢, ¢,0) canonically decomposes
asX = XM x X® x X® with xM =~ x21 andx® =~ x7 1 and withX® ordinary of
type (2,1,9). It is important to note thak @ is again a polarized object, whereas the factors
XM andX® are BT with&-structure, dual under the given polarization®n

The first fact we need is that the “middle” factai® is rigid, as a polarized object. Thus,
for R € Cyy (k) there is a unique Iifting%_”g) of X® overR. In particular there is a canonical

lifting X ®°* over W (K). The factorsX V) and X, as BT with@-structure, are rigid too,
and we use a similar notation for their liftings.

(b) Consider the functoE from Cyy (k) to &-modules given by — ExtR(Zg),ig)).
Here we view Barsotti-Tate groups as sheaves for the flat topology, anBxthés taken
in the category of sheaves @f-modules onSpec(R). We claim thatE is represented by
a BT with &-structure overlW (K) which is geometrically isomorphic to the product of
q — 1 copies of X(?an To see this, we first observe that we have a morphism of functors
Def(XW x Xy — Def(X @), where the prime indicates that we now vigi?) withoutits
polarization. Using Grothendieck—Messing dafiation theory one can show that this morphism
is formally smooth. Now the object (?-<*" gives us a sectiofpf(W (K)) — Def(X?), and
the functorE represents the pull-back @‘ef(i(l) X X(Q)) via this section. In this way we see
that[E is pro-representable and formally smooth.

From now on let us assume that = k is algebraically closed. We identif§’ = W (x) and
write L for its fraction field. Note thal./ &' = X ;. We have a short exact sequence of sheaves
of ¢-modules0 - ¢ — L — L/0 — 0. As HomR(L,Zg)) = 0, this gives rise to injective
maps

X® <@ (R) = Homp (0, 23) — Extp(L/0, 22),

functorial in R. Put differently, we have an injective magp (1(2)’“‘““)‘1—1 — E. One easily
verifies that this map is an isomorphism on tangent spaces. Hasea isomorphism an8l,, is
isomorphic to the product af — 1 factorsX (22",

As Serre duality gives an isomorphism Bfwith the functorRk — ExtR(zg),zg)), we
have the same conclusions for the latter.

(c) Let X’ be the pair(X,:), without polarization form. Any deformation ok’ over R

admits a slope decomposition, with graded pie@ég), Z andig), whereZ is a deformation
of X7 Consider the closed formal subschefile- Def(X') given by the condition that

Z = iﬁ?; this is equivalent to the condition that the polarization formXf? lifts to Z.
The slope filtration gives rise to a morphigin— E x E, where the first (respectively second)
factorE controls the extension @g) byzg) (respectively the extension @g’) byzg)).

Similar to our constructionin 2.3.6, we can giehe structure of a biextensios:-(3-cascade)
over E x E. The structure group is of courdext(X™, X®), which is a formal torus of
rank (q — 1)2.

(d) Finally, the deformations ok are parametrized by a closed formal subsch@he D,
defined as the fixed point locus I of an involutionD = DV. This fixed point locus lives
over the diagonal inE x E; its fibres are principal homogeneous under a formal torus of
rankg(qg —1)/2.
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4. Moduli spaces of PEL type, and congruence relations
4.1. The Ekedahl-Oort stratification on moduli spaces of PEL type

4.1.1. We consider a moduli problem of PEL type with good reduction at a ppime. The

data involved are the following.

— (4, ) is a finite dimensional semi-simp(@-algebra with a positive involution;

— 7 is afinitely generated faithful lef#-module;

— p: ¥ x ¥ — Qis a symplectic formQ-bilinear, alternating and perfect) with the property
thato(buy,ve) = p(v1,b*vy) forall b € Z andvy, vy € ¥

— pis aprime number 2 such thatZ ® Q, is unramified (see 3.1.2);

— Og is aZ,)-order in%, stable undex, such tha z ® Z,, is a maximal order i @ Q,;

- A C 7V ®Q, is aZy-lattice which is also al¥) z-submodule, such thagtinduces a perfect
pairingA x A — Zy;

— 4 :=CSp(A,¢)NGLo ez, (A) is the (not necessarily connected) reductive group dyer
given by the symplectic similitudes A\, ¢) that commute with the action @¥4;

- 2" is a¥(R)-conjugacy class of homomorphisrfis— ¥ (with S := Resc/r G,) that
define a Hodge structure of type 1,0) + (0, —1) on¥& for which either2zi - or —27i-
is a polarization form;

— cis the%(C)-conjugacy class of cocharacters#f associated to2”; concretely, ifh € 2
then we have a cocharacter= p;, through whichz € C* acts on? 1.0 (respectively
¥%—1) as multiplication by (respectively byi);

- E=E(9,2)is the reflex field, i.e., the field of definition of the conjugacy class

4.1.2. Fixdata? = (%,,7,0,0%,A, Z) asin 4.1.1. LeQ be the algebraic closure Qf
insideC. We fix an embeddin@ — @p. Let v be the corresponding place &fabove(p). We
write Og,,, for the localization oD g atv.

LetC, :=%(Z,). LetC? be a compact open subgroup%m’;), and putC' := C,, x C?. We
consider the moduli problen¥y « overSpec(Og,,) defined by Kottwitz in [17], § 5. I is a
locally noetheriarOg ,,-scheme then th&-valued points of7y ¢ are the isomorphism classes
of four-tuplesA = (A4, \, ¢, ) with

— A an abelian scheme up to prime4igsogeny ovefl’;

— A€ (NS(A) ®Z,)/Z) the class of a prime-tp-polarization;

- 1:05 — Endp(A) ® Z,) a homomorphism oZ,)-algebras with.(b*) = +(b)'; heref is

the Rosati involution associated k¢

— 7 a level structure of typ€'? on A,
such that a certain determinant condition is satisfied. For precise details we refer to Kottwitz [17],
§ 5. If C? is sufficiently small, which we from now on assume, thep  is representable by a
smooth quasi-projectiv@ g ,,-scheme.

4.1.3. Intherestof this section we assume that ) is simple as an algebra with involution.
Then (4, ) is of one of the four types -1V in Albert’s classification; see Mumford [26], § 21.
Let Z = Z4 be the center o8 and Z, C Z the subfield ofx-symmetric elements. Define
0= (0% ®7Z, N(Z®Q,). We again writex for the involution of & induced by the given
involution of A. If (A, x) is of Albert type | or I, set = —1; otherwise set = +1. The triple
(0, *,¢) thus obtained is a product of triples of type C, D, AU or AL (cf. Section 3.1.2); more
precisely:

— if (A, *) is of type | or Il then(&, x,¢) is a product of triples of type C, where the factors

are indexed by the primes af abovep;
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— if (A, *) is of type lll then(&, *, €) is a product of triples of type D, where the factors are
indexed by the primes of abovep;

— if (A, *) is of type IV then(&, x, ) is a product of triples of type AU and AL; the factors
of type AU correspond to the primes 4f, abovep that are inert in the extensicty C Z;
the factors of type AL correspond to the primesffabovep that split inZ.

Let T be a scheme oveDp . Let s € @7y «(T) be aT-valued point, corresponding to a
four-tuple(A4, A, ¢, 7). The Barsotti-Tate groug[p>°] has a Oz ® Z,, x, —1)-structure. By our
assumptions)z ® Z, is isomorphic to a matrix algebra ovér. Therefore Morita equivalence
applies, to the effect that[p>] comes from a BTX with (&, ,¢)-structure.

Morita equivalence also applies {d, ). For the rest of this section we fix a paiko, o)
consisting of anv-module and aa-+-hermitian pairing such that\, ¢o) is Morita equivalent
to the original paifA, ¢). Note that¥ = CSp,;(Ag, ¢0)-

4.1.4. Let 270 C 2 be a¥’(R)-orbit. The pairf(¢°, 2°°) is a Shimura datum. Definé to
be the® (C)-conjugacy class of cocharacterséfwith 1, € ¢ forallh € 2°°. The reflex field
EY:= E(9°, 2% is afinite extension off = E(¥¢, 2"). Letv° be the place oE° determined
by the chosen embeddi@— Q,,.

Let Sc = Sc(¥9°,2°°) denote the canonical model (ové®) of the Shimura variety
associated t¢#°, 2°9) at levelC N%°(A ). ThenS¢ can be identified with an open and closed
subscheme of the generic fibre@® ¢ ® Ogo 0. In fact, we have a decomposition.ofy ¢ ® C
as a union of open and closed subschemes, say

Ay @C=agWVI.. . 1),

such that eachy () is a Shimura variety. Hereis the order of
Ker<H1(@,g) - []H" @, g)) .
p

In general, the Shimura varieties that constitute the generic fibre are not all associated to the same
Q-group. (Note that different PEL dafa may give rise to the same moduli probles, ¢, since
this problem only involves all local information.)

For some results that we want to discuss it is more natural to work with the individual Shimura
varieties. We define” to be the open and closed subscheme/Bfc ® Ogo 0 whose generic
fibre isS¢. If there is no risk of confusion we simply writ¢” instead of#. Write .y = ¢ o
for the special fibre.

4.1.5. PROPOSITION — Letk be an algebraically closed field containingu?). In the cases
C, AU or AL (Albert typed, Il or IV), the type-function — (ds, fs) is constant on#, (k). In
case D(Albert typelll) , the type-function — (ds, {5, d5) is constant on#y (k).

In fact, it is clear that! andf are constant. We postpone the proof of the assertion in case D to
the end of this subsection.

4.1.6. Letk be an algebraically oked field containing (v°). A k-valued point of#; gives
rise to a BTX with (&, x,¢)-structure, of some fixed typgl, f) or, in case D,d,f,d). Let
(G°,X%) be the corresponding pair consisting of an algebraic group and a conjugacy class
of parabolic subgroups; see 3.1.6. Our classification results op-tkernel group schemes
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Y := X|[p| give rise to arEkedahl—Oort stratification

(4.1.6.1) SH= ] Hw),

wEWXQ\WGQ

wheres € (k) lies in #(w) if and only if Y is of typew. By the statement that (4.1.6.1) is
a stratification we mean that it gives a decompositior¥gfas a disjoint union of locally closed
subspaces and that the closure of each stra#fw) is a union of strata. For proofs of these
facts we refer to Wedhorn's paper [38].

In our paper [25] we have proved the following result.

4.1.7. THEOREM. — If A (w) # 0 then.#,(w) is equi-dimensional, of dimensidw).
We use this result to give a new proof of the main result of Wedhorn [36]:
4.1.8. COROLLARY (Wedhorn). —The ordinary locus in¥; is Zariski dense.

Proof. —Set B := O%/pO4, and again writex for the induced involution orB. Let A be
a 4-tuple as above corresponding to/lé(F, )-valued point of.. Then A[p>] is a BT with
(Oz ® Zp,*,—1)-structure andA[p] is a BT, with (B, *, —1)-structure. We use the notions
introduced in 3.1.6 and 3.2.2 with, the Dieudonné module of[p] andL, C N, the Frobenius
kernel.

The flatness of” overOg ,, implies that#; is equi-dimensional, witdim (.7 ) = dim(.2™%).
Combining this with our dimension formula 4.1.7 and Theorem 3.2.7, it suffices to show that
dim(.2°%) = £(w°™). For this we have to make precise the (thus far implicit) relation between
2% andX". Note thatX is a variety of dimension equal tgw°'?).

The de Rham cohomology := H (A/W (F,)) is a projective module ovedz @ W (F,,).

The polarization of4 induces a hermitian forn¥ : H x H — W (F,), and the Hodge filtration
Fil' C H is a direct summand that is totally isotropic with respecbtd.et.# be the flag variety
over W (F,) whoseR-valued points (for a W (F,,)-algebra) are thé) s @ R-submodules of
H ® R that are direct summands and that are maximal totally isotropic with resp&gt.thet
ZFY C .Z be the connected component containing the pBitt The assumptions made in 4.1.1
imply that.#0 is flat overW (F,,). The special fibre of#7° is isomorphic toX°. On the other
hand, if we choose an ambeddifg(F, ) — C then.%? is a hermitian symmetric space which
is the “compact dual” of2™°, and the Borel embedding identifie¥® with an open submanifold

of 2. Hence we get the desired equality of dimensions.

4.1.9. Let @ be a field containingz?. Let X be the BT with(&, , ¢)-structure associated
to aQ-valued point of”. Write T}, = T,,(X) for its Tatep-module, which is to be viewed as
a freeZ,-module of finite rank with-action and with are-symmetric perfect bilinear form
Yy Tp x T, — Zy(1) satisfyingy, (bz, y) = ¢, (z,b*y) forallb € & andz, y € T),.

The interpretation of the generic fibre of as the Shimura variety associated to the datum
(99, 2°°) gives us an isomorphism af-modulesa: Ay — T,, such thata*1, = ¢ - ¢y for
somec € Z,(1)*. (See 4.1.3 for the definition @i\, ¢).) This isomorphisna is canonical up
to the action of an element &1°(Z,,).

4.1.10. Proof of Poposition4.1.5 The only non-trivial part of the proposition is the
statement that, in case D, the functibis constant.

Suppose we are in case D. As shown in [25], Lemma. 3.1.4, the funetierd, is locally
constant in families. On the other hand, the ordinary locus/pfis Zariski dense; see 4.1.8.
Hence it suffices to show that any two ordinary pointsfhave the sameé.
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Let A be an ordinaryk-valued point of . Write X for the associated BT with
(0,id, +1)-structure. For simplicity of exposition, let us assume #ias a domain, i.e., there
is only one prime o7 = Z 4 abovep. In the general case the argument is the same, but we first
have to decompos& according to the decomposition &f as a product of domains. As usual
we writex = 0 /p0, we let

# =Hom(k, k) = Hom (€, W (k)),

and we putn = #.# = [0 : Z,]. Recall that we have an integeisuch thatd = 2¢ andf is the
constant functiom.

Let § be the invariant ofX’ as in 3.1.5. We say we are in tisplit caseif >_,_ , (i) =m
modulo2, in the non-split casef not. As we shall see, this is independent of the choice of the
ordinary pointA.

In the split case, lef’ = & x ¢ with involution given by(y1,y2) — (y2,1). In the non-split
case, lety be the unramified quadratic extensiornfandx the non-trivial automorphism af
over?. Set.¥ := Hom(0, W (k)). We use the letter for elements of#. Similar to the notation
introduced in 3.1.3 we have a natugall map.# — .# and we sef := 7 o x.

Let R= 09" x ¢ x ¢! with involution % given by (z,y, 2)* = (z,y*,z). Let 7 be the
torus overZ,, of rankmq + 1, given on points by

T(A)={te(Rey, A)* | £ € AX}.
The cocharacter group of is given by
X*(y) = {(am,bT,ci,j) S (Z'])q_l X Zj X (Zﬂ)q_l ‘ Qi+ Cig—5 = const=0b, + b;—}

The constant appearing here is called the weight of the cocharacter. The fundamental group of
Spec(Z,) acts onX,.(.7) through its natural action on the sefsand.~.

Letv:G,, — 7 be a cocharacter of weightover W (k). To v we associate a Dieudonné
module with(R, x, +1)-structure: Takell, = R ®z, W (k), with I’ andV" given by

Firow)=10)(v(p) - (rew)) and ViEow)=(100c ) (v(p)* - (row)),

and with+1-duality given byy(r; @ wi,7m2 ® we) = trr/z, (riry)wiws. If instead of the full

R-action we only remember the action 6f(embedded diagonally int8) then we obtain a BT
with (&,id, 4+1)-structure, denote . For later use let us remark thaf, is ordinary when
viewed as a BT withR-structure; the point is that it has heigh{“relative to its R-structure”),

and heightl objects are always ordinary.

The point of all this is thatX, our ordinary BT with(&,id,+1)-structure, is of the form
X = X, for some cocharacter. In the given description of the cocharacter group, we can
choosev in such a way that;;, ; =0 andc¢; ; =1 forall : € # andj € {1,...,¢ — 1}; with
X =XW x X® x Xx® as in 3.3.3 this is equivalent to the requirement thatrttie factor
(n=1,2,3)of R= 07! x & x 07" acts by endomorphisms df ™). Once we fix thek-
action onX, the corresponding is uniquely determined. }

We can computé from v, as follows. Leti € .#. Choose an elemente .# that maps ta
under the naturd : 1 mapﬂ~ — S . Writev = (a; ;,br,¢; ;). Then

 fOmod2 b £by_y;
5(Z>—{1mod2 if by = b,

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



260 B. MOONEN

Let T, = T,,(X“*") be the Tates-module of the canonical lifting aX. As discussed in 4.1.9
we have an isomorphism: Ag — T},, canonical up to an element &°(Z,,). As remarked
above X is ordinary when viewed as a BT witR-structure, so by 2.3.12 the fult-action onX
lifts to X °*». Via « this gives rise to an embeddinig.7 — ¢° (overZ,), realizing.7 as a max-
imal torus of%°. The cocharacter is defined over a finite unramified extensigrof W (k(v°))
insideW (k). Choose an embedding— Q,,. We obtain a cocharactgr v of ¥° overQ,. On
the other hand, writingt(L) for the ¢°(L)-conjugacy classes of cocharactérs, — ¥° over
a field L, we have natural bijections(C) < ¢(Q) — ¢(Q,), via which we can view’ (as
in 4.1.4) as an element etf(@p). By Reimann and Zink [33], Theorem (1.6), we havev € ¢°.
(This may be off by a normalization factor, due to the fact that we use a different version of
Dieudonné theory, and due to various sign conventions in Hodge theory. Such a normalization
does not affect our argument, though, and we save ourselves the trouble of getting it exactly
right.)

As claimed earlier, whether we are in the split or in the non-split case is independent of the
choice of the ordinary pointl € (k). Let us now prove this. Le¥;, = Ker(c) C 4, where
c:9 — G, is the multiplier character. We ha¥ = Ress,z, ¢/ with 4] an algebraic group
over &. We claim that we are in the split case if and onlyf is split (over?). If we are in
the split case thew; := j(7) N % is of the form 7, = Resy,z, 77 and 7/ C 4] is a split
maximal torus. Conversely, #/ is split then every element @€{Q,) is defined over the fraction
field of &. Butif ), , d(i) # m modulo2 then we find that the conjugacy classjoé v is
defined only over a quadratic extensionZof This proves our claim.

To complete the proof, let us now show tlids determined by the conjugacy cla$sIf W0
is the Weyl group of#° then there is a natural bijecti(ﬁ(@p) = X.(7)/Wyo. We observe
thaty € X.(.7) is the unique representative of the cla8s X.(.7)/Wgo with the property
that for allT € .# andi =res(7) € .7,

a1 < < @ q—1 <min(br, bz) <max(br,bz) <ci1 <o - < Cigt-

Since we can computefrom v, it follows thatc® determines. O

4.1.11.Remark— There are two key points in the above proof. Firstly, we have a direct
relation between the conjugacy cla8sand the conjugacy class of the cocharaeteBecondly,
the cocharacter is directly related to the explicit description of the Dieudonné module of
X°(d,,5). We can further exploit these relations to obtain information on the residue field
k(v?) of the reflex fieldE® at the place’. In the cases A and C (where similar ideas apply), we
find thatx(v) = x(v°) equals the field?(d, f) defined in 1.1.6.

In case D something similar can be done. Given a {geq, 6), defineE(d) C k as the fixed
field of {« € Aut(k) | “6 = &}. Then we find that in case D(split) we hawvg®) = E(§) and in
case D(non-splity(v°) is the quadratic extension &#(¢) in k.

4.1.12. IncaseD, le¥; = Resg,z, ¥, as in the above proof. Set= 0 if ¢ is a split group,
n = 1 otherwise. Then every value férsuch thaty _,_ , d(i) = m + n modulo2 occurs on the
special fibre ofeZy . To see this we have to analyse what happens if we replifec 2
by another#°(RR)-orbit. This amounts to changing the conjugacy clélsby an element of/.
Computingd from ¢ as in the above proof, we find that allwith }~,_ , 6(i) = m + n are
obtained.

4.2. Congruence relations
4.2.1. We retain the notation of Section 4.1. If there is no risk of confusion we simply write
o for oo . Write o7°™ C o for the open subscheme obtained by removing the non-ordinary
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locus on the special fibre. (Note: if we decompesges a union of Shimura varieties, asin 4.1.4,
then oneachof the “Shimura components” we remove the non-ordinary locus.)

Suppose given two four-tuples; = (A;, \;, 1, 7;), for i = 1, 2, corresponding td -valued
points of«7. By ap-isogenyf : A, — A, we mean ai® z-linear isogeny such thgt s = p©- X\
for somec > 0. Note thatf necessarily hag-power degree.

Write p-sog = p-Fs094 « for the O ,-scheme of such-isogenies; it comes equipped with
two morphismss, t:p--%s0g — <7, sending an isogeny to its source and target, respectively.
Fixing p? = deg(f) gives an open and closed subschemésog'? C p-.Zsog. We claim that
the two projections, ¢ : p-7s0g'Y — o7 are proper; in particulap-.Zsog? is of finite type
overOg ,. To see tha# is proper we note that it is relatively representable by a closed subscheme
of a Grassmanian. Indeed Af € <7 (T) for someOg ,-schemel” then ap-isogenyf: A — A’
with deg(f) = p? is determined (up to isomorphism) iger(f) c A[p?]. The affine algebra
of A[p?] is a locally free sheaf” overT. The subgroup schemes that arise as kernel of some
fe p—fsog(d) are parametrized by a closed subschen@eks, (-7 ). Hences is proper. For
a dual version of the same argument applies.

For everyn > 0 we have a morphism? — p-.%sog that sendsi to the isogeny “multiplication
by p™ on A”. As this is clearly a sectionfahe (separable) morphism its image is a reduced
closed subschemdult(p™) C p--Zsog.

Composition of isogenies defines a morphism

C:1p-I509 Xt g s P--F509 — p-I50q.

We claim that this morphism is proper. To see this, work over a dwkith fraction field K.
Suppose given an isogerfy A, — A,, and suppose thgi = ¥k o ¢k . SinceR is a d.v.r., the
flat closure ofer(¢x ) inside A; is a finite flat subgroup scheme, and we get (in a unique way)
a factorizationf = ¢ o  over R. By the valuative criterion it follows thatis proper.

Suppose given a homomorphigng , — L with L a field. Using the composition morphism
we can define an “algebra of isogenies” o¥er.et Zy(p--Fsog ® L) be the group of algebraic
cycles ormp-.Zsog ® L, taken withQ-coefficients. IfY; andY; are two cycles, let

Yl ' }/2 = C*(Yl Xt,s }/2)

Note that the push-forward is defined on the level of cycles, siniseproper. Extending this
product bilinearly, we obtain the structure of@algebra onZg(p--#sog ® L). The identity
element is the cycl®dlult(1) = p-Is0¢?) . Finally defineQ[p- #sog ® L] to be the subalgebra of
Zo(p--Fsog ® L) generated by the irreducible components.

The previous constructions also work paZsog®™?, which we define as the inverse image
unders of «7°"d C 7. As our notion of ordinariness is invariant under isogenies7sog°™ is
also the inverse image a#°*4 x «7°*4 under(s, t). Let p-.Z50¢°" @ pe the open and closed
subscheme gf-isogeniesf with deg(f) = p?.

4.2.2. LEMMA. — Suppose given a homomorphiéhg ,, — L with L a field.

(i) If char(L) = 0 thenQ[p-Fsog @ L] C Zg(p--Fsog @ L) is theQ-subspace spanned by the
irreducible components @f . %sog @ L. In other words, ifY; andY; are irreducible components
of p-#sog @ L thenY; - Y3 is aQ-linear combination of irreducible components.

(ii) If char(L) = p an analogous statement holds over the ordinary locus

Q[p-Fs09°™ @ L] C Zg(p-Is09°™* @ L)
is theQ-subspace spanned by the irreducible components &fog°™¢ ® L.
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Proof. —If char(L) = 0 we reduce to the cade= C; then we use the complex uniformization
of the components of/ @ C by hermitian symmetric domains. We omit the details. Next suppose
char(L) = p. For the purpose of this proof let us abbrevigteZsog®™® @ Lto .7 .

Step1: It suffices to show that, fixing, the morphisms;, ¢: .#(4 — o7°'d @ L are finite
and flat. Indeed, suppose this is true. ketandY> be irreducible components of , say withY;
contained ing (%), ThenW := .#(41) x, . .#(42) is finite flat over7**d @ L, andY; x, , Ys is a
union of irreducible components &f . It follows that.# andY; x; ,Y> are both equidimensional
of dimension equal talim (). This readily implies tha; - Y; is a linear combination of
irreducible components of .

Step2: Let.7, C .« ® r(v°) be the special fibre of the Shimura variet; see the discussion
in 4.1.4. Let.7™ be the ordinary locus, and lefZy* C .# be the inverse image o/
under the source morphism Let & be an algebraically oked field containind.. A k-valued
point a € ¢ (k) gives rise to a four-tuplel, which in turn gives rise to a BTA[p>] with
(O ® Z,,*,—1)-structure (cf. 4.1.3). By Theorem 3.2.7 and Proposition 4.1.5, this object is
independent of the choice af up to isomorphism.

If Ris ak-algebraandiff : A; — A, corresponds to aR-valued point of/oord’(d) then up
to isomorphismy only depends on its kern&ler(f) C A, . It follows that the fibres—(a), for
a € k), are all isomorphic as schemes.

Step3: We claim that, fixingl = log,,(deg(f)), the fibress~' (a) are finite. First note that any
p-isogenyf factors asf = f,. o f,._1 o--- o fi in such a way that

Ker(fnofn—l Oofl):Ker(f)[pn]

for all n. Moreover, up to isomorphism this factorization is unique. It therefore suffices to prove
that in the fibre over a given poiatc .7 (k) there are only finitely many-isogeniesf with

the property thaKer(f) is killed by p. Such an isogeny is completely determined by the induced
homomorphism

flpl: Ay lp] — Aslp].

Moreover, sendingas, az) to (a1,a2 + f[p](a1)) gives an automorphism od, [p] x A,[p] as
a BTy with (O%/pOg,*,—1)-structure. Butd, [p] x A,[p] is ordinary, so by Theorem 2.1.2
of [25] its automorphism group scheme is finite.

Step4: We shall use the following general fact:4f X — Y is a finite morphism of schemes
such thaty” is reduced and such that the functigh- dim,(,)(¢.Ox ®o, £(y)) is constant
onY theny is flat. By what was explained in steps 2 and 3 we can apply this to the morphism
s: g — 7prd. As finite flatness is a local notion on the target scheme, this shows that
5:.7 (D — 7ol @ [ is finite and flat.

Finally, that the target morphistis also finite and flat follows from duality. Namely, sending a
p-isogenyf: A, — A, to the dual isogeny*: A, — Al gives an isomorphism betwegn Zsog
and another scheme gfisogenies, which interchanges the rolessodind¢. (In general the
“other” scheme op-isogenies lives over another moduli scheme of PEL type, as the dual abelian
schemesA! with the inherited) z-action may have a different CM-type.) We leave the details
of this to the reader. O

4.23. LetY =50 — o ® Opo o0 be asin 4.1. Defing? — p-Isog @ Opo 0 to be the
inverse image of? x . under the morphisnis, t): p--%sog — &/ x </. We write J for the
generic fibre of # and ¢, for its special fibre.

Consider a homomorphis®go ,0 — L with L a field. If char(L) = 0 we defineQ[J ® L] to
be the subalgebra 6§[p- sog ® L] generated by the irreducible componentd pf Similarly, if
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char(L) = p then we defin€[_#°'! L] to be the subalgebra @f[p-.#s0¢°™" © L] generated
by the irreducible components gf "¢ ® L.

4.2.4. Letq=p™ be the cardinality of the residue fieldv"). We have a section
v: S — 2o

of the source morphism, sending a four-tugléo themth power Frobenius isogeny
pa:A— A9,

The image of this section is a closed reduced subscheme #,. As the source morphism

is finite and flat over the ordinary locus, and the ordinary locus/inis dense® is a union
of irreducible components of#,. We shall henceforth view> as an element of the algebra
Q[ %o ® k(vY)], or as an element of[_ 75" ® x(v°)]. We refer to this elemenp as the
Frobenius correspondence. The main theme of this section isdthetisfies a polynomial
equation with coefficients in the Hecke algebrasof

4.2.5. Recall that we have a conjugacy cla®f cocharacters o¥°, and that=? is the field
of definition of . Let & be thev?-adic completion of2; its ring of integers i€ := O o 0.
Note thaté is an unramified extension @j,; see [22], Corollary 4.7. By the same arguments
as in [37], Lemma 5.1, there exists a cocharagterc® that is defined ove#’. Similar to what
we did in 3.2.2 we can consider the quasi-cocharacter obtained/rbynaveraging its Galois
conjugates. More precisely, IBt:= Gal(Q,/Q,) 2 I := Gal(Q, /&), and consider

1
~yel' /T

which is a quasi-cocharacter @° defined overQ,. This N(u) extends to a quasi-cocharacter
overZ,, and we define# C ¢° to be the centralizer oWV (11).

We denote by.7(4° Q) the Hecke algebra of%ﬁp with respect to its hyperspecial
subgroup?®(Z,), with Q as coefficient field. Let#(4°,Q) C »7(4°,Q) be the subalgebra
of Q-valued functions that have support containedf{Q,) N End(Ao). The Hecke algebras
(A ,Qyp) C (A ,Q) are defined in a similar manner; see Wedhorn’s paper [37], § 1, for
more details. We write

S9H(G°,Q) — A (M,Q)

for the twisted Satake homomorphism. It restricts to a wg<°, Q) — %4 (.#,Q), which we
again call$?, .

4.2.6. Remark— Supposéd, x, <) is of type D. LetA be aK -valued point of 7™, where
K is a perfect field containing(v°). Let X be the corresponding BT witty, *, ¢)-structure.
In 3.2.4 we have defined conjugacy classes of quasi-cocharactes° over@p. One of
these conjugacy classes contaMsu). By definition, saying thatl is ordinary means that the
associated Newton quasi-cocharactek’) lies in one of the conjugacy classgs. Under the
assumption thadl is a point of.#, (not just a point ofe7) we can sharpen thisi is ordinary if
and only ifv(X) is conjugate taV(x). This can be shown using arguments as in 4.1.10.
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4.2.7. As usual we writel,(?) for Tatep-modules and/,(?) := T;,(?) ®z, Q,. Let L be a
field containingE®. Let f: A, — A, be an isogeny corresponding to arvalued point of.J.
Choose identifications; : Ag — T}, X; as in 4.1.9. The linear may, f: V,X; — V, X5 is an
isomorphism andv; ' oV, f o a1 : Ag ® @, — Ag ® Q,, is an element 0% (Q,,). Its class

T(f) = [061 oVpfo O‘I} € gO(ZP)\gO(Qp)/%O(ZP)

is independent of the choices of the We refer tor(f) as thetypeof the p-isogenyf.
The type of an isogeny is constant on irreducible components of the schehhgs allows us
to define a map

h:#5(9°,Q) — QUJ]

sending the characteristic function of a cl@gswith v € 9°(Q,) N End(A) to the sum of all
irreducible components of on which the type is equal tpy]. By extending scalars t@ and
using the complex uniformization dic, it can be checked thatis a homomorphism.

4.2.8. Ournextgoalis to define thetypeof an ordinary isogeny : A, — A, corresponding
to a point of_ 7. In the Siegel modular case this natiis defined by Chai and Faltings in [7],
Chapter VII, § 4. The-type of an isogeny will be an element in# (Z,)\.# (Q,)/ # (Zy).

Let K be a perfect field containing the residue field?). Let A be aK -valued point of 7 *<.
Let X be the corresponding BT witf?, %, ¢)-structure. WriteT,, = T,,(X“*"). As before we
have an identification:: A¢ — T},, canonical up to an element °(Z,).

Write X' for the BT with &-structure underlying{ (forgetting the polarization). We have a
slope decomposition

X' =1, X",

in such a way that the BT underlying” ("), is isotypic of slopes. The canonical liftingX “*"
has the property that as a BT witfi-structure it is the product of factogs*™"(*) where the
factor indexed by lifts X" In particular this gives a decomposition

(4.2.8.1) T,(X") = P T
veQ

4.2.9. LEMMA. — Possibly after changingv: A — T, by an element 0f¢°(Z,), the
decompositior{4.2.8.1)agrees with the decomposition Af, into eigenspaces with respect to
the quasi-cocharactet ().

Proof. —Let @ be the fraction field oV (K'). Consider the categolyIF¢, () of admissible
filtered modules ovef). It is a neutral Tannakian category ov@y. Let A/ be the Dieudonné
module ofX“*". ThenM ® Q,, equipped with its Frobenius automorphism and Hodge filtration
is an object oMF¢, (). Write (Mg, )® C MFg,(yp) for the tensor subcategory that it generates.
We have a diagram as follows.

u WGal

Repg, (9%) 2~ (Mg, )® — Vecy,

lw

Vecg
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Explanation: (a) We can view/p, as an object witlg0-structure iNMFE?E (); this means pre-
cisely that we have a tensor functeras in the diagram. This functer sends the tautological
representation o#° on Ay ® Q,, to the objectM ® Q,,. (b) The functorw is the fibre functor
that sends an object &IF¢, () to the underlying)-vector space. (c) The functari., is the
functor that sends an object, ¢, Fil®) to theQ,-vector spac@ilO(L ®@ Beis)?~t. We refer
to the paper [2] of Colmez and Fontaine for further details.

We have &)-grading on the objeat/q, , coming from the decomposition ¢f“*" as a product
of isotypical factors. This gives us@-grading on the functot. The induced)-gradings on the
functorsw o u andwga,) © u give rise to quasi-cocharacters

i Gy — Aut®(wowu) and yga: Gy — Aut® (waar o u).

(See Saavedra Rivano [34], IV, § 1.) Hefg, is the pro-algebraic split torus with character

groupQ.
The choice of an identification: Ay — T, gives an isomorphism of the functak;,; o u
with the forgetful functorRepr (9°) — Vecg,, and this induces an isomorphism

@0 ~ Aut®(wgal ou).

The conjugacy clasByg.| of the quasi-cocharactex;, that we get does not depend on the
choice ofa (within its ¢°-conjugacy class). By construction, if we ¢ act on7), via o then

the decompositioff,, = TIS”) is precisely the eigenspace decomposition with respegt ip

It now suffices to prove that the quasi-cocharadt€.) is geometrically conjugate toq...
Indeed, if this holds theng. and N (1), being both defined ove®,, are already in the same
4°(Q,)-conjugacy class (use [15], Lemma 1.1.3), and this gives our claim.

The automorphism grouput® (w o v) is an inner form 0%8, so over an algebraic closuég
we have an isomorphistut® (wou) @ Q = 4° ®qQ, Q, canonical up to inner automorphisms.
In particular,y gives a conjugacy clags] of quasi-cocharacters &f° over Q. The two conju-
gacy classe§y] and[ycal] are (geometrically) the same; thissults from the fact that they are
both obtained from the sanf@-grading of the functor:.. But [] represents the Newton quasi-
cocharacter associated X0. BecauseX is ordinary,N (1) is in this conjugacy class and we are
done. O

4.2.10. Let K be a field containing:(v°). Let f: A, — A, be aK-valued point of 7.
Choose isomorphisms; : Ay — 7T,,(X ") as in the lemma. The canonical lifting

fCaIl . Kgan — &;an
respects slope decompositions. Becafigean isogeny, the induced map
‘/pfcan . Vpran N VpXé)an
is an isomorphism. Henae, ! o V, f°* o a; is an element of# (Q,). Its class in
M (Lp)\A(Qyp) A (Lp)
is independent of choices. We call
Tp(f) = [061 o V;ufcan o al] € %(Zp)\'///((@p)/'///(zp)

thep-typeof f.
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4.2.11.LEMMA. — Let T be a scheme ovet(v?). If f:T — #¢ is a T-valued point
of #¢*d then the map — 7,(f;) that associates to€ T' thep-type off; is locally constant.

Sketch of the proof. First one shows that if : A; — A, is ap-isogeny over a field then
its p-type is completely determined by the structurelafr(f). Next remark that it suffices
to test local constancy on schenifs= Spec(R) with R a discrete valuation ring of equal
characteristip. Let &k C R be a coefficient field. Choose an integ€rlarge enough such that
Ker(f) C X1[p"]. Possibly after passing to a finite extensiondive can assume thaf; [p"]
is trivialized, meaning that we have an isomorphi&mp™] = Z[p"] ®, R with Z a standard
ordinary BT with(&, x, ¢)-structure ovek.

Supposen € . (Q,) NEnd(Ao) represents the-type of the isogeny over the generic point
n € Spec(R). The key point is thaKer(f),, viewed as a subgroup schemegp” ] @y, k(n),
can be expressed directly in termsrof To make this more precise, fix an identification

TpZCan g AO

Let k(77) be an algebraic closure &fn), let K (77) be the fraction field ofV (k(7)), and letK (1)
be an algebraic closure &f (77). Then

Ao/p™ Ao = 27" [p"] (K (7)) = X5 [PV (K (7))
as modules over the absolute Galois grougdf;). Let

f%:an : (Kl ® k(ﬁ))can - (Kz ® k(ﬁ))

be the canonical lifting of; to ap-isogeny oveiV' (7). ThenKer(f5*") is uniquely determined
by its points with values it (77), and via the above identifications we have

Ker(fs*) (K(7)) = m(Ao)/p™ Ao C Ao/p™ Ao.
(Our assumptions imply that¥ Ay C m(Ay).)
The conclusion is thder(f),, = H(m) ®y, k(n) for some subgroup schenté&(m) C Z[p"]

depending only omn. But thenH (m) ®, R is the unique flat subgroup schemefip”| ®1 R
extendingKer( f),,. Hence via the chosen trivialization &f, [p?¥] we have

Ker(f) = H(m) ®x R.
Over the closed point dI' we again have a relation between the kernef aind thep-type,
similar to the above. Using this we find that theype of f over the special fibre is again given
by the double cosdin]. O
4.2.12. Thep-type of isogenies allows us to define a map
h: (A, Q) — Q[ 75,
sending the characteristic function of a double cgsdtwith m € .#(Q,) N End(Ao) to the
sum of all irreducible components gf "¢ on which thep-type is equal tdm].

It should be noted that in the Siegel modularec#tss definition agrees with the one given by
Chai and Faltings in [7], Chapter VII, § 4; the normalization fadto# Symz(Zg/ng) used in
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loc. cit. (p. 261) arises only to compensate for the difference between “irreducible components”
and “connected components”. Although it is presumably true Ahigta ring homomorphism,

we did not check this. Fortunately we only need this property on the image of the twisted Satake
homomorphism, where it follows from the commutativity of the diagram below.

4.2.13. THEOREM. — Leto: Q[J] — Q[_#$*4] be the homomorphism given by specialization
of cycles. Then we have a commutative diagraf@-@figebra homomorphisms

H(9°,Q) Q[J]

- g0

Ho(M,Q) " Q[ £

The proof of this result is essentially the same as in the Siegel modular case; see Chai and
Faltings [7], p. 263.

4.2.14. COROLLARY. — Let ® be the Frobenius correspondence ofy, as in4.2.4 Let
Hgo g0y € #)(4°,Q)[t] be the Hecke polynomial associated to the datigffl, 2°°), as
defined in[37], Section2. RegardingQ[_#5*!] as an algebra over# (4°,Q) via o o h, we
have the relation7 (4o, 4-0)(®) = 0.

Proof. —As in Wedhorn's paper [37], this is a direct consequence of the theorem together with
the purely group-theoretic result lodit., Proposition (2.9), due to Biltel.o

4.2.15. COROLLARY. — If _#7¢™ is Zariski dense in 7, then the relationH o, 4-0)(®) =0
holds in the algebr&[_#o], viewed as an algebra ovex)(4°,Q) viao o h.

4.2.16. For cohomological applications it is the latter result that is most interesting. The
condition that_#™¢ is Zariski dense in #, is referred to as theelative density condition
in [37]. Note that even though¥;™ is dense in, the analogous property forZ, may
fail; see for instance Stamm [35]. In the cases where the relative density condition is satisfied,
Corollary 4.2.15 proves the conjecture formulated by Blasius and Rogawski in [1], Section 6.

It is not clear to the author whether it is reasonable to expectifigt 4-0)(®) = 0 if the
relative density condition fails. If in the polynomiéll o, 5-0) we replace all coefficients (viewed
as elements of the algeb@d _¢#]) by the Zariski closures of their ordinary part, then we obtain a
ponnomiaIHégO%O) for which H@O%O) (®) =0 by 4.2.14. Therefore the question is whether
for the differenceHgﬁg0 a0y = Hgo g0y — Hé@) g0y We again haveHgﬁgo %0)(<I>) =0. It
is not so clear to us why this should hold. Note that the coefficientd 6f, g0y are linear
combinations of irreducible componentsﬁo that arenotin the closure of the ordinary locus.

None the less, if we test this in the Hilbert modular case at inert primes (where the relative
density condition fails) then it is still true th&f(o, 5-0)(®) = 0. The point is that the minimum
polynomialis in this case only a factor (of degtyef the Hecke polynomial (cf. Example (2.13)
in [37]), and the coefficients of this mimimum polynomial do not have truly “non-ordinary”
terms. It would be interesting to investigate whether this is a general phenomenon.
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