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EXISTENCE OF UNIQUE SRB-MEASURES IS TYPICAL
FOR REAL UNICRITICAL POLYNOMIAL FAMILIES

BY HENK BRUIN 1, WEIXIAO SHEN 2, SEBASTIAN VAN STRIEN

ABSTRACT. – We show that for a one-parameter family of unicritical polynomials {fc} with even
critical order � � 2, for almost all parameters c, fc admits a unique SRB-measure, being either absolutely
continuous, or supported on the postcritical set. As a byproduct we prove that if fc has a Cantor attractor,
then it is uniquely ergodic on its postcritical set.

© 2006 Published by Elsevier Masson SAS

RÉSUMÉ. – Nous montrons que si {fc} est une famille à un paramètre de polynômes unicritiques dont
l’ordre � � 2 est pair, alors pour presque toute valeur du paramètre c, fc admet une unique mesure SRB
et soit cette mesure est absolument continue, soit son support est l’ensemble postcritique. Nous montrons
aussi que, si fc a un attracteur de Cantor, alors fc est uniquement ergodique.

© 2006 Published by Elsevier Masson SAS

1. Introduction and statement of results

About 10 years ago, Jacob Palis conjectured that “most” dynamical systems have a finite
number of metric attractors whose union of basins of attraction has total probability, and that each
of these attractors either is a periodic orbit or supports a physical measure, i.e., a measure whose
set of typical points has positive Lebesgue measure. The topological version of this conjecture
was recently proved in the one-dimensional case: within the space of C∞ one-dimensional maps,
hyperbolic maps are dense, see [19,20]. This paper deals with ‘Lebesgue most’ parameters within
a family of polynomial maps, and proposes a new strategy for proving a probabilistic version of
the above conjecture.

Consider the family fc(x) = x� + c, where � is an even positive integer. Let M denote the set
of parameters c such that fc has a connected Julia set. Then M∩ R consists of the parameters
c ∈ R for which fc has a compact invariant interval, consisting of the (real) points not escaping
to infinity. An f -invariant measure μ is called physical or SRB if its basin, i.e., the set B(μ) of
points x such that for all continuous functions ϕ :R → R one has

lim
n→∞

1
n

n−1∑
k=0

ϕ
(
fk(x)

)
=

∫
ϕdμ,
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has positive Lebesgue measure. A probability invariant measure which is absolutely continuous
w.r.t. the Lebesgue measure is called an acip, and we say that a dynamical system g :X → X
is uniquely ergodic if there is at most one probability measure on X which is invariant under g.
There are many parameters c ∈M∩ R for which fc has no physical measure, or the physical
measure is supported on a hyperbolically repelling set, see [16] and also [29]. Our main theorem
states that for Lebesgue almost all c ∈M∩R there is a unique physical measure.

THEOREM 1. – For Lebesgue-a.e. c ∈M∩R, fc :R → R has a unique physical measure μ.
Moreover, either μ is an acip, or μ is supported on ω(0) and fc|ω(0) is uniquely ergodic.

It is well-known, see for example [29, Section III.4], that for all parameters, fc has a unique
metric attractor which is one of the following:

1. An attracting periodic orbit.
2. A union of intervals which are cyclically permuted by f . This is the finitely renormalizable

case.
3. A Cantor set ω(0) which is equal to

⋂
k

⋃pk−1
i=0 Jk , where {Jk}k∈N is a nested sequence

of pk-periodic neighborhoods of 0. This is the infinitely renormalizable case. The basin of
ω(0) has full Lebesgue measure and is of second Baire category.

4. A Cantor set ω(0), but case 3. does not apply. In this case the basin of ω(0) has full
Lebesgue measure but is of first Baire category. The attractor ω(0) is called a “wild
attractor”.

In all of these cases, the basin of the attractor has full Lebesgue measure, and in cases 2–4,
Lebesgue measure is ergodic. If in addition, there is an acip μ (in case 2), then this acip is
necessarily the unique SRB-measure, because its set of typical points has full Lebesgue measure.
Hence, the basin of the measure μ from the theorem has full Lebesgue measure.

We should emphasize that if in the above theorem supp(μ) = ω(0), then this need not imply
that ω(0) is the metric attractor. It could, for example, happen that there is a conservative σ-finite
acip μ̃, such that Lebesgue-a.e. x is typical for both μ and μ̃; yet these points visit any set A
whose closure is disjoint from ω(0) with frequency 0.

For � = 2 a stronger result is known: for almost all c ∈M∩R, either fc is Collet–Eckmann or
fc has a hyperbolic periodic attractor, see [2,3,22,24]. However, the geometry of orbits for � = 2
and � > 2 is completely different (for example, wild attractors exist only if � is sufficiently large).
For this reason several crucial steps of the proofs in those papers fail for the case � > 2. For this
reason we use a new approach to this problem in this paper.

Decompose the set M ∩ R as the union of the following pairwise disjoint sets: M ∩ R =
A∪F ∪ I , where

A = {c ∈M∩R | fc has a periodic attractor},
F = {c ∈M∩R \A | fc is at most finitely renormalizable},
I = {c ∈M∩R | fc is infinitely renormalizable}.

In the first case, fc has an SRB-measure supported on the periodic attractor. In the third case, ω(0)
is a Cantor set and carries a unique invariant probability measure, which is also the unique SRB-
measure. In fact, (ω(0), f) is isomorphic to an adding machine. See [29, Section II.5] and [15,
Chapter 11] for proofs of these statements. So to prove Theorem 1, we only need to consider the
second case.

Let us further decompose the space of finitely renormalizable maps F as F =
⋃∞

n=0Fn,
where Fn denotes the subset of F consisting of parameters c for which fc is exactly n times
renormalizable. Most of our effort will be put into the case c ∈ F0 as the finitely renormalizable
case can be reduced by a suitable return map to the non-renormalizable case. Let us use F0

r to
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EXISTENCE OF UNIQUE SRB-MEASURES 383
denote the subset of F0 consisting of parameters c for which fc has a recurrent critical point. By
a classical result of Misiurewicz, fc has an acip for any c ∈F0 \ F0

r , see for example [29].
The case when fc has a recurrent critical point is much more tricky. To explain our strategy,

we need some more terminology. Let us say that an open interval I is nice if fn(∂I)∩ I = ∅ for
all n � 0. An interval J � 0 is called a child of I if it is a unimodal pullback of I , i.e., if there
exist an interval J̃ containing the critical value c and an integer s � 1 so that fs−1 : J̃ → I is a
homeomorphism and J = f−1(J̃). If c ∈F0

r and there exists a nice interval I � 0 with infinitely
many children, then we say that fc is reluctantly recurrent; otherwise it is called persistently
recurrent. Let us say that a parameter c ∈F0

r has decaying geometry property if either
• fc is reluctantly recurrent, or
• fc is persistently recurrent and there exists a sequence of nice intervals Γ0 ⊃ Γ1 ⊃ · · · � 0

such that for each n � 0, Γn+1 is the smallest child of Γn, and so that |Γn+1|/|Γn| → 0 as
n→∞.

Let DG denote the collection of parameters c for which fc satisfies the decaying geometry
condition. We should note that if � = 2, F0

r ⊂DG (and in fact, the decay is at least exponentially
fast, see [14,21,35]). We will first deal with the parameters c ∈ F0

r \ DG, and show that fc|ω(0)
is uniquely ergodic, and there is a unique SRB-measure which is either an acip or the invariant
probability measure supported on ω(0). In Section 2 we study the combinatorics of ω(0) when fc

is persistently recurrent, and we introduce a notion of combinatorial complexity, see Definition 1.
Based on this notion we state the following

THEOREM 2. – If a unimodal map f is persistently recurrent and has low combinatorial
complexity, then f |ω(0) is uniquely ergodic. Moreover, if f is C3, then there is a unique
SRB-measure which is either an acip, or is the unique invariant probability measure supported
on ω(0).

It follows from Lebesgue ergodicity of unimodal maps without periodic attractors that an acip
is indeed the unique SRB-measure. The link with the decaying geometry property is made in the
following:

THEOREM 3. – If c ∈ F0
r \ DG, then fc has low combinatorial complexity (and hence

Theorem 2 applies).

To deal with the set DG, we shall carry out a parameter exclusion argument in spite of the fact
that |Γn+1|/|Γn| need not decay exponentially.

For a subset A of a bounded interval I , and γ � 1,

Capγ(A,I) = sup
h

|h(A)|
|h(I)| ,

where h runs over all γ-quasisymmetric maps from I into R. Moreover, let SC be the subset of
F0

r consisting of all the parameters c such that for any α > 0 the following summability condition
holds:

∞∑
n=0

1
|Dfn

c (c)|α <∞ (SC).(1)

By [31], for any c ∈ SC, fc has an acip, and the remarks below Theorem 1 show that this acip
is the unique SRB-measure. (In fact, by [8], this acip has decay of correlations faster than any
polynomial rate.)

THEOREM 4. – The set SC has full Lebesgue measure in F0
r ∩DG. To describe the geometry

of the set SC more precisely, for every c ∈ DG and every ε > 0 and γ > 1, there exists
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



384 H. BRUIN, W. SHEN AND S. VAN STRIEN
a neighborhood J � c, such that

Capγ

(
(J \ SC), J

)
< ε.

To prove this theorem we shall follow the idea of [3,22], which uses complex method in
an essential way. The new ingredient here is a different strategy to obtain dilatation control
of “pseudo-conjugacies”. In quadratic case, such control was deduced from “linear growth of
the principal moduli” which does not hold in our case (even for maps satisfying our decaying
geometry condition). Instead, we shall prove in the case c ∈ DG, that there exists a sequence of
critical puzzle pieces for which the relative size of the first return domains is arbitrarily ‘small’,
see Theorem 6. This result implies dilatation control for the pseudo-conjugacies by an argument
used previously in [17,32,36].

Before giving a formal proof of Theorem 1, let us summarize the strategy schematically in the
following way:

c ∈ F0
r \ DG Theorem 3=⇒ low combin. complexity

Theorem 2=⇒ unique ergodicity;

a.e. c ∈F0
r ∩DG Theorem 4=⇒ c ∈ SC by [31]

=⇒ has an SRB;

c ∈F0 \ F0
r =⇒ c is Misiurewicz =⇒ has an SRB;

while for renormalizable maps, the same argument goes through by considering a renormaliza-
tion.

Proof of Theorem 1. – Let Good denote the set of all parameters c ∈M∩R for which fc has a
unique SRB measure and let Bad = (M∩R) \Good . We need to show that Bad has Lebesgue
measure zero. As we have mentioned before, Bad ⊂F . So it suffices to show that for each n � 0,
the set Badn := Bad ∩Fn has no Lebesgue density point. In the case n = 0, this follows from
Theorems 2, 3 and 4.

Let us now fix n and c ∈ Badn. Then f has a non-periodic recurrent critical point, and there
exists a neighborhood K � c such that for each c′ ∈K , fc′ is at least n times renormalizable. For
each c′ let χ(c′) denote the parameter in M∩ R such that fχ(c′) is hybrid conjugate to the n-th
renormalization of fc′ . By the qc-Theorem in [23] (qc will always stand for quasiconformal), the
map χ :K → χ(K) is γ-quasisymmetric for some γ > 1. Note that for any c′ ∈ K , c′ ∈ Badn

implies that χ(c′) ∈ Bad0. In particular, fχ(c) satisfies the decay of geometry condition, so we
may apply Theorem 4 to obtain a sequence Jn of neighborhoods of χ(c), such that |Jn| → 0
and Capγ((Jn \ SC)|Jn) → 0, as n →∞. It follows that |χ−1(Jn)∩Badn|/|χ−1(Jn)| → 0 as
n→∞, i.e., c is not a Lebesgue density point of Badn. This completes the proof. �

Finally, we shall show in Section 3 that the decaying geometry condition excludes existence
of Cantor attractors. Therefore we have

THEOREM 5. – If f has a Cantor attractor ω(0) (of solenoid type, or a “wild attractor”),
then f has low combinatorial complexity and hence f |ω(0) is uniquely ergodic.

1.1. Organization of the paper and some comments on the proof

Section 2 is devoted to proving Theorem 2 and we start by showing that if f is persistently
recurrent and one has low combinatorial complexity, then f |ω(0) is uniquely ergodic, see
Proposition 1. This is done by showing that certain transition matrices act as contractions in the
projective Hilbert metric. In Section 3 we use real bounds to complete the proof of Theorem 3.
The proof of Theorem 5 is also given in that section. The remainder of the paper is devoted to the
4e SÉRIE – TOME 39 – 2006 – N◦ 3



EXISTENCE OF UNIQUE SRB-MEASURES 385
proof of Theorem 4. In Section 4 we review how the combinatorics of Yoccoz puzzles changes
with the parameter. In Section 5, we study the geometry of the Yoccoz puzzle for maps fc with
decaying geometry property, and state and prove Theorem 6. In Section 6, we convert this result
to an estimate of the dilatation of pseudo-conjugacies. Such an estimate will be crucial when we
go from dynamical to parameter space in the proof of Theorem 4 in Section 7.

Most of the proofs in this paper can be extended to multimodal families. However, in order
to go from dynamical space to parameter space we use Proposition 7, which essentially follows
from Lemma 9. In higher dimensions, Lemma 9 is no longer true. For example, let H be the
space of biholomorphic maps ϕ :C × C → C × C such that ϕ(R × R) ⊂ R × R. Let λ be the
Lebesgue measure on R×R and define

A(ϕ) =
λ(ϕ((−ε, ε)× (−ε, ε)))
λ(ϕ((−1,1)× (−1,1)))

,

then supϕ∈H A(ϕ) need not be small if ε is small. So even if the holomorphic motion in Lemma 9
is trivial (h = id) going from dynamical to parameter space is more difficult.

Throughout the paper we shall say that A � B if the closure of A is contained in the interior
of B. For any interval I , let αI denote the interval of length α|I| that is concentric with I .

2. A condition for unique ergodicity in the persistently recurrent case

In this section, let f be an arbitrary C2 unimodal map with a non-flat critical point c0 = 0.
We shall assume that the critical point is recurrent, but not periodic. The goal is to give
a sufficient condition for f |ω(0) to be uniquely ergodic. So we shall assume that f is not
renormalizable; if f is finitely renormalizable we pass to the “deepest” renormalization, whereas
for infinitely renormalizable maps, ω(0) is an attractor and f |ω(0) is isomorphic to the adding
machine (defined by “adding 1 and carry”) on the space {(xi)∞i=1 | x1 ∈ {0, . . . , p1 − 1},
xi ∈ {0, . . . , pi

pi−1
− 1} for i � 2}. Here pi is the period of the i-th periodic interval. Such adding

machines are well-known to be uniquely ergodic, see [15].

2.1. Construction of the nest of children

Recall that an open interval Γ is called nice if fn(∂Γ) ∩ Γ = ∅ for all n � 1. For any nice
interval Γ � 0, let RΓ : Γ → Γ be the first return map; it has one central unimodal branch (which
contains the critical point 0) and in general infinitely many non-central branches. Let ρ(Γ) be
the collection of return domains of Γ that intersect ω(0). A child Γ′ of Γ is a neighborhood of 0
such that there exists a neighborhood Γ̃ of c1 := f(0) such that f−1(Γ̃) = Γ′ and fs−1 : Γ̃ → Γ
is monotone onto for some s � 1. The children of Γ are again nice, nested neighborhoods of 0.
Each nice neighborhood has at least one, and if f is not renormalizable at least two children.

If f is persistently recurrent then (by definition) each nice neighborhood Γ of 0 has only
finitely many children (cf. [7,39]). Note that persistent recurrence of f implies that ω(0) is a
minimal Cantor set, see [21]. Making this assumption, let Γ1 be the smallest child of Γ0. Continue
by induction, Γn+1 being the smallest child of Γn. Let sn be the iterate such that fsn−1 maps a
neighborhood Γ̃n+1 of f(Γn+1) monotonically onto Γn.

LEMMA 1. – If Γn+1 is the smallest child of Γn, then for each J ∈ ρ(Γn), there exists an
integer 0 � t < sn such that f t(Γn+1) ⊂ J . In particular, the existence of a smallest child implies
that #ρ(Γn) < ∞.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Proof. – If J is the central domain, then t = 0 works. Take J ∈ ρ(Γn) non-central, and let t′ be
minimal such that f t′(0) ∈ J . Then there exists a neighborhood U of c1 such that f t′−1 :U → J
is monotone onto, and iterating some β = β(J) steps more, U is mapped monotonically onto
Γn. Therefore f−1(U) is a child of Γn. If t′ � sn, then this child is actually smaller than Γn+1,
a contradiction. �
2.2. Unique ergodicity

Let I0 := Γn be any interval in the chain of smallest children. Let I1 :=L0(I0) be the central
return domain of RΓn =: R0. This domain is again nice, so it has a central return domain I2

under the return map R1 := RI1 : I1 → I1. Continue by induction to construct the principal nest
of Γn by defining Ii+1 as the central return domain of the return map Ri to the previous central
domain Ii. Then for some r, Ir � Γn+1 ⊃ Ir+1. For any y ∈ Γn ∩ω(0), the first landing map of
y to Γn+1 can be decomposed into return maps Ri. Indeed, write

R(z) =
{

R0(z) if z ∈ I0 \ I1;

Ri−1(z) if z ∈ Ii \ Ii+1 and i � 1.
(2)

Let k = k(y) � 0 be such that Rk(y) is the first landing of y into Γn+1, and for 0 � l � k, write
αl(y) = i if Rl(y) ∈ Ii \ Ii+1. Define the combinatorial complexity of y ∈ Γn to be

Gn(y) = #
{
0 � l < k | αl(y) � αl+1(y)

}
.

Note that Gn(y) � 1, unless y ∈ Ir . As ω(0) is a minimal Cantor set, k(y) is uniformly bounded
for y ∈ ω(0)∩ Γn. In particular, we have

Gn := sup
y∈ω(0)∩Γn

Gn(y) < ∞.(3)

Note that if f is not renormalizable, then Gn � 1 for all n.

DEFINITION 1. – If f is persistently recurrent, then we say that it has low combinatorial
complexity if

∑
n�0

1
Gn

= ∞.

PROPOSITION 1 (Non-unique ergodicity implies growing combinatorial complexity). – Let
f be a persistently recurrent non-flat C2 unimodal map with low combinatorial complexity, then
f |ω(0) is uniquely ergodic.

Proof. – For each n, the return domains ρn := ρ(Γn) cover ω(0)∩ Γn. For each J ∈ ρ, let τJ

be the return time of J into Γn. So if J is non-central, then fτJ :J → Γn is monotone onto, and
if J := L0(Γn) is the central return domain, then there exists an interval L̃0(Γn) ⊃ f(L0(Γn))
such that fτJ−1 : L̃0(Γn) → Γn is monotone onto. Let Hn be the collection of intervals of the
following form: (i) fk(J) for J ∈ ρn non-central and 0 � k < τJ , (ii) the central return domain
L0(Γn) and (iii) fk−1(L̃0(Γn)) for 0 < k < τL0(Γn). Then Hn is a cover of ω(0). Since f is
assumed to be C2 and have non-flat critical point, it has no wandering intervals (see [29]) so
that sup{diam(J) | J ∈ Hn} → 0 as n → ∞. Therefore

∨
n(Hn ∩ ω(0)) generates the Borel

σ-algebra on ω(0).
The idea of the proof is now to show that for each J ∈ Hn, n ∈ N, and y ∈ ω(0), the visit

frequency limm→∞
1
m{0 � i < m | f i(y) ∈ J} exists and is independent of y. For any J ′ ∈ Hn

and J ∈ ρn, there is at most one k < τJ such that fk(J) ∩ J ′ �= ∅ and for this k, fk(J) ⊂ J ′.
This implies that the visit frequency to J ′ ∈ Hn is the sum of the visit frequencies of all J ∈ ρn
4e SÉRIE – TOME 39 – 2006 – N◦ 3



EXISTENCE OF UNIQUE SRB-MEASURES 387
that visit it in iterates 0, . . . , τJ − 1. It therefore suffices to compute visit frequencies to J ∈ ρn.
A priori, these limits need not exist, so we replace them by visit frequency set γn consisting of all
visit frequency vectors γ̃n obtained from some y ∈ ω(c) and subsequence {mk}. In other words,
γ̃n ∈ γn if there is a subsequence {mk} and y ∈ ω(0) such that the components

γ̃n(J) = lim
k→∞

1
mk

#
{
0 � i < mk | f i(y) ∈ J

}
, J ∈ ρn

exist. Note that
∑

J∈ρn
γ̃n(J) = 1 for all γ̃n ∈ γn.

The next step is to express γn(J) as an set-valued linear combination of {γn+1(J ′) |
J ′ ∈ ρn+1}. The corresponding linear transformation An :Cn+1 → Cn, for cones Cn := R

#ρn

+

(where R+ = [0,∞)), is determined by the combinatorics of the return map Rn to Γn. Using
the projective Hilbert metric Θ, we will prove that infinite compositions of the transformations
An contract the cones to halflines �n ⊂ Cn. Intersecting �n with the unit simplex in Cn gives a
single point whose coordinates express the visit frequencies to the elements J ∈ ρn, and these
frequencies exist as limits and are independent of y ∈ ω(0).

Let us study these linear transformations An in more detail. Let aJ,J̃ indicate the number

of visits of J̃ ∈ ρn+1 to J ∈ ρn in the iterates 0, . . . , τJ̃ − 1. Then (aJ,J̃)J∈ρn,J̃∈ρn+1
is an

#ρn ×#ρn+1 matrix which we will identify with the transformation An. Then, as a set-valued
matrix product,

γn(J) ⊂ 1
Nn

∑
J̃∈ρn+1

aJ,J̃γn+1(J̃) :=
{

1
Nn

∑
J̃∈ρn+1

aJ,J̃z | z ∈ γn+1(J̃)
}

for some normalizing constant Nn. Let γn be the set of #ρn-tuples of visit frequencies
{γ̃n(J) | J ∈ ρn} written as a vertical column. Then composing matrices An, we find

γn =
1

Nn,m
An ·An+1 · · ·Am−1γm.

Disregarding the normalizing constants Nn,m, we find that γn is a single vector, i.e., independent
of y, if and only if

�n :=
⋂

m>n

An ·An+1 · · ·Am−1(Cm)

is a half-line, and in that case γn is the intersection of �n and the unit simplex {x ∈ Cn |
xi � 0 and

∑#ρn

i=1 xi = 1}. As a result, the visit frequency to any J ∈ ρn and any n � 0 is
determined independently of y ∈ ω(0), and consequently, the visit frequencies to J ′ ∈ Hn exist
independently of y. By Kolmogorov’s extension theorem, this uniquely determines the invariant
measure μ.

Note that the entries aJ,J̃ of An are strictly positive. This is a consequence of Lemma 1, and
it is here that we effectively use the fact that Γn+1 is the smallest child of Γn. More precisely,
if the matrix A+

n records all the visits of J̃ ’s in ρn+1 to J ’s in ρn before iterate sn, then A+
n

is already strictly positive. Moreover, for each t < sn, f t(Γn+1) intersects at most one return
domain J ∈ ρn. Thus all columns of A+

n are identical. The differences of visits of the respective
J̃ ’s occur only after the iterate sn, and are recorded in the matrix A−

n := An −A+
n . Let us write

a+
˜ and a−

˜ for the entries of A+
n and A−

n respectively.

J,J J,J

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



388 H. BRUIN, W. SHEN AND S. VAN STRIEN
LEMMA 2. – For each n and J ∈ ρn, J̃ ∈ ρn+1 we have a−
J,J̃

� 2Gna+

J,J̃
, where Gn denotes

the combinatorial complexity as in Eq. (3).

Proof. – Given x ∈ ω(0) ∩ Γn+1, write y0 = y = fsn(x) and yl = Rl(y), where R is as in
Eq. (2). Abbreviate αl = αl(y). For i � 1, R|(Ii \ Ii−1) = Ri−1|(Ii \ Ii−1) is the central branch
of the return map to Ii−1; let ti be such that R|Ii = f ti .

CLAIM 1. – If αl = 0, i.e., yl belongs to a non-central domain J ∈ ρ(I0), and R|J = f t, then
t � sn. Moreover, 1 = #{0 � i < t | f i(yl) ∈ J} � #{0 � i < sn | f i(0) ∈ J}.

Proof. – By Lemma 1, there exists t′ > 0 such that f t′(0) ∈ J , and hence fsn−t′(J)∩ I0 �= ∅.
Therefore t � sn − t′ < sn. The second statement of this claim follows because R|J is the first
return map to I0. �

CLAIM 2. – Assume that there exist l < l′ such that

αl > αl+1 > · · ·> αl′

then Rl′−l(yl) = f t(yl) for some t � sn. A fortiori, #{0 � i < t | f i(yl) ∈ J} � #{0 � i < sn |
f i(0) ∈ J} for each J ∈ ρ(I0).

Proof. – Since f is not renormalizable, there exists at least one non-central return domain J
of I0. Therefore there exists a maximal s′n < sn and J such that fs′

n−1(Γ̃n+1) = J , where Γ̃n+1

is the one-sided neighborhood of f(Γn+1) that maps onto I0 under fsn . Since Iαl ⊃ Γn+1,
fs′

n(Iαl) contains at least one boundary point of J . But the forward orbit of ∂J is disjoint from
the open interval I0, and therefore the return time tαl

� s′n. Furthermore, if f j(yl) ∈ J for some
J ∈ ρ(I0) and j < tαl

while f j(Γn+1) �⊂ J , then f j(Iαl) contains a boundary point of J . This
would contradict that f tαl (Iαl) ⊂ Iαl−1. Therefore yl and Γn+1 visit the same return domains
along the iterates 0 � j < tαl

. This proves Claim 2 when l′ = l + 1. �
If l′ > l + 1, then f tαl (Γn+1)⊂ f tαl (Iαl) ⊂ Iαl+1 . Hence we can repeat the argument for the

iterates tαl
� j < tαl

+ tαl+1 , etc.
In fact, the same argument also proves:

CLAIM 3. – Assume that l is such that 0 < αl � αl+1. Then R(yl) = f t for some t � sn and
#{0 � i < t | f i(yl) ∈ J} � #{0 � i < sn | f i(0) ∈ J} for each J ∈ ρ(I0).

To prove the lemma, take any x ∈ J̃ ∈ ρ(Γn+1), and decompose {0, . . . , k} into strings
l, l + 1, . . . , l′ that satisfy the hypotheses of one of the thee above claims. If αl � αl+1, then
Claim 1 or 3 holds for l, whereas for any maximal string αl > αl+1 > · · · > αl′ , Claim 1
or 3 holds for l′. By definition of Gn, there are at most 2Gn such strings, and each such
strings, #{0 � i < t | f i(yl) ∈ J} � #{0 � i < sn | f i(0) ∈ J} for each J ∈ ρ(Γn). Hence
a+

J,J̃
� 2Gna−

J,J̃
as asserted. �

To conclude the proof of Proposition 1, we will show that the matrices An act as contractions in
the projective Hilbert metric. Given v,w ∈ Cn+1, define this pseudo-metric as

Θn+1(v,w) = log
(

inf{μ | μv −w ∈ Cn+1}
sup{λ |w − λv ∈ Cn+1}

)
.

Let An :Cn+1 → Cn be a linear map. It is shown in e.g. [4] that Θn(Anv,Anw) �
tanh(D/4)Θn+1(v,w) for D = supv′,w′∈Cn+1

Θn(Anv′,Anw′). In particular, An is a contrac-
tion if An maps ∂Cn+1 \ {0} into the interior of Cn. By strict positivity of the An, this is true
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Fig. 1. Illustration of the Hilbert metric.

for all n. By Lemma 2, each element in A−
n is at most 2Gn times the corresponding element

in A+
n . Therefore, when comparing two elements aJ,J ′ and bJ,J ′′ in the same J -row of An,

we always find that 1
1+2Gn

aJ,J ′ � bJ,J ′′ � (1 + 2Gn)aJ,J ′ . Therefore, if μ,λ > 0 are such that
μv −w /∈ Cn+1 and w − λv /∈ Cn+1, then μ

λ � (1 + 2Gn)2. The contraction factor becomes

tanh(D/4) � e
1
2 log(1+2Gn) − e−

1
2 log(1+2Gn)

e
1
2 log(1+2Gn) + e−

1
2 log(1+2Gn)

=

√
1 + 2Gn −

√
1

1+2Gn

√
1 + 2Gn +

√
1

1+2Gn

= 1− 2
(1 + 2Gn)(1 + 1

1+2Gn
)

� 1− 1
1 + 2Gn

.

Therefore �n is indeed a line if
∏

m�n(1 − 1
1+2Gm

) = 0, which is equivalent to∑
n�0

1
Gn

= ∞. �
Remark 1. – A different way of regarding the Hilbert metric is the following, see Fig. 1. The

vectors v and w span a plane V , which contains the line connecting v and w. Let A and B
be the intersections of this line with those coordinate hyperplanes that V intersects (A or B
could be ∞). The points v, w, A and B bound an arc and divide it into three pieces; call the
middle piece j and the other pieces l and r. It is not hard to see that the ratio μ

λ equals the cross

ratio |l∪j|·|j∪r|
|l|·|r| . Linear transformations preserve this cross-ratio, and the contraction is due to

Schwartz inclusion of the image arc in the cone Cn.

Remark 2. – The consecutive visits of the J̃ ’s in ρn+1 to J̃ ’s in ρn give a direct way to
describe f |ω(0) as a substitution shift based on a chain of substitutions χn. The matrices An

are the associated matrices of the substitutions χn, cf. [6,13]. The proof of unique ergodicity
then becomes almost identical to the one given in [6].

Remark 3. – The proof of Proposition 1 can be applied to unicritical complex maps as well. In
this case, Yoccoz puzzle pieces will take the role of nice intervals, see Section 4. However, since
we have no analogue of the “no wandering interval” result from real dynamics, it is not true in
all generality that sup{diam(J) | J ∈ Hn} → 0 as n →∞. Therefore, Proposition 1 can only
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be used to show that there is a unique invariant probability measure which is measurable with
respect to the partition into atoms

⋂
n{J ∈Hn | x ∈ J}, x ∈ ω(0).

Proposition 1 does generalize to the real multimodal case; for the definition of nice intervals
and its children in the multimodal setting, we refer to [19].

2.3. SRB-measures

For this subsection, we allow f to be a multimodal interval map with a finite set Crit of critical
points all of which are non-flat. Assume also that f has only repelling periodic points. Such maps
have no wandering intervals (cf. [29]). According to [5,38], the number of ergodic components
of Lebesgue measure m is bounded by #Crit. For each ergodic component, there exists a subset
E of full Lebesgue measure, and satisfies exactly one of the following properties:

1. There exists ε > 0 such that for any x ∈E

limsup
n→∞

1
n

#
{
0 � i < n | f i(x) /∈B

(
ω(Crit), ε

)}
> 0.(4)

In this case, there is an acip with E as set of typical points, see Proposition 2.
2. For all ε > 0 and any x ∈E

lim
n→∞

1
n

#
{
0 � i < n | f i(x) ∈ B

(
ω(Crit), ε

)}
= 1.(5)

In this case, any possible physical measure is supported in ω(Crit).
The next proposition shows that under condition (4), an acip μ exists. As the Lebesgue measure
m(E) > 0, μ is automatically physical.

PROPOSITION 2. – Let f be a C3 multimodal map with only repelling periodic points, having
an ergodic component of Lebesgue measure such that (4) holds for its set E of typical points.
Then f has an acip μ, and supp(μ) is a finite union of intervals.

Proof. – Take ε > 0 such that (4) holds. Since f has no wandering intervals or non-repelling
periodic points,

⋃
n f−n(Crit) is dense. For some large α > 0, take N so large that P :=⋃

n�N f−n(Crit) is such that every component of I \ P has diameter less than ε
2α . For at least

one component J of I \ P , with J ∩B(ω(Crit);ε/2) = ∅ we have

limsup
n→∞

1
n

#
{
0 � i < n | f i(x) ∈ J

}
=: η > 0

for all x ∈ E. (Note that the same limsup is achieved by all x ∈ E since E is contained in an
ergodic component.) By construction of P , fn(∂J)∩J = ∅ for all n � 0, so J is nice. Therefore,
the first return map F :J → J has only monotone onto branches Fi :Ji → J . Let τi > 0 be such
that Fi = fτi . By the choice of P , the concentric neighborhood αJ of J of length α|J | is disjoint
from ω(Crit). Hence for any interval J ′ and integer s � 1, if fs :J ′ → J is monotone onto, then
there exists Ĵ ′ ⊃ J ′ such that fs : Ĵ ′ → αJ is also monotone onto. By Theorem C(2) of [38],
there exists C > 0 independent of J ′ and s such that the distortion of fs|J ′ is bounded by C:

sup
y1,y2∈J ′

Dfs(y1)
Dfs(y2)

� C.

Let H ⊂ J be the set of points on which F k is defined for all k. Then H is forward invariant
under F and m(H ∩ J) � m(E ∩ J) > 0. Take a density point x of H in H ∩ J , and let
4e SÉRIE – TOME 39 – 2006 – N◦ 3



EXISTENCE OF UNIQUE SRB-MEASURES 391
F k :Jk → J be the branch at x. Then m(Jk ∩H)/m(Jk) → 1 as k →∞, and because F k has
distortion bounded uniformly in k, we find that m(F k(Jk ∩H)) →m(J) as k →∞. Therefore
m(H) = m(J). Now the Folklore Theorem (cf. [26]) produces an ergodic F -invariant absolutely
continuous probability measure ν with supp(ν) = J and dν

dm is bounded and bounded away
from 0.

For x ∈ H , define the return time τ(x) > 0 such that F (x) = fτ(x)(x), and let τN (x) =
min{N,τ(x)}. Then τN ∈ L1(ν), and by Birkhoff’s Ergodic Theorem, ν-a.e. x ∈H satisfies

∫
τN dν = lim

n→∞
1
n

n−1∑
i=0

τN

(
F i(x)

)
� lim inf

n→∞
1
n

n−1∑
i=0

τ
(
F i(x)

)
=

1
η

< ∞.

This shows that η0 :=
∫

τ dν < ∞. Therefore we can pullback ν to obtain an absolutely
continuous f -invariant probability measure

μ(A) =
1
η0

∑
k

k−1∑
i=0

ν
(
f−i(A)∩ {τ = k}

)
.

The support of μ is the forward orbit of J ⊂ E. Since f has only repelling periodic orbits and
there are no wandering intervals, supp(μ) is a finite union of compact intervals. Finally, μ is
physical, because its set E of typical points has positive Lebesgue measure. �

We are now in the position to prove Theorem 2.

Proof of Theorem 2. – If Condition (4) holds then Proposition 2 implies that f has an acip μ;
its set of typical points E has positive Lebesgue measure, so μ is physical. If on the other
hand (5) holds, then any accumulation point of Cesaro means of Dirac measures

∑n−1
i=0 δfi(x)

is an invariant measure supported on ω(0). But by Proposition 1, f |ω(0) is uniquely ergodic.
Therefore the invariant measure on ω(0) is physical. �

Remark 4. – For C2 non-flat multimodal maps with all periodic points repelling, compact
forward invariant sets that are disjoint from Crit are hyperbolic and have zero Lebesgue measure.
Therefore each acip contains at least one critical point in its support. It follows from [38,
Theorem E] that any critical point interior to the support of an acip cannot be in the support
of another physical measure.

For singular physical measures, the situation is different. There are examples where the
physical measure is supported on a hyperbolically repelling set, see [16]. It is also possible to
construct, for example, a bimodal map on [0,1] with two Cantor attractors, such that the basins
of both attractors are dense in [0,1].

3. No decaying geometry implies low combinatorial complexity

Throughout this section we consider a C3 unimodal map f : [−1,1] → [−1,1] with a non-flat
critical point located at 0 and with f(−1) = f(1) = −1. The constants appearing below are
universal in the sense that they only depend on previously introduced constants and the order of
the critical point, provided that the intervals involved in the argument are sufficiently small.

Recall that αI denotes the interval of length α|I| that is concentric with I .
Let I be a nice interval. Let us denote the first entry domain to I containing x by Lx(I)

and inductively define Ln+1
x (I) to be Lx(Ln

x(I)). The interval I is called δ-nice, if for each
x ∈ I ∩ ω(0) we have (1 + 2δ)Lx(I) ⊂ I .
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LEMMA 3. – There exists δ0 > 0 such that if I � 0 is a nice interval with a non-central return
(i.e., with RI(0) /∈ L0(I)) then

(1 + 2δ0)L2
0(I) ⊂L0(I).

Moreover, under the same assumption, for each ε > 0 there exists η ∈ (0,1) such that if
|L0(I)| � (1− η)|I| then ∣∣L2

0(I)
∣∣ � ε

∣∣L0(I)
∣∣.

Proof. – See [27] as well as [38]. �
An interval J is called a pullback of I if there exist s > 0 and intervals J0, . . . , Js with J0 = J ,

Js = I and Ji a component of f−1(Ji+1) for i = 0, . . . , s− 1. The order of this pullback is the
number of i ∈ {0, . . . , s− 1} so that Ji contains a critical point.

LEMMA 4. – For any N and ρ > 0, there exists ρ′ > 0 such that if J is a pullback of a nice
interval I with order bounded by N , and if (1+2ρ)J ⊂ I , then J is a ρ′-nice interval. Moreover,
ρ′ →∞ as ρ →∞.

Proof. – See Lemma 9.7 in [19]. �
LEMMA 5. – For any ρ > 0, δ > 0 there exists r > 0 such that if I is a δ-nice interval and

K1 � K2 � · · · are children of I , then I ⊃ (1 + 2ρ)Ki for i � r.

Proof. – For each i � 1 there exists si ∈ N such that fsi−1 maps a one-side neighborhood Ti

of f(Ki) onto I . Clearly, fsi(Ki+1) is contained in a return domain of I . By the real Koebe
principle, Ti contains a definite neighborhood of f(Ki+1) and hence Ki contains a definite
neighborhood of Ki+1. The lemma follows. �

LEMMA 6. – Assume that f is non-renormalizable and persistently recurrent. For each ρ > 0
and δ > 0, there exists N = N(ρ, δ) with the following property. Let I be a δ-nice interval
and let Γ be its smallest child. Let I := I0 ⊃ I1 ⊃ I2 ⊃ · · · the principal nest corresponding
to I , i.e., Ii = L0(Ii−1) for i � 1 and let m be a positive integer such that RIi(0) = RI0(0)
for i = 0, . . . ,m − 1. If there exists N ′ � N and z ∈ ω(0) such that Rj

I(z) ∈ (I \ Im) for
j = 0, . . . ,N ′ and at least N of these points are in I \ I1, then (1 + 2ρ)Γ⊂ I .

Proof. – Let us show that I has at least N children. Write R := RI and let n1 < n2 <
· · · < nN � N ′ be so that Rni(z) ∈ I \ I1. Since z, . . . ,RN ′

(z) /∈ (I \ Im), Rni+1 maps a
neighborhood Ji of z diffeomorphically onto I . (Here we use that R maps a component of
Ii \ Ii+1, 1 � i � m − 1, diffeomorphically onto a component of Ii−1 \ Ii.) It follows that
Ki := L0(Ji) is a child of I . Since J1 � J2 � · · · � JN we also have K1 � K2 � · · · � KN , i.e.,
I has at least N children. So if we let r be the integer associated to δ and ρ from Lemma 5 then
the conclusion of the lemma holds if N � r. �

PROPOSITION 3. – Assume that f is non-renormalizable and persistently recurrent. Let
Γ0 ⊃ Γ1 ⊃ · · · � 0 be a sequence of nice intervals such that Γn+1 is the smallest child of Γn,
n = 0,1, . . . . For each ρ > 0 there exists C > 0 so that for any n � 2, if the combinatorial
complexity Gn � C , then Γn+2 is ρ-nice.

Proof. – By Lemma 4, there exists τ = τ(ρ) > 0 such that Γn+2 is ρ-nice if |Γn+2|/|Γn| < τ
since Γn+2 is a pull back of Γn of order 2. Assuming that |Γn+2|/|Γn| � τ , let us show that Gn

cannot be too large.
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Let I0 = Γn and let Ii be the corresponding principal nest. Let i(0) = 0 and i(1) < i(2) < · · ·
be all the positive integers such that Ri(j)−1(0) /∈ Ii(j). Choose r so that Ir+1 ⊂ Γn+1 � Ir , and
let q be maximal with i(q) � r. By Lemma 3, q is bounded from above by a constant q(τ).

CLAIM. – There exists δ = δ(τ) > 0 such that Ii(j) is a δ-nice interval for all 0 � j � q.

First let us consider the case 1 � j � q. As Ii(j)+1 ⊃ Γn+2 we have |Ii(j)+1|/|Ii(j)| � τ .
Therefore, by the second statement of Lemma 3, there exists η (depending on ε := τ ) so that
|Ii(j)|/|Ii(j)−1| � (1 − η). By Lemma 4, there exists δ = δ(τ) > 0 such that Ii(j) is δ-nice.
Now let us consider the case j = 0. Again by Lemma 4, it suffices to show that I0 = Γn is well
inside Γn−2. So define Î0 = Γn−2 and for i � 1, Îi = L0(Îi−1), and let m � 1 be minimal
such that RÎm−1(0) /∈ Îm. Then, for i = 1, . . . ,m − 1, RÎ0 |(Îi \ Îi+1) is a diffeomorphism on
each component of Îi \ Îi+1 and its range contains (Îi−1 \ Îi). Since Î0 ∩ω(0) contains a point
outside Î1, it follows that there exists a child of Î0 which is contained in Îm. In particular,
Îm ⊃ Γn−1, and hence Îm+1 ⊃ Γn. By the first statement of Lemma 3, it follows that

(1 + 2δ0)Γn ⊂ (1 + 2δ0)Îm+1 ⊂ Îm ⊂ Γn−2.

This completes the proof of the claim.
Now let N = N(τ−1, δ) be as in Lemma 6. Let us show that Gn � Nq+1. To this end, let

y ∈ ω(0)∩ Γn be such that Gn(y) = Gn and let s � 0 be minimal such that fs(y) ∈ Γn+1. Note
that if 0 < i < r and Ii is central, i.e., RIi−1(0) ∈ Ii, then RIi−1 maps Ii \ Ii+1 into Ii−1 \ Ii, so
in the definition of combinatorial complexity, visits to Ii\Ii+1 do not contribute to Gn. Therefore

#
{

0 � k < s | fk(y) ∈
q⋃

j=0

Ii(j) \ Ii(j)+1

}
� Gn.

For j � 0, let

ν(j) = #
{
0 � k < s | fk(x) ∈ Ii(j) \ Ii(j)+1

}
.

Note that ν(q + 1) = 0.
Let us show that for any 0 � j � q, ν(j) � (ν(j + 1) + 1)(N − 1). Indeed, otherwise, there

exists 0 � s′ < s such that the orbit {fk(y)}s
k=s′ visits Ii(j) \ Ii(j)+1 at least N times before it

enters Ii(j+1). By Lemma 6, this, together with the claim above, implies that if Kj is the last
child of Ii(j) then (1+2τ−1)Kj ⊂ Ii(j). Noticing Ii(j) ⊃ Γn+1, we have Kj ⊃ Γn+2. Therefore
(1 + 2τ−1)Γn+2 ⊂ Ii(j) ⊂ Γn, contradicting the hypothesis |Γn+2|/|Γn|� τ .

It follows that ν(j) � Nq−j+1 −Nq−j for all 0 � j � q. So Gn �
∑q

i=0 ν(j) � Nq+1. �
Proof of Theorem 3. – If f ∈ F0

r does not have low combinatorial complexity, then Gn →∞.
By Proposition 3 it follows that f ∈ DG in this case. Therefore any map in F0

r \ DG must have
low combinatorial complexity. �
3.1. The proof of Theorem 5

We will prove Theorem 5 by a random walk argument, using αk to indicate the state after the
k-th step in the walk. The Lebesgue measure (normalized on [f(0), f2(0)]) will be denoted as m.

Proof of Theorem 5. – If f is infinitely renormalizable, then f |ω(0) is uniquely ergodic [15]
and there is nothing to prove. If f is finitely renormalizable, then by passing to the “deepest
renormalization”, we can assume that f is not renormalizable anymore. It remains to consider
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the case that f has a wild attractor. By [21] (see also [7]), f is persistently recurrent. Let us
assume that the combinatorial complexity of f is not low, so in particular, limn→∞ Gn = ∞.
Proposition 3 states that, given ρ > 0, there exists n0 such that Γn is ρ-nice, and hence
(1 + 2ρ)L0(Γn) ⊂ Γn for all n � n0. We will use a by now standard random walk argument
on an induced map, see e.g. [9], to prove that a wild attractor cannot exist after all, contradicting
the assumption that the combinatorial complexity of f is not low. Therefore Theorem 2 implies
that f |ω(0) is uniquely ergodic.

We start by defining an inducing scheme. Let Rn : [f(0), f2(0)] → Γn be the first return/entry
map to Γn; it is defined m-a.e., and, except for the central branch L0(Γn), all branches
are onto Γn. Recall that for each n � 1, there exists sn+1 such that fsn+1−1 maps a one-
sided neighborhood Γ̃n+1 of f(Γn+1) monotonically onto Γn. Let j = jn � 0 be minimal
such that Rj

n ◦ fsn+1(0) ∈ L0(Γn), and let t � 0 be such that Rj
n ◦ fsn+1(0) = fsn+1+t(0).

Let Vn+1 be the maximal neighborhood of 0 such that fsn+1+t(Vn+1) ⊂ L0(Γn). Then
L0(Γn+1) ⊃ Vn+1 ⊃ Γn+2. The first inclusion is immediate, and the second follows because
otherwise fsn+1+t(Γn+2) contains a boundary point of L0(Γn), and hence cannot be mapped
monotonically onto Γn+1.

Let Un+1 ⊃ Vn+1 be the maximal neighborhood such that fsn+1+t(Un+1) ⊂ Γn. Note that
Un+1 ⊂ L0(Γn+1). For n � n0, (1 + 2ρ)L0(Γn) ⊂ Γn. As fsn+1+t|Un+1 is the composition
of f with a map of uniformly bounded distortion, there exists ρ′ = O(ρ1/�) such that
(1 + 2ρ′)(Vn+1)⊂ Un+1 and ρ′ →∞ as ρ →∞.

We define the induced map Q on Γn+1 \ Γn+2 as follows:
• If x ∈ Vn+1 \ Γn+2, then let t′ � t be minimal such that fsn+1+t′(x) ∈ Γn+2, and let

Q(x) = fsn+1+t′(x). Note that there exists a neighborhood Ux � x such that fsn+1+t′ maps
Ux monotonically onto Γn+2.

• If x ∈ Γn+1 \ Vn+1, then let k = k(x) ∈ {0,1, . . . , jn − 1} be the minimal integer such
that Rk

n ◦ fsn+1(x) and Rk
n ◦ fsn+1(0) lie in different return domains of Rn. If the return

domain containing Rk
n ◦fsn+1(x) is L0(Γn), then Q(x) = Rk

n ◦fsn+1(x). In this case there
exists a neighborhood Ux � x such that Rk

n ◦ fsn+1 maps Ux monotonically onto L0(Γn).
Otherwise, Q(x) = Rk+1

n ◦ fsn+1(x), and there exists a neighborhood Ux � x such that
Rk+1

n ◦ fsn+1 maps Ux monotonically onto Γn.
In this manner Q is defined for m-a.e. x ∈ Γn+1 \ Γn+2 and the monotone image of
the corresponding neighborhood Ux is one of Γn, L0(Γn) or Γn+2. Moreover, any two
neighborhoods Ux or Uy are either disjoint or coincide.

Repeating this construction for all n, we obtain a Markov induced map Q which preserves the
partition given by the boundary points of the intervals Γn and L0(Γn).

To describe the random walk, let αk = n if Qk(x) ∈ Γn \ Γn+1. The αk can be considered as
random variable with the following conditional probabilities. For n > n0 we have

P (αk+1 = n− 1 | αk = n) :=
m(αk = n and αk+1 = n− 1)

m(αk = n)
(6)

� 1−O(1/ρ′).

Indeed, if αk(x) = n, then there is a neighborhood Wx of x such that Qk maps Wx

monotonically onto Γn or L0(Γn). Given y ∈Wx, there are three cases to consider:
• Qk(y) ∈ Vn (in this case Qk+1(y) ∈ Γn+1). As (1 + 2ρ′)Vn ⊂ Un ⊂ L0(Γn),

m({y ∈Wx |Qk(y) ∈ Vn}) = O(1/ρ′)m(Wx).
• Qk(y) ∈ U where U is a domain of Q such that Q(U) = Γn−1. Because |Γn|/|Γn−1| =

O(1/ρ),

m
({

y ∈Wx |Qk(y) ∈ U, Qk+1(y) ∈ Γn
})

=O(1/ρ)m
(
Wx ∩Q−k(U)

)
.
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• Qk(y) ∈ U ′ where U ′ is a domain of Q such that Q(U ′) = L0(Γn−1). Let p be such that
Q|U ′ = fp|U ′. In this case there is a neighborhood U ′′ adjacent to U ′ such that fp maps
U ′′ monotonically onto a component of Γn−1 \ L0(Γn−1). As (1 + 2ρ)L0(Γn−1) ⊂ Γn−1,

m
({

y ∈Wx |Qk(y) ∈ U ′})
= O(1/ρ)m

({
y ∈ Wx |Qk(y) ∈ U ′′})

.

Combining these estimates and adding over all domains Wx with Qk(Wx)⊂ Γn, we arrive at (6).
A similar argument gives for r � 1,

P (αk+1 = n + r | αk = n) =
m(αk = n and αk+1 = n + r)

m(αk = n)

�O
(∣∣Γn+r

∣∣/∣∣Γn
∣∣) = O

(
ρ−r

)
.

Therefore, the drift of the random walk is

E(αk+1 − n | αk = n) =
∑

r�−1

rP (αk+1 = n + r | αk = n) �−1
2
,

for ρ and hence ρ′ sufficiently large and n > n0(ρ). A similar computation shows that the
variance is bounded as well:

dVar(αk+1 − n | αk = n) � E
(
(αk+1 − n)2 | αk = n

)
=

∑
r�−1

r2 P (αk+1 = n + r | αk = n)

< 1 +
∑
r�1

r2O
(
ρ−r

)
<∞.

Hence we can apply the random walk argument from [9] to conclude that lim infk→∞ αk < ∞
for m-a.e. x, and this excludes the existence of a wild attractor. �

4. Yoccoz puzzle

Let us consider the family fc(z) = z� + c parametrized by c ∈ C. By definition, the filled Julia
set Kc of fc is the complement of the open set

Ac(∞) =
{
z ∈ C | fn

c (z) →∞ as n→∞
}
,

which is the attracting basin of infinity. The Green function

Gc :C → R+ = {t � 0}, z �→ lim
n→∞

1
�n

log+
∣∣fn

c (z)
∣∣,

is a subharmonic function vanishing exactly on the filled Julia set Kc. The classical Böttcher
Theorem provides us a unique conformal representation

Bc :
{
z |Gc(z) > Gc(0)

}
→

{
z | |z| > rc

}
, where log rc = Gc(0),

such that Bc is tangent to the identity at infinity Bc ◦ fc = (Bc)�.
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The Green function is equal to log |Bc| on the domain of Bc. The level curve {Gc(z) = r},
r > 0 is called the equipotential curve of level r, and denoted by Ec(r). The external ray of angle
t ∈ R/Z is the gradient curve of Gc stemming from infinity with the angle t (measured via the
Böttcher coordinate Bc), and denoted by Rc(t). When c is contained in the Multibrot set

M = {c ∈ C |Kc is connected},

the map Bc is defined in the whole complement Ac(∞) of the filled Julia set Kc, and so
Rc(t) = B−1

c ({re2πit | r > 1}). In this case, any external ray Rc(t) with t rational has a well
defined landing point limr→1+ B−1

c (re2πit) which is contained in the Julia set ∂Kc; vice versa,
a repelling or parabolic point is the common landing point of finitely many external rays with
rational angle. When Kc is disconnected, provided that argBc(c) �= �kt for all k � 1, the external
ray Rc(t) is still a smooth curve joining infinity and ∂Kc, so each point in Rc(t) has a uniquely
defined potential.

For every c ∈ C, the domain of Bc contains the critical value c of fc so that Bc(c) is well
defined. By [11], the set M is connected and the map Φ(c) = Bc(c) defines a conformal map
from C\M onto C\D. As in the dynamical plane, the parameter (external) ray of angle t ∈ R/Z

is the set

R(t) = Φ−1
({

re2πit | r > 1
})

,

and the equipotential of level r > 0 is the closed curve

E(r) =
{
c ∈ C \M | log

∣∣Φ(c)
∣∣ = r

}
.

Let H denote the component of the interior of M which contains 0. This is the region where fc

has an attracting fixed point. For c0 ∈ (M\H)∩R, fc0 has an orientation reversing fixed point
αc0 in R. There exist exactly two external rays Rc0(t

−), Rc0(t
+) landing at αc0 , see Lemma 5.2

in [19]. These two external rays are symmetric to each other with respect to the real axis, and
permuted by fc:

�t− = t+, �t− = t+, mod 1.

Arguing as in Theorem 2.1 in [30], the corresponding dynamical rays R(t−) and R(t+) land
at a common point γ ∈ R. The configuration R(t−) ∪ R(t+) ∪ {γ} cuts the parameter plane
into two connected components, and we use W to denote the one which does not contain 0 (the
1/2-wake). The set W consists of all c for which fc has a repelling fixed point αc at which the
external rays Rc(t+) and Rc(t−) land. In particular,

W ⊃ (M\H)∩R � c0.

4.1. Yoccoz puzzle

Now let us recall the definition of Yoccoz puzzle for c ∈ W . Let Xn
c = {z ∈ C |

Gc(z) < 1/�n}. By definition, the Yoccoz puzzle of fc is the following sequence of graphs:

S0
c = ∂X0

c ∪
(

X0
c ∩

⋃
t∈{t+,t−}

Rc(t)
)

,

Sn
c = f−n

c S0
c , n = 1,2, . . . .

A component of Xn
c \ Sn

c = f−n
c (X0

c \ S0
c ) will be called a puzzle piece of depth n. A puzzle

piece of depth n which contains a point z will be denoted by Pn
c (z). For n � 1, the f -image of
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a puzzle piece of depth n is a puzzle piece of depth n − 1 and each puzzle piece of depth n is
contained in a puzzle piece of depth n− 1.

DEFINITION 2. – Let m > n � 0 be integers. We say that Pm
c (0) is a child of Pn

c (0) if
fm−n−1 :Pm−1

c (c) → Pn
c (0) is a conformal map.

LEMMA 7. – Assume that c ∈W ∩ R is such that fc is non-renormalizable. Then P 2
c (c) �

P 1
c (c).

Proof. – Otherwise, P2(c) contains −αc in its closure. As c ∈ R, this implies that P2(0) ∩ R

is a periodic interval of period 2, contradicting that fc is non-renormalizable. �
4.2. First return maps

Consider a map f = fc with c ∈W . Let V be a puzzle piece which contains 0. Let D(V ) =
{z ∈ C: ∃k � 1 such that fk(z) ∈ V }. The first return map gV is defined as follows: for each
z ∈D(V )∩V , if k � 1 is the return time of z to V , i.e., the minimal k � 1 such that fk(z) ∈ V ,
then gV (z) = fk(z). It is well-known that the return time is constant on each component P of
D(V ) ∩ V and that gV |P is conformal if P �� 0 and �-to-1 otherwise. If 0 ∈ D(V ), and V is
strictly nice: fk(∂V ) ∩ V = ∅ for all k � 1, then the first return map gV is an R-map as defined
below.

DEFINITION 3. – Let V,Uj , j = 0,1, . . . , be Jordan disks in C such that the sets Uj are
pairwise disjoint and contained in V . A holomorphic map g :

⋃∞
j=0 Uj → V is called an R-map

(where “R” stands for “return”) if the following hold:
• g :U0 → V is an �-to-1 proper map with a unique critical point at 0,
• for all i � 1, g :Uj → V is conformal and surjective.

U0 is usually called the central and also the critical domain of R. The renormalization Lg of R
is the first return map of g to U0. Note that Lg is again an R-map provided that gk(0) ∈ U0 for
some k � 1.

The following is a lemma which we shall need later.
For an R-map g :

⋃
i Ui → V define

mod(g) = mod(V \U0), mod′(g) = inf
{
mod(V \Ui) | i � 1

}
.

LEMMA 8. – Let g :
⋃

Ui → V be an R-map. Let W be a return domain to U0 (under g) and
let s be the positive integer such that Lg|W = gs|W . Then

mod(U0 \W ) � 1
�

(
(s− 1)mod′(g) + mod(g)

)
.(7)

Proof. – For each 1 � j � s, let ij be such that Uij ⊃ gj(W ). Then ij �= 0 for all 1 � j � s−1
and is = 0. Let Qj be the component of g−j(V ) containing g(W ) for j = 0,1, . . . , s. Then
W = g−1(Qs). For any j � s− 1, gj : (Qj ,Qj+1)→ (V,Uij+1) is a conformal map. So

mod(V \Qs) �
s−1∑
j=0

mod(Qj \Qj+1)

=
s−1∑
j=0

mod(V \Uij+1) � (s− 1)�mod′(g) + mod(g).

Since mod(U0 \W ) � mod(V \Qs)/�, the lemma follows. �
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4.3. Holomorphic motion

DEFINITION 4. – A holomorphic motion of a set X ⊂ C over a complex manifold D is a map

h :D ×X → D ×C, (λ, z) �→
(
λ,hλ(z)

)
,

which satisfies the following properties:
• for any λ ∈ D, hλ :X → C is injective;
• for any z ∈ X , λ �→ hλ(z) is holomorphic;
• h∗ = idX for some ∗ ∈D.

We shall also say that h is a holomorphic motion of X over (D,∗).

Throughout the remainder of the paper we shall call a proper open subset of C which is
homeomorphic to a disk, a topological disk.

OPTIMAL λ-LEMMA (Slodkowski [37]). – Let D ⊂ C be a topological disk and let c0 ∈ D.
Given any holomorphic motion h of a set X ⊂ C over (D,c0), there exists a holomorphic motion
h̃ of C over (D,c0) such that h̃|D × X = h. Moreover, h̃c is a K(r)-qc map, where r is the
hyperbolic distance between c and c0 in D and limr→0 K(r) = 1.

Recently, E. Chirka provided a new proof of this deep result. We shall use the terminology
tube for a holomorphic motion h of a Jordan curve γ over a Jordan disk D ⊂ C. A holomorphic
motion h of a closed Jordan disk V ⊂ C over another Jordan disk D ⊂ C will be called a filled
tube. A filled tube is called proper if h extends to a homeomorphism from (D×V )∪ (∂D×∂V )
into C2.

Given a filled tube h :D × V → D × C, a holomorphic map ϕ :D → C will be called a
diagonal of h if the following hold:

• ϕ(c) ∈ hc(V ) for all c ∈ D,
• ϕ has a continuous extension to D, and
• c �→ h−1

c ◦ϕ(c) defines a homeomorphism from ∂D onto ∂V .
By the Argument Principle, for each z ∈ V , the equation hc(z) = ϕ(c) has a unique solution
in D. See [22].

LEMMA 9. – There exists M > 0 with the following property. Let D ⊂ C be a Jordan
disk. Let V � U be Jordan disks in C with mod(V \ U) > 3M . Let h :D × V → D × C

be a proper filled tube and let ϕ :D → C be a diagonal of h. Assume that for each c ∈ D,
there exists a 3-qc map ĥc :C \ U → hc(C \ U) which coincides with hc on ∂V ∪ ∂U . Then
D′ = {c ∈D | h−1

c (ϕ(c)) ∈ U} is a topological disk, and

mod(D \D′) � 1
3

mod(V \U)−M.

Proof. – The proof follows the idea in Section 4.3 of [22]. We shall use the following well-
known fact: there exists a positive constant M0 > 0 such that if U � V ⊂ C are Jordan disks
with mod(V \ U) > M0, then for any z0 ∈ U , there exists a round annulus A(z0; r,R) :=
{r < |z − z0| < R} ⊂ V \ U such that mod(A(z0; r,R))(= logR/r) � mod(V \ U) − M0,
see [25].

Without loss of generality, we may assume that 0 ∈ U , 1 ∈ ∂V , and that D ⊂ V . By
considering the pre-composition of hc with an affine motion gc(z) = acz + bc, we may assume
hc(z) = z for each c ∈ D and z ∈ {0,1}.

Assuming that m := mod(V \ U) > 3M0 is large enough, let us prove that there exist
0 < r < R < 1 such that
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• D ×A(0; r,R)⊂ h(D × (V \U));
• log(R/r) � m/3−M1, where M1 is a constant.

Indeed, by compactness of 3-qc maps there exists a constant R ∈ (0,1) such that |hc(z)| =
|ĥc(z)| > R for any z ∈ ∂V and c ∈ D. Since

mod
(
hc(V \U)

)
= mod

(
ĥc(V \U)

)
� m/3,

and since hc(∂V ) � 1, applying the fact above, we obtain that there exists r ∈ (0,1) such
that hc(U) ⊂ Dr and log 1/r > m/3 − M0. Provided that m is large enough, r < R and
m/3− logR/r is uniformly bounded from above by some constant M1.

Now let us define a new holomorphic motion h̃ :D × V → D × C which coincides with h
on D × (∂V ∪ U) and such that h̃(c, z) = z for all z ∈ A(0; r,R) and c ∈ D. Then ϕ is also a
diagonal of this new motion, and χ̃ : c �→ h̃−1

c (ϕ(c)) defines a homeomorphism from D onto V .
Since χ̃−1 is conformal on the round annulus A(0; r,R) and χ̃(D′) = U ⊂ Dr , we obtain that

mod(D \D′) � mod
(
A(0; r,R)

)
� m

3
−M1,

and taking M = max(M0,M1), the lemma follows. �
4.4. Parapuzzle

Let us now define the Yoccoz parapuzzle. For our purpose, it is enough to restrict ourselves to
the wake W . Let Xn = {c ∈ C \M | log |Φ(c)| < 1/�n} and Tn = {t ∈ R/Z | �nt ∈ {t+, t−}}.
Define

Sn = ∂Xn ∪
( ⋃

t∈Tn

R(t)
)

.

A component of Xn \Sn is called a parapuzzle of depth n and denoted by Pn(c) if it contains c.
The following lemma describes how the combinatorics of Yoccoz puzzle changes with the

parameter.

LEMMA 10. – Let c0 ∈F0
r . Then for any n � 2, there exists a holomorphic motion

pn :Pn(c0)×C →Pn(c0)×C, (c, z) �→
(
c, pn,c(z)

)
such that for each c ∈ Pn(c0), the following hold:

(1) for each 0 � i � n, Si
c = pn,c(Si

c0
);

(2) for each z /∈Xn
c , pn,c(z) = B−1

c ◦Bc0(z);
(3) for all 1 � i � n and all z ∈ Si

c0
, fc ◦ pn,c(z) = pn,c ◦ fc0(z).

Moreover, the restriction pn|Pn(c0) × Pn
c0

(c0) is proper filled tube which has the identity map
as a diagonal.

Sketch of proof. – We shall only give a sketch of proof here. For the details we refer to Section 2
in [33]. Although only quadratic polynomials are considered there, the proof works through in
the general unicritical case.

We take pn to be the restriction of holomorphic motion Hn−1 constructed in Lemma 2.5
of [33] to Pn(c0) × C. Assuming n � 2, let us show that pn|Pn(c0) × Pn

c0
(c0) is a proper

tube. For n = 2, by Lemma 7, we have P 2
c (c) � P 1

c (c), which implies that P2(c0) � P1(c0) by
Lemma 2.8 in [33]. For n > 2 one proceeds by induction. The fact that the identity map is a
diagonal to the filled tube follows from Lemma 2.6 in [33]. �
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Remark 5. – Clearly, the map pn,c is holomorphic in the region {z ∈ C: Gc(z) > 1/�n}. For
any z ∈ Sn

c0
\Kc0 , pn,c(z) ∈ Sc

n \Kc and Bc ◦ pn,c(z) = Bc0(z).

Remark 6. – As t+ = −t− mod 1, the set Sn is real-symmetric. Consequently, any parapuzzle
piece which intersects R is real-symmetric.

5. Properties of the Julia sets

Given a topological disk Ω ⊂ C and a set A, define

λ(A|Ω) = sup
ϕ

m(ϕ(A∩Ω))
m(ϕ(Ω))

,

where ϕ runs over all conformal maps from Ω into C and m denotes the planar Lebesgue
measure.

DEFINITION 5. – Let V ⊂ C be a topological disk. Let Ui, i = 0,1, . . . , be pairwise disjoint
topological disks contained in V . We say that the family {Ui} is ε-absolutely-small in V if
λ(

⋃
i Ui|V ) < ε, and for each i, the diameter of Ui in the hyperbolic metric of V is less than ε.

Here the hyperbolic metric of V is the pullback of the standard Poincaré metric on the unit disk
D ⊂ C by the Riemann mapping from V to D.

The main result of this section is the following:

THEOREM 6. – Consider a map f = fc with c ∈ DG. Then for any ε > 0, there exists a
critical puzzle piece Y such that the collection of the components of the domain of the first return
map to Y is ε-absolutely-small in Y .

5.1. Extendibility

For a puzzle piece Y , let D(Y ) denote the set of all points z for which there exist k = k(z) � 1
with fk(z) ∈ Y , let E(Y ) = D(Y )∪ Y , and let gY :D(Y )∩ Y → Y denote the first return map
to Y .

We shall say that a Jordan disk Ŷ ⊃ Y in C is an extension domain of gY , if for each
component U of D(Y ) ∩ Y , there exists a Jordan disk Û with Y ⊃ Û ⊃ U such that
fs−1 :f(Û) → Ŷ is a conformal map, where s denotes the return time of U to V , i.e.,
gV |U = fs|U . We say that gY is C-extendible if there exists an extension domain Ŷ with
mod(Ŷ \ Y ) � C .

A critical puzzle Y is called C-nice if for each return domain U to Y we have
mod(Y \U) � C . Remark that if gY is C-extendible, then Y is C/�-nice:

mod(Y \U) � mod(Û \U) � mod(Ŷ \ Y )/� � C/�.

The following lemma will be convenient for us to find extension domains.

LEMMA 11. – Let Ŷ ⊃ Y be puzzle pieces such that fk(∂Y )∩ Ŷ = ∅ for all k � 1.
• If Y � 0, then Ŷ is an extension domain of gY .
• If Ẑ is a critical puzzle piece such that fs−1 :f(Ẑ) → Ŷ is a conformal map for some s ∈ N,

and fs(0) ∈ Y , then Ẑ is an extension domain of gZ , where Z = Comp0(f−s(Y )).
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Proof. – Let U be a return domain to Y and let r be the return time. For each 0 � i � r let Qi

denote the component of f i−r(Ŷ ) which contains f i(U). For each 0 � i < r, Qi ∩ ∂Y = ∅ for
otherwise there exists z ∈ ∂Y with fr−i(z) ∈ Ŷ . This shows that Qi ⊂ Y if 0 ∈Qi. In particular,
Q0 ⊂ Y . Moreover, this implies that Qi �� 0 for all 0 < i < r. In fact, otherwise, we would have
f i(U) ⊂ Qi ⊂ Y , contradicting the fact that r is the return time of U to Y . This proves that Ŷ

is an extension domain of gY . For the second statement, one checks that fk(∂Z)∩ Ẑ = ∅ for all
k � 1 and then applies the first statement of the lemma. �
5.2. A recursive argument

To prove Theorem 6 let us start with a slightly more general situation.

LEMMA 12. – For any ε > 0 there exists C > 0 such that if Y is a critical puzzle piece and if
the first return map gY is C-extendible, then

1− λ
(
E

(
Y 1

)
|Y

)
� m(Y \D(Y ))

m(Y \D(Y )) + εm(Y )

(
1− ε

4

)
,(8)

where Y 1 is the critical return domain to Y . Moreover, if Y ′ is a child of Y , then

1− λ
(
D(Y ′)|Y ′) � (1− ε)m(Y \D(Y ))

m(Y \D(Y )) + εm(Y )
� 1− λ(D(Y )|Y )

1− λ(D(Y )|Y ) + ε
(1− ε).(9)

Proof. – Let us use BY (r) to denote the hyperbolic ball in Y with center 0 and radius r. Let
δ > 0 be a small constant so that

λ
(
BY (2δ)|Y

)
� ε

4
.

Define U0 = Y \ D(Y ), define V0 to be the union of all components P of Y ∩ D(Y ) with
P ∩BY (δ) = ∅, and define W0 to be the union of all other component of D(Y ) ∩ Y . Moreover
inductively define Ui, Vi,Wi for all i � 1 as follows:

Ui =
{
z ∈ Vi−1 | gi

Y (z) ∈ U0

}
;

Vi =
{
z ∈ Vi−1 | gi

Y (z) ∈ V0

}
;

Wi =
{
z ∈ Vi−1 | gi

Y (z) ∈ W0

}
.

By definition of C-extendibility, there exits a topological disk Ŷ ⊃ Y with mod(Ŷ \ Y ) � C
and satisfying the following: for each component P of D(Y )∩Y , there exists a topological disk
P̂ with P ⊂ P̂ ⊂ Y and such that fs−1 :fP̂ → Ŷ is a conformal map, where s denotes the return
time of P into Y . Take γ to be the core-curve of the annulus Ŷ \ Y , i.e., γ is the Jordan curve in
Ŷ \Y which separate Ŷ \Y into two annuli with modulus mod(Ŷ \Y )/2. Let Ỹ be the domain

bounded by γ and define P̃ = CompP (f−s(Ỹ )). Then mod(Y \ P̃ ) � mod(Ŷ \ Ỹ )/(2�) �
C/2�. If C is sufficiently large, then this implies that if P ⊂ V0 then 0 /∈ P̃ . It follows that for
any i � 1 and any component A of Vi−1, Ri

Y |A extends to a conformal map onto Ỹ . By the
Koebe distortion theorem, the distortion Dist(Ri

Y |A) is small. Note also that W0 ⊂ BY (2δ).
Thus

m(A∩Ui)
m(A∩W )

� 1
2

m(U0)
m(W )

=
1
2

m(U0)
m(Y )

m(Y )
m(W )

� 2
ε

m(U0)
m(Y )

.

i 0 0
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Since E(Y 1)∩ Y ⊂
⋃

i Wi, this implies that for each component P of V0,

m(P \E(Y 1))
m(P ∩E(Y 1))

� 2
ε

m(U0)
m(Y )

.(10)

Let us estimate λ(Y \E(Y 1)|Y ). Let ϕ be a conformal map from Y into C. Then

m(ϕ(Y \E(Y 1)))
m(ϕY )

� m(ϕU0)
m(ϕY )

+
∑

P∈V0

m(ϕ(P \E(Y 1)))
m(ϕ(P ))

m(ϕ(P ))
m(ϕY )

,

where V0 denote the collection of the components of V0. As mod(Y \P ) � C/�, Dist(ϕ|P ) � 1
provided that C is sufficiently large. By (10), this implies

m(ϕ(P \E(Y 1)))
m(ϕ(P ))

� m(U0)
m(U0) + εm(Y )

,

and hence

m(ϕ(Y \E(Y 1)))
m(ϕY )

� m(U0)
m(U0) + εm(Y )

(
m(ϕU0)
m(ϕY )

+
∑

P∈V0

m(ϕ(P ))
m(ϕY )

)

=
m(U0)

m(U0) + εm(Y )

(
1− m(ϕ(W0))

m(ϕ(Y ))

)
� m(U0)

m(U0) + εm(Y )
(
1− λ

(
BY (2δ)|Y

))
� m(U0)

m(U0) + εm(Y )

(
1− ε

4

)
.

This proves (8).
Now let Y ′ be a child of Y and let s be such that fs(Y ′) = Y . As Y ′ ⊂ Y 1, we have

λ(E(Y ′)|Y ) � λ(E(Y 1)|Y ). Let Q0 � 0, Q1, Q2, . . . be the components of f−s(D(Y )) ∩ Y ′,
and let I = {i � 0 | i = 0 or fs(Qi) = Y 1}. Then

#I � � + 1.

As mod(Y ′ \Qi) � mod(Y \ fs(Qi))/� � C/�2 for all i, it follows that

λ

( ⋃
i∈I

Qi|Y ′
)

� ε

2
,

provided that C is sufficiently large. Let ϕ be any conformal map into C, and let U ′
0 =

f−s(U0) ∩ Y ′. For any i /∈ I , RY ◦ fs maps Qi conformally onto Y and maps Qi ∩ D(Y ′)
onto Y ∩E(Y ′), so

m(ϕ(Qi \D(Y ′)))
m(ϕ(Qi))

� 1− λ(E(Y ′)|Y )

� m(U0)
m(U0) + εm(Y )

(
1− ε

4

)
.
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Thus

m(ϕ(Y ′ \D(Y ′)))
m(ϕ(Y ′))

=
m(ϕ(U ′

0))
m(ϕ(Y ′))

+
∑
i/∈I

m(ϕ(Qi \D(Y ′)))
m(ϕ(Qi))

m(ϕ(Qi))
m(ϕ(Y ′))

� m(U0)
m(U0) + εm(Y )

(
1− ε

4

)(
1−

∑
i∈I

m(ϕ(Qi))
m(ϕ(Y ′))

)

� m(U0)
m(U0) + εm(Y )

(
1− ε

4

)(
1− ε

2

)
� m(U0)

m(U0) + εm(Y )
(1− ε)

� 1− λ(D(Y )|Y )
1− λ(D(Y )|Y ) + ε

(1− ε). �
Remark 7. – Note that the first part of (9) implies that (provided that gY is C-extendible with

a large C), 1− λ(D(Y ′)|Y ′) > 0. This follows from the simple observation that Y −D(Y ) has
a non-empty interior.

5.3. Proof of Theorem 6

PROPOSITION 4. – Assume that c ∈DG. Then there exists a sequence of critical puzzle pieces

Y1 � Y2 � Y3 � · · ·

and a sequence of numbers Cn →∞ as n→∞ such that the following hold:
• for each n, Yn+1 is a child of Yn;
• the first return map to Yn is Cn-extendible.

Proof. – In the proof we will drop the parameter c from the notation. We shall distinguish two
cases.

CASE 1. – fc is reluctantly recurrent.
Step 1. Let N ∈ N be such that PN (0) has infinitely many children. Then for all n � N , Pn(0)

has infinitely many children. In fact, if PN+s(0) is a child of PN (0), and if k � 0 is minimal
such that fs+k(0) ∈ Pn(0), then Pn+k+s(0) is a child of Pn(0).

Step 2. Let V be a critical puzzle piece of depth � N , and let U be its central return domain. We
claim that there exists an arbitrarily large s ∈ N, such that fs(0) ∈ U and W = Comp0(f−s(V ))
is a child of V .

To see this, fix a positive integer M . There exists s1 > M such that W1 = Comp0(f−s1(V ))
is a child of V . As 0 is recurrent, there exists a minimal m ∈ N∪{0} such that gm

V (fs1(0)) ∈ U ,
where gV denotes the first return map to V . By minimality of m, there exists a neighborhood Q
of fs1(0) such that gm

V maps Q conformally onto V . Let W := Comp0(f−s1(Q)). Then clearly
W is a child of V with transition time s � s1 > M (i.e., W = Comp0(f−s(V ))) and fs(0) ∈ U .

Step 3. Let U,V be as in step 2. Assume that U � V . Let us show that for every C > 0, any
child W of V with a sufficiently large transition time is C-nice.

Let s1 < s2 < · · · be all the positive integers such that fsn(0) ∈ U and such that W ′
n =

Comp0(f−sn(V )) is a child of V , n � 1. Then Wn := Comp0(f−sn(U)) is a child of U . Let
W ′

0 = V and W0 = U . Note that Wn ⊃W ′
n+1 for all n (because otherwise, as these puzzle pieces

both contain the critical point, W ′
n+1 ⊃ Wn; this would imply that fsn(W ′

n+1) ⊃ U � 0, which is
impossible since W ′

n+1 = Comp0(f−sn+1(V )) is a child of V and therefore fsn+1−1|f(W ′
n+1)
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is univalent). For all n � 1, since fsn :W ′
n \Wn → V \U is a covering map of degree �,

mod(W ′
n \Wn) = μ := mod(V \U)/� > 0.

To complete this step, let us show that if W is a child of V such that W ⊂ Wn−1, then W is
nμ/�-nice.

To this end, let s ∈ N be such that fs(W ) = V . Let P be a return domain to W and let r be
the return time. Clearly, r � s. If r = s, then fs(P ) = W , so

mod(W \ P ) � mod(V \W )
�

� �−1
n−1∑
i=0

mod(W ′
i \W i) � nμ/�.

If r > s, then fs(P ) is a landing domain to W . For 0 � i � n−1, let Q′
i,Qi ⊃ fs(P ) denote the

landing domain to W ′
i and Wi respectively. Then mod(Q′

i \ Qi) � mod(W ′
i \ Wi) � μ. Since

fs(P ) ⊂ Qn−1, it follows that mod(V \ fs(P )) � nμ and hence

mod(W \ P ) � mod
(
V \ fs(P )

)
/� � nμ/�.

Step 4. Let us now complete the proof of Proposition 4 in the reluctantly recurrent case.
Let us first prove that there exists a 1-nice critical puzzle piece Y1. Take a critical puzzle piece

V of depth � N , such that its central return domain U is compactly contained in V . Such a
puzzle piece exists: one can take V to be a critical pull back of P 3(0). By step 3, V has a 1-nice
child which is Y1.

Once Y2n−1 is defined, let Y2n its the central return domain. By steps 2 and 3, there exists
sn ∈ N, such that fsn(0) ∈ Y2n, and W ′

n = Comp0(f−sn(Y2n−1)) is a child of Y2n−1 and
Wn = Comp0(f−sn(Y2n)) is (n + 1)-nice a child of Y2n. Define Y 2n+1 = Wn. Note that by
Lemma 11, W ′

n is an extension domain of the first return map to Y2n+1. It is easy to see that so
defined Yn, n � 1 satisfies all the requirement in this proposition.

CASE 2. – fc is persistently recurrent and there exists a chain of nice intervals Γ0 ⊃ Γ1 ⊃
· · · � 0 such that Γn+1 is the smallest child of Γn and so that |Γn+1|/|Γn| → 0 as n → ∞.
Now let us consider the enhanced nest of puzzle pieces In ⊃ Ln ⊃Kn ⊃ In+1 ⊃ · · · defined in
Section 8 of [19] and let In,Ln,Kn be their real traces. This construction is based on the fact
that to each critical puzzle piece I one can associate a positive integer ν so that fν(0) ∈ I and if
we define

A(I) := Comp0

(
f−ν

(
Lfν(0)(I)

))
⊂B(I) := Comp0

(
f−ν(I)

)
then fν :B(I) → I has degree bounded by some universal constant and B(I) −A(I) is disjoint
from the orbit of the critical point. (In fact, in the unicritical case one can choose ν so that
Lfν(0)(I) = L0(I).) If we denote the smallest child of I by Γ(I) then the enhanced nest
is inductively defined by Ln = A(In),Kn = B(Ln), In+1 = ΓT (Kn) where T is a fixed
integer chosen in Section 8.1 of [19]. By this construction, there exist integers sn, tn, qn so
that Ln = Comp0(f−sn(In)), Kn = Comp0(f−tn(Ln)) and In+1 = Comp0(f−qn(Kn)), i.e.,
fsn+tn+qn(In+1) = In and, moreover, there exists some fixed T ′ so that for each n at most
T ′ of the iterates f i(In+1), i = 0, . . . , sn + tn + qn, contains the critical point. So although
In+1,Ln,Kn may not be children of In, they are descendants (i.e. a child, or a child of a
child and so on) of In of generation �T ′. In other words, by picking all puzzle pieces in this
pullback which contain the critical point, we obtain the sequence Y0 � Y1 � Y2 � · · · such
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that for each n, Yn+1 is a child of Yn and so that the puzzle pieces from the enhanced nest
In ⊃ Ln ⊃ Kn ⊃ In+1 ⊃ · · · all appear in the sequence Y1, Y2, . . . (and so the integers un

defined by Yun = In satisfy un+1 � un + T ′). By the Key Lemma stated in Section 4 in [19],
there exists η = η(�) > 0 such that for all n sufficiently large, In has η-bounded geometry:
B(0, η diam(In)) ⊂ In. Moreover, there exists ξ > 0 and a neighborhood I′n of In so that
I′n ∩ ω(0) ⊂ In and mod(I′n \ In) � ξ for each n � 0. It follows that all Yi have η′ bounded
geometry for all i large, see [19].

By construction, for any n, there are at least two nice intervals Γi and Γi+1 between In and
In+1. It follows that |In+1|/|In| tends to zero. Hence, by part 3 of Proposition 8.1 in [19] (and
the definition above that proposition) there exists ρn →∞ so that (using the notation from the
end of Section 1),

(1 + 2ρn)Lx(In)⊂ In for all x ∈ ω(0)∩ In,

and (
(1 + 2ρn)In − (1 + 2ρn)−1In

)
∩ ω(0) = ∅.

Hence mod(In −Lfνn (0)(In)) →∞. Since fk(∂Lfνn (0)(In)) ∩ int(In) = ∅ for all k � 1, we
can apply the second part of Lemma 11 (possibly repeatedly if B(In) is not a child, but a
grandchild of In), and obtain that B(In) is a Cn-extension domain of the first return map to
Ln = A(In) with Cn →∞. Since B(In) \Ln is disjoint from the critical set, we can repeatedly
apply the second part of Lemma 11 to the children (and their children) of Ln. Since we only
need to repeat this at most T ′ times until we get to Ln+1, this implies the C ′

i-extendibility of the
first return maps to each of the puzzle pieces Yi with C ′

i →∞. �
Proof of Theorem 6. – Let Yn, n � 1, be as in the above proposition, and let μn =

1−λ(D(Yn)|Yn). By Remark 7, there exists n0 such that for all n � n0, μn > 0. By Lemma 12,
for any ε > 0,

μn+1 � μn

μn + ε
(1− ε),

holds for all n sufficiently large, which implies that

lim inf
n→∞

μn � 1− 2ε.

Therefore, limn μn = 1. �

6. Pseudo-conjugacy

DEFINITION 6. – Let g :
⋃

i Ui → V and g̃ :
⋃

i Ũi → Ṽ be R-maps. A qc map ϕ :C → C is
called a pseudo-conjugacy between them if ϕ maps V onto Ṽ , Ui onto Ũi, and respects the
boundary dynamics: for each z ∈ ∂Ui, ϕ ◦ g(z) = g̃ ◦ϕ(z).

PROPOSITION 5. – There exists a universal constant ε0 > 0 such that the following holds. Let
g and g̃ be R-maps as above, and let ϕ be a pseudo-conjugacy between them which is conformal
a.e. in V \ (

⋃
Ui). Assume that {Ui} is ε0-absolutely-small in V . Then there exists a 2-qc map

θ0 :V → Ṽ which coincides with ϕ on ∂V . Moreover, there exists a qc map ψ :C → C such that
ψ = ϕ on C \

⋃
i Ui (thus ψ is a pseudo-conjugacy), and such that ψ is 2-qc on V \U0.

For the proof we need the following lemma.
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LEMMA 13. – There exists an ε1 > 0 with the following property. Let ϕ :Ω → Ω̃ be a K-qc
map between Jordan disks in C and let A ⊂ Ω be a measurable set with λ(A|Ω) � ε1. Assume
that ϕ is conformal a.e. outside A. Then there exists a max(K/4,2)-qc map ϕ̂ such that ϕ̂|∂Ω
agrees with the continuous extension of ϕ to ∂Ω.

Proof. – Without loss of generality we may assume that Ω = Ω̃ = D. Moreover, we may
assume that K � 8, because otherwise ϕ can be written as the decomposition of two qc maps
ϕ2 ◦ϕ1, such that ϕ1 is 8-qc and conformal a.e. outside A, and ϕ2 is K/8-qc.

Assuming that ε1 is small, let us prove that ϕ|∂D extends to a 2-qc map from D onto itself.
By classical quasiconformal mapping theory, it suffices to show that if a, b, c, d are consecutive
distinct points in ∂D with

Cr(a, b, c, d) :=
d− a

c− a

c− b

d− b
=

1
2
,

then Cr(h(a), h(b), h(c), h(d)) is close to 1/2. Let us consider Möbius transformations σ, τ
such that σ(a, b, c) = τ(h(a), h(b), h(c)) = (1,−i,−1), and let ϕ̃ = τ ◦ ϕ ◦ σ−1. Notice that
σ(d) = −i and τ(ϕ(d)) = ϕ̃(−i). It suffices to show that ϕ̃(−i) is close to −i. Note that ϕ̃ is
8-qc and conformal a.e. outside Ã = σ(A). As

m(Ã)
m(D)

� λ(A|D) < ε1,

the desired estimate follows from the formula for the solution of Beltrami equations. See
Chapter 5 of [1]. �

Proof of Proposition 5. – Let Q be the collection of all qc maps θ :V → Ṽ which coincide
with ϕ on ∂V , and let K0 = inf{K(θ): θ ∈ Q}, where K(θ) denotes the maximal dilatation
of θ. For each K � 1, all K-qc maps in Q form a compact family, so there exists θ0 ∈Q which
is K0-qc.

Define ψ :V → Ṽ to be the map such that ψ = ϕ on V \
⋃

i 	=0 Ui, and such that g̃ ◦ψ = θ0 ◦ g
holds on

⋃
i 	=0 Ui. Then ψ is a qc map. In fact, for each k ∈ N there exists a homeomorphism

ψk :V → Ṽ such that ψk = ψ in
⋃k

i=1 Ui and ψk = ϕ otherwise. By Lemma 2 in [12], for each k,
ψk is qc with K(ψk) � max(K(ϕ),K0), thus ψ = limk ψk is qc. Note that ψ is conformal a.e.
on V \ (

⋃
i Ui) because it coincides with ϕ in that region. Moreover, ψ is K0-qc on

⋃
i 	=0 Ui.

Now let us apply Lemma 13 to show that there exists a map θ1 ∈Q which is max(K0/2,2)-
qc. Let γ ⊂ V \ U0 be the Jordan curve which separates V \ U0 into two annuli with modulus
mod(V \ U0)/2 and let A0 be the Jordan disk bounded by γ. Then provided that ε0 < ε1/2 is
small enough, mod(V \A0) is large, so that λ(A0|V ) < ε1/2. Let A1 =

⋃
i 	=0 Ui, A = A0 ∪A1.

Then λ(A|V ) < ε1.
Let us prove that there exists a 2K0-qc map χ :A0 → ψ(A0) with χ = ψ on ∂A0. In fact, using

the Measurable Riemann Mapping theorem, there exists a K0-qc map ψ1 defined on ψ(A0) such
that ψ1 ◦ ψ is conformal on A0 \ U0. Considering the round annuli model, it is easy to show
that there exists a 2-qc map χ1 :A0 → ψ(A0) such that χ1 = ψ1 ◦ ψ on ∂A0, provided that
mod(A0 \U0) is large enough. Thus χ = ψ−1

1 ◦ χ1 satisfies the required property.
Extend χ to be a qc map from V to Ṽ by setting χ = ψ on V \A0. Then χ is a 2K0-qc map

which is conformal a.e. outside A. The existence of θ1 is then guaranteed by Lemma 13.
By the minimality of K0, we have K0 � max(K0/2,2), i.e., K0 � 2. The map ψ

constructed above can be extended in an obvious way to a pseudo-conjugacy satisfying all the
requirements. �
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7. R-families

7.1. Construction of R-families

To transfer information from the dynamical plane to the parameter plane, we shall use the
techniques introduced in [3,22]. We shall need the notion of R-family.

DEFINITION 7. – Let D ⊂ C be a Jordan disk and let c0 ∈ D. An R-family over (D,c0) is
a family g of R-maps

gc :
∞⋃

i=0

Ui,c → Vc, c ∈D

with the following properties:
• (c, z) �→ (c, gc(z)) is holomorphic in both variables c and z;
• there exists a holomorphic motion h of C over (D,c0) such that for each c ∈ D, hc is

a pseudo-conjugacy between gc0 and gc;
• the filled tube h|D × Vc0 is proper, and the map c �→ gc(0) is a diagonal of this filled tube.

We shall say that h is an equipment of g and that (g,h) is an equipped R-family.
Let us say that an R-family is well-controlled if for each c ∈ D, there exists a qc map

ψc :C → C such that ψc = hc on ∂Vc0 ∪ (
⋃

i ∂Ui,c0) (so ψc is a pseudo-conjugacy between
gc0 and gc), and such that ψc is 2-qc on C \U0,c0 .

The following proposition tells us how to obtain an R-family.

PROPOSITION 6. – Let c0 ∈ W and let n ∈ N be such that for all k � 1 we have
fk

c0
(∂Pn

c0
(0)) ∩ Pn

c0
(0) = ∅ and such that there exists s ∈ N with fs

c0
(0) ∈ Pn

c0
(0). Denote by

s0 the least such s. Then for each c ∈ Pn+s0−1(c0), the first return map gc to Pn
c (0) under fc is

an R-map, and

gc, c ∈ Pn+s0−1

is an R-family. Moreover, this family has an equipment

h :Pn+s0−1(c0)×C →Pn+s0−1(c0)×C

such that h(c, ·) is conformal a.e. on Pn
c (0) \ dom(gc0). Furthermore, if for each

c ∈ Pn+s0−1(c0), there exists a 2-qc map ĥc :Pn
c0

(0)→ Pn
c (0) which extends homeomorphically

to ĥc :Pn
c0

(0)→ Pn
c (0) and coincides with hc on ∂Pn

c0
(0), then the R-family is well-controlled.

Proof. – Let pn :Pn × C → Pn × C be the holomorphic motion as in Lemma 10. Let
Y1, Y2, . . . , YN be all the off-critical puzzle pieces of depth n for fc0 , and let Yi,c = pn,c(Yi).
For any word i = i0i1 · · · ik−1 ∈ {1,2, . . . ,N}k , k � 1, denote |i|= k and define

Yi,c =
{
z ∈ Yi0,c | f j

c (z) ∈ Yij ,c, j = 0,1, . . . , k − 1
}

Wi,c =
{
z ∈ Yi,c | fk

c (z) ∈ Pn
c (0)

}
.

For distinct words of possibly different length, the corresponding sets Yi,c are either disjoint or
nested, whereas the corresponding Wi,c are pairwise disjoint and disjoint from Pn

c (0). For each
i ∈ {1,2, . . . ,N}k and each c ∈ Pn, there exists a unique qc map ϕi,c :Yi,c0 → Yi,c such that
fk

c ◦ϕi,c = pn,c ◦fk
c0

, which maps Yij,c0 onto Yij,c for every j ∈ {1, . . . ,N} and Wi,c0 onto Wi,c.

It follows from part 2 of Lemma 10 that ϕi,c is conformal a.e. on Yi,c0 \ (Wi,c0 ∪
⋃N

j=1 Yij,c0).
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Note that

Qc :=
⋂
k

⋃
|i|=k

Yi,c =
{
z ∈ Kc :fk(z) /∈ Pn

c (0) for all k � 0
}
,

is a hyperbolic set, and thus has zero measure. Define

ϕc(z) =

{
ϕi,c(z) if z ∈ Yi,c0 \

⋃N
j=1 Yij ,c0 ,

pn,c(z) if Gc0(z) � 1/�n.

Then Φ(c, z) = (c,ϕc(z)) defines a holomorphic motion of the set C \Qc0 over Pn(c0). By the
optimal λ-lemma, it extends to a holomorphic motion of C over Pn(c0), again denoted by Φ.
Since Qc0 has zero planar measure, ϕc :C → C is conformal a.e. outside

⋃
i Wi,c0 . Note that for

all 0 � k � n + s0 − 1, ϕc|P k
c0

(c0) = pk,c|P k
c0

(c0). In particular, the identity map is a diagonal

of the filled tube Φ|Pn(c0)× Pn
c0

(c0).
Let {i0, i1, . . .} be the set of all words (of arbitrary length) such that Wij ,c0 ⊂ Pn−1

c0
(c0), so

organized that Wi0,c0 � c0. Then the union of all Uj,c := f−1
c (Wij ,c) is the domain of gc, and

gc|Uj,c = f
|ij |+1
c |Uj,c. By assumption, for all j, Uj,c0 � Pn

c0
(0), which implies that Uj,c � Pn

c (0)
for all c ∈ Pn.

Clearly, Pn+s0−1(c0) = {c ∈ Pn | c ∈ Wi0,c}. For c ∈ Pn+s0−1, the first return map gc is an
R-map. Finally, define a holomorphic motion Φ̃(c, z) = (c, ϕ̃(c, z)) of C over Pn+s0−1 such that
ϕ̃(c, z) = ϕc(z) if z /∈ Wi0,c0 and such that ϕ̃(c, c0) = (c, c). By pulling back Φ̃ we obtain a
holomorphic motion h(c, z) = (c,hc(z)) of C over Pn+s0−1 with the desired properties.

Let us prove the last statement. Assume that there exists a 2-qc map ĥc :Pn
c0

(0) → Pn
c (0)

which coincides with hc on ∂Pn
c0

(0). Since hc = pn,c on ∂Pn
c0

(0), for each word i, we obtain (by

pulling back ĥc) a 2-qc map ϕ̂i,c :Wi,c0 → Wi,c which coincides with ϕc on ∂Wi,c0 . It follows
that there exists a 2-qc map ϕ̂c :C → C which agrees with ϕc outside

⋃
i Wi,c ∪ Pn

c0
(0). Now

pullback ϕ̂c once more by the first entry maps to Pn
c0

(0) and Pn
c (0) (restricted to the domains of

these maps); elsewhere we keep ϕ̂c as before. In this way we get a pseudo-conjugacy between
gc0 and gc which coincides with hc on C \ dom(gc0) and which is 2-qc on C \ Pn+s0

c0 (0). The
statement follows. �

DEFINITION 8. – Let us say that an R-family g = {gc :
⋃∞

j=0 U j
c → Vc} is standard if it can

be obtained as in the proposition. Thus any standard R-family is based over a parapuzzle piece
Pm(c0), and it has an equipment h so that hc is conformal a.e. in Vc0 \ dom(gc0).

7.2. Renormalization of R-families

Let D ⊂ C be a Jordan disk, and let us consider an R-family

g =
{

gc |
⋃
i

Ui,c → Vc, c ∈ D

}
.(11)

We shall use holomorphic motion to relate some sets in the dynamical plane with some sets in
the parameter plane. More precisely, for each word i = i0i1 · · · ik−1 of non-zero integers define

Di =
{
c ∈ D | gj

c

(
gc(0)

)
∈ Uij ,c for j = 0,1, . . . , k − 1

}
;

D′
i =

{
c ∈ Di | gk

c

(
gc(0)

)
∈ U0,c

}
,

and for each c ∈D define
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Ui,c =
{
z ∈ Vc | gj

c(z) ∈ Uij ,c for j = 0,1, . . . , k − 1
}
;

Wi,c =
{
z ∈ Ui,c | gk

c (z) ∈ U0,c

}
.

Let, as before, Lgc denote the first return map of gc to the central domain U0,c.

LEMMA 14. – For each i0, the renormalizations Lgc, c ∈D′
i0

form an R-family.

Proof. – Let h :D × C → D × C be an equipment for the family g := {gc}c∈D so that
hc0 = idC for some c0 ∈ D′

i0
. Arguing as in the proof of Proposition 6, we construct a

holomorphic motion

Φ:D ×C → D ×C, (c, z) �→
(
c,ϕc(z)

)
which is again an equipment of g, and maps Wi,c0 onto Wi,c. Next define a holomorphic motion
Φ̃|D′

i0
×C so that ϕ̃c(z) = ϕ(c, z) if z /∈Wi0 and ϕ̃c(c0) = c. By pulling back this Φ̃, we obtain

a holomorphic motion which equips Lgc, c ∈D′
i0

to an R-family. �
For an R-family as in (11) we define

mod(g) = inf
c∈D

mod(gc) = inf
c∈D

mod(Vc \U0,c ),

and

mod′(g) = inf
c∈D

mod′(gc) = inf
c∈D

min
{
mod(Vc \Ui,c ) : i

}
.

LEMMA 15. – Assume that mod(g) is sufficiently large and that g is a well-controlled
R-family. Then for each i0,

mod(Di0 \D
′
i0) � 1

6
mod(g)−M,(12)

where M > 0 is a universal constant. Moreover, Lg = {Lgc, c ∈D′
i0
} is again a well-controlled

R-family.

Proof. – Let h and Φ be as in the proof of the previous lemma. Let k = |i0|. Note that
the holomorphic motion Φ(c, z) = (c,ϕc(z)) constructed above maps Ui0,c0 to Ui0,c and
Wi0,c0 to Wi0 . Since g is well-controlled, there exists a qc map ψc which agrees with hc on
∂Vc0 ∪ (

⋃
i ∂Ui,c0) (and so is a pseudo-conjugacy between gc0 and gc) and which is 2-qc outside

U0,c0 . Pulling back ψc as before, we obtain for each c ∈D, a qc map ϕ̃c :C → C which coincides
with ϕc on ∂Ui0,c0 ∪ ∂Wi0,c0 and which is 2-qc outside U0,c0 ∪ Wi0,c0 . Since ϕ̃c is 2-qc only
outside this set, we cannot apply Lemma 9 directly to this holomorphic motion. In order to
obtain the estimate (12), in the following, we shall restrict the holomorphic motion to a smaller
region D̂i0 .

Let m := mod(Ui0,c0 \ Wi0,c0 ) = mod(gc0). Let γ ⊂ Ui0,c0 \ Wi0,c0 be a Jordan curve
which separates the annulus into two annuli with moduli equal to m/2, and let D̂ = D̂i0 =
{c ∈D: gc(0) ∈ hc(Ω)}, where Ω denotes the Jordan disk bounded by γ.

Let us prove that for each c ∈ D̂, there exists a 3-qc map ϕ̂c :C → C which coincides
with ϕc on ∂Ui0,c0 ∪ ∂Wi0,c0 . To this end it suffices to show that there exists a 3-qc map
ϕ̂c :U0,c0 → U0,c which coincides with hc on ∂U0,c0 . For each c ∈ D̂, the hyperbolic distance
between gc0(0), h−1

c (gc(0)) ∈ Vc0 is small (taking the hyperbolic metric on Vc0 and assuming
that m is taken large enough). Thus there is a 3/2-qc map θc :Vc0 → Vc0 which is equal to the
identity on ∂Vc0 and which maps gc0(0) to h−1

c (gc(0)). Thus the map ψ̂c = hc ◦ θc :Vc0 → Vc

is a 3-qc map which coincides with hc on ∂Vc0 and satisfies ψc(gc0(0)) = gc(0). The statement
follows.
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Now applying Lemma 9 to the holomorphic motion {ϕc :Ui0,c0 → C}
c∈D̂

, we obtain that

mod(D̂ \D′
i0

) � m/6−M,

from which the estimate (12) follows.
When mod(g) is sufficiently large, mod(D \ D′

i0
) � mod(Di0 \ D′

i0
) is large, so by the

optimal λ-lemma, ϕc is 2-qc for all c ∈ D′
i0

. Therefore ϕ̃c is 2-qc outside Wi0,c0 . As an

equipment of Lg is obtained by pull back the holomorphic motion Φ̃, it follows that Lg is
well-controlled. �

Remark 8. – It is clear from the argument above that if g is a standard R-family, then for any i,
Di, D′

i are parapuzzle pieces, and the family Lg is again a standard family.

Before stating the next proposition, let us first give a fact on the capacity.

LEMMA 16. – Let Ω � Ω′ be real-symmetric Jordan disks, and let J ⊃ J ′ be their real traces.
Assume that mod(Ω \ Ω′) is sufficiently large. Then for each γ � 1 there exists η = η(γ) such
that

Capγ(J ′, J) � exp
(
−η mod(Ω \Ω′)

)
.

Proof. – It is well-known that provided that mod(Ω \ Ω′) is large enough, for any z0 ∈ Ω′

there exists a round annulus A = {r < |z − z0| < R} ⊂ Ω \ Ω′ with mod(A) �
mod(Ω \ Ω′) − M , where M is a universal constant. Let us take z0 ∈ Ω′ ∩ R,
T = (z0 −R,z0 + R), T ′ = (z0 − r, z0 + r). Then clearly, J ′ ⊂ T ′ ⊂ T ⊂ J , so Capγ(J ′, J) �
Capγ(T ′, T ). For each γ-quasisymmetric map h from T into R, clearly |hT ′|/|hT | is bounded
from above by a power of r/R. The lemma follows. �

PROPOSITION 7. – Let c0 ∈ F0 and let g be a standard R-family over D = Pm(c0). Assume
that the R-family g = {gc} is well-controlled, and that mod(g) is sufficiently large. Then for any
γ � 1 there exists η > 0 such that

Capγ(D̃ ∩R,D ∩R) � exp
(
−η mod(g)

)
, where D̃ =

⋃
|i|�4�2

D′
i.

Proof. – Let Ji = Di ∩ R and J ′
i = D′

i ∩ R. By Lemma 15, provided that mod(g) is large
enough, for any word i we have

mod(Di \D
′
i) � mod(g)/6−M > mod(g)/7.

By Lemma 16, this implies that

Capγ(J ′
i , Ji) � exp

(
−η

7
mod(g)

)
.

For any k � 0, the Ji’s with |i|= k are pairwise disjoint, thus

Capγ

( ⋃
|i|=k

J ′
i ,D ∩R

)
� sup

|i|=k

Capγ(J ′
i , Ji) � exp

(
−η

7
mod(g)

)
.
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Therefore

Capγ(D̃ ∩R,D ∩R) �
(
4�2 + 1

)
exp

(
−η

7
mod(g)

)
.

Redefining the constant η completes the proof. �
7.3. Proof of Theorem 4

The proof of Theorem 4 is based on the following lemmas.

LEMMA 17. – Let c0 ∈DG. Then for any C > 0 there exists a standard R-family g over some
parapuzzle piece Pm(c0) such that g is well-controlled and

mod(g) � 2�C, mod′(g) � C.

Proof. – Let ε > 0 be a small number. By Theorem 6, there exists an arbitrarily large n ∈ N

such that the domain of the first return map to Pn
c0

(0) under fc0 is ε-absolutely small in Pn
c0

(0).
By Proposition 6, there is a parapuzzle piece Pm′(c0) such that ĝ = {gc}c∈Pm′ (c0) forms a
standard R-family, where gc denotes the first return map to Pn

c (0) under fc. Provided that ε was
chosen sufficiently small, by Proposition 5 and the last statement of Proposition 6, this family
is well-controlled and thus mod(ĝ) � mod(gc0)/2 is large. By Lemma 15, there is a smaller
parapuzzle piece Pm(c0) (with m > m′) such that Lgc, c ∈ Pm(c0) forms another standard well-
controlled R-family g. Moreover, by Lemma 8, mod(g) and mod′(g) are both large. �

Recall that SC is the subset of F0 consisting of all the parameters c for which the summability
condition (1) holds for all α > 0. In the following we shall use the following criterion:

LEMMA 18. – Let c ∈F0. Then c ∈ SC if one of the following holds:
(1) c /∈ F0

r ;
(2) for fc, there exists a nice interval I � 0 with the following property: if we define I0 = I

and define Ik+1 to be the central return domain to Ik , then |Ii+1|/|Ii| decreases to 0 at
least exponentially fast.

Proof. – In the first case, the map has no periodic attractor and the critical point is non-
recurrent. By a well-known theorem of Mañé, see for example Section III.5 in [29], this implies
that fc satisfies the Collet–Eckmann condition: |Dfn

c (c)| is exponentially big in n, which implies
that c ∈ SC. In the second case, the result was proved in [28]. �

LEMMA 19. – For any δ > 0 and γ � 1, there exists C > 0 with the following property.
Let g be a well-controlled standard R-family over a parapuzzle Pm(c0) with c0 ∈ R such that
mod(g) � 2�C and mod′(g) � C . Let T =Pm(c0)∩R. Then

Capγ(T \ SC, T ) � δ.

Proof. – The strategy is to construct a sequence of open sets

Ω(0) = Pm(c0) ⊃ Ω(1) ⊃ Ω(2) ⊃ · · ·

with the following properties:
• for each k, Ω(k) is a disjoint union of parapuzzle pieces Ω(k,j) which intersect R and defined

by the renormalization procedure described in Section 7.2;
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• for each (k, j), there exists a standard R-family g̃ = g(k,j) over Ω(k,j) which is well-
controlled and

mod(g̃) � 2k+1�C, mod′(g̃) � 2kC;(13)

• for each component P of Ω(k), we have

Capγ

(
(P ∩R) \

(
Ω(k+1) ∪ SC

)
,P ∩R

)
� 2−k−1δ.(14)

The existence of these Ω(k) completes the proof. In fact, Eq. (14) implies that

Capγ

((
T \

⋂
k

Ω(k)

)
\ SC, T

)
� δ.

Moreover, by Lemma 18, the modulus estimate (13) shows that for any c ∈ T ∩
⋂

k Ω(k), c ∈ SC.
Let us construct these sets by induction. The choice of Ω(0) satisfies the requirement by

assumption. Assume now that Ω(k) is constructed. Take a component P of Ω(k), and let ĝ be the
R-family over P which is given by the induction assumption. For each word i of positive integers,
define Pi and P ′

i as in the previous subsection. The set Ω(k+1) is defined to be the union of all
sets of the form P ′

i with |i|> 4�2 which intersect R. This is clearly a disjoint union of parapuzzle
pieces intersecting R. By Lemma 15, for each Pi, Lĝc, c ∈ Pi form a well-controlled R-family.
Applying Lemma 8 to ĝc, we obtain

mod(Lĝc) � (|i| − 1)mod′(ĝc) + mod(ĝc)
�

� (4�2 − 1)mod′(ĝc) + mod(ĝc)
�

� 2k+2�C,

and

mod′(Lĝc) � mod(ĝc)
�

� 2k+1C.

By Proposition 7, for each component P of Ω(k),

Capγ

( ⋃
|i|�4�

Pi ∩R, P ∩R

)
� exp

(
−η mod(ĝ)

)
� exp

(
−2k�ηC

)
� 2−k−1δ,

provided that C is sufficiently large. Note that (P \
⋃

iPi)∩R ⊂F0 \ F0
r , so by Lemma 18,

P \
(
Ω(k+1) ∪ SC

)
⊂

⋃
|i|�4�2

Pi.

This completes the construction and thus the proof of the lemma. �
We finish with the

Proof of Theorem 4. – Combining Lemmas 17 and 19, we obtain the theorem. �
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