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GENERALIZED RING OF NORMS
AND GENERALIZED (ϕ,Γ)-MODULES

BY FABRIZIO ANDREATTA

ABSTRACT. – We construct a generalization of the field of norms functor, due to J.-M. Fontaine and
J.-P. Wintenberger for local fields, in the case of a ring R which is p-adically formally étale over the Tate
algebra of convergent power series V {T1, T

−1
1 , . . . , Td, T−1

d } over a complete discrete valuation ring V
of characteristic 0 and with perfect residue field of positive characteristic p. We use this to show that the
category of p-adic representations of the fundamental group of R[ 1

p
] is equivalent, as a tensor abelian

category, to the category of so-called étale (ϕ,ΓR)-modules.
© 2006 Elsevier Masson SAS

RÉSUMÉ. – On généralise la théorie du corps des normes, due à J.-M. Fontaine et J.-P. Wintenberger
dans le cas des corps locaux, au cas d’un anneau R, p-adiquement étale sur l’algèbre de Tate de séries
formelles convergentes V {T1, T

−1
1 , . . . , Td, T−1

d } sur un anneau de valuation discrète complet V de
caractéristique 0 à corps résiduel parfait de caractéristique p. On en déduit une équivalence de catégories
abéliennes tensorielles entre celle des représentations p-adiques du groupe fondamental de R[ 1

p
] et celle

des (ϕ,ΓR)-modules étales.
© 2006 Elsevier Masson SAS
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1. Introduction

Let V be a complete discrete valuation ring of characteristic 0 and with perfect residue field k
of positive characteristic p. Fix a “very ramified” extension V ⊂ V∞ (see 2.1). For example,
one may take V∞ to be the ring of integers of the cyclotomic extension of V [p−1] obtained
by adjoining all pn-th roots of unity for every n ∈ N. The classical theory of the field of
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600 F. ANDREATTA
norms, due to J.-M. Fontaine and J.-P. Wintenberger [8,9,17], associates to V∞ a complete,
equicharacteristic p discrete valuation ring E+

V and provides an equivalence of categories
between the category of finite extensions of V∞, which are normal as rings, and the category
of finite extensions of E+

V , which are generically separable and are normal as rings.
The main goal of this paper is to generalize such construction. Let R be a p-adically complete

and separated, noetherian algebra over the ring of convergent power series V {T1, T
−1
1 , . . . ,

Td, T
−1
d }, flat as V -algebra such that (I) k ⊂ R ⊗V k is geometrically integral and (II) the

image of T1, . . . , Td in R ⊗V k is an absolute p-basis for R ⊗V k. Fix a “very ramified”
extension R ⊗V V∞ ⊂ R∞ as in 2.2. For example, one may consider the “cyclotomic case”
in which V ⊂ V∞ is given by the cyclotomic tower and R ⊗V V∞ ⊂ R∞ is given by
taking pn-th roots of the variables T1, . . . , Td for every n ∈N. Let π̄K be a uniformizer of E+

V .
We associate to R∞ a ring E+

R, which is a π̄K -adically complete and separated, noetherian
algebra over the ring of convergent power series E+

V {x1, x
−1
1 , . . . , xd, x

−1
d }, flat as E+

V -algebra
and having π̄K , x1, . . . , xd as absolute p-basis. More generally, we construct a functor E+

– of
“generalized ring of norms” associating to an extension S∞ of R∞, which is finite and étale
after inverting p and is normal as a ring, a E+

R-algebra E+
S . Then,

THEOREM 6.3(I). – For every extension S∞ of R∞, which is finite and étale after inverting p
and is normal as a ring, E+

S is a finite extension of E+
R, which is étale after inverting π̄K and is

normal as a ring.

Since R∞ ⊂ S∞ is finite and étale after inverting p there exists a canonical diagonal
idempotent e∞ ∈ (S∞ ⊗R∞ S∞)[p−1]. Following [6, Def. 2.1] we say that R∞ ⊂ S∞ is
almost étale if, letting m∞ be the maximal ideal of V∞, we have that m∞e∞ is in the image
of S∞ ⊗R∞ S∞. Then,

THEOREM 6.3(II). – Assume that every extension S∞ of R∞, which is finite and étale
after inverting p and is normal as a ring, is almost étale. Then, the functor E+

– defines an
equivalence of categories from the category of extensions of R∞, which are finite and étale
after inverting p and are normal rings, to the category of extensions of E+

R, which are finite and
étale over E+

R[π̄−1
K ] and which are normal rings.

The assumption in the theorem is easily proven to be satisfied if R is of Krull dimension � 2.
In general, it holds whenever G. Faltings’ “almost purity theorem” [7, Thm. 4] applies. For
example, it is the case if R is the completion, with respect to an ideal containing p, of the
localization with respect to a multiplicative system of an algebra étale over the polynomial
ring V [T1, T

−1
1 , . . . , Td, T

−1
d ]; see 5.12.

Let R be the completion, with respect to an ideal containing p, of the localization with respect
to a multiplicative system of an étale extension of V [T1, T

−1
1 , . . . , Td, T

−1
d ] and assume also that

we are in the cyclotomic case. Let S be a finite extension of R, which is étale after inverting p
and is normal as a ring. Denote by S∞ the normalization of S ⊗R R∞. Assume it is an integral
domain and denote by ΓS the automorphism group of S∞ as S-algebra. It is a finite index
subgroup of the Galois group of R ⊂ R∞; the latter is isomorphic to the semidirect product of
the Galois group ΓV of V ⊂ V∞ (∼= Zp up to a finite group) and of the Galois group Γ̃R

∼= Zd
p

of R ⊗V V∞ ⊂ R∞. We construct a noetherian regular integral domain AS of characteristic 0
such that AS/pAS = E+

S [π̄−1
K ], it is p-adically complete and separated, it is endowed with a

continuous action of ΓS and with a continuous operator ϕ commuting with ΓS and reducing
to Frobenius modulo p. A (ϕ,ΓS)-module D is a finitely generated AS-module, endowed with
semilinear, commuting actions of ΓS and ϕ. It is called étale if ϕ ⊗ 1 :D ⊗ϕ

AS
AS → D is

an isomorphism of AS-modules. We let (ϕ,ΓS) − Modet
AS

be the category of étale (ϕ,ΓS)-
modules. It is an abelian tensor category. Let GS := π1(S[ 1 ], η) be the fundamental group
p
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GENERALIZED RING OF NORMS AND GENERALIZED (ϕ,Γ)-MODULES 601
of Spec(S[p−1]), where the base point η is chosen to be the generic one. Let Rep(GS) be the
category of p-adic representations of GS i.e., of finitely generated Zp-modules endowed with
a continuous action of GS . We then deduce from Theorem 6.3 the following analogue of the
classical theory of (ϕ,ΓV )-modules due to J.-M. Fontaine [10] in the case S = V :

THEOREM 7.11. – There is an equivalence of abelian tensor categories between the
category Rep(GS) and the category (ϕ,ΓS)−Modet

AS
.

Here, our work is a generalization of that of Fontaine: the statement of the main theorem and
the strategy of the proof are, mutatis mutandis, as in loc. cit. The key ingredient of the proof is
the relation between the category of p-adic representations of the fundamental group E+

S [π̄K ]
and the category of unit root ϕ-crystals over E+

S [π̄−1
K ] established by N. Katz in [12].

In [4] a generalization of the theory of Fontaine has already been given. It is different from
ours: in loc. cit. the object of study is the category of representations of the Galois group
of Frac(V ) with more general coefficients (not only Zp as in [10], but any complete noetherian
ring with finite residue field). In the case that R is the discrete valuation ring associated to an
higher-dimensional local field an independent construction of the field of norms functor can
be found in [1]. If R is a discrete valuation ring with imperfect residue field admitting a finite
p-basis, a theory of the field of norms and of (ϕ,Γ)-modules has been independently developed
in [14].

The paper is organized as follows. Section 2 contains preliminary definitions and construc-
tions. We write R∞ as the union of subrings R = R0 ⊂ R1 ⊂ · · · ⊂ Rn ⊂ · · ·. In the cyclotomic
case we take Vn to be the normalization of V (ζpn), where ζpn is a primitive pn-th root of unity,

and Rn to be R ⊗V [T1,...,Td] Vn[T
1

pn

1 , . . . , T
1

pn

d ]. Let R ⊂ S be a finite extension, étale after
inverting p. Let Sn be the normalization of S ⊗R Rn.

In Section 3 we study the behavior of the ramification of the extensions Rn ⊂ Sn as n
increases. We rely on [6]. Contrary to what is needed in almost étale theory, though, for our
purposes it is not sufficient that differents get smaller as n increases tending to 0. One needs a
better control on how fast they decrease; see 3.8. In the case of local fields this follows from the
original approach of J. Tate [16] via class field theory.

Section 4 is devoted to the construction and the study of the first properties of the generalized
ring of norms associated to the extension R ⊂ S above. We denote it by E+

S following what now
seems the standard notation at least for S = V ; cf. [3]. Then, E+

S is a normal E+
R-algebra and

E+
R ⊂E+

S is finite and étale over E+
R[π̄−1

K ]; see 4.9.
In Section 5 we state a condition on the ramification of {Rn ⊂ Sn}n called (RAE) (= refined

almost étaleness). It implies the key property that E+
R ⊂ E+

S is generically of the right degree
i.e., [Frac(S) : Frac(R)]; see 5.3. In 5.1 we prove that (RAE) is in fact equivalent to Faltings’
almost étaleness (AE). We also give other equivalent formulations in terms of properties of E+

S .
In Section 6 we prove Theorem 6.3. The key point is to construct an inverse to the

functor E+
– (under the assumption that (RAE) holds). We deduce from 6.3 that the fundamental

groups π1(R∞[p−1], η) and π1(E+
R[π̄−1

K ], ν), η and ν being corresponding base points, are
canonically isomorphic; see 6.4 and 6.6.

In Section 7 we prove Theorem 7.11. Thanks to Corollary 6.6 and due to the properties of AS ,
it is a consequence of [12].

The rings E+
S , AS and the theory of (ϕ,ΓS)-modules depend on the structure of R as

V {T1, T
−1
1 , . . . , Td, T

−1
d }-algebra. In 5.6 we present some mild functoriality properties of the

ring E+
R relatively to the ring R. Unfortunately, one cannot and does not expect to sheafify these

constructions in order to get a global version of 6.3 or 7.11 for (formal) schemes over V . Still,
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



602 F. ANDREATTA
our results seem a valuable tool for the study of the various comparison theorems of Fontaine’s
theory, for computing p-adic étale cohomology of schemes over K and for providing new
methods of constructing and studying classical (ϕ,ΓV )-modules. We will come back to these
topics soon.

2. The basic ring R

2.1. Notation

Let V be a ring complete with respect to a discrete valuation v satisfying v(p) = 1, with
perfect residue field k of characteristic p and with fraction field K = Frac(V ) of characteristic 0.
Let K ⊂ K∞ be a Galois extension with group ΓV such that it contains Zp ⊂ ΓV as a finite index
subgroup. Define the tower

K0 := K ⊂ K1 = KZp
∞ ⊂ K2 = KpZp

∞ ⊂ · · · ⊂Kn := Kpn+1Zp
∞ ⊂ · · · .

We assume that Kn ⊂ K∞ is totally ramified for some n� 0. Let Vn be the normalization of V
in Kn. It is complete with respect to the unique discrete valuation extending v. Let kn be its
residue field. Let

V∞ =
⋃
n

Vn, V̂∞ = lim
∞←n

V∞/pnV∞.

Let V be the normalization of V in an algebraic closure K of K . The valuation v extends to a
unique valuation v on K with associated valuation ring V . For every δ ∈ v(K

∗
) denote by pδ a

(any) element of K whose valuation is δ.
As in [11, 0.21.1.4] if A is a ring of characteristic p we denote by A(p) the A-algebra defined

by the ring A with structural morphism as A-algebra given by the Frobenius homomorphism
ϕA :A → A sending a �→ ap. We denote by Ap the image of ϕA. Recall from [11, 0.21.1.9] that
a set {a1, . . . , ad} of elements of A is called an absolute p-basis if the monomials {ai1

1 · · ·aid

d |
0 � ij < p∀j} is a basis of A as Ap-module.

2.2. DEFINITION. – Let R be a p-adically complete and separated, noetherian, flat V -algebra
such that

I. R is an algebra over R0 := V {T1, T
−1
1 , . . . , Td, T

−1
d } the Tate algebra of p-adically

convergent power series in the variables T1, T
−1
1 , . . . , Td, T

−1
d and coefficients in V ;

II. T1, . . . , Td form an absolute p-basis for R⊗V k and k ⊂ R⊗V k is geometrically integral.
Let R0 := R0

0
′ ⊂ · · · ⊂R0

n
′ ⊂ R0

n+1
′ ⊂ · · · be a tower of rings such that

III. R0
n+1

′
is finite and flat over R0

n
′
for every n and the tower {R0

n
′}n reduces to the Frobenius

tower of R0 ⊗V k i.e.,

R0 ′
n ⊗V k ∼=

(
R0 ⊗V k

)(pn) ∼=
(
R0 ⊗V k

)[
T

1
pn

1 , . . . , T
1

pn

d

]
.

Define R0
n := R0 ′

n ⊗V Vn, R′
n := R ⊗R0 R0 ′

n , Rn := R′
n ⊗V Vn and R∞ :=

⋃
n Rn. Let R̂∞

be the p-adic completion of R∞. The hypotheses imply that the maximal ideal of Vn generates
the unique prime ideal Pn of Rn over p so that Pn is principal. Let P∞ :=

⋃
n Pn. Finally, let

Ln := Frac(Rn) and L∞ :=
⋃
n

Ln = Frac(R∞).
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GENERALIZED RING OF NORMS AND GENERALIZED (ϕ,Γ)-MODULES 603
2.3. PROPOSITION. – The following properties hold:
(1) the natural map (R ⊗V k)⊗R0 (R0 ⊗V k)(p) → (R ⊗V k)(p) defined by Frobenius is an

isomorphism. In particular, the extension R0 ⊗V k → R ⊗V k is formally étale ( for the
discrete topologies);

(2) for every n ∈ N the rings Rn/Pn and R′
n ⊗V k are noetherian, geometrically regular

domains;
(3) for every n ∈N the rings Rn and R′

n are noetherian regular domains, p-adically complete
and separated. In particular, Rn and R′

n are normal.

Proof. – (1) The first claim follows from 2.2(II). By [11, 0.21.2.7] it implies that the ring R⊗V

k is formally smooth over R0 ⊗V k. It is formally unramified due to the fact that the relative
differentials Ω1

R⊗V k/R0⊗V k are zero by [11, 0.21.2.5].

(2) We have R′
n ⊗V k ∼= (R ⊗V k)(p

n) and Rn/Pn
∼= R′

n ⊗V kn. In particular, R′
n ⊗V k

is isomorphic to R ⊗V k as a ring and Rn/Pn is isomorphic to R ⊗V k′ where k ⊂ k′ is a
finite extension. By 2.2(II) they are then domains. Since R0 ⊗V k is smooth over k, it follows
from [11, 0.19.3.5] that R⊗V k′, and thus the localization (R⊗V k′)m at every maximal ideal m

of R ⊗V k′, is formally smooth over k′ for every finite extension k ⊂ k′. By [11, 0.22.5.8] this
implies that (R ⊗V k′)m is a geometrically regular local ring. We conclude that the localization
of Rn/Pn and of R′

n ⊗V k at every maximal ideal is geometrically regular. Hence, Rn/Pn

and R′
n ⊗V k are geometrically regular by [11, 0.17.3.2]. In particular, they are regular rings,

thus locally factorial and, hence, normal.
(3) By 2.2(III) the rings Rn and R′

n are finite as R-modules and, in particular, they are
noetherian and p-adically complete and separated. This implies that every maximal ideal
contains p. Since Pn is principal, we conclude from (2) that the localization of Rn and of R′

n

at every maximal ideal is regular. Hence, Rn and R′
n are regular by [11, 0.17.3.2]. In particular,

they are locally factorial and, thus, normal. Then, Rn (resp. R′
n) are product of normal domains

which, being quotients of Rn (resp. R′
n), are p-adically complete and separated. We have proven

that R′
n ⊗V k and Rn/Pn are domains. We conclude that Rn and R′

n are integral domains. �
2.4. The cyclotomic case

The main example to keep in mind is given by the cyclotomic tower

K = K0 ⊂ · · · ⊂Kn = K(ζpn) ⊂ · · ·

and by the rings

R′
n := R

[
T

1
pn

1 , T
−1
pn

1 , . . . , T
1

pn

d , T
−1
pn

d

]
.

In this case R ⊂ R∞ is Galois, after inverting p, with Galois group ΓR which is the semidirect
product of the Galois group ΓV = Gal(K∞/K) of the tower K ⊂ K∞ and of the Galois
group Γ̃R = Gal(R∞/R ⊗V V∞). Remark that ΓV ⊂ Gal(Qp(ζp∞)/Qp) ∼= Z∗

p and that Γ̃R =
Zpγ1 ⊕ · · · ⊕Zpγd

∼= Zd
p, where γi ∈ Γ̃R is the element acting trivially on V∞ and such that

γi

(
T

1
pn

j

)
=

⎧⎨
⎩ ζpnT

1
pn

j if i = j,

T
1

pn

j if i �= j.

2.5. DEFINITION. – Let S be an R-algebra such that
– S is normal and V -flat;
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604 F. ANDREATTA
– it is finite as R-module;
– R[ 1p ]⊂ S[ 1p ] is étale.
Define Sn to be the normalization of S ⊗R Rn. Let Mn be the total field of fractions of Sn.

Let

S∞ :=
⋃
n

Sn, M∞ :=
⋃
n

Mn and Ŝ∞ := lim
∞←n

S∞/pnS∞.

2.6. DEFINITION. – Let Rsep be the direct limit of a maximal chain of normal R∞-algebras,
which are domains and, after inverting p, are finite and étale extensions of R∞[ 1p ]. If S∞ is a

normal R∞-subalgebra of Rsep and R∞[ 1p ]⊂ S∞[ 1p ] is finite and étale, define

HS := Gal
(

Rsep

[
1
p

]
/S∞

[
1
p

])
.

If S is an R-algebra as in 2.5 contained in Rsep, define

GS := Gal
(

Rsep

[
1
p

]
/S

[
1
p

])
.

3. Ramification theory in towers

In this section we study the ramification of the extensions {Rn ⊂ Sn}n. Let en ∈ (Sn ⊗Rn

Sn)[p−1] be the diagonal idempotent; see 3.2. As in [6] we measure the ramification of the
extension Rn ⊂ Sn by the smallest non-negative rational number δn for which there exists
an element pδn ∈ Vn of valuation v(pδn) = δn such that pδ

nen lies in the intersection of the
localizations of Sn ⊗Rn Sn at all height one prime ideals. Due to work of Faltings, one knows
that δn → 0 as n →∞; see 3.6. Our main result is a refinement of this statement, see 3.8, stating
that pnδn is bounded from above. This is proven by Tate [16] in the case of local fields and
inspired Faltings’ theory of almost étale extensions. Unfortunately, the control one has on δn in
codimension 1 is not enough a priori to guarantee that pδnen lies in the image of Sn ⊗Rn Sn. We
will prove that, under some hypotheses, this indeed holds; see 5.11.

3.1. The trace map and idempotents

Let W ⊂ Z be a finite extension of normal rings such that the extension of fraction fields
L⊂ M is separable. Consider the W -linear homomorphism

Tr :Z → HomW (Z,W )

defined by x �→ TrM/L(x · _). Note that Tr is well defined since W ⊂ Z is finite and W is
normal.

Let m :M ⊗L M → M be the multiplication map. Since M is a separable extension of L,
there exists

e ∈M ⊗L M

such that m(x) = (TrM/L ⊗ Id)(e · x) for all x ∈ M ⊗L M . The idempotent e defines a section
to the multiplication map m (as L-algebras).

Assume that there exist τ ∈W and an element of Z ⊗W Z whose image in M ⊗L M is τe. By
abuse of notation we denote such element by τe. Let b1, . . . , bh be generators of Z as W -module.
4e SÉRIE – TOME 39 – 2006 – N◦ 4



GENERALIZED RING OF NORMS AND GENERALIZED (ϕ,Γ)-MODULES 605
Write

τe =
h∑

i=1

ai ⊗ bi

with a1, . . . , ah in Z . We have W -linear maps

g :Z → Wh, f :Wh → Z

given by g(z) := (Tr(zai))i and f((wi)i) :=
∑

i wibi. Since for any z ∈ Z one has τz =∑
i Tr(zai)bi, we deduce that f ◦ g is multiplication by τ . This implies that Z[τ−1] is a direct

summand in a free W [τ−1]-module of finite rank. In particular, it is a projective W [τ−1]-module.
Let I be the kernel of the multiplication map m :Z ⊗W Z → Z . The differentials Ω1

Z/W are

defined by I/I2. Let x ∈ I . By assumption τe− τ lies in I . On the other hand, since L ⊂ M is
étale, the kernel of multiplication by e on M ⊗L M is I ⊗Z M . Thus, ex = 0 and (τe − τ)x =
−τx ∈ I2. Therefore, τ kills Ω1

Z/W . Thus, Z[τ−1] is unramified as W [τ−1]-algebra. Hence,

W [τ−1]⊂ Z[τ−1] is étale.

3.2. Notation

With the notation of 2.5, we denote by

Trn :Sn → HomRn(Sn,Rn)

the trace map x �→TrMn/Ln
(x ·_) and by en ∈Mn⊗Ln Mn the canonical idempotent associated

to the separable extension Ln ⊂ Mn. Since Sn[p−1] is finite and étale as Rn[p−1]-algebra, we
have

en ∈ (Sn ⊗Rn Sn)
[
p−1

]
.

3.3. Differents and discriminants

Assume that W ⊂ Z is a finite and flat extension of products of Dedekind domains.
Following [15, SIII.3] define the inverse different and the discriminant of W ⊂ Z as

D
−1
Z/W :=

{
y ∈M |TrM/L(xy) ∈W ∀x ∈ Z

}
, DZ/W := NormZ/W (DZ/W ).

Then, D−1
Z/W contains Z because Z is integral over W and it is a locally free Z-module of rank 1.

In particular, DZ/W is an ideal of Z . Furthermore, DZ/W is an ideal of W .
The map D

−1
Z/W → HomW (Z,W ) defined by x �→ TrM/L(x · _) is an isomorphism of

Z-modules. Let τ ∈ Z be an element which annihilates Z/DZ/W . Then, τ kills the cokernel
of Tr and the cokernel of

Tr ⊗ Id :Z ⊗W Z → HomZ(Z ⊗W Z,Z)

as well. We conclude that τe ∈ Z ⊗W Z; the notation is as in 3.1.

3.4. The definition of δn(S)

The discriminant ideal of the extension of Dedekind rings Rn,Pn ⊂ Sn ⊗Rn Rn,Pn is a power
of PnRn,Pn . By 2.2 we may then assume that it is generated by an element pδn(S) of Vn dividing
a power of p.
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Let PS∞ be a prime of S∞ over p. Let PSn := PS∞ ∩ Sn. Then, P∞ = PS∞ ∩ R∞
and Pn = PS∞ ∩ Rn. The discriminant ideal of the extension of discrete valuation rings
̂Rn,Pn ⊂ ̂Sn,PSn

is generated by an element pδn(PS∞ ) of Vn dividing a power of p. Furthermore,
δn(S) =

∑
PS∞/P∞

δn(PS∞).

3.5. LEMMA. – There are only finitely many prime ideals of S∞ over P∞.

Proof. – Fix n ∈ N. The extension Frac(Rn) ⊂ Frac(Sn) is separable of degree h :=
[Frac(S) : Frac(R)]. Hence, the ring Sn ⊗Rn Rn,Pn is finite as Rn,Pn -module; see the
discussion in 3.3. In particular, it is a Dedekind domain, free as Rn,Pn -module of rank h. We
conclude that the number of prime ideals of Sn over Pn is at most h. �

3.6. PROPOSITION (cf. [6, Thm. 1.2]). – The sequence {δn(S)}n∈N is a decreasing sequence
of non-negative rational numbers converging to 0. Furthermore, for every n ∈N the cokernel of
the trace map Trn :Sn → HomRn(Sn,Rn), see 3.2, is annihilated by pδn(S) and pδn(S)Sn+1 ⊂
Sn ⊗Rn Rn+1.

Proof. – By construction pδn(S)HomRn(Sn,Rn) is an Rn-submodule of Sn,PSn
for every

height one prime ideal of Sn containing p. Since Sn is normal, Sn coincides with the intersection
of the localization of Sn at all its height one prime ideals. Hence, pδn(S) annihilates the cokernel
of Trn as claimed. Consider the diagram

Sn ⊗Rn Rn,Pn =: Zn −−→ Zn+1 := Sn+1 ⊗Rn+1 Rn+1,Pn+1�⏐⏐ �⏐⏐
Rn,Pn =: Wn −−→ Wn+1 := Rn+1,Pn+1

We have

Zn ⊗Wn Wn+1 ↪→ Zn+1
Tr−→ HomWn(Zn+1,Wn) ↪−→ HomWn(Zn ⊗Wn Wn+1,Wn)⏐⏐�|

⏐⏐�|

D
−1
Zn+1/Wn

↪−→ D
−1
Zn/Wn

⊗Wn D
−1
Wn+1/Wn

Thus,

DZn/Wn
DWn+1/Wn

D
−1
Zn+1/Wn

= DZn/Wn
D

−1
Zn+1/Wn+1

⊂ Zn ⊗Wn Wn+1 ⊂ Zn+1.(3.6.1)

In particular,

pδn(S)−δn+1(S)Zn+1 ⊂ Zn ⊗Wn Wn+1 ⊂ Zn+1

so that δn(S) � δn+1(S). Furthermore,

pδn(S)Sn+1 ⊂ Sn ⊗Rn Rn+1,Pn+1 .

Since Rn+1 is a free Rn-module, Rn+1,Pn+1 = Rn+1 ⊗Rn Rn,Pn and Sn is normal, the last
statement of the proposition follows as well.

Due to 3.4 and 3.5 to conclude the proof of the first statement it is enough to show that for
every prime PS∞ the sequence v(DSn,PSn

/Rn,Pn
) converges to 0. Let pξ be a generator of

the maximal ideal of V . By construction Ω1
R′

n+1/R′
n

has Ω1
R′

n+1⊗V k/R′
n

∼= (R′
n+1/pξR′

n+1)
d as

quotient. Take N ∈ N so that for every n � N the extension Vn ⊂ Vn+1 is totally ramified.
In particular, Ω1

V /V is generated by one element and it is isomorphic to Vn+1/DVn+1/Vn
.

n+1 n
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Furthermore, v(DVn+1/Vn
) � ρ, where 0 < ρ � ξ is a constant independent of n; see [16, Cor. 1,

§3.1]. Since by construction Ω1
Rn+1/Rn

∼= Ω1
R′

n+1/R′
n
⊗R′

n+1
Rn+1 ⊕Ω1

Vn+1/Vn
⊗Vn+1 Rn+1, the

module of differentials Ω1
Rn+1/Rn

is generated by d + 1 elements by Nakayama’s lemma and it

has (Rn+1/pρRn+1)d+1 as a quotient for every n � N .
Write Wn := Rn,Pn and, abusing the notation, Zn := Sn,PSn

. Due to 3.5 we may choose N
so that PSn+1 is the only prime ideal of Sn+1 over PSn for n � N . In particular, Zn+1 is the
normalization of Zn ⊗Wn Wn+1. Consider the sequence of Zn+1-modules

γ :Ω1
Zn/Wn

⊗Zn Zn+1
α−→ Ω1

Zn+1/Wn

β−→ Ω1
Zn+1/Wn+1

.

Let zm be the residue field of Zm with m = n or n + 1. It is a finite extension of the residue
field wn of Wn. Since [w(p)

n : wn] = pd by 2.2(II), we have [z(p)
m : zm] = pd so that Ω1

zm/wn

is generated by � d elements as zm-module. The maximal ideal Im of Zm is a principal ideal
so that Im/I2

m is a free zm-module of rank 1. The kernel of Ω1
Zm/Wn

→ Ω1
zm/wn

is the image

of Im/I2
m. The conclusion is that Ω1

Zm/Wn
is generated by � d + 1 elements as Zm-module.

The kernel of β contains Ω1
Wn+1/Wn

⊗Wn+1 Zn+1 as submodule by [6, Lemma 1.1]. As

explained above, this is generated by d + 1 elements and it has (Zn+1/pρZn+1)d+1 as
quotient. Since Ω1

Zn+1/Wn
is generated by � d + 1 elements, the elementary divisors theorem

implies that Ker(β) contains the kernel of multiplication by pρ on Ω1
Zn+1/Wn

. Hence, Ker(γ)
contains the kernel H of multiplication by pρ on Ω1

Zn/Wn
⊗Zn Zn+1. Since Ω1

Zn/Wn
is

generated by � d + 1 elements and it has the same length as Zn/DZn/Wn
as Zn-module by

[6, Lemma 1.1], we get that H has at least the length of Zn+1/ptZn+1 as Zn+1-module with
t = min{ρ, (v(DZn/Wn

)/d + 1)}. It follows from (3.6.1) that the cokernel C of γ is annihilated
by DZn/Wn

D
−1
Zn+1/Wn+1

. Since Ω1
Zn+1/Wn+1

is generated by � d+1 elements, we conclude that

the length of C is less or equal to the length of (Zn+1/DZn/Wn
D

−1
Zn+1/Wn+1

)d+1. The length

of Ω1
Zn/Wn

⊗Zn Zn+1 minus the length of Ω1
Zn+1/Wn+1

is the same as the length of Ker(γ)
minus the length of C . Thus,

v(DZn/Wn
)− v(DZn+1/Wn+1) � t− (d + 1)v

(
DZn/Wn

D
−1
Zn+1/Wn+1

)
.

Hence, (d + 2)v(DZn/Wn
D

−1
Zn+1/Wn+1

) � min{ρ, (v(DZn/Wn
)/(d + 1))} for every n � N .

One concludes that v(DZn/Wn
) → 0. �

3.7. COROLLARY. – There exists ε′ ∈ Q with 1 > ε′ > 0 depending on {Rn}n and there
exists N ′ ∈ N such that there is pε′ ∈ VN ′ of valuation v(pε′

) = ε′ and for every n � N ′ we
have

Rp
n+1 + pε′

Rn+1 = Rn + pε′
Rn+1.

There exist ε′ > ε > 0 and N = N(S, ε) ∈ N such that there is pε ∈ VN of valuation ε and for
all n � N we have

Sp
n+1 ⊂ Sn + pεSn+1.

Proof. – Suppose that the first statement holds. Using 3.6, we have for n � N ′

ppδn(S)Sp
n+1 ⊂ (Sn ⊗Rn Rn+1)p ⊂ Sn ⊗Rn Rp

n+1 + p(Sn ⊗Rn Rn+1)

⊂ Sn + pε′
(Sn ⊗Rn Rn+1)⊂ Sn + pε′

Sn+1.
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Hence,

Sp
n+1 ⊂

1
ppδn(S)

Sn + pε′−pδn(S)Sn+1.

Recall that pδn(S) ∈ Vn. Since the elements of Sn+1 are integral over Sn and ε′ − pδn(S) → ε′

for n→∞ by 3.6, we conclude that the corollary holds for the tower {Sn}n.
We are left to prove the first statement. By construction of Rn and since (R′

n+1)
p +pξR′

n+1 =
R′

n + pξR′
n+1, where pξ is a generator of the maximal ideal of V , it is enough to prove it

for the tower {Vn}n. In this case we may rely on the classical theory of the field of norms.
Indeed, by assumption the extension Vm ⊂ V∞ is totally ramified for m � 0. In particular, for
every n � m the Norm of a uniformizer πn+1 of Vn+1 is a uniformizer of Vn and Vn and Vn+1

have the same residue field. Thus it suffices to prove that there exist 1 > ε′ > 0 and N ′ ∈N such
that pε′ ∈ VN ′ and Norm(πn+1) ≡ πp

n+1 modulo pε′
Vn for every n � N ′. This follows from

[17, Lemme 4.2.2.1 & Prop. 1.2.3]. This concludes the proof. �
3.8. THEOREM. – Let PS∞ be a prime ideal of S∞ over p. There exists c(PS∞) such

that pnδn(PS∞) � c(PS∞).

Proof. – For every n ∈N we denote by Wn the p-adic completion of Rn,Pn . Let Zn the p-adic
completion of Sn,PSn

and let v be the unique valuation on Zn extending the one on Vn. Let wn

(resp. zn) be the residue fields of Wn (resp. Zn).
Since DZn/Wn

Zn = D
[Zn:Wn]
Zn/Wn

and DZn/Wn
= pδn(PS∞ )Wn, it is enough to prove that the

sequence {pnv(DZn/Wn
)}n is bounded from above. If Z ⊂ Z ′ ⊂ Z ′′ are finite and generically

separable extensions of discrete valuation rings, we have DZ′′/Z = DZ′′/Z′DZ′/Z . Hence,
passing to Galois closures it suffices to prove the statement assuming that R ⊂ S is Galois with
group G. �

3.8.1. LEMMA. – There exist 1 > ε > 0 and N ∈ N such that for every n � N we
have Zp

n+1 + pεZn+1 = Zn + pεZn+1 (in Zn+1). In particular, Frobenius defines an isomor-

phism zn+1
∼−→ zn ⊂ zn+1 and the ramification index of Zn ⊂ Zn+1 is p.

Proof. – Due to 3.5 we may take N ∈ N so that PSn is the unique prime of Sn over PSN
.

In particular, the rank of Zn as Wn-module is constant and independent of n (for n � N )
and the degree of Zn ⊂ Zn+1 is pd+1. If we prove the first statement, then clearly Frobenius
defines an isomorphism zn+1

∼−→ zn. Since this is true for {wn} by 3.7, we deduce that the
degrees [zn : wn] are constant and, hence, [zn+1 : zn] = [wn+1 : wn] for every n. The latter is pd

by 2.2. In particular, the ramification index of Zn ⊂ Zn+1 is p. We are left to prove the first
statement.

Fix 1 > ε′ > ε and N ∈N as in 3.7 so that ε′−pδN (S) � ε. It suffices to show that for n � N
the map

Zn+1/pεZn+1 → Zn/pεZn,

defined by raising to the p-th power, is surjective. We know from 3.6 that pδm(Z) annihilates
the cokernel of the trace map Trm :Zm → HomWm(Zm,Wm) and, since Zm is a free Wm-
module, also the cokernel of Trm ⊗1 :Zm ⊗Wm Zm → HomZm(Zm ⊗Wm Zm,Zm). By 3.1
the idempotent em associated to the extension Frac(Wm) ⊂ Frac(Zm) satisfies pδm(S)em ∈
Zm⊗Wm Zm. Fix n � N . Write pδn+1(S)en+1 =

∑
i an+1,i⊗bn+1,i for suitable elements an+1,i

and bn+1,i of Zn+1. Since en+1 is an idempotent, it follows that for x ∈ Zn we have

ppδn+1(S)x = (Trn+1 ⊗1)
(
ppδn+1(S)e

p
n+1(x⊗ 1)

)
=
(∑

Trn+1

(
ap

n+1,ix
)
bp
n+1,i + O(p)

)
.

i
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Here, O(p) means up to an element in pZn+1. Since ap
n+1,i lies in Zn + pε′

Zn+1, the

element Trn+1(a
p
n+1,ix) lies in Wn + pε′

Wn+1. Since the map Wn+1/pε′
Wn+1 →Wn/pε′

Wn

defined by z �→ zp is surjective, there exists α ∈ Zn+1 such that

ppδn+1(S)x = αp + O
(
pε′)

.

Since Zn+1 is normal, y := p−δn+1(S)α lies in Zn+1. Therefore, x = yp + pε′−pδn+1(S)β for
some β ∈ Zn+1 as wanted. �

For every n ∈ N define W ′
n as the p-adic completion of the localization of R′

n at the
prime ideal Pn ∩ R′

n (the intersection being taken in Rn). By 2.3 the ring R′
n is regular

and Rn = R′
n ⊗V Vn so that the ring W ′

n is a discrete valuation ring and Wn
∼= W ′

n ⊗V Vn.
Let w′

n be the residue field of W ′
n. Then, wn = w′

n ⊗k kn which is a separable extension of w′
n.

Furthermore, W ′
n ⊂W ′

m is inert for every m � n. Define Z ′
n as the normalization of W ′

n⊗W0 Z0

in Zn. It is a discrete valuation ring. Let z′n be its residue field.

3.8.2. LEMMA. – There exists an integer M � N such that for every n � m � M
(a) w′

n ⊂ z′n is separable;
(b) Frobenius to the pn−m-th power induces isomorphisms w′

n
∼−→ w′

m and z′n
∼−→ z′m;

(c) Z ′
n
∼= Z ′

m ⊗W ′
m

W ′
n;

(d) W ′
m ⊂ W ′

n and Z ′
m ⊂ Z ′

n are inert.

Proof. – Since W0 ⊂ W ′
n is inert, the sequence {v(DZ′

n/W ′
n
)}n is discrete and bounded from

below. Hence, there exists M ∈ N so that it is constant for every n � M . In particular, for
every n � m � M the map Z ′

m ⊗W ′
m

W ′
n → Z ′

n must be an isomorphism. Then, z′n is a quotient
of z′m ⊗w′

m
w′

n. Thus, [z′n : w′
n] � [z′m : w′

m]. We have strict inequality if and only if w′
m ⊂ z′m

is not separable, since, by definition, Frobenius to the pn−m-th power induces isomorphisms
w′

n
∼−→ w′

m. Enlarging M if necessary we may assume that the sequence {[z′n : w′
n]}n�M

is constant. In particular, w′
n ⊂ z′n is separable as claimed. Since (b) holds for {w′

n}n by
assumption, the conclusion follows. �

Recall that R ⊂ S is assumed to be Galois with group G. Consider a p-Sylow subgroup H
of G and the associated intermediate extensions R = T0 ⊂ · · · ⊂ Ti ⊂ Ti+1 ⊂ · · · ⊂ Tl = S such
that T0 ⊂ T1 = SH has degree prime to p, T1 ⊂ T2 is étale and, using that a p-group is solvable,
Ti ⊂ Ti+1 is Galois, not étale of degree p for i � 2. Let Ti,n be the normalization of Ti ⊗R Rn.
Take N and M big enough so that the conclusions of 3.8.1 and of 3.8.2 hold for the p-adic
completion of the localization of each Ti,n at Ti,n ∩ PSn for every n � M . We are left to deal
with the following two cases. The first one is the extension arising from R ⊂ T2,M which is
tamely ramified. The second one arises from the extensions Ti,M ⊂ Ti+1,M for i � 2. To ease
the notation, we replace the extension R ⊂ S with Ti,M ⊂ Ti+1,M and for n � M we denote
by Wn (resp. Zn) the p-adic completion of the localization of Ti,n+M (resp. Ti+1,n+M ) at its
unique prime ideal above p. In each case, we want to show that the sequence {pnv(DZn/Wn

)}n

is bounded from above.

3.8.3. Case I: the extension Wn ⊂ Zn is tamely ramified for every n
Let

W ′
∞ :=

⋃
W ′

n, Z ′
∞ :=

⋃
Z ′

n = Z ′
n ⊗W ′

n
W ′

∞.

n n
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They are both discrete valuation rings with perfect residue fields w′
∞ and z′∞ respectively.

Tensoring the diagram

Z ′
n ↪−→ Zn�⏐⏐ �⏐⏐

W ′
n ↪−→ Wn

with
⊗

W ′
n

W ′
∞, we get the diagram

Z ′
∞ ↪−→ Zn ⊗W ′

n
W ′

∞�⏐⏐ �⏐⏐
W ′

∞ ↪−→ Wn ⊗W ′
n

W ′
∞

Note that Wn ⊗W ′
n

W ′
∞ (resp. Zn ⊗W ′

n
W ′

∞) is flat as Wn-module (resp. as Zn-module) and
W ′

n ⊂ W ′
∞ (resp. Z ′

n ⊂ Z ′
∞) is inert. The extensions of residue fields

z′n ↪−→ zn�⏐⏐ �⏐⏐
w′

n ↪−→ wn

are separable since we know that w′
n ⊂ wn is separable and since wn ⊂ zn is separable

by assumption. Since W ′
n ⊂ W ′

∞ and Z ′
n ⊂ Z ′

∞ are inert, the quotient of Wn ⊗W ′
n

W ′
∞

(resp. Zn ⊗W ′
n

W ′
∞) modulo the maximal ideal of Wn (resp. Zn) is wn ⊗w′

n
w′

∞ (resp.
zn ⊗z′

n
z′∞) which is a perfect field. We conclude that Wn ⊗W ′

n
W ′

∞ and Zn ⊗W ′
n

W ′
∞ are

still discrete valuation rings and that the different of Wn ⊗W ′
n

W ′
∞ ⊂ Zn ⊗W ′

n
W ′

∞ is the same
as the different of Wn ⊂ Zn. Hence, to compute the behavior of the sequence {pnv(DZn/Wn

)}n

we may as well assume that the residue fields of Wn and Zn are perfect for every n. Under
this assumption it follows from [16, Prop. 5 & Pf. Prop. 9] using local class field theory
that {pnv(DZn/Wn

)}n is bounded from above for n� 0.

3.8.4. Case II: the map Wn ⊂ Zn is Galois, not étale, of degree p for every n
By 3.6 we have that v(DZn/Wn

) < ε for n � 0. Replacing S with Sn we may assume that
this holds for every n. Let σ be a generator of the Galois group G.

Assume first that wn ⊂ zn is of degree p, and hence inseparable, for some n. By 3.8.1
this holds for every n. Let α be a generator of zn as wn-algebra. Let α ∈ Zn be a lift
of α. Since Wn ⊂ Zn is Galois of degree p, the element α is a generator of Zn as Wn-
algebra and the minimal polynomial of α over Wn is f(X) :=

∏
i(X − σi(α)). By hypothesis

and 3.8.1 there exists β ∈ Zn+1 such that α = βp + pεγ with γ ∈ Zn+1. Furthermore,
β generates zn+1 over wn+1 and, hence, Zn+1 as Wn+1-algebra. Then, v(DZn/Wn

) =
v(f ′(α)) =

∑p−1
i=1 v(α − σi(α)) and, analogously, v(DZn+1/Wn+1) =

∑p−1
i=1 v(β − σi(β)).

Note that v(σi(α)− α) � v(DZn/Wn
) < ε. Thus, v(βp − σi(βp)) = v(α − σi(α)). Since

ε < 1 = v(p), we have pv(β − σi(β)) = v(βp − σi(βp)). Thus, v(DZn+1/Wn+1) = v(DZn/Wn )

p
and the conclusion follows in this case.

We are left to consider the case that wn = zn for some (every) n ∈N. Let α be a uniformizer
of Zn. It generates Zn as Wn-algebra. By 3.8.1 there exists β ∈ Zn+1 such that βp ≡ α
modulo pεZn+1. In particular, since v(DZn/Wn

) < ε by assumption, we have v(α) < ε so

that β is a uniformizer of Zn+1. Then, v(DZn/Wn
) =

∑p−1
i=1 v(α − σi(α)) and, analogously,

v(DZn+1/Wn+1) =
∑p−1

i=1 v(β − σi(β)). The conclusion follows as before.
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3.9. DEFINITION. – With the notation of 3.8 define c(S) :=
∑

c(PS∞), the sum being taken
over all the (finitely many) prime ideals in S∞ over p.

3.10. COROLLARY. – The cokernel of the trace Trn :Sn → HomRn(Sn,Rn), see 3.2, is

annihilated by p
c(S)
pn . Furthermore, p

c(S)
pn Sn+1 ⊂ Sn ⊗Rn Rn+1. In particular, p

c(S)p
(p−1)pn S∞ ⊂

Sn ⊗Rn R∞ for every n ∈N.

Proof. – The assertions follow from 3.6 and 3.8. �
3.11. COROLLARY. – We have S∞⊗R∞ R̂∞ ∼= Ŝ∞. Furthermore, Ŝ∞ is R̂∞-torsion free as

a module and is normal as a ring.

Proof. – Since R̂∞ is a flat R∞-module by A.7, we get from 3.10 the inclusions

p
pc(S)
p−1 S ⊗R R̂∞ ↪→ p

pc(S)
p−1 S∞ ⊗R∞ R̂∞ ↪→ S ⊗R R̂∞.

Since S is a finite R-module, we conclude from A.7 that the homomorphism S ⊗R R̂∞ →
lim∞←n(S ⊗R R∞/pnR∞) is an isomorphism. In particular, S ⊗R R̂∞ is p-adically complete
and separated. Hence, S∞ ⊗R∞ R̂∞ is p-adically complete and separated and the natural map
S∞ ⊗R∞ R̂∞ → Ŝ∞ is an isomorphism.

Using A.9 and the first statement, we conclude that Ŝ∞ is p-torsion free and is a normal ring.
In particular, Ŝ∞ injects in Ŝ∞[p−1] = S[p−1] ⊗R R̂∞. Since S[p−1] is flat over R[p−1], we
deduce that Ŝ∞[p−1] is flat, and thus torsion free, over R̂∞. We conclude that Ŝ∞ is R̂∞-torsion
free as a module as claimed. �

4. The generalized ring of norms

The aim of this section is to introduce and study a generalization of (the ring of integers of)
the field of norms of Fontaine–Wintenberger [8,9,17] for the rings R (2.2) and S (2.5). One
knows from loc. cit. that E+

V is a complete discrete valuation ring of characteristic p with residue
field k∞. We reprove this result in 4.6. We show that E+

R is a noetherian, regular, domain formally
étale over the Tate algebra E+

V {x1, . . . , xd,
1
x1

, . . . , 1
xd
}; see 4.7. We prove that E+

S is normal

and E+
R ⊂E+

S is generically finite and étale; see 4.9 for a precise statement. We refer the reader
to 4.5 for further properties of E+

S .
Let ε ∈ Q with 1 > ε > 0 and let N ∈ N be such that 3.7 holds for the case R = S = V .

Since Vn ⊂ Vn+1 is totally ramified for n � 0 by assumption, it follows from loc. cit. that there
exists a system of uniformizers τi ∈ Vi, for i � N , satisfying τp

i+1 ≡ τi mod pε.

4.1. DEFINITION (cf. [10, §A.3.1.2]). – Let ε ∈Q with 1 > ε > 0. For S∞ as in 2.5, define

Ẽ+
S∞

:= lim
∞←n

S∞/pεS∞, ẼS∞ := Ẽ+
S∞

[
1

π̄K

]

where the transition morphisms in the limit are defined by raising to the p-th power and where π̄K

is the element (. . . , τn, τn+1, . . .) ∈E+
V .

Possibly taking a smaller ε and a bigger N ∈ N, we may assume that the conclusions of 3.7
hold for S. For every n � N , since pεS∞ ∩ Sn = pεSn, we have that Sn/pεSn is a subring
of S∞/pεS∞ and for every x ∈ Sn+1/pεSn+1, we get from 3.7 that xp ∈ Sn/pεSn. Thus, the
following makes sense:
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4.2. DEFINITION. – Let

E+
S := lim

∞←n
Sn/pεSn

be the subring of Ẽ+
S∞

consisting of elements (x0, x1, . . . , xn, . . .) ∈ Ẽ+
S∞

such that
xn ∈ Sn/pεSn for n � N . For every m ∈N let

E+
S (m) := lim

∞←n
Sn+m/pεSn+m

be the subring consisting of elements (x0, . . . , xn, . . .) ∈ Ẽ+
S∞

with xn ∈ Sn+m/pεSn+m for
n � N . Define ES := E+

S [π̄−1
K ] and ES(m) := E+

S (m)[π̄−1
K ].

4.3. Convention

Let α ∈ Q. Following the conventions of 2.1 we denote by π̄α
0 a (any) element a =

(a0, a1, . . . , an, . . .) in
⋃

m E+
V (m), if it exists, such that v(ai) = α

pi for i� 0.
One knows that there exists ρ such that v(τn) = ρ

pn for n � N . Since we are assuming that
there is an element pε ∈ Vn of valuation ε and since τn is a uniformizer of Vn for n � N by
assumption, see 3.7, then βn := εpn

ρ is a non-negative integer. We can, and will, then take π̄pnε
0

to be the element π̄βn

K of E+
V .

4.4. PROPOSITION. – The ring Ẽ+
S∞

has the following properties:

(1) its idempotents are in one-to-one correspondence with those of Ŝ∞. It is a domain if and
only if Ŝ∞ is a domain;

(2) the map Ẽ+
S∞

/π̄pnε
0 Ẽ+

S∞
→ S∞/pεS∞, sending x = (x0, x1, . . . , xm, . . .) to xn is

injective. It is an isomorphism if S = R;
(3) it is Ẽ+

R∞
-torsion free as a module, π̄ε

0-adically complete and separated and reduced as
a ring. It is endowed with a π̄ε

0-adically continuous action of Aut(S∞/R);
(4) it is a perfect ring of characteristic p.

4.5. PROPOSITION. – The ring E+
S has the following properties:

(1) there exists N ∈ N depending on S such that the map E+
S /π̄pnε

0 E+
S → Sn/pεSn,

sending x = (x0, x1, . . . , xm, . . .) to xn is well defined and injective for every n � N .
It is an isomorphism if S = R;

(2) it is E+
R-torsion free as a module, reduced as a ring and π̄K -adically complete and

separated;
(3) it is endowed with a π̄K -adically continuous action of Aut(S∞/R) compatible with the

one on Ẽ+
S∞

;

(4) its idempotents are the same as those of Ẽ+
S∞

(resp. of S∞). It is a domain if and only

if S∞ (or equivalently Ŝ∞ or Ẽ+
S∞

) is a domain;
(5) the ring E+

R is noetherian and E+
S is finite as E+

R-module. In particular, E+
S is noetherian.

To have a good theory of the generalized field of norms, it is crucial that the maps
Ẽ+

S∞
/π̄pnε

0 Ẽ+
S∞

→ S∞/pεS∞ and E+
S /π̄pnε

0 E+
S → Sn/pεSn (for n � 0), defined in 4.4(2)

and 4.5(1) respectively, are isomorphisms. In the next section we will show that, in fact, if
one is an isomorphism the other is as well and that this is equivalent to the almost étaleness
of the extension R∞ ⊂ S∞; see 5.1. We refer the reader to 5.10, 5.11 and 5.12 for examples of
situations when this applies. In the rest of this section we study the properties of the generalized
ring of norms which are independent from almost étaleness.
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4.6. COROLLARY (cf. [17, Thm. 2.1.3 & Prop. 4.2.1]). – We have E+
V
∼= k∞[[π̄K ]], where k∞

is the residue field of V∞ and π̄K is as in 4.2. In particular, E+
V is a complete dvr of

characteristic p.

Proof. – Note that k∞ is a finite extension of k so that it is a perfect field. We have a ring

homomorphism k∞ �→ E+
V given by α �→ (α,α

1
p , α

1
p2 , . . .). By 4.5 the ring E+

V is noetherian
and π̄K -adically complete and separated. We then get a homomorphism ρ :k∞[[π̄K ]] → E+

V
∼=

limn(Vn/pεVn). By 4.5(1) it is an isomorphism modulo π̄pnε
0 for n � 0. Hence, it is an

isomorphism. �
Let R0 := V {T±1

1 , . . . , T±1
d }. For every i = 1, . . . , d let xi ∈ E+

R0 be the element xi :=

(Ti, T
1
p

i , T
1

p2

i , . . .) (viewed in limn R′
n/pρR′

n with pρ ∈ V generator of the maximal ideal).

4.7. COROLLARY. – We have E+
R0

∼= E+
V {x1, . . . , xd,

1
x1

, . . . , 1
xd
}; the convergence is rela-

tive to the π̄K -adic topology on E+
V . Furthermore, with the notation of 2.1, we have

E+
R ⊗E+

R0

(
E+

R0

)(p) ∼=
(
E+

R

)(p)
.(4.7.1)

In particular,
(i) the extension E+

R0 ⊂E+
R is formally étale ( for the discrete topology);

(ii) E+
R is a noetherian regular domain and π̄K , x1, . . . , xd form an absolute p-basis for E+

R;

(iii) E+
R(m) = E+

R ⊗E+
R0

E+
R0(m) = E+

R[π̄
1

pm

K , x
1

pm

1 , . . . , x
1

pm

d ].

4.8. An example: E+
R in the cyclotomic case

Suppose we are in the case 2.4. Then, we can be more explicit. Let ε := (1, ζp, ζp, . . .),

considered as element of Ẽ+
V∞

. Note that (ε− 1) = (π̄
p

(p−1)
0 ) as ideals of Ẽ+

V∞
. By 4.6 we have

E+
W(k)

∼−→ k[[ε− 1]].

Finally, ΓV := Gal(K∞/K) acts continuously on E+
W(k). Let χ : ΓV → Z∗

p be the cyclotomic
character determined by the choice of the roots of unity {ζpn}. Then,

γ(ε) = εχ(γ) :=
(
1, ζχ(γ)

p , ζ
χ(γ)
p2 , . . .

)
.

The action of ΓR on E+
R0 , and hence on E+

R, is characterized as follows. The group ΓV acts

on E+
V and acts trivially on x1, . . . , xd. For i = 1, . . . , d the element γi ∈ Γ̃R acts trivially on E+

V

and satisfies

γi(xj) =
{

εxj if i = j,
xj if i �= j.

4.9. THEOREM. – The rings E+
S and Ẽ+

S∞
are normal. Furthermore, the extensions

ER ↪→ES and ẼR∞ ↪→ ẼS∞

are finite and étale of the same degree.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



614 F. ANDREATTA
4.10. LEMMA (cf. [10, Section A.3.1.2]). – Let Ŝ∞ be the p-adic completion of S∞.
Consider the ring

lim
∞←n

Ŝ∞ :=
{(

x(0), x(1), . . . , x(m), . . .
)
| x(m) ∈ Ŝ∞,

(
x(m+1)

)p = x(m)
}
,

where the transition maps are defined by raising to the p-th power, the multiplicative structure is
induced by the one on Ŝ∞ and the additive structure is defined by

(
. . . , x(m), . . .

)
+
(
. . . , y(m), . . .

)
=
(
. . . , lim

n→∞

(
x(m+n) + y(m+n)

)pn

, . . .
)
.

Then,
(a) the ring structure is well defined, commutative, associative with 1;
(b) the natural map lim∞←n Ŝ∞ → Ẽ+

S∞
is an isomorphism.

Proof. – See loc. cit. We exhibit the inverse of the map in (b). Take x := (x0, . . . , xm, . . .)
in Ẽ+

S∞
. For every i, j ∈ N we have that xpj

i+j gives a well defined element of S∞/pjεS∞

and {xpj

i+j}j converges to a unique x(i) ∈ Ŝ∞ for j → ∞. Then, (x(0), . . . , x(m), . . .) lies

in lim∞←n Ŝ∞ and we define it to be the image of x. �
4.11. Proof of Proposition 4.4

(1) Let e be an idempotent of Ŝ∞. Then (e, e, . . . , e, . . .) is an idempotent of Ẽ+

Ŝ∞
= Ẽ+

S∞
.

Vice versa, let (x(0), . . . , x(m), . . .) be an idempotent of Ẽ+
S∞

; the notation is as in 4.10. Then,
x(m) = (x(m+1))p = x(m+1) i.e., x(i) = x(j) for every i and j ∈N. Furthermore, (x(i))2 = x(i)

i.e., x(i) is an idempotent of Ŝ∞.

Assume that Ŝ∞ is a domain. Since we have a natural inclusion Ẽ+
S∞

⊂ Ŝ∞
N

respecting

the multiplicative structures, see 4.10, we conclude that Ẽ+
S∞

is a domain. Vice versa, suppose

that Ŝ∞ is not a domain. Since Ŝ∞ is normal and has as total field of fractions the finite product
of fields M0 ⊗L0 Frac(R̂∞) by 3.11, we conclude that Ŝ∞ contains a non-trivial idempotent e.
Therefore, Ẽ+

S∞
contains a non-trivial idempotent and, hence, it is not a domain.

(2) It suffices to show that the map Ẽ+
S∞

/π̄pnε
0 Ẽ+

S∞
→ S∞/pεS∞, sending x = (x(0), x(1), . . . ,

x(m), . . .) to the class of x(n) modulo pε, is injective. If x(n) ≡ 0 mod pε, then x(m) ≡ 0 mod-

ulo p
ε

pm−n for every m � n since S∞ is normal. Hence, x ∈ π̄pnε
0 Ẽ+

S∞
. By 3.7 Frobenius

on R∞/pεR∞ is surjective. The last claim follows.
(3) We deduce that limn Ẽ+

S∞
/π̄pnε

0 Ẽ+
S∞

∼−→ limn S∞/pεS∞ = Ẽ+
S∞

as claimed. The

continuity of the action of Aut(S∞/R) is obvious. We have a map Ẽ+
S∞

⊂ Ŝ∞
N

(resp. Ẽ+
R∞

⊂
R̂∞

N
) respecting the multiplication, see 4.10. It follows from 3.11 that Ŝ∞ is R̂∞-torsion free

as a module and is reduced as a ring. Then, Ẽ+
S∞

is Ẽ+
R∞

-torsion free and is reduced as well.

(4) If x = (x0, x1, . . . , xm, . . .) ∈ Ẽ+
S∞

, then y = (x1, . . . , xm, . . .) satisfies yp = x. �
4.12. Proof of Proposition 4.5

The fact that E+
S is E+

R-torsion free and reduced follows from the analogous state-
ments for Ẽ+

S and the inclusions E+
S ⊂ Ẽ+

S and E+
R ⊂ Ẽ+

R . The map E+
S /π̄pnε

0 E+
S →
∞ ∞ ∞
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Ẽ+
S∞

/π̄pnε
0 Ẽ+

S∞
→ S∞/pεS∞, sending (x(0), x(1), . . . , x(m), . . .) to the class of x(n) modulo pε,

factors via Sn/pεSn for n � 0 by construction. Using that Sn is normal for every n ∈ N, one
proves as in 4.4 that it is injective. By 3.7 it is also surjective if S = R. Moreover, we conclude
that limn E+

S /π̄pnε
0 E+

S coincides with limn Sn/pεSn = E+
S . Claims (1) and (2) follow.

Take N � 0 so that Frac(SN ) and Frac(R∞) are linearly disjoint over Frac(RN ) and
Aut(S∞/R) is the product of Aut(SN/RN ) and Aut(R∞/R). Such product acts on Sn and,
hence, on Sn/pεSn for every n � N . Claim (3) follows.

We prove (4). Let e be an idempotent of Ŝ∞. Let ē be its image in Ŝ∞/P∞Ŝ∞ =⋃
n(Sn/PnSn). Then, ē is an idempotent and lies in Sn/PnSn for some n ∈ N. Since Sn

(resp. Ŝ∞) is p-adically complete and using Hensel’s lemma, ē lifts uniquely to an idempotent
of Sn (resp. Ŝ∞). Thus, e ∈ Sn and (e, e, . . . , e, . . .) is an idempotent of E+

S . Thus, the first part
of (4) follows from 4.4(1).

Since S∞ is normal, it is a domain if and only if it contains no non-trivial idempotent. By
the above, this holds if and only if Ŝ∞ does not contain any non-trivial idempotent i.e., since it
is normal, if and only if Ŝ∞ is a domain. By 4.4(1) this is equivalent to require that Ẽ+

S∞
is a

domain. Since E+
S is a subring of Ẽ+

S∞
, if the latter is a domain also E+

S is a domain. Suppose
that S∞ is not a domain. Being normal it contains a non-trivial idempotent. By the above, E+

S

contains a non-trivial idempotent as well and, hence, it is not a domain.
Next we prove (5). By 3.7 for every n � N the map Rn+1/pεRn+1 → Rn/pεRn (resp. Sn+1/

pεSn+1 → Sn/pεSn) defined by raising to the p-th power is well defined; in the case of Rn it
is also surjective. To easy the notation we assume that N = 0 i.e., that RN = R and SN = S.
In particular, E+

R/π̄ε
0E

+
R = R/pεR is noetherian. The E+

R-algebra E+
S /π̄ε

0E
+
S is a E+

R/π̄ε
0E

+
R =

R/pεR-subalgebra of S/pεS. Since S/pεS is finite as R/pεR-module and R/pεR is noetherian,
we get that E+

S /π̄ε
0E

+
S is a finite R/pεR-module. Consider the graded rings

grπ̄ε
0
E+

R :=
⊕

n

(
π̄nε

0 E+
R

)
/
(
π̄

(n+1)ε
0 E+

R

)
and grπ̄ε

0
E+

S :=
⊕

n

(
π̄nε

0 E+
S

)
/
(
π̄

(n+1)ε
0 E+

S

)
.

By [2, Prop. 10.24] the ring E+
R is noetherian if grπ̄ε

0
E+

R is. By [2, Cor. 10.25] the ring E+
S

is finitely generated as E+
R-module if grπ̄ε

0
E+

S is finitely generated as grπ̄ε
0
E+

R-module. The

ring grπ̄ε
0
E+

R (resp. grπ̄ε
0
E+

S ) is generated by E+
R/π̄ε

0E
+
R (resp. E+

S /π̄ε
0E

+
S ) in degree 0 and

by π̄ε
0 in degree 1. Thus, by Hilbert’s basis theorem [2, Cor. 7.6], both conclusions, and hence

claim (5), follow remarking that E+
R/π̄ε

0E
+
R is noetherian and E+

S /π̄ε
0E

+
S is finitely generated as

E+
R/π̄ε

0E
+
R-module. �

4.13. Proof of Corollary 4.7

Consider the map ϕ ⊗ 1 :E+
R ⊗E+

R0
(E+

R0)(p) → (E+
R)(p). It follows from 4.5(1) and 2.2

that, choosing ε small enough so that V ∩ pεV∞ is the maximal ideal of V , then ϕ ⊗ 1
modulo (π̄pnε

0 ) coincides with the base change via k → (Vn/pεVn)(p) of the homomorphism
(R′

n ⊗V k) ⊗R0 ′
n

(R0 ′
n ⊗V k)(p) → (R′

n ⊗V k)(p). This is an isomorphism by 2.2 and 2.3.
Since (E+

R0)(p) is finite and free as E+
R0 -module, it is π̄ε

0-adically complete and separated. Hence,

passing to the inverse limits modulo π̄pnε
0 for n →∞, we get that ϕ ⊗ 1 is an isomorphism as

claimed.
(i) It follows from (4.7.1) that E+

R0 ⊂E+
R is formally smooth (for the discrete topology) by [11,

0.21.2.7] and it is also formally unramified by [11, 0.21.2.5]. This implies the formal étaleness.
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(ii) By 4.6 and 4.5(1) we have (E+
R/π̄KE+

R) ∼= Rn ⊗Vn k∞. By 2.2 the latter is isomorphic
to R′

n ⊗k k∞ which is isomorphic as a ring to R ⊗V k∞. In particular, it is a geometrically
regular domain by 2.3. Since E+

R is π̄K -adically complete, every maximal ideal contains π̄K . We
conclude that the localization of E+

R at every maximal ideal is regular which implies that E+
R is

regular. In particular, it is the product of integral normal domains each of which is π̄K -adically
complete and separated since it is a quotient of E+

R. Hence, the fact that E+
R/π̄KE+

R is an integral
domain implies that E+

R is itself an integral domain. The second statement is equivalent to the
isomorphism (4.7.1).

(iii) Follows from (4.7.1). �
We are left with the proof of Theorem 4.9. We start with a few lemmas.

4.14. LEMMA. – For every n, with the notation of 4.2, we have that Frobenius on E+
S (n+1)

defines an isomorphism E+
S (n + 1) ∼−→E+

S (n) ↪→E+
S (n + 1).

Proof. – Frobenius on E+
S (n + 1) is the map (. . . , xm, . . .) �→ (. . . , xp

m, . . .), where xm ∈
Sm+n+1/pεSm+n+1 and xm−1 = xp

m. Thus, its image lies in E+
S (n). Vice versa, if y =

(. . . , ym, . . .) is an element of E+
S (n), then x = (. . . , xm, . . .), with xi := yi+1, lies in E+

S (n+1)
and its image via Frobenius is x. Since E+

S (n + 1) is reduced by 4.5, Frobenius on E+
S (n + 1)

is injective and the lemma follows. �
4.15. LEMMA. – For every n ∈N

(1) we have π̄
c(S)
pn

0 E+
S (n) ⊗E+

R
(n) E+

R(n + 1) ⊂ π̄
c(S)
pn

0 E+
S (n + 1) ⊂ E+

S (n) ⊗E+
R

(n)

E+
R(n + 1)⊂E+

S (n + 1). In particular, these maps are isomorphisms after inverting π̄ε
0;

(2) Ẽ+
R∞

the π̄ε
0-adic completion of the perfect closure of E+

R, the extension E+
R(n) ⊂ Ẽ+

R∞

is faithfully flat and E+
S (n)⊗E+

R
(n) Ẽ+

R∞
is π̄ε

0-adically complete and separated;

(3) we have π̄
c(S)p

pn(p−1)
0 E+

S (n) ⊗E+
R

(n) Ẽ+
R∞

⊂ π̄
c(S)p

pn(p−1)
0 Ẽ+

S∞
⊂ E+

S (n) ⊗E+
R

(n) Ẽ+
R∞

⊂ Ẽ+
S∞

.

In particular, ES(n)⊗ER(n) ẼR∞
∼−→ ẼS∞ .

Proof. – Let ε and N be as in 3.7. Let c(S) be as in 3.9. By 3.6, for every n � N we have

p
c(S)

pm+n Sm+n ⊗Rm+n Rm+n+1 ⊂ p
c(S)

pm+n Sm+n+1(4.15.1)

⊂ Sm+n ⊗Rm+n Rm+n+1 ⊂ Sm+n+1.

p
pc(S)

pn(p−1) Sn ⊗Rn R∞ ⊂ p
p c(S)

pn(p−1) S∞ ⊂ Sn ⊗Rn R∞ ⊂ S∞.(4.15.2)

(1) By construction Rm+n+1 is free as Rm+n-module with a basis given by the ele-

ments τ t
m+n+1T

j1
pm+n+1

1 · · ·T
jd

pm+n+1

d with 0 � t � p − 1 and 0 � ji � p − 1 for n � 0;

see 4.2 for the notation. By 4.5(1) we have E+
R(n)/π̄pmε

0 E+
R(n) ∼−→ Rm+n/pεRm+n. The

ring E+
S (n)⊗E+

R
(n) E+

R(n + 1) is π̄K -adically complete and separated by 4.5. Its quotient mod-

ulo π̄pmε
0 E+

R(n + 1) is

(
E+

S (n)/π̄pmε
0

)
⊗E+

R
(n)

(
E+

R(n+1)/π̄pmε
0

)∼= (E+
S (n)/π̄pmε

0

)
⊗Rm+n

(
Rm+n+1/pεRm+n+1

)
.

The latter injects in Sm+n ⊗Rm+n (Rm+n+1/pεRm+n+1) since Rm+n+1 is free as Rm+n-
module so that the map E+

S (n)⊗E+(n) E
+
R(n+1) → limm Sm+n ⊗Rm+n (Rm+n+1/pε), where
R
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the inverse limit is taken with respect to Frobenius, is injective. Using the given basis of Rm+n+1

as Rm+n-module for varying m we also conclude that it is surjective. In conclusion, reducing
modulo pε and taking inverse limits over m of (4.15.1), we get the claim.

(2) By 4.14 the perfect closure E+,perf
R of E+

R coincides with the ring
⋃

m E+
R(m). Hence,

E+,perf
R /π̄pnε

0 E+,perf
R

∼= R∞/pεR∞ by 4.5(1). We conclude from 4.4 that Ẽ+
R∞

is the π̄ε
0-adic

completion of E+,perf
R . By 4.7 each E+

R(m) is free as E+
R-module. Then, the claims follow

from A.7.
(3) To get the homomorphisms claimed in (3), one reduces modulo pε and takes inverse

limits over m with respect to Frobenius of (4.15.2). One is then left to prove that map
E+

S (n) ⊗E+
R

(n) Ẽ+
R∞

→ limm(Sn+m ⊗Rn+m R∞/pεR∞) is an isomorphism. One knows

from (2) that E+
S (n) ⊗E+

R
(n) Ẽ+

R∞
is π̄ε

0-adically complete and separated. One then argues as

in the proof of (1) that the map E+
S (n) ⊗E+

R
(n) Ẽ+

R∞
/π̄pmε

0 Ẽ+
R∞

→ Sn+m ⊗Rn+m R∞/pεR∞

is an isomorphism for every m � 0 since by 4.4(2) the homomorphism Ẽ+
R∞

/π̄pmε
0 Ẽ+

R∞
→

R∞/pεR∞, given by (x0, . . . , xn, . . .) �→ xn, is an isomorphism and since R∞/pεR∞ is a free

Rn/pεRn-module with a basis given by the elements τ t
m+nT

j1
pm+n

1 · · ·T
jd

pm+n

d with m � 1,
1 � t � pm and 1 � ji � pm for m � 0. �
4.16. The valuation z′ on Ẽ+

S∞

Let z be a valuation on Ŝ∞ associated to a prime over p. Let

z′ :Frac
(
Ẽ+

S∞

)
→Q∪ {∞}, z′(x) := z

(
x(0)

)
.

Let x := (x(0), x(1), . . .) ∈ Frac(Ẽ+
S∞

). Then, (x(n))pm

= x(n−m) for all integers 0 � m � n.

Since Ŝ∞ is reduced, x = 0 iff x(n) = 0 for every n ∈ N iff x(0) = 0. Hence, z′(x) = ∞ if
and only if x = 0. By the definition of the product structure on Ẽ+

Ŝ∞
in 4.10, we have that z′ is

multiplicative.
Let x = a + b. In particular, {xm := (a(m) + b(m))pm}m is a Cauchy sequence for the p-adic

topology on Ŝ∞ converging to x(0). Since the image of z is contained in Q and z(p) > 0, we
have that z(xm) → z(x(0)). Moreover,

z(xm) = pmz
(
a(m) + b(m)

)
� pm min

{
z
(
a(m)

)
,z
(
b(m)

)}
= min

{
z
(
a(0)

)
,z
(
b(0)

)}
.

It follows that z′(a + b) � min{z′(a),z′(b)}. Hence, z′ defines a valuation on Ẽ+
S∞

.

4.17. Proof of Theorem 4.9

By 4.14 and 4.15(1), the map ES ⊗ER
E(p)

R →E(p)
S induced by Frobenius is an isomorphism.

By [11, 0.21.2.7] this implies that the ring ES is formally smooth over ER (for the discrete
topology). In particular, the extension ER →ES is smooth being of finite type by [11, IV.6.8.6].
Furthermore, it is also unramified due to the fact that the relative differentials Ω1

ES/ER
are zero

by [11, 0.21.2.7] and [11, 0.21.2.5]. Hence, the extension ER ⊂ ES is étale as claimed. We
already know it is finite by 4.5(5). By 4.15(3) the extension ẼR∞ ↪→ ẼS∞ is finite and étale
since ER ↪→ES is finite and étale.
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The ring ẼS∞ is normal since it is a finite étale extension of ẼR∞ and Ẽ+
R∞

is normal due

to A.6 and 4.15(2). Let x = a/π̄δ
0 be an element of ẼS∞ integral over Ẽ+

S∞
and such that a ∈

Ẽ+
S∞

and δ ∈Q�0. Write a = (. . . , a(m), . . .) as in 4.10. Let z be a valuation on Ŝ∞ associated

to a prime over p. Let z′ be the associated valuation on Frac(Ẽ+
S∞

); see Section 4.16. Since x is

integral over Ẽ+
S∞

we have that z′(x) = z(x(0)) = z(a(0))− z(pδ) � 0. Hence, z(a(m)p
−δ
pm ) � 0

for every m and z. Since Ŝ∞ is normal by 3.11, we conclude that a(m)p
−δ
pm ∈ Ŝ∞ for every m.

Hence, x ∈ Ẽ+
S∞

. This proves that Ẽ+
S∞

is normal.
We know that ES is normal since it is an étale extension of ER which is regular by 4.7. Let 0 <

ε′ < ε. Let x be an element of ES , which is integral over E+
S . Write it as x = a/π̄δ

0 with a ∈E+
S

and δ ∈ Q�0. Write a = (. . . , a(m), . . .) as in 4.10. Let z be a valuation on Ŝ∞ associated to a
prime over p. Let z′ be the valuation on Frac(Ẽ+

S∞
) defined by z′((x(0), x(1), . . .)) := z(x(0));

see Section 4.16. Since x is integral over Ẽ+
S∞

we have that z′(x) � 0 i.e., z(x(0)) = z(a(0)) −
z(pδ) � 0. Hence, z(a(m)p

−δ
pm ) � 0 for every m and z. Write a(m) = am + pεs with am ∈ Sm

and s ∈ Ŝ∞. Take m satisfying ε′ < ε − δ
pm . Since a(m)p

−δ
pm = amp

−δ
pm + pε− δ

pm s and Sm is

normal, we get that amp
−δ
m lies in Sm. Then, x = (. . . , a(m)p

−δ
m , . . .) ∈ limm(Sm/pε′

Sm) = E+
S

as wanted. This proves that E+
S is normal. �

5. Refined almost étaleness

In this section we introduce a condition, denoted by (RAE) for refined almost étaleness, on
the ramification of the extensions {Rn ⊂ Sn}n. See 5.1 for equivalent formulations of (RAE)
among which there is Faltings’ condition (AE) on almost étaleness of the extension R∞ ⊂ S∞.
Assuming that (RAE) holds we prove that the generic degrees of E+

R ⊂ E+
S and Ẽ+

R∞
⊂ Ẽ+

S∞

are the same as the generic degree of R ⊂ S, see 5.3. We can also prove that Ẽ+
S∞

is the π̄ε
0-adic

completion of the perfection of E+
S as in classical case (R = V ), see 5.4. Eventually, we can

establish the functoriality of our construction with respect to R; see 5.6. It is quite easy to show
that (RAE) holds if R is of Krull dimension � 2; see 5.10. In more generality it follows from
Faltings’ purity theorem [7, Thm. 4]; see 5.11. The notation is as in 3.2. Consider the conditions

(AE) For every n ∈N the element p
1

pn e∞ is in the image of S∞ ⊗R∞ S∞.

(RAE) There exists � in N so that p
�

pn en is in the image of Sn ⊗Rn Sn for all n ∈N.
RAE stands for refined almost étaleness: this condition implies, thus refines, the notion of

almost étaleness (AE) of the extension R∞ ⊂ S∞. The latter is due to [6, Def. 2.1].

5.1. THEOREM. – The following are equivalent:
(a) (RAE) holds for the tower {Rn ⊂ Sn};
(b) (AE) holds for the extension R∞ ⊂ S∞;
(c) for every n ∈N the map Ẽ+

S∞
/π̄pnε

0 Ẽ+
S∞

→ S∞/pεS∞, given by (x0, . . . , xn, . . .) �→ xn,
is an isomorphism;

(d) there exists N ∈ N such that for every n � N the map E+
S /π̄pnε

0 E+
S → Sn/pεSn, given

by (x0, . . . , xn, . . .) �→ xn, is an isomorphism.

5.2. LEMMA. – Let A be a noetherian, regular domain. Let B be an A-algebra, finite and
torsion free as A-module and normal as a ring. Let Q be a prime ideal of A of codimension 1
or 2. Then, B ⊗A AQ is a free AQ-module.

Proof. – If Q is of codimension 1 the statement is clear. Assume that it has codimension 2. It
follows from the Auslander–Buchsbaum formula, cf. [5, Thm. 19.9] that
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pd(B ⊗A AQ) = dp(Q,AQ) − dp(Q,B ⊗A AQ) where pd stands for projective dimension
and dp is the depth. Since A is regular and B is normal, we have dp(Q,AQ) = 2 = dp(Q,B⊗A

AQ). Hence, pd(B ⊗A AQ) = 0 and the lemma follows. �
5.3. COROLLARY. – Assume that 5.1(d) holds. Then, the degree of the extension ER ⊂ES is

equal to the degree of the extension R[p−1]⊂ S[p−1].

Proof. – Let Q be a prime ideal of E+
R containing π̄K of height � 2. Let {Qm}m
0 be the

tower of prime ideals of {Rm} containing p defined by E+
R/(π̄pmε

0 ,Q)E+
R
∼= Rm/QmRm. We

deduce from 5.2 that Sn,Qn := Sn ⊗Rn Rn,Qn is a free Rn,Qn -module for every n ∈ N of

degree equal to [Frac(S) : Frac(R)]. By 4.7 the ring ̂E+
R,Q is local and regular. Since E+

S is

normal by 4.9, it follows from 5.2 that E+
S ⊗E+

R

̂E+
R,Q is free as ̂E+

R,Q-module of rank equal to

[Frac(E+
S ) : Frac(E+

R)]. By 5.1(d) we have E+
S ⊗E+

R
(E+

R,Q/π̄pnε
0 E+

R,Q) ∼= (Sn,Qn/pεSn,Qn)

and E+
R,Q/π̄pnε

0 E+
R,Q

∼= Rn,Qn/pεRn,Qn for n � 0. The corollary follows. �
5.4. COROLLARY. – The following hold:
(i) the ring Ẽ+

S∞
contains the perfect closure of E+

S ;

(ii) if 5.1(d) holds, Ẽ+
S∞

coincides with the completion of the perfect closure of E+
S with

respect to the ideal (π̄ε
0).

Proof. – (i) Let x = (x0, x1, . . .) ∈ E+
S . Let N ∈ N. Then, the element (xN , xN+1, . . .)

of Ẽ+
S∞

is a pN -th root of x.

(ii) Let ε and N be as in 3.7. By 4.14 we have E+,perf
S =

⋃
m E+

S (m). By 5.1(d) the
map E+

S (m) → Sm+N/pεSN+m, given by (y0, . . . , yn, . . .) �→ yN , is surjective. Since S∞ =⋃
n Sn, we conclude that the natural map E+,perf

S → Ẽ+
S∞

/π̄pN ε
0 Ẽ+

S∞
= S∞/pεS∞ is surjective.

The conclusion follows since Ẽ+
S∞

is π̄ε
0-adically complete and separated by 4.4(3). �

5.5. Functoriality in R

Let R and T be rings satisfying the hypotheses of 2.2 (possibly for different d’s and
different V ’s). Denote by {Tn}n, with T0 = T , a tower with the properties of 2.2. Assume that
there exist N ∈ N and compatible morphisms fn :Rn → Tn for n � N . It follows from the
definition of E+

– , see 4.2, that they give rise to a ring homomorphism fR :E+
R →E+

T .
Let R ⊂ S be a finite extension, étale after inverting p with S normal. Let U be the

normalization of S ⊗R T and let Un be the normalization of U ⊗T Tn. Note that for ever n � N
we have compatible homomorphisms Sn → Un. We then obtain a morphism of E+

R-algebras
fS :E+

S →E+
U . Then,

5.6. COROLLARY. – Assume that the equivalent conditions of 5.1 hold for the tower Rn ⊂ Sn

with � = �(S). The kernel and the cokernel of the map fS⊗1 :E+
S ⊗E+

R
E+

T →E+
U are annihilated

by π�
0. In particular, fS ⊗ 1 is an isomorphism after inverting π̄K .

Proof. – Denote by en the idempotent associated to the extension Rn[p−1] ⊂ Sn[p−1] and
by e′n the idempotent associated to the extension Tn[p−1] ⊂ Un[p−1]. Note that Un[p−1] =
Sn[p−1] ⊗Rn Tn. Hence, e′n is the image of en. Then, p

�
pn e′n is in the image of Sn ⊗Rn

Sn ⊗Rn Tn. Thus, we have p
�

pn Sn ⊗Rn Tn → p
�

pn Un → Sn ⊗Rn Tn → Un by 3.1. Reducing
modulo pε and taking inverse limits for n � 0 with respect to Frobenius, we deduce from 4.5(2)
and 5.1(d) homomorphisms π̄�

0E
+
S ⊗E+ E+

T → π̄�
0E

+
U → E+

S ⊗E+ E+
T → E+

U of E+
T -modules.
R R
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Since ER ⊂ ES and ET ⊂ EU are finite and étale of the same degree by 5.3, the conclusion
follows. �

We now come to the proof of 5.1. We start with some lemmas.

5.7. LEMMA. – Let 0 < ε < 1 be as in 3.7 and let 0 � δ < ε/p be such that there exists an
element pδ ∈ V∞ of valuation δ. Assume that pδe∞ lies in the image of S∞ ⊗R∞ S∞. Then,
the map S∞/pε−pδS∞ → S∞/pε−pδS∞, defined by raising to the p-th power, is surjective. In
particular, the natural projection

Ẽ+
S∞

/π̄
pn(ε−pδ)
0 Ẽ+

S∞
→ S∞/pε−pδS∞,

given by (x0, . . . , xn, . . .) �→ xn, is an isomorphism.

Proof. – The injectivity in the displayed formula follows from 4.4. Clearly the first claim
implies the second. Write pδe∞ =

∑
i ai ⊗ bi for suitable elements ai and bi of S∞. Since e∞ is

an idempotent, it follows that for x ∈ S∞ we have

ppδx = (Tr ⊗1)
(
ppδep

∞(x⊗ 1)
)

=
(∑

i

Tr
(
ap

i x
)
bp
i + O(p)

)
.

Here, Tr :S∞ → R∞ is the trace map and O(p) means up to an element in pS∞. Since the map
R∞/pεR∞ → R∞/pεR∞ defined by z �→ zp is surjective by 3.7, there exists α ∈ S∞ such that
ppδx = αp +O(pε). Since S∞ is normal, y := p−δα lies in S∞. Therefore, x = yp + pε−pδβ for
some β ∈ S∞ as wanted. �

5.8. LEMMA. – Let E+
R(n) ⊂B(n) be a finite extension such that E+

R(n)[π̄−1
K ]→B(n)[π̄−1

K ]
is finite and étale. Let en be the associated idempotent. Assume that there exists � ∈ N such

that π̄
�

pn

0 annihilates the submodule of B(n)⊗E+
R

(n)B(n) consisting of π̄K -torsion elements and

such that π̄
�

pn

0 en lies in the image of B(n)⊗E+
R

(n) B(n). Let Rn ⊂ Bn be a finite extension such

that Rn[p−1]→ Bn[p−1] is finite and étale. Let en be the idempotent associated as in 3.1. Assume
that there exist 0 < 4�

pn < ε < 1 and an isomorphism j :B(n)/π̄ε
0B(n) ∼−→ Bn/pεBn as algebras

over E+
R(n)/π̄ε

0E
+
R(n) = Rn/pεRn (by 4.5(1)). Then, p

2�
pn en lies in the image of Bn ⊗Rn Bn.

Proof. – Write τn := p
2�
pn . Consider the polynomial f(X) := X2−τnX . Then, by assumption

τnen is a well defined element of

(
B(n)/π̄ε

0B(n)
)
⊗E+

R
(n)

(
B(n)/π̄ε

0B(n)
) j⊗j−−→

(
Bn/pεBn

)
⊗Rn

(
Bn/pεBn

)
satisfying f(τnen) = 0. Take x0 ∈ Bn ⊗Rn Bn to be any lift of τnen modulo pε. Then,
f ′(x0) = 2x0 − τn and f ′(x0) ≡ τn(2en − 1) modulo pε. Since (2en − 1)2 = 1, we conclude
that f ′(x0) = τnu where u is a unit in Bn⊗Rn Bn. Note that the latter ring is p-adically complete
and separated since it is finite as Rn-module. By Hensel’s lemma [5, Thm. 7.3], there exists a
root x ∈Bn ⊗Rn Bn of f(X) congruent to x0, and hence equal to τnen, modulo pε− 2�

pn .
In what follows we consider Bn ⊗Rn Bn as a left Bn-module. Let mn :Bn ⊗Rn Bn → Bn

be the multiplication map. Since the image of τnen via the multiplication on B(n) is τn, we

have mn(x) ≡ τn modulo pε− 2�
pn . Hence, mn(x) = τnv with v a unit satisfying v2 = v and v ≡ 1

modulo pε− 4�
pn . By Hensel’s lemma v = 1, i.e. mn(x) = τn. It follows from the assumptions that
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the image of multiplication by τnen on B(n)⊗E+
R

(n) B(n) is B(n) · τnen. Thus,

x(Bn ⊗Rn Bn) ⊂ Bnx + pε− 2�
pn (Bn ⊗Rn Bn).

Since (x/τn)M = (x/τn) for every M ∈N we have

(
x

τn

)
(Bn ⊗Rn Bn) =

(
x

τn

)M

(Bn ⊗Rn Bn) ⊂ Bn

(
x

τn

)
+ pM(ε− 4�

pn )(Bn ⊗Rn Bn)

(as submodules of Bn ⊗Rn Bn[p−1]). Since Bn ⊗Rn Bn is p-adically separated, we conclude
that x

τn
(Bn ⊗Rn Bn) = Bn

x
τn

. Hence, x
τn

= en as claimed. �
5.9. Proof of Theorem 5.1

(a) ⇒ (b) is clear.
(b) ⇒ (c): the injectivity follows from 4.4(2). To prove the surjectivity we may shrink ε. Then,

the implication follows from 5.7.
(c) ⇒ (d): the fact that there exists N ∈N such that the map in (d) is well defined and injective

for n � N follows from 4.5(1). We claim that p
c(S)
pn Sn/pεSn is in the image of E+

S for n � N . It
suffices to prove this after base change via the faithfully flat morphism E+

R ⊂ Ẽ+
R∞

(see 4.15(2)).
By 4.15(3) and 3.10 we have

π̄
c(S)
0 Ẽ+

S∞
⊂E+

S ⊗E+
R

Ẽ+
R∞

⊂ Ẽ+
S∞

, p
c(S)
pn Sn ⊗Rn R∞ ⊂ p

c(S)
pn S∞ ⊂ Sn ⊗Rn R∞.

Since Ẽ+
R∞

/π̄pnε
0 Ẽ+

R∞
∼= R∞/pεR∞ by 4.4(2), (c) implies that (p

c(S)
pn Sn/pεSn) ⊗E+

R
Ẽ+

R∞

i.e., (p
c(S)
pn Sn/pεSn) ⊗Rn R∞, is in the image of E+

S ⊗E+
R

Ẽ+
R∞

as claimed. If xn ∈

p
c(S)
pn Sn/pεSn is the image of x = (x0, . . . , xm, . . .) ∈ E+

S , from the normality of Sm we get

that xm ∈ p
c(S)
pm Sm/pεSm for every m � n. Hence, y = x/π̄

c(S)
0 lies in E+

S . We conclude that

Sn/pε− c(S)
pn Sn is in the image of E+

S . This implies that also E+
S → Sn/pεSn is surjective.

(d) ⇒ (a): by 4.9 the extension ER(m) ⊂ES(m) is finite and étale. Let em be the associated
idempotent as in 3.1. Then there exists � ∈ N such that π̄�

0e0 lies in the image of E+
S ⊗E+

R
E+

S

and π̄�
0 annihilates the submodule of π̄K -torsion elements of E+

S ⊗E+
R

E+
S . We deduce from 4.14

that π̄
�

pm

0 em is in the image of E+
S (m)⊗E+

R
(m) E

+
S (m) and π̄

�
pm

0 kills the π̄K -torsion of the latter

for every m ∈N. The implication follows then from 5.8 with Bn = Sn and B(n) = E+
S (n).

5.10. PROPOSITION. – If R is of Krull dimension � 2, then condition (RAE) holds with
� = c(S).

Proof. – By 3.10, p
c(S)
pn kills the cokernel of the trace map Trn :Sn → HomRn(Sn,Rn),

defined in 3.2. Since Sn is projective as Rn-module by 5.2, we get that in

Sn ⊗Rn Sn
Trn ⊗Id−−−−−−→ HomRn(Sn,Rn)⊗Rn Sn → HomSn(Sn ⊗Rn Sn, Sn)

the right hand map is an isomorphism. We conclude that the cokernel of the composite is killed

by p
c(S)
pn . Hence, reasoning as in 3.1, it follows that p

c(S)
pn en lies in Sn ⊗Rn Sn. �
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5.11. THEOREM (Faltings’ almost purity theorem). – Assume that the composite of the
extensions V [T±1

1 , . . . , T±1
d ] → R0 → R is flat and has geometrically regular fibers and that

we are in the cyclotomic case, see 2.4. Then, condition (AE) holds.

Proof. – Due to 2.3 the extension k[T±1
1 , . . . , T±1

d ] → R ⊗V k is formally étale. Hence, R

satisfies the assumptions of [7, Thm. 4]. Let R̃ :=
⋃

m∈N R[T
1
m
1 , . . . , T

1
m
1 ]. It is naturally a R∞-

algebra. Define S̃ := S∞⊗R∞ R̃. Due to [7, Thm. 4] the extension R̃ ⊂ S̃ is almost étale. Since R̃
is the union of finite and étale extensions of R∞, the conclusion follows. �

The following proposition provides a good source of examples when 5.11 applies. Let B0

be an excellent, noetherian, flat V [T±1
1 , . . . , T±1

d ]-algebra such that V [T±1
1 , . . . , T±1

d ]→ B0 has
geometrically regular fibers and the natural map (B ⊗V k) ⊗R0 (R0 ⊗V k)(p) → (B ⊗V k)(p),
induced by Frobenius, is an isomorphism. For example, one may take B0 = V [T±1

1 , . . . , T±1
d ].

5.12. PROPOSITION. – Suppose that A is the localization S−1B with respect to a multiplica-
tive system S of an étale extension B of B0. Let J ⊂ A be an ideal containing p and let R be
the J -adic completion of A. Assume that 1 �= 0 in R. Then,

(i) R is noetherian and p-adically complete and separated;
(ii) R is flat as V [T±1

1 , . . . , T±1
d ]-algebra;

(iii) V [T±1
1 , . . . , T±1

d ]→ R has geometrically regular fibers;
(iv) the natural map (R ⊗V k) ⊗R0 (R0 ⊗V k)(p) → (R ⊗V k)(p) is an isomorphism. Thus,

{T1, . . . , Td} is an absolute p-basis for R⊗V k.
In particular, the theory developed so far applies if k ⊂R⊗V k is geometrically integral.

Proof. – (i) and (ii) are clear. (iii) Since B0 is excellent, also A is excellent by [11, 7.8.3(ii)].
The claim follows from [11, 6.6.1(i)] since both V [T±1

1 , . . . , T±1
d ] → A and A → R have

geometric regular fibers (for the second map use [11, 7.8.3(v)]).
(iv) Since ϕ ⊗ 1 : (B ⊗V k) ⊗B0 (B0 ⊗V k)(p) → (B ⊗V k)(p) is an isomorphism, the same

applies to the localization with respect to S and to the reduction modulo Jn for every n. Note
that (R0 ⊗V k)(p) is finite and free as R0 ⊗V k-module. Hence, the J -adic completion of
(A ⊗V k) ⊗R0 (R0 ⊗V k)(p) coincides with (R ⊗V k) ⊗R0 (R0 ⊗V k)(p). On the other hand,
the J -adic completion of (A⊗V k)(p) is (R⊗V k)(p). The claim follows. �

6. The inverse of the functor of generalized ring of norms

Assuming that the equivalent conditions of 5.1 hold, we prove in Theorem 6.3 and its
Corollary 6.4 that the formation of the generalized ring of norms, see 6.2, defines an equivalence
of categories between the category of normal extensions R∞ ⊂ S∞, finite and étale after
inverting p, and the category of normal extensions E+

R ⊂ B, finite and étale after inverting π̄K .
The essential tool is the construction of an inverse to the functor of the generalized ring of norms,
see 6.2, based on Appendix B.

6.1. DEFINITION. – Consider
R∞-AE: the category of normal R∞-algebras S∞ such that S∞[ 1p ] is finite and étale as R∞[ 1p ]-

algebra;
E+

R-AE: the category of normal E+
R-algebras B such that B[ 1

π̄K
] is finite and étale as E+

R[ 1
π̄K

]-
algebra.

6.2. DEFINITION. – Define the functor

E+ :R∞-AE→E+
R-AE
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as follows. Let R∞ ⊂ S∞ be an object of R∞-AE. Let N be any integer for which there exists
a normal RN -subalgebra SN of S∞ such that S∞[p−1] = SN ⊗RN

R∞[p−1]. For every n � N ,
let Sn be the normalization of SN ⊗RN

Rn. Define E+
S to be the E+

R-subalgebra of Ẽ+
S∞

consisting of elements (a0, . . . , an, . . .) such that an ∈ Sn/pεSn for n � N . It is clear how to
define E+ on morphisms.

6.3. THEOREM. – (I) The functor E+
– is well defined.

(II) Assume that the equivalent conditions of 5.1 hold for every object of R∞-AE. Then, the
functor E+

– is an equivalence of categories. Furthermore, if S∞ and E+
S are two corresponding

objects, then
(1) the generic degrees of R∞ ⊂ S∞ and E+

R ⊂E+
S are the same;

(2) the sets of idempotents of S∞ and E+
S are in natural one-to-one correspondence;

(3) R∞[p−1] ⊂ S∞[p−1] is Galois if and only if ER ⊂ ES is Galois and the two associated
Galois groups are naturally identified.

Proof. – (I) Let R∞ ⊂ S∞ be an object of R∞-AE. Let SN be as in 6.2. Since RN ⊂ R∞ is
faithfully flat, RN [p−1]→ SN [p−1] is finite and étale. By 4.9 it is normal and E+

R ⊂E+
S is finite

and étale after inverting π̄K . In particular, E+
S is an object of E+

R-AE as claimed.
(II) We suppose for the moment that E+

– is an equivalence of categories and we prove the other
claims. Claim (1) follows from 5.3. Claim (2) follows from 4.5(4). Assume that R∞[p−1] ⊂
S∞[p−1] is Galois with group H . Then, H acts on Ŝ∞ and by 3.11 the invariants Ŝ∞

H
coincide

with R̂∞. The group H also acts on Ẽ+
S∞

by 4.4 and, using 4.10, the invariants coincide

with Ẽ+
R∞

. Eventually, H acts on E+
S by 4.5(3). It follows from 4.15(2) and (3) that the invariants

are given by E+
R. This proves Claim (3).

To prove that E+
– defines an equivalence of categories we construct an inverse. This is one of

the goals of the rest of this section; see 6.10. �
6.4. COROLLARY (cf. [10, Thm. A.3.1.6]). – Under the assumptions of 6.3 we have an

isomorphism of topological groups

Gal
(
Rsep

[
p−1

]
/R∞

[
p−1

]) ∼−→ Gal
(
Esep

R /ER

)
,

where Rsep is as in 2.6 and Esep
R is the union of the maximal chain of finite and étale extensions

of ER arising from the maximal chain of finite and étale extensions of R∞[p−1] chosen in 2.6.

6.5. Base points

Assume we have a discrete valuation ring TM , for some M ∈ N, satisfying the hypotheses
of 2.2 (possibly for different d’s and different V ’s from those for R). Let {Tn}n�M be a
tower with the properties of 2.2. Denote T∞ :=

⋃
n Tn. Assume that we have compatible

morphisms fn :Rn → Tn for n � M . For example, one can take Tn to be the localization Rn,Pn

of Rn at the unique prime ideal Pn over p.
As in 2.6 define T sep as the direct limit of a maximal chain of normal domains which are

T∞-algebras, finite and étale over T∞[p−1]. Then, ηT : Spec(T sep[p−1]) → Spec(R∞[p−1]) is a
geometric point.

On the other hand, define E+
T := limm�M Tm/pεTm as the subring of Ẽ+

T∞
= limT∞/pεT∞

consisting of elements (a0, . . . , an, . . .) such that an ∈ Tn/pεTn for n � 0. Then, E+
T is a

complete discrete valuation ring and, applying the functor E+
– of 6.2 to the chain of T∞-algebras

involved in the definition of T sep, we obtain by 6.4 a separably closed extension Esep
T of the

field ET . Let νT : Spec(Esep
T )→ Spec(ER).
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6.6. COROLLARY. – Under the assumptions of 6.3 the functor E+
– provides an equivalence

of Galois categories between the category of finite and étale covers of Spec(R∞[p−1]) with base
point ηT and the category of finite and étale covers of Spec(ER) with base point νT . In par-
ticular, we have a topological isomorphism of fundamental groups π1(Spec(R∞[p−1]), ηT ) ∼=
π1(Spec(ER), νT ).

Proof. – In the following if A is a ring and B and C are A-algebras we write HomA(B,C)
for the set of homomorphisms as A-algebras. Let S∞ be an object of R∞-AE. Denote by U∞
the normalization of T∞ in S∞ ⊗R∞ T∞[p−1]. Then,

HomR∞

(
S∞
[
p−1

]
, T sep

[
p−1

])
= HomR∞

(
S∞, T sep

)
= HomT∞

(
U∞, T sep

)
.

The latter is identified with HomET
(EU ,Esep

T ) by 6.3. By 5.6, we have ES ⊗ER
ET = EU .

Hence, HomET
(EU ,Esep

T ) = HomER
(ES ,Esep

T ). Thus, we get the identification

HomR∞

(
S∞
[
p−1

]
, T sep

[
p−1

])
= HomER

(
ES ,Esep

T

)
as sets with actions of Aut(S∞/R∞), functorially in S∞. The corollary follows. �

6.7. DEFINITION. – Let B be an object of E+
R-AE. Consider the direct system {B(n)}n∈N

(resp. {E+
R(n)}n∈N), where for every n ∈ N we define B(n) := B (resp. E+

R(n) := E+
R) and

the transition map B(n) →B(n+1) (resp. E+
R(n) →E+

R(n+1)) is Frobenius. Define the direct
limits

Bperf := lim
n→∞

B(n) (resp. E+,perf
R := lim

n→∞
E+

R(n)).

For every n ∈ N, let en ∈ (B(n) ⊗E+
R

(n) B(n))[π̄−1
K ] be the idempotent defined as in 3.1.

Let � ∈ N be such that π̄
�

pn

0 en is in the image of B(n) ⊗E+
R

(n) B(n) and π̄
�

pn

0 annihilates the

submodule of B(n)⊗E+
R

(n) B(n) of π̄K -torsion elements.

6.8. Remark. – Due to 4.9 if R ⊂ S is as in 2.5, then the extension E+
R ⊂ E+

S is an object
of E+

R-AE. In 4.2 we have already introduced a ring denoted by E+
S (n). By 4.14 the two

notations E+
S (n) given in 4.2 and in 6.7 agree.

Assume that π̄�
0e0 is in the image of B(0) ⊗E+

R
(0) B(0), then (π̄�

0e0)
1

pn = π̄
�

pn

0 en lies in the

image of B(n) ⊗E+
R

(n) B(n). Analogously, if π̄�
0 annihilates the π̄K -torsion of B(0) ⊗E+

R
(0)

B(0), then π̄
�

pn

0 kills the π̄K -torsion of B(n)⊗E+
R

(n) B(n). Hence, the positive integer �, whose
existence is claimed in 6.7, does indeed exist.

6.9. THEOREM. – For every object B of E+
R-AE there exists N = N(B) ∈ N and for

every n � N there is a Rn-algebra Bn with the following properties:
(1) Bn is normal as a ring, finite as Rn-module and Rn ⊂ Bn is étale after inverting p of

degree equal to the generic degree of E+
R ⊂B;

(2) for every m � n � N the Rm-algebra Bm is the normalization of Bn ⊗Rn Rm in its total
field of fractions;

(3) for every n � N we have an isomorphism βB(n) :E+
Bn

∼−→B(n) as E+
R(n)-algebras such

that for m � n the homomorphism βB(m) ◦ rm,n ◦ β−1
B(n) :B(n) → B(m) is the natural

inclusion defined in 6.7. Here, rm,n :E+
Bn

→ E+
Bm

is induced by the inclusion Bn ⊂ Bm

obtained from (2) and the functoriality of E+
– ;
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(4) let j :B → B′ be a homomorphism of objects of E+
R-AE. There exists N(B,B′) ∈ N

such that N(B,B′) � N(B), N(B′) and for every n � N(B,B′) there is a unique
homomorphism of Rn-algebras

vn :Bn → B′
n

such that the induced homomorphism βB′(n) ◦ rn ◦ β−1
B(n) :B(n) → B′(n) is the one

defined by j. Here, β– are the isomorphisms defined in (3) and rn :E+
Bn

→ E+
B′

n
is the

homomorphism associated to vn applying the functor E+
– . Furthermore, for m � n the

map vm is induced by vn via (2);
(5) if B = E+

S with R ⊂ S as in 2.5 and if the equivalent conditions of 5.1 hold, then
Bn = Sn.

6.10. COROLLARY. – Consider the map

E+
R-AE→ R∞-AE

associating to E+
R ⊂ B the extension R∞ ⊂ B∞ :=

⋃
n Bn defined in 6.9. It is a well defined

functor and the functor E+
– , defined in 6.2, provides a left inverse. Under the assumptions of 6.3,

it is the inverse of E+
– .

Proof of Corollary 6.10. – Due to (1) and (2) of 6.9 the R∞-algebra B∞ is an object of
R∞-AE. By 6.9(4) the formation of B∞ is functorial. The other claims follow from (3) and (5)
of 6.9.

Proof of Theorem 6.9. – By B.3 there is N ∈N and for every n � N there exist a Rn-algebra
Bn and an isomorphism βn :Bn/pεBn

∼−→B(n)/π̄ε
0B(n). Furthermore, Bn has no non-trivial

p-torsion and it is finite as Rn-module. Then,

6.9.1. LEMMA. – The extension Rn[p−1]→ Bn[p−1] is finite and étale of degree equal to the
generic degree of E+

R ⊂B.

Proof. – The finiteness is clear. We prove that Ω1
Bn/Rn

is killed by p. Note that

Ω1
(Bn/pεBn)/Rn

= Ω1
Bn/Rn

/pεΩ1
Bn/Rn

and

Ω1
(B(n)/π̄ε

0B(n))/E+
R

(n)
= Ω1

B(n)/E+
R

(n)
/π̄ε

0Ω
1
B(n)/E+

R
(n)

.

From the isomorphism of Rn-algebras βn :Bn/pεBn → B(n)/π̄ε
0B(n), we get that Ω1

Bn/Rn
/

pεΩ1
Bn/Rn

= Ω1
B(n)/E+

R
(n)

/π̄ε
0Ω

1
B(n)/E+

R
(n)

. The latter is killed by π̄
�

pn

0 ; see 3.1. Hence,

p
�

pn Ω1
Bn/Rn

= pεΩ1
Bn/Rn

which is then equal to pmΩ1
Bn/Rn

for every m ∈ N. Thus, p
�

pn

annihilates Ω1
Bn/Rn

/pmΩ1
Bn/Rn

for every m ∈ N. But Ω1
Bn/Rn

is finite as Rn-module and,
consequently, it is p-adically complete and separated and coincides with the inverse limit
limm(Ω1

Bn/Rn
/pmΩ1

Bn/Rn
). We conclude that p

�
pn annihilates Ω1

Bn/Rn
.

We prove that Rn → Bn is flat after inverting p. Let M be a finite Rn-module. Then,

Tor1(M,Bn/pεBn) = Tor1(M,B(n)/π̄ε
0B(n)) and the latter is killed by π̄

�
pn

0 ; see 3.1. Using
the exact sequence

0 →Bn
pε

−→Bn →Bn/pεBn → 0,
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we get that p
�

pn Tor1(M,Bn) = pεTor1(M,Bn) = pmTor1(M,Bn) for every m ∈ N. But
Tor1(M,Bn) is finite as Rn-module and, hence, it is p-adically complete and separated. Thus,

Tor1(M,Bn) is annihilated by p
�

pn .
Denote by Pn the unique prime ideal of Rn over p. Since Bn has no non-trivial p-torsion,

Bn ⊗Rn Rn,Pn is a free Rn,Pn -module of rank equal to the generic degree d of the
extension Rn ⊂ Bn. By 4.4(2) and 2.3(2) there is a unique prime ideal Pn of E+

R(n) over π̄K .
Since B(n) is normal by assumption, the generic degree f of E+

R(n) → B(n) is equal to the
rank of the free E+

R(n)Pn -module B(n) ⊗E+
R

(n) E+
R(n)Pn . Note that f coincides also with

the generic degree of E+
R → B. Since Bn/pεBn

∼= B(n)/π̄ε
0B(n) and Rn,Pn/pεRn,Pn

∼=
E+

R(n)Pn/π̄ε
0E

+
R(n)Pn by 4.4(2), we conclude that d = f as claimed. This concludes the proof

of the lemma. �
By B.10 for every m � n � N there is a unique homomorphism um,n :Bn → Bm of

Rn-algebras such that the diagram

Bn/pεBn
βn−−→ B(n)/π̄ε

0B(n)
um,n

⏐⏐� ⏐⏐�
Bm/pεBm

βm−−→ B(m)/π̄ε
0B(m)

commutes. Then,

6.9.2. LEMMA. – For every m � n � N the map

um,n ⊗ 1 :Bn ⊗Rn Rm → Bm

is an isomorphism after inverting p.

Proof. – Let C be the cokernel of um,n ⊗ 1. Then, C/pεC is identified with the cokernel of(
B(n)/π̄ε

0B(n)
)
⊗E+

R
(n) E+

R(m)→B(m)/π̄ε
0B(m).

If x ∈ B(m) then π̄
�

pn

0 x =
∑

i Trm(a
1

pn

i x)b
1

pn

i lies in the image of B(n) ⊗E+
R

(n) E+
R(m) →

B(m) (see B.1 for the notation). Hence, C/pεC is annihilated by p
�

pn i.e., p
�

pn C = pεC = pMC
for every M ∈ N. Since C is finite as Rn-module, it is p-adically complete and separated i.e.,
C = limM (C/pMC). Thus, C is annihilated by p

�
pn . In particular, um,n⊗1 :Bn⊗Rn Rm → Bm

is surjective after inverting p. By 6.9.1 the generic degree of Rm → Bm coincides with the
generic degree of Rn → Bn. Since these extensions are étale after inverting p by 6.9.1, we
deduce that um,n ⊗ 1 is an isomorphism after inverting p as claimed. This concludes the proof
of the lemma. �

Let j :B→B′ as in 6.9(4). By B.10 there exists N ∈N and for every n � N there is a unique
homomorphism of Rn-algebras vn :Bn →B′

n such that the diagram

Bn/pεBn
βn−−→ B(n)/π̄ε

0B(n)
vn

⏐⏐� j

⏐⏐�
B′

n/pεB′
n

β
′
n−−→ B′(n)/π̄ε

0B
′(n)

commutes. Furthermore, the homomorphisms {vn}n are compatible for varying n with the
maps un,m defined for {Bn}n and for {B′

n}n. Claims (1)–(4) follow from the following:
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6.9.3. LEMMA. – The ring Bn is the normalization of BN ⊗RN
Rn. Furthermore, we have

isomorphisms βB(n) :E+
Bn

∼= B(n) such that
(i) they are compatible for m � n with the map um,n :Bn → Bm and the inclusion B(n) ⊂

B(m) of 6.7;
(ii) given a homomorphism j :B → B′ as in 6.9(4), they are compatible with the homomor-

phisms vn :Bn → B′
n.

Proof. – By 6.9.2 the map un,N ⊗ 1 :BN ⊗RN
Rn → Bn is an isomorphism after inverting p.

Hence, if Bn is normal the first statement follows. Let Sn be the normalization of Bn. Let en

be the idempotent associated to Rn[p−1] ⊂ Bn[p−1] = Sn[p−1]; see 3.2. By 5.8 we have

that p
2�

pn+h en lies in the image of Bn ⊗Rn Bn. We deduce from 3.1 that p
2�

pn+h Sn+h ⊂ Bn+h for
every h ∈N. We have E+

R(n + h)-linear homomorphisms

p
2�

pn+h
(
Sn+h/pεSn+h

)
→Bn+h/pεBn+h

∼= B(n + h)/π̄ε
0B(n + h)(6.9.1)

→ Sn+h/pεSn+h.

Taking inverse limits with respect to h ∈ N of the factors in S and B with the transition maps
defined by raising to the p-th power, we get E+

R(n)-linear homomorphisms

π̄
2�
pn

0 E+
S (n) →B(n)→E+

S (n).

The generic degree of Rn → Sn is the same as the generic degree of Rn → Bn and coincides
with the generic degree m of E+

R →B by 6.9.1. By 4.9 the ring E+
S (n) is normal and defines a

finite and étale extension of degree m, after inverting π̄K , of E+
R(n). Hence, B(n) ∼= E+

S (n).
By 5.8 condition (RAE) holds for the tower {Bn}n and, hence, for the tower {Sn}n as well.

In particular, we have E+
S (n)/π̄ε

0E
+
S (n) ∼−→ Sn/pεSn by 5.1. We then obtain the isomorphisms

Bn/pεBn
∼−→B(n)/π̄ε

0B(n) ∼−→E+
S (n)/π̄ε

0E
+
S (n) ∼−→ Sn/pεSn.

We conclude from Nakayama’s lemma that the inclusion Bn ⊂ Sn is an isomorphism. Taking
inverse limits of (6.9.1) with respect to h we conclude that B(n) ∼= E+

Bn
. Claims (i) and (ii)

follow. This concludes the proof of the lemma. �
We now prove Claim (5) of 6.9. By 4.9 the extension ER ⊂ ES is finite and étale. Consider

the tower {Rn ⊂ Sn}. By 5.1(d) there exists N ∈ N such that E+
S /π̄pnε

0 E+
S

∼= Sn/pεSn

for every n � N . Due to 5.1(a) and 3.1 we also conclude that there exist homomorphisms
fn :Rh

n → Sn and gn :Sn → Rh
n such that fn is surjective and fn ◦ gn is multiplication by p

�
pn .

Hence, Sn is a good lift of E+
S (n) modulo π̄ε

0 , in the sense of B.2, if n � N and �
pn < ε. But a

good lift is unique by B.10. The conclusion follows. �
6.11. Other functors

Consider the following categories:
E+,perf

R -AE: the category of normal E+,perf
R -algebras, which are finite and étale as

E+,perf
R [π̄−ε

0 ]-algebras.
Ẽ+

R -AE: the category of normal Ẽ+
R -algebras, finite and étale as Ẽ+

R [π̄−ε
0 ]-algebras.
∞ ∞ ∞
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We have the following diagram of functors

R∞-AE
Ẽ+–−−→ Ẽ+

R∞
-AE

E+–
⏐⏐� �⏐⏐̂

E+
R-AE

perf

−−→ E+,perf
R -AE

Here, E+
– is the functor defined in 6.2 and Ẽ+

– is the functor given in 4.1. The latter is well
defined due to 4.9. The bottom horizontal arrow _perf stands for taking the perfection and it
is clearly well defined. The right vertical arrow _̂ stands for the π̄ε

0-adic completion. It is well
defined due to A.9 since Ẽ+

R∞
is the π̄ε

0-adic completion of the perfect closure of E+
R by 4.15.

If the equivalent conditions of 5.1 hold for every object of R∞-AE, the square in the diagram
commutes by 5.4.

We conclude this section strengthening 6.4.

6.12. DEFINITION. – Let {S∞} be a maximal chain of elements in R∞-AE which are also
integral domains. Let Ẽ+ (resp. E+) be the π̄ε

0-adic completion of the direct limit limS∞ Ẽ+
S∞

(resp. E+ := limS∞ E+
S ). Let Ẽ := Ẽ+[π̄−1

0 ] and E := E+[π̄−1
K ] (see 4.2).

6.13. LEMMA. – For every extension R∞ ⊂ S∞ in R∞-ED we have R̂sep
HS

= Ŝ∞.

Proof (see [16, §3.2 Prop. 10]). – Every extension S∞ ⊂ T∞, which is finite, étale and Galois
after inverting p and is normal as a ring, is almost étale by assumption. It then follows from
[6, Thm. 2.4(ii)] that for every ε > 0 there exists an element in K in the image of the trace

map TrT∞/S∞ :T∞ → S∞ of valuation � ε. Let f ∈ R̂sep
HS

. Let {fn}n be a sequence of

elements in Rsep such that fn ≡ f mod pn. Fix ε > 0. For each n let S∞ ⊂ T
(n)
∞ be a finite and

étale Galois extension after inverting p and normal as a ring containing fn and let yn ∈ T
(n)
∞

be an element such that xn := Tr
T

(n)
∞ /S∞

(yn) lies in K and has positive valuation � ε.

Then, xnfn −Tr
T

(n)
∞ /S∞

(ynfn) ≡ 0 modulo pn. Hence, fn ≡ x−1
n Tr

T
(n)
∞ /S∞

(ynfn) ∈ S∞ +

pn−εT
(n)
∞ . In particular, {x−1

n Tr
T

(n)
∞ /S∞

(ynfn)}n is a sequence of elements of S∞ converging

p-adically to f . This implies that f ∈ Ŝ∞ as claimed. �
6.14. PROPOSITION. – The group GR acts continuously on Ẽ and on E, it preserves Ẽ+

and E+. For every extension R∞ ⊂ S∞ in R∞-ED the rings Ẽ+
S∞

, ẼS∞ , E+
S and ES are

preserved by the subgroup HS ⊂ GR, see 2.6, and

(
Ẽ+
)HS = Ẽ+

S∞
, ẼHS = ẼS∞ ,

(
E+
)HS = E+

S , EHS = ES .

Proof. – Note that E ⊂ Ẽ and Ẽ+ = Ẽ+
Rsep so that Ẽ+ is endowed with a continuous action

of GR. It is clearly compatible with the action of Aut(S∞/R) on Ẽ+
S∞

defined in 4.4. It follows

from 4.10 that Ẽ+ ⊂ (R̂sep)N (hat meaning p-adic completion). The fact that (Ẽ+)HS = Ẽ+
S∞

follows then since R̂sep
HS

= Ŝ∞ by 6.13. Since Ẽ = Ẽ+[π̄−1
0 ] and ẼS∞ = Ẽ+

S∞
[π̄−ε

0 ], we

conclude that GR acts on Ẽ, that HS preserves ẼS∞ and that ẼHS = ẼS∞ .
By 4.5, E+

S is endowed with an action of Aut(S∞/R) compatible with that on Ẽ+
S∞

for
every R∞ ⊂ S∞. Thus, by definition of E+, the group GR acts on E+ and on E = E+[π̄−1

K ],
compatibly with the action on Ẽ, and HS preserves E+

S and ES = E+
S [π̄−1

K ]. Since ER ⊂ ẼR∞
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is faithfully flat, to prove that the inclusion ES ⊂ EHS is an equality we may base change
via ⊗ER

ẼR∞ . Then, equality holds since ẼS∞ = ES ⊗ER
ẼR∞ = ẼHS , by 4.15 and the first

part of the proposition, and since EHS ⊗ER
ẼR∞ ⊂ ẼHS . Since E+

S is normal by 4.9, we get
that E+

S = (E+)HS . �
7. The correspondence

In this section we prove our main result concerning the p-adic representations of GR; see 7.11.
Due to 6.6, the proof is a formal consequence of work of N. Katz [12] who constructs an
equivalence between unit root ϕ-crystals over a normal, reduced and irreducible affine scheme
of characteristic p and p-adic representations of its algebraic fundamental group.

7.1. DEFINITION. – For any S∞ as in 2.5 let Ã+
S∞

:= W(Ẽ+
S∞

) (resp. ÃS∞ := W(ẼS∞))

be the Witt vectors of Ẽ+
S∞

(resp. ẼS∞ ). Define Ã+ := W(Ẽ+) and Ã := W(Ẽ).

We define on Ã two topologies called the strong topology and the weak topology. The
strong topology is the usual p-adic topology on Witt vectors. To define the weak topology
consider on Ẽ the topology having {π̄n

0 Ẽ+}n as fundamental system of neighborhoods of 0.
On the truncated Witt vectors Wm(Ẽ) we consider the product topology via the isomorphism
Wm(Ẽ)∼= (Ẽ)m. Eventually, the weak topology is defined as the projective limit topology
W(Ẽ) = limm Wm(Ẽ).

7.2. PROPOSITION. – The following hold:
(i) Ã is a complete and separated topological algebra for the weak topology and Ã+

S∞

and ÃS∞ are complete topological subalgebras;
(ii) Ã is endowed with a continuous action of GR and Ã+

S∞
= (Ã+)HS and ÃS∞ = ÃHS ;

(iii) ÃR∞ ⊂ ÃS∞ lifts the finite étale extension ẼR∞ ⊂ ẼS∞ ;
(iv) Ã is endowed with a continuous map ϕ, the Frobenius on Witt vectors. It commutes with

the action of GR on Ã and it preserves Ã+
S∞

and ÃS∞ .

Proof. – The result on the invariants in (ii) follows from 6.14. The other claims are left to the
reader. �

7.3. DEFINITION. – With the notation and assumptions of 2.2 assume furthermore that
(IV) R⊗V Vn ⊂ Rn is Galois with group

Gal(Rn/R⊗V Vn) ∼−→
(
Z/pnZ

)d
.

If S is an R-algebra as in 2.5 contained in Rsep such that S∞ is an integral domain, define

ΓS := Gal
(

S∞

[
1
p

]
/S

[
1
p

])
.

Note that ΓS is the quotient GS/HS ; see 2.6. It is a finite index subgroup of ΓR. Due to
assumption (IV) the latter is isomorphic to the semidirect product of the Galois group ΓV =
Gal(K∞/K) of the tower K ⊂K∞ and of the Galois group Γ̃R = Gal(R∞/R⊗V V∞) ∼= Zd

p.

7.4. Assumption. – There exists a subring AR of ÃR∞ which is complete and separated
for the weak topology and is stable under the actions of ΓR and of Frobenius ϕ and such
that AR/pAR = ER (as subring of ẼR∞ = ÃR∞/pÃR∞ ).
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7.5. LEMMA. – The ring AR is a p-adically complete and separated, noetherian and regular
domain.

Proof. – By construction the p-adic convergence in ÃR∞ implies convergence for the weak
topology. In particular, AR is p-adically complete and separated. Since ER is noetherian and
regular by 4.7, also AR is noetherian and regular. We conclude that AR is normal. To prove that
it is a domain it thus suffices to show that it does not contain non-trivial idempotents. Since it is
p-adically complete and separated it suffices by Hensel’s lemma to prove this for the reduction
modulo p i.e., for ER. By 4.7 the latter is a domain. The conclusion follows. �

7.6. THEOREM. – Assume that R is obtained from R0 = V {T±1
1 , . . . , T±1

d } iterating finitely
many times the following operations:

(ét) the p-adic completion of an étale extension;
(loc) the p-adic completion of the localization with respect to a multiplicative system;

(comp) the completion with respect to an ideal containing p.
Assume also that we are in the cyclotomic case; see 2.4. Then, Assumption 7.4 holds.

Proof. – This is proven in Appendix C. �
From now on fix AR as in the Assumption 7.4.

7.7. DEFINITION. – For any S∞ as in 2.5 define AS as the unique AR-algebra lifting the
finite and étale extension ER ⊂ES .

7.8. PROPOSITION. – For every R∞-algebra S∞ such that S∞ is a normal domain and
R∞ ⊂ S∞ is finite and étale after inverting p we have

(i) AS is a subring of ÃS∞ . It is complete for the topology induced from Ã and it is stable
under the actions of Aut(S∞/R) and ϕ;

(ii) AS is a regular domain of characteristic 0.
Let A be the closure of the subring

⋃
S∞

AS of Ã for the p-adic topology. Then,
(iii) AS = AHS .

Proof. – Statements (i) and (ii) hold for AR by assumption and 7.5. Since AR ⊂AS lifts the
finite and étale extension ER ⊂ ES , claim (ii) follows for AS . Thanks to 6.11 and 7.2(iii) we
have ÃS∞ = AS ⊗AR

ÃR∞ . Thus, claim (i) is clear. Certainly AS ⊂ AHS (⊂ ÃHS = ÃS∞

by 7.2(ii)). Since AS is normal and p-adically complete and separated, it suffices to prove the
equality modulo p. Since A/pA⊂E and ES = EHS by 6.14, the conclusion follows. �

7.9. DEFINITION. – Let S be a normal R-subalgebra of Rsep, étale over R[p−1] such that
S∞ is an integral domain; see 2.6. Let Rep(GS) be the abelian tensor category of finitely
generated Zp-modules endowed with a continuous action of GS .

Let (ϕ,ΓS) − ModAS
(resp. (ϕ,ΓS) − Modet

AS
) be the abelian tensor category of finitely

generated AS-modules D endowed with
(i) a semi-linear action of ΓS ;

(ii) a semi-linear homomorphism ϕ commuting with ΓS (resp. so that ϕ⊗1 :D⊗ϕ
AS

AS → D
is an isomorphism as AS-modules).

For any object M in Rep(GS), define

D(M) := (A⊗Zp M)HS .

It is an AS-module. It is endowed with a semi-linear action of ΓS = GS/HS . The homomor-
phism ϕ on A defines a semi-linear action of ϕ on D(M) commuting with the action of ΓS . For
4e SÉRIE – TOME 39 – 2006 – N◦ 4



GENERALIZED RING OF NORMS AND GENERALIZED (ϕ,Γ)-MODULES 631
any object D in (ϕ,ΓS)−ModAS
define

V(D) := (A⊗AS
D)ϕ=Id.

It is a Zp-module. The action of GS on A and on D (via GS → ΓS) induces an action of GS

on V(D).

7.10. LEMMA. – Let D be an étale (ϕ,ΓS)-module annihilated by p. Then, D is a locally
free ES-module.

Proof. – Since D is finitely generated and AS is noetherian, that claim is equivalent to say
that D is a flat ES-module. Let m⊂ES be a maximal ideal and let ÊS be the m-adic completion
of ES . It suffices to prove that the m-adic completion D̂ of D is free as ÊS-module. Let d be
the dimension of D/mD as ES/m-vector space. The choice of lifts into D of a basis of D/mD

defines a map f : ÊS

d
→ D̂ which is surjective by Nakayama’s lemma. Since D is étale we have

ϕ⊗1 : (D/mnD)⊗ES
(ES/mpn) ∼−→ D/mpnD for very n. Using this and arguing by induction

on n, we deduce that (ES/mpnES)d and D/mpnD have the same length as ES-modules for
every n ∈N. Thus, f is an isomorphism. �

7.11. THEOREM (cf. [10, Thm. A.3.4.3]). – Suppose that the equivalent conditions of 5.1
hold for every finite extension of R∞ which is normal as a ring and is étale over R∞[p−1].
Then, the functors D and V are inverse one of the other and define an equivalence of abelian
tensor categories between the category Rep(GS) and the category (ϕ,ΓS)−Modet

AS
.

Proof (see [12, Prop. 4.1.1]). – By devissage it suffices to prove that p-torsion representations
and p-torsion étale (ϕ,ΓS)-modules are equivalent via the functors above. The fact that the
functor D is well defined and fully faithful and the fact that V ◦ D = id follow from étale
descent due to 6.6 and 7.8; see [12, Prop. 4.1.1] for details. We prove by induction on n that, for
every étale (ϕ,ΓS)-module D annihilated by pn, the group V(D) is finite and D(V(D)) = D.
The case n = 1 follows from [12, Prop. 4.1.1] and 7.10. Assume the claim holds for n − 1.
It suffices to prove that V(D) → V(D/pn−1D) is surjective for every (ϕ,ΓS)-module D
annihilated by pn. Indeed, if we denote by D′ the kernel of D → D/pn−1D, it then follows that
0 → V(D′) → V(D) → V(D/pn−1D) → 0 is exact. In particular, by the inductive hypothesis
applied to D′ and to D/pn−1D, we get that V(D) is finite and that D(V(D)) = D. Suppose we
are given an element h ∈ V(D/pn−1D). Let g ∈ AT ⊗AS

D be an element lifting h. We look
for s ∈AT ⊗AS

D′ such that ϕ(g + s) = g + s. Note that t = ϕ(g)− g lies in AT ⊗AS
D′. To

conclude we then have to solve the equation ϕ(s) − s = t in ((
⋃

T AT ) ⊗AS
D′). Since D′ is

annihilated by p, the latter is isomorphic to (
⋃

T ET )⊗Fp V(D′) and Frobenius is ϕ⊗ 1. Since
H1(

⋃
T ET ,Z/pZ) = 0, the equation ϕ(s)− s = t admits solutions as claimed. �
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Appendix A. Criteria for normality

A.1. Notations–Assumptions

Let
{
Rn

}
n∈N

be a set of domains, totally ordered with respect to inclusion i.e., R0 ↪→R1 ↪→
· · · ↪→Rn ↪→ · · ·. Let Ln := Frac(Rn) be the field of fractions of Rn for every n ∈N. Let

R∞ := lim−→ Rn and L∞ := lim−→ Ln = Frac(R∞).

Let (p) ⊂ R0 be a principal prime ideal. For each n ∈N assume that
(i) the ring Rn is noetherian and normal and p-adically complete and separated;

(ii) there exists a unique prime ideal Pn of Rn associated to p and Pn is a principal ideal;
(iii) Rn+1 is finite as Rn-module.
Define P∞ := lim−→ Pi and let v :L∗

∞ →Q be the unique valuation on L∞ such that v(p) = 1
and the induced valuation ring on L∞ is the local ring R∞,P∞ . For every δ ∈ v(R∞\{0})
choose an element pδ ∈ P∞ such that v(pδ) = δ. We further require that if δ ∈ v(Rn\{0}),
then pδ ∈ Rn. Let

R̂∞ := lim
∞←n

R∞/pnR∞ and ̂R∞,P∞ := lim
∞←n

R∞,P∞/pnR∞,P∞

be the completion of R∞ (resp. of R∞,P∞ ) with respect to the ideal generated by p. Assume
furthermore that

(iv) there exist N ∈N and an element pε ∈RN of valuation ε such that RN/pεRN is a ring of
positive characteristic p and for every n � N we have Rp

n+1 + pεRn+1 = Rn + pεRn+1,
as subrings of Rn+1.

A.2. LEMMA. – The map R̂∞ → ̂R∞,P∞ is injective.

Proof. – Let n ∈ N. Consider the map π :R∞/pnR∞ → R∞,P∞/pnR∞,P∞ . Let x be an
element of R∞ such that π(x) = 0. We conclude from (i) and (ii) of A.1 that pnR∞∩Ri = pnRi

for every i ∈N. Hence, there exists i such that x ∈ Ri and there is y ∈Ri\Pi so that xy ∈ pnRi.
Thus, v(xp−n) + v(y) = v(xp−n) � 0. It follows from (i) and (ii) of A.1 that xp−n ∈ Ri i.e.,
x ∈ pnRi. Hence, π is injective. �

A.3. LEMMA. – The rings R̂∞ and ̂R∞,P∞ are domains. There exists a unique valuation

v̂ :Frac( ̂R∞,P∞)∗ →Q

extending the valuation on L∗. Its valuation ring is ̂R∞,P∞ and

{
x ∈ R̂∞

[
1
p

]
| v̂(x) � 0

}
= R̂∞.

Proof. – Let mn be a Cauchy sequence of elements of R∞,P∞ converging p-adically to

an element m of ̂R∞,P∞ . If v(mn) → ∞, then mn → 0 and m = 0. Hence, if m �= 0, the
sequence {v(mn)}n is bounded above by some constant α and

v̂(m) := lim v(mh)

h→∞
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is a well defined natural number. There exists N ∈N such that mN �= 0 and v(mn −mN ) � 2α
for n � N . Hence, v(mn) = min(v(mN ),2α) = v(mN ) for n � N . Thus, v̂(m) = v(mN ).
Using this it follows that v̂ defines a valuation on ̂R∞,P∞ . In particular, ̂R∞,P∞ is a domain. By

construction v̂ extends the valuation on R∞,P∞ and ̂R∞,P∞ is its valuation ring. Its uniqueness
is clear. By A.2 also R̂∞ is a domain. The last assertion is left to the reader. �

A.4. LEMMA. – There exists a unique map

w :R∞/P∞R∞ → R̂∞ (resp. w :Frac(R∞/P∞R∞)→ ̂R∞,P∞ )

such that w(a) ≡ a mod P∞ and w(ap) = w(a)p for every a. Furthermore, w(ab) = w(a) ·
w(b) for every a and b and the composition

R∞/P∞R∞
w−→R̂∞ →R∞/pεR∞

(resp. Frac(R∞/P∞R∞) w−→ ̂R∞,P∞ →R∞,P∞/pεR∞,P∞ )

is a ring homomorphism with the property that for every n � N the image of Rn/PnRn

(resp. Rn,Pn/PnRn,Pn ) is contained in Rn/pεRn (resp. Rn,Pn/pεRn,Pn ).

Proof. – Note that R̂∞ (resp. ̂R∞,P∞ ) is complete and separated with respect to the

ideals {(pNP∞)}N (resp. the ideals {(pNP∞R∞,P∞)}N ). It follows from (iv) of A.1 that the

ring R̂∞/P∞R̂∞ (resp. ̂R∞,P∞/P∞ ̂R∞,P∞ ) is a perfect domain of positive characteristic p

i.e., the map x �→ xp defines an isomorphism of R∞/P∞R∞ (resp. ̂R∞,P∞/P∞ ̂R∞,P∞ ). The
existence of w, with all the required properties apart from the claim on the image of Rn/PnRn

(resp. Rn,Pn/PnRn,Pn ), follows from [15, II.5, Prop. 8]. We prove the last claim for R∞, the
proof for R∞,P∞ being entirely similar. We recall from loc. cit. the construction of w. Let λ ∈
Rn/PnRn with n � N . Denote by Lm the elements of R̂∞ reducing to λp−m ∈ R∞/P∞R∞
and by Um :=

{
xpm | x ∈ Lm

}
. Then, chosen um ∈ Um for every m, the sequence {um}m∈N is

a Cauchy sequence and its limit is w(λ). In our case we can choose xm ∈ Lm ∩Rm+n since the
latter is not empty by A.1(iv). Then, the class of um = xpm

m in Rm+n/pεRm+n lies in Rn/pεRn

by A.1(iv). The conclusion follows. �
A.5. LEMMA. – Every non-zero element a of R̂∞ (resp. ̂R∞,P∞ ) can be written uniquely as

a =
∑

n

w(an)pδn

with an ∈ R∞/P∞R∞ (resp. an ∈ Frac(R∞/P∞R∞)) so that the sequence {δn | an �= 0} is
strictly increasing and it is either finite or it converges to infinity.

Proof. – For a ∈ R̂∞ write ā for a mod P∞R̂∞. Let m � N be an integer such that the image
of a in R̂∞/pεR̂∞ lies in Rm + pεR̂∞. It follows from A.4 that we have

Rm/pεRm
∼= Rm/PmRm ⊕

(
PmRm/pεRm

)
i.e., a = w(a0)+pδb1 with a0 := ā and pδ and b1 ∈ Rm. Applying the decomposition above to b1

and proceeding by induction, we may write a as a sum
∑

n,δn<ε w(an)pδn , which is finite since

the valuation v restricted to Rm is discrete by A.1(i). This implies that every element a ∈ R̂∞
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can be written as a finite sum a =
∑

δ<ε w(aδ)pδ + pεb for suitable elements aδ ∈R∞/P∞R∞

and b ∈ R̂∞. Proceeding inductively define an increasing sequence of elements δn ∈ Q>0

which is either finite or converges to ∞ and a sequence of elements an ∈ R∞/P∞R∞
such that

∑
n w(an)pδn converges p-adically to a. We remark that if 0 �= c ∈ R∞/P∞R∞

then v(w(c)) = 0 since w(c) does not lie in P∞R∞. In particular, given 0 �= a ∈ R̂∞ and a
decomposition a =

∑
n w(an)pδn as in the lemma, v(a) = min{δn | an �= 0}. Using this the

proof of the uniqueness follows. The details are left to the reader. Taking R∞,P∞ instead of R∞

we deduce the existence and uniqueness of the p-adic expansion in ̂R∞,P∞ . �
A.6. PROPOSITION. – If Rn/PnRn is normal for every n ∈N, then R∞/P∞R∞ and R̂∞

are normal.

Proof (cf. [13, Ch. 7, Thm. 34]). – Since R∞/P∞R∞ is the direct limit of the normal
domains {Rn/PnRn}n, it is normal. We are left to prove that R̂∞ is normal. Let x and y

be non-zero elements of R̂∞. Let a := xy−1 be integral over R̂∞. In particular, the algebra
R̂∞[a] ⊂ Frac(R̂∞) is finite as R̂∞-module. The inclusion R̂∞ ⊂ R̂∞[a] is an isomorphism
after

⊗
R̂∞

Frac(R̂∞). Hence, the cokernel is killed by some non-zero element d ∈ R̂∞. Hence,

dxm ∈ ymR̂∞ for every m ∈ N i.e., a is almost integral in the sense of [13, Ch. 7, p. 115].
The p-adic valuation v̂ of a, see A.3, is non-negative. Write a =

∑
δ w(aδ)pδ as an element

of ̂R∞,P∞ using A.5. We claim that aδ ∈ R∞/P∞R∞ for every δ. This implies that a ∈ R̂∞.
We proceed by induction on the numberable set {δ | aδ �= 0}. Let δ(a) be the minimum of such
set. Let δ(d) (resp. δ(x), δ(y)) be the minimum of {δ | dδ �= 0} (resp. {δ | xδ �= 0}, {δ | yδ �= 0}).
By the uniqueness in A.5, we get that dδ(d)x

m
δ(x) ∈ ym

δ(y)R∞/P∞R∞ for every m ∈ N.
Since R∞/P∞R∞ is the direct limit of the noetherian normal domains {Rn/PnRn}n, this
implies that aδ(a) = xδ(x)

yδ(y)
lies in R∞/P∞R∞ [13, Ch. 7, pp. 115–116]. Assume that the first

n non-zero coefficients aδ1 , . . . , aδn belong to R∞/P∞R∞. Let b =
∑n

i=1 w(aδi)p
δi . If a = b,

we are done. Otherwise, note that a − b is still integral over R̂∞. We conclude as in the
base step of the induction that the first non-zero coefficient (a − b)δ in the p-adic expansion
of a − b as an element of ̂R∞,P∞ lies in R∞/P∞R∞. But such coefficient is the first non-
zero coefficient aδn+1 in the p-adic expansion of a different from aδ1 , . . . , aδn . Hence, the
conclusion. �

A.7. LEMMA. – Assume that R∞ is free as Ri-module for some i ∈ N. Then, the map
Ri ⊂ R̂∞ is faithfully flat and for any finitely generated Ri-module M the map

M ⊗Ri R̂∞ → lim
∞←n

M ⊗Ri

(
R∞/pnR∞

)
is an isomorphism of R̂∞-modules. In particular, if R∞ is free as Ri-module for every i, then
R∞ → R̂∞ is flat.

Proof. – For every n ∈ N we denote Mn := M/pnM . Since Ri is p-adically complete and
separated and noetherian, if M is finitely generated, then M ∼= limn Mn (here and below limn

denotes the inverse limit taken over n ∈N). Let 0 → A→ B → C → 0 be a sequence of finitely
generated Ri-modules. Since R∞ is a free Ri-module, one checks that the sequence above is
exact if and only if

0 → lim(An ⊗Ri R∞) → lim(Bn ⊗Ri R∞)→ lim(Cn ⊗Ri R∞) → 0

n n n
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is exact. Thus, the functor M �→ limn(Mn ⊗Ri R∞) from the category of finitely generated
Ri-modules to the category of R̂∞-modules is exact. By [2, Prop. 10.13] for any finitely
generated Ri-module M the map M ⊗Ri R̂∞ → limn(Mn ⊗Ri R∞) is surjective. Reasoning
as in the proof of [2, Prop. 10.13], we conclude that such map is an isomorphism. In particular,
Ri ⊂ R̂∞ is faithfully flat.

Let J ⊂ R∞ be an ideal. Let Ji := Ri ∩ J for every i ∈ I . Since Ri ⊂ R̂∞ is faithfully flat,
the natural map Ji ⊗Ri R̂∞ → R̂∞ is injective. Consider the maps

lim−→(Ji ⊗Ri R̂∞) → J ⊗R∞ R̂∞ → R̂∞.

If R∞ is a free Ri-module for every i ∈ N, the composition of the above maps is injective.
The LHS map is surjective. Hence, the RHS map is injective as well and R∞ → R̂∞ is flat as
claimed. �

A.8. LEMMA. – Assume that R̂∞ is normal. Let R∞[ 1
p
] ⊂ S be a finite and étale extension

of subrings of Frac(R̂∞). Then, S ∩ R̂∞ is a normal integral extension of R∞.

Proof. – Define S∞ to be the integral closure of R∞ in S. Since R̂∞ is normal, it is a subring
of R̂∞. Furthermore, S∞[ 1

p
] = S. It suffices to prove that S∞ = S ∩ R̂∞. The inclusion ⊂ is

trivial; it remains to prove the inclusion ⊃. Define PS∞ := (P∞R̂∞)∩ S∞.
Let d ∈ S∞. Then, there exists i ∈ I such that d is integral over Ri and Frac(Ri)[d] (as subring

of the total field of fractions Frac(S∞)) is linearly disjoint from Frac(R∞) over Frac(Ri).
Let Sd be the normalization of Ri[d]. Since Ri ⊂ Sd is generically separable by the choice of i
and by hypothesis, it follows from [5, Prop. 13.14] that Sd is finite as Ri-module. Thus, since
Ri is noetherian and p-adically complete and separated by A.1(i), Sd is p-adically complete
and separated. Since Sd is contained in R̂∞, it is a domain by A.3 and, in particular, it
contains no non-trivial idempotents. Hensel’s lemma implies that Sd/pSd contains no non-trivial
idempotents. Let s ∈ S∞. If ps ∈ Sd, then s ∈ Frac(Ri)[d] and it is integral over R∞ and, thus,
over Ri by A.1(iii). Hence, s ∈ Sd. This proves that pS∞ ∩ Sd = pSd. Since S∞ =

⋃
d Sd,

we conclude that S∞/pS∞ is equal to the direct limit limd Sd/pSd. In particular, it contains
no non-trivial idempotents. By construction we have homomorphisms R∞ → S∞ → R̂∞
whose composite is the natural inclusion. Then, S∞/pS∞ decomposes as the direct sum of
R∞-algebras R∞/pR∞ ⊕ A∞ with multiplication (a, b) · (α,β) = (aα,aβ + bα + bβ). The
image of 1 is the only possible non-zero idempotent i.e., 1 = (1,0).

For every d ∈ S∞ the ring Sd ⊗Ri Ri,Pi is normal, finite and torsion free as Ri,Pi -

module. Thus, Sd ⊗Ri
̂Ri,Pi is the product of complete discrete valuation rings

∏
j Sd,j .

Note that the number of those is bounded above by the generic degree of R∞ ⊂ S∞.
Since S∞ =

⋃
d Sd, it has only finitely many prime ideals {PS∞,j}j containing p and

the ring S∞ ⊗R∞ ( ̂R∞,P∞/p ̂R∞,P∞) is
⋃

d(
∏

j Sd,j/pSd,j) and, hence, it coincides with
the product

∏
j(S∞,j/pS∞,j) of the quotients modulo p of the localizations of S∞ at the

ideals PS∞,j . Note that 1 = (1, . . . ,1) in this decomposition. The reduction modulo p is

also
∏

j(S∞,j/pS∞,j) = ̂R∞,P∞/p ̂R∞,P∞ ⊕ (A∞ ⊗R∞
̂R∞,P∞). Since 1 �→ (1,0) by the

above discussion, we conclude that S∞ has only one prime over P∞ which must then coincide
with PS∞ . Furthermore, S∞,PS∞ is the valuation ring of Frac(S∞) associated to the restriction

to S∞ of the valuation v̂ on R̂∞.
Let s ∈ S∞[ 1

p
] ∩ R̂∞ = S ∩ R̂∞. Then, v̂(s) � 0. Hence, s ∈ S∞,PS∞ . Hence, s lies in

the intersection of all valuation rings containing S∞. Hence, it lies in S∞ by [2, Cor. 5.22] as
claimed. �
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A.9. PROPOSITION. – Let S∞ be an integral R∞-algebra and a normal ring. Assume that
(1) R∞ is a free Ri-module for every i ∈N;
(2) R̂∞ is normal;
(3) S∞[ 1

p
] is a finite étale extensions of R∞[ 1

p
].

Then, S∞ ⊗R∞ R̂∞ is normal and p-torsion free.

Proof. – The morphism S∞ → S∞ defined by b �→ p · b is injective. It follows from A.7
that multiplication by p is injective on S∞ ⊗R∞ R̂∞. Hence, the morphism S∞ ⊗R∞ R̂∞ →
(S∞ ⊗R∞ R̂∞)[ 1

p
] is injective. It follows from (2) and (3) that (S∞ ⊗R∞ R̂∞)[ 1

p
] is normal.

Let c be an element in S∞ ⊗R∞ Frac(R̂∞), which is a product of fields by (3), integral
over S∞ ⊗R∞ R̂∞. Then, c ∈ (S∞ ⊗R∞ R̂∞)[ 1

p
] i.e., pnc ∈ S∞ ⊗R∞ R̂∞ for some n ∈ N.

Fix N ∈ N with N � n. There exists b ∈ S∞ such that pnc − b ∈ pNS∞ ⊗R∞ R̂∞. Let d :=
p−nb. We conclude from the integrality of c that d is integral over S∞ ⊗R∞ R̂∞. It follows from
the integrality of S∞ over R∞ that d is integral over R̂∞.

Let g be a monic polynomial of minimal degree having coefficients in R̂∞ and such
that g(d) = 0. Let h be the minimal polynomial of d over Frac(R̂∞). Then, g factors as g = h ·h′

for a suitable monic polynomial h′ with coefficients in Frac(R̂∞). In particular, the coefficients
of h are integral over R̂∞ and, since R̂∞ is normal, they lie in R̂∞. Hence, g = h. Let Sg be the
integral closure in R̂∞[ 1

p
] of the subring generated by R∞[ 1

p
] and the coefficients of g. Reasoning

as above and using the normality of R∞[p−1] we deduce that the minimal polynomial q of d
over L∞ has coefficients in R∞[p−1]. Then, g divides q. Since d ∈ S∞[p−1], we conclude
from (3) that there exists a ring Sq , finite and étale as R∞[p−1]-algebra, splitting q, and hence g,
completely. Then, Sg is a subring of Sq , finite and étale as R∞[p−1]-algebra. It follows from A.8
that Sg ∩ R̂∞ (as a subring of R̂∞[p−1]) is an integral extension of R∞. Since the coefficients
of g lie in Sg ∩ R̂∞, we conclude that they are integral over R∞. Thus, d is integral over R∞
and, hence, d ∈ S∞. Therefore, c ∈ S∞ ⊗R∞ R̂∞ as wanted. �

Appendix B. Some deformation theory

We start with a E+
R-algebra B, which is normal and finite as E+

R-module and such

that E+
R[π̄−1

K ] ⊂ B[π̄−1
K ] is étale. We construct Rn-algebras Bn, for n � 0, with isomor-

phisms Bn/pεBn
∼−→ B(n)/π̄ε

0B(n). This is achieved lifting B(n)/π̄ε
0B(n) as a Rn-module

first (see B.4–B.6) and then proving that it inherits the structure of algebra (see B.7–B.8). We
further prove that this construction is functorial in B (see B.10).

B.1. Notation

We use the notation of Section 6.7. Let π̄�
0 ∈ E+

R be the element killing the ramification of
E+

R → B i.e., such that there exists an element of B ⊗E+
R

B with image π̄�
0e0. Abusing the

notation we still denote this element by π̄�
0e0. Let b1, . . . , bh be generators of B as E+

R-module.
Write π̄�

0e0 =: a1 ⊗ b1 + · · ·+ ah ⊗ bh as an element of B⊗E+
R

B.

Fix n ∈ N. Then, b
1

pn

1 , . . . , b
1

pn

h are generators of B(n) as E+
R(n)-module and π̄

�
pn

0 en =

a
1

pn

1 ⊗ b
1

pn

1 + · · ·+ a
1

pn

h ⊗ b
1

pn

h in B(n)E+(n)B(n).

R
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Denote by Trn the trace of the finite and étale extension E+
R(n)[π̄−1

K ] ⊂ B(n)[π̄−1
K ]. Define

the E+
R(n)-linear homomorphisms

B(n)
gn−−→ E+

R(n)h fn−−→ B(n),

where gn(x) := (Trn(xa
1

pn

1 ), . . . ,Trn(xa
1

pn

h )) and fn(y1, . . . , yh) = y1b
1

pn

1 + · · · + yhb
1

pn

h ;

see 3.1. Note that fn is surjective and that fn ◦ gn is multiplication by π̄
�

pn

0 . Let

αn := gn ◦ fn.

It satisfies α2
n = π̄

�
pn

0 αn.

B.2. DEFINITION. – Fix n such that 0 < �
pn < ε < 1 and Rn/pεRn = E+

R(n)/π̄ε
0E

+
R(n)

(see 4.5(1)). A good lift of B(n) modulo π̄ε
0 is an Rn-algebra Bn and an isomorphism

βn :Bn/pεBn
∼−→B(n)/π̄ε

0B(n) as algebras over Rn/pεRn = E+
R(n)/π̄ε

0E
+
R(n) such that Bn

has no non-trivial p-torsion and there exist Rn-linear homomorphisms

gn :Bn → Rh
n,

fn :Rh
n → Bn

with fn surjective and whose composite fn ◦ gn is multiplication by p
�

pn .

B.3. PROPOSITION. – Fix a positive integer n and 1− 22�
pn > ε > 22�

pn such that Rn/pεRn =
E+

R(n)/π̄ε
0E

+
R(n). Then, a good lift of B(n) modulo π̄ε

0 , in the sense of B.2, exists.

Proof. – It is proven in the next lemmas. See especially B.7 and B.8. �
Regard αn as a h × h-matrix with entries in Rn/pεRn identifying E+

R(n)/π̄ε
0E

+
R(n)

with Rn/pεRn via the isomorphism (y0, y1, . . .) �→ y0; see 4.4(2). Let Q(X) be the polyno-

mial X2 − p
�

pn X in the variable X . We have the following fundamental lemma, which is an
instance of Hensel’s lemma:

B.4. LEMMA. – For every n such that ε > 2�
pn there exists a matrix αn in Mh×h(Rn)

satisfying Q(αn) = 0 and lifting αn ∈Mh×h(Rn/pεRn).

Proof. – In what follows we write τn := p
�

pn . Let β0 ∈ Mh×h(Rn) be any lift of αn ∈
Mh×h(Rn/pεRn). Then, Q′(β0) = 2β0 − τn and Q′(β0) ≡ 2αn − τn modulo pεMh×h(Rn). In
particular, Q′(β0)2 ≡ τ2

n modulo pεMh×h(Rn). Since Rn is noetherian and Mh×h(Rn) is finite
as Rn-module, Mh×h(Rn) is p-adically complete and separated. Thus, Q′(β0)2 = τ2

nv where v
is an invertible element of Mh×h(Rn). Hence, Q′(β0) is not a zero divisor in Mh×h(Rn) and,
since pε = Q′(β0)2 pε

τ2
n
v−1, we have pεMh×h(Rn)⊂ Q′(β0) pε

τ2
n
Mh×h(Rn).

Let A be the Rn-subalgebra of Mh×h(Rn) of the elements commuting with β0. Then, A is
p-adically complete and separated as well. Put β1 = β0. For m � 2 we construct βm in A such
that Q(βm) ≡ 0 modulo Q′(β0)2( pε

τ2
n
)mMh×h(Rn) and βm ≡ βm−1 mod Q′(β0)( pε

τ2
n
)m−1 ×

Mh×h(Rn). Since Q′(β0) is not a zero divisor of Mh×h(Rn), the sequence {βm}m converges
to an element β ∈A satisfying the requirements of the lemma.

Suppose that βm has been constructed. We may write Q(βm) = −Q′(β0)2( pε

τ2
n
)mδ.

Since Q′(β0) and pε

τ2
n

are not zero divisors in Mh×h(Rn) and βm lies in A, we have

δ ∈ A. Put βm+1 = βm + Q′(β0)( pε

τ2 )mδ. Since δ and βm lie in A, we have

n
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Q(βm+1) = Q(βm) + (βmδ + δβm)Q′(β0)( pε

τ2
n
)m − τnδQ′(β0)( pε

τ2
n
)m, up to terms congruent to

zero modulo Q′(β0)2( pε

τ2
n
)m+1Mh×h(Rn). We need to check that βmδ + δβm − τnδ = Q′(β0)δ

modulo Q′(β0) pε

τn
Mh×h(Rn). Remark that βm = β0 modulo Q′(β0) pε

τn
Mh×h(Rn). Thus, the

equality we have to check becomes (2β0 − τn)δ = Q′(β0)δ, which is trivially true. �
B.5. DEFINITION. – For every n with 1 − �

pn > ε > �
pn let αn ∈ Mh×h(Rn) be a lift of αn

modulo pε+ �
pn such that α2

n − p
�

pn αn = 0 as in B.4. Let

Bn :=
(
Rh

n/
(
αn − p

�
pn
))

mod p-torsion,

where p-torsion is the Rn-submodule of Rh
n/(αn −p

�
pn ) of elements killed by some power of p.

Denote by

fn :Rh
n → Bn

the natural projection. Since Rn is p-torsion free, there is a unique Rn-linear map

gn :Bn → Rh
n

through which αn factors. Note that fn ◦ gn is multiplication by p
�

pn .

B.6. The map βn

Consider the following diagram

B(n)/π̄
ε+ �

pn

0 B(n)
gn−−→ (E+

R(n)/π̄
ε+ �

pn

0 ER(n))h fn−−→ B(n)/π̄
ε+ �

pn

0 B(n)
�
⏐⏐�

Bn/pε+ �
pn Bn

gn−−→ (Rn/pε+ �
pn Rn)h fn−−→ Bn/pε+ �

pn Bn

where the vertical isomorphism is induced by E+
R(n)/π̄

ε+ �
pn

0 E+
R(n) ∼= Rn/pε+ �

pn Rn. Consider
the homomorphisms of Rn-modules:

fn ◦ gn :Bn/pε+ �
pn Bn →B(n)/π̄

ε+ �
pn

0 B(n)

and

fn ◦ gn :B(n)/π̄
ε+ �

pn

0 B(n) → Bn/pε+ �
pn Bn.

The image of gn modulo pε+ �
pn coincides with the image of αn i.e., with the image

of gn modulo π̄
ε+ �

pn

0 . Hence, the image of fn ◦ gn coincides with the image of fn ◦ gn

which is multiplication by π̄
�

pn

0 . Since B(n) has no π̄K -torsion, the map B(n)/π̄ε
0B(n) →

π̄
�

pn

0 (B(n)/π̄
ε+ �

pn

0 B(n)) given by multiplication by π̄
�

pn

0 is an isomorphism. Define the
homomorphism of Rn-modules

βn :Bn/pεBn →B(n)/π̄ε
0B(n)
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by requiring that π̄
�

pn

0 βn := fn ◦ gn. Analogously, since Bn has no non-trivial p-torsion by
construction, there is a unique homomorphism of Rn-modules

γn :B(n)/π̄ε
0B(n)→ Bn/pεBn

such that p
�

pn γn = fn ◦ gn. Furthermore, γn ◦ βn = Id and βn ◦ γn = Id. Hence, βn is an
isomorphism.

B.7. LEMMA. – Let n ∈ N be such that ε > 22�
pn . Then, there exists an associative and

commutative Rn-bilinear map μn :Bn × Bn → Bn lifting the multiplication μn defined
modulo pε via the isomorphism βn :Bn/pεBn

∼= B(n)/π̄ε
0B(n).

Proof. – We construct an increasing sequence {δr}r∈N of rational numbers with δ0 = ε
and δr → ∞ and, for every r ∈ N, an associative and commutative Rn-bilinear map
μr

n :Bn ×Bn →Bn/pδrBn such that μr+1
n ≡ μr

n modulo pδr− 14�
pn . Since Bn is finite as

Rn-module, it is p-adically complete and separated. Hence, μn := limr μr
n satisfies the

requirement of the proposition.
Write τn := p

�
pn . We proceed by induction on r. Put δr = ε and μ1

n = μn. Suppose that μr
n

has been constructed. Consider a Rn-bilinear map

ξ :Rh
n ×Rh

n → Rh
n

such that fn ◦ ξ(a, b)≡ μr
n ◦ (fn × fn)(a, b) modulo pδr . Define the map

δn : (τnBn)× (τnBn) →Bn/pδr+εBn

as δn(τna, τnb) := fn ◦ ξ ◦ (gn(a) × gn(b)). Then, δn(τna, τnb) ≡ τ2
nμr

n(a, b) modulo pδr .
Consider the map

b0 ⊗ b1 ⊗ b2 ⊗ b3 ⊗ b4
γn−−→ τnb0 ·

(
δn

(
τnb1, τnδn(τnb2, τnb3)

)
−δn

(
τnδn(τnb1, τnb2), τnb3

))
· τnb4

for bi ∈Bn. Since μr
n is associative, the term in parenthesis lies in pδr (Bn/pδr+pε

Bn). Since Bn

has no non-trivial p-torsion, this is isomorphic to Bn/pεBn. The latter may be identified
with B(n)/π̄ε

0B(n) via βn. In particular, γn is well defined and we may view γn as a E+
R(n)-

linear map

γn :B(n)⊗E+
R

(n) B(n)⊗E+
R

(n) B(n)⊗E+
R

(n) B(n)⊗E+
R

(n) B(n) →B(n)/π̄ε
0B(n).

Using that for every x and every y ∈Bn we have

δn

(
τnx, τnpδry

)
= μ1

n(τnx, τny) · pδr = τ2
nx · pδry,

one checks that γn is a 3-cocycle for the Hochschild cohomology of B(n) considered with its
natural structure of B(n)⊗E+

R
(n) B(n)-bimodule i.e., that

γn(c0c1 ⊗ c2 ⊗ · · · ⊗ c5)− γn(c0 ⊗ c1c2 ⊗ · · · ⊗ c5) + · · ·
+ (−1)4γn(c0 ⊗ · · · c3 ⊗ c4c5) = 0
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for every ci ∈ B(n). In particular, γn defines a class in H3(B(n)/E+
R(n),B(n)/π̄ε

0B(n)). By
[6, Rmk. (v) p. 259] the latter Hochschild cohomology group is killed by τn. More precisely,
consider the E+

R(n)-linear map

hn :B(n)
⊗4

E
+
R

(n) →B(n)
⊗5

E
+
R

(n) −γn−−→ B(n)/π̄ε
0B(n)

where the map on the left is given by

c0 ⊗ · · · ⊗ c3 �→ (τnen) · c0 ⊗ · · · ⊗ c3 =
h∑

i=1

a
1

pn

i ⊗ b
1

pn

i c0 ⊗ · · · ⊗ c3.

Then, τnγn is the coboundary −dhn i.e.,

τ3
nδn

(
τna, τnδn(τnb, τnc)

)
− τ3

nδn

(
τnδn(τna, τnb), τnc

)
=
(
−a · hn(b, c) + hn(ab, c)− hn(a, bc) + hn(a, b) · c

)
pδr

for every a, b and c ∈Bn; in the formula we write hn(x, y) for hn(1⊗ x⊗ y ⊗ 1). Consider the
map

mr+1
n :

(
τ7
nBn

)
×
(
τ7
nBn

)
→ τ7

n

(
Bn/pδr+εBn

)
,

given by

mr+1
n

(
τ7
na, τ7

nb
)

:= τ12
n δn(τna, τnb) + τ7

nhn(a, b)pδr .

One checks that it is associative, Rn-bilinear and reduces to τ14
n μr

n modulo pδr+ 14�
pn . Fur-

thermore, its image modulo pε is contained in τ14
n (Bn/pεBn) and ε > 14�

pn . Since Bn has
no non-trivial p-torsion, μr+1

n := τ−14
n mr+1

n is a well defined Rn-bilinear map with values

in Bn/pδr+ε− 14�
pn , it reduces to μr

n modulo pδr− 14�
pn and it is associative modulo Bn/pδr+ε− 21�

pn .
The commutation with an element of Bn defines a biderivation with values in pδrBn i.e.,

a class of H1(B(n)/E+
R(n),B(n)/π̄

ε− 21�
pn

0 Bn). Since the latter group is annihilated by τn and
1-coboundaries are trivial in our case, we conclude that τnμr+1

n is commutative. Hence, μr+1
n is

commutative modulo Bn/pδr+1Bn with δr+1 := δr + ε− 22�
pn . �

B.8. LEMMA. – The notation is as in B.7. There is a unique element 1 in Bn such
that μn(x,1) = x for every x ∈ Bn. In particular, the Rn-linear map Rn → Bn defined by
1 �→ 1 defines the structure of Rn-algebra on Bn.

Proof. – Let u ∈ Bn be a lift of 1 in Bn/pεBn
∼= B(n)/π̄ε

0B(n). Then, μn(_, u) defines
an isomorphism on Bn modulo pε and, hence, on Bn by Nakayama’s lemma. Thus, there
exists 1 ∈Bn such that μn(1, u) = u. Using the associativity of μn we get that μn(μn(z,1), u) =
μn(z,μn(1, u)) = μn(z,u). Hence, μn(μn(z,1)− z,u) = 0 for every z ∈Bn i.e., μn(z,1) = z.
If there are two such elements 1 and 1′, using the commutativity of μn, we get that 1′ =
μn(1′,1) = μn(1,1′) = 1. �
B.9. Functoriality

Let j :B→B′ be a homomorphism of E+
R-algebras which are normal and étale over E+

R[π̄−1
K ].

Possibly enlarging �, we may and will assume that π̄
�

pn

0 kills the ramification of E+
R(n) ⊂B′(n)

as well i.e., that π̄
�

pn

0 e
′
n ∈B′(n)⊗E+

R
(n) B

′(n). Let Bn and B′
m for m � n be good lifts of B(n)

and B′(m) modulo π̄ε
0 .
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B.10. PROPOSITION. – If ε > 18�
pn there is a unique homomorphism um,n :Bn → B′

m of
Rn-algebras such that um,n modulo pε is the map

Bn/pεBn
∼= B(n)/π̄ε

0B(n)
j−→B′(n)/π̄ε

0B
′(n) ∼= B′

m/pεB′
m.

Proof. – As in B.7, we construct um,n modulo pδr with δ0 = ε < δ1 < · · · < δr < · · ·
a sequence of rational number going to infinity. We also show that the induced homomor-
phism um,n :Bn → B′

n is unique.
Denote by μn and μ′

m the multiplications on Bn and B′
m respectively. Write τn := �

pn .

Suppose that um,n has been constructed modulo pδr . Denote such map by ur
m,n. Let

ξ :Rh
n → B′

m be a Rn-linear homomorphism lifting ur
m,n ◦ fn. Let

ρ := ξ ◦ gn :Bn → B′
m/pδr+εB′

n.

Then, by [7, §2a], the map

b0 ⊗ b1 ⊗ b2 ⊗ b3 �→ b0 ·
(
τ2
nρ(b1b2)− τnρ(b1)ρ(b2)

)
· b3

defines a class in the Hochschild cohomology group H2(B(n)/E+
R(n),B′(m)/π̄ε

0B
′(m)).

Here, we identify pδr (B′
m/pδr+εB′

m) ∼= B′(m)/π̄ε
0B

′(m) and we give it the structure of
B(n)⊗E+

R
(n) B(n)-module via j ⊗ j. As in B.7 one proves that τn annihilates the cohomology

group H2(B(n)/E+
R(n),B′(m)/π̄ε

0B
′(m)). We then conclude that τ4

nur
m,n admits a Rn-linear

lift γ :Bn → B′
m/pδr+εB′

m satisfying μ′
m(γ(x), γ(y)) = τ4

nγ(μn(x, y)) for every x and y in Bn.
Given two lifts u and u′ the map (b0, b1, b2) �→ τ4

nb0 · (u′ − u)(b1) · b2 defines a class
in H1(B(n)/E+

R(n),B′(m)/π̄ε
0B

′(m)). Indeed, for every x and y in B(n) we have

τ4
n(u′ − u)(xy) = u′(x)u′(y)− u(x)u(y)

= u′(x)
(
u′(y)− u(y)

)
+
(
u′(x)− u(x)

)
u(y)

= τ4
nx · (u′ − u)(y) + (u′ − u)(x) · τ4

ny.

Such class is zero if and only if τ4
nu and τ4

nu′ differ by an inner derivation i.e., they are equal.
Since τn annihilates H1(B(n)/E+

R(n),B′(m)/π̄ε
0B

′(m))), we conclude that τ9
nur

m,n admits a

unique lift γ as above. Since ε > 18�
pn , the map ur+1

m,n := γ
τ9

n
:Bn → B′

m/pδr+ε− 18�
pn B′

m is well

defined, it is a ring homomorphism, it lifts ur
m,n modulo pδr− 9�

pn and it is Rn-linear. Furthermore,
since ur+1

m,n(1) is an idempotent congruent to 1 modulo pε, we deduce from Hensel’s lemma
that ur+1

m,n(1) = 1. �

Appendix C. Construction of AR

This section is devoted to the proof of 7.6. We follow closely [10, §A.3.2.2]. Define π :=
w(ε)− 1 where w(ε) ∈ Ã+

R∞
is the Teichmüller lift of ε.

C.1. LEMMA. – Let A+ be a subring of ÃR∞ containing π and p-adically complete. For

every n ∈ N assume that A+/pnA+ injects in ÃR∞/pnÃR∞ and it is π-adically complete.
Suppose also that the π-adic topology on A+/pnA+ is finer than the topology induced by the
weak topology on ÃR∞/pnÃR∞ and that for n = 1 the two topologies coincide. Then,
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(a) the π-adic topology on A+/pnA+ coincides with the induced weak topology for every n.
In particular, A+/pnA+ is closed in ÃR∞/pnÃR∞ ;

(b) A+ is the inverse limit limn A+
n , as a topological ring, and it is closed in ÃR∞ ;

(c) the inverse limit limn A+
n [π−1] is the topological closure of A+[π−1] in ÃR∞ for the

weak topology.

Proof. – For every n denote A+
n := A+/pnA+ and Ã+

n := Ã+
R∞

/pnÃ+
R∞

. The weak

topology on ÃR∞/pnÃR∞ has {w(ε − 1)hÃ+
n }h as a fundamental system of neighborhoods.

Since πpn −w(ε− 1)pn ∈ pnÃR∞ , then {πhÃ+
n }h is a fundamental system of neighborhoods

as well.
(a) By assumption for every r ∈N there exists an integer h(n, r) � r such that πh(n,r)A+

n ⊂
(πrÃ+

n ) ∩ A+
n . We have to prove that there exists t(n, r) � r such that (πt(n,r)Ã+

n ) ∩ A+
n ⊂

πrA+
n . We proceed by induction on n. For n = 1 this is an assumption. Define t(n + 1, r)

as the maximum between t(1, r) and t(n,h(n + 1, t(1, r))). Clearly t(n + 1, r) � r. Let x ∈
(πt(n+1,r)Ã+

n+1) ∩ A+
n+1. Then, the image of x in Ã+

n lies in πh(n+1,t(1,r))A+
n by inductive

hypothesis. Then, there exists y ∈ A+
n+1 such that x − πh(n+1,t(1,r))y lies in pnA+

n+1 ∩
πt(1,r)Ã+

n+1. Since pnÃ+
n+1

∼= Ã+
1 , the latter is identified with A+

1 ∩ πt(1,r)Ã+
1 which is

contained in πrA+
1 . Hence, x lies in πrA+

n+1 as wanted.

(b) The ring ÃR∞ coincides with the inverse limit limn ÃR∞/pnÃR∞ , as a topological ring.
Since A+ is p-adically complete, this implies the claim.

(c) A+
n [π−1] has {πhA+

n }h∈Z as a fundamental system of neighborhoods for the topology
induced from ÃR∞/pnÃR∞ by (a). In particular, it is closed for the weak topology. Thus,
limn A+

n [π−1] is closed for the weak topology as well. On the other hand, the topological closure
of A+[π−1] in ÃR∞ for the weak topology is p-adically complete since p-adic convergence
in ÃR∞ implies convergence for the weak topology. The conclusion follows. �

C.2. LEMMA. – The notation is as in C.1. Let {zi}i∈I be a subset of ÃR∞ of elements whose
classes modulo p lie in Ẽ+

R∞
. Assume that (a) either I is a finite set or that (b) z−1

i ∈ A+ for

every i ∈ I . Denote by A+{yi}i∈I the ring of power series in the variables yi convergent for the
weak topology on A+. Then,

(i) for every n we have A+{yi}i∈I/pnA+{yi}i∈I
∼= (A+/pnA+){yi}i∈I ;

(ii) the A+-linear map A+[yi]i∈I → ÃR∞ , sending yi �→ zi for every i, extends to a unique
map A+{yi}i∈I → ÃR∞ ;

(iii) the image of A+{yi}i∈I → ÃR∞/pnÃR∞ coincides with the ring of π-adically
convergent power series (A+/pnA+){zi}i∈I ;

(iv) the π-adic topology on (A+/pnA+){zi}i∈I is finer than the topology induced by the
weak topology on ÃR∞/pnÃR∞ .

Proof. – (i) The topology on A+ induced from the weak topology on ÃR∞ coincides with
the inverse limit topology limn A+

n . By assumption, the topology on A+
n induced from the weak

topology on ÃR∞/pnÃR∞ is the π-adic topology. In particular, the π-adic convergence on A+

implies convergence for the weak topology. Since A+ is closed, it is π-adically complete. The
claim follows.

(ii)–(iv) Note that πpn − w(ε − 1)pn

lies in pnÃR∞ . In particular, the weak topol-
ogy on ÃR∞/pnÃR∞ has {πhÃ+

R∞
}h as fundamental system of neighborhoods and the

ring Ã+
R∞

/pnÃ+
R∞

is π-adically complete. By assumption w(zi) is in Ã+
R∞

and zpn

i = w(zi)pn

modulo pnÃR∞ for every i. By the assumption on the topology of A+
n there exists h ∈N such
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that πhA+
n ⊂ Ã+

R∞
/pnÃ+

R∞
. In particular, the power series in the elements {zi}i∈I with coeffi-

cients in A+
n and convergent for the π-adic topology, which coincide in case (b) with the power

series in the elements {zpn

i }i∈I , converge in ÃR∞/pnÃR∞ as well. Furthermore, the π-adic
topology is finer than the weak topology induced from ÃR∞/pnÃR∞ . �

The first step in the construction of AR is the case of R0
W(k) = W(k){T±1

1 , . . . , T±1
d }.

C.3. Construction of AR0
W(k)

Note that E+
W(k)

∼= k[[ε− 1]] by 4.6 and E+
RW(k)0

= E+
W(k){x

±1
1 , . . . , x±1

d } by 4.7. The weak

topology on Ã+
R0

W(k)∞
/pnÃ+

R0
W(k)∞

is the w(ε − 1)-adic topology. It is the π-adic topology as

well because π −w(ε− 1) lies in pÃ+
R0

W(k)∞
. For every n define A+

n as the π-adic completion

of the ring

Wn(k)
[
w(ε),w(x1)±1, . . . ,w(xd)±1

]
generated over Wn(k) by the Teichmüller lifts w(ε) and w(xj)±1 for j = 1, . . . , d. It is a
subring Ã+

R0
W(k)∞

/pnÃ+
R0

W(k)∞
, since the latter is π-adically complete, and the π-adic topology

on A+
n is finer than the topology induced from Ã+

R0
W(k)∞

/pnÃ+
R0

W(k)∞
. It follows from 4.15

that for n = 1 the two topologies coincide. Define A+
R0

W(k)
as the inverse limit limn A+

n .

Since A+
m/pnA+

m
∼= A+

n for every m � n, we have A+
R0

W(k)
/pnA+

R0
W(k)

∼= A+
n . Thus, A+

R0
W(k)

satisfies the assumptions of C.1 and it is closed in Ã+
R0

W(k)∞
.

Each A+
n is stable under the actions of ϕ and ΓR on ÃR0

W(k)∞
/pnÃR0

W(k)∞
. Hence, ϕ and ΓR

act continuously on A+
R0

W(k)
by restriction from ÃR0

W(k)∞
. Eventually, define AR0

W(k)
as the

closure for the weak topology of AR0
W(k)

[π−1]. It has the properties claimed in 7.6 thanks to C.1.

C.4. Construction of AR0

Since E+
W(k) ⊂ E+

V is a finite extension of dvrs generically separable and with perfect

residue fields, it is monogenic i.e., E+
V
∼= E+

W(k)[t]/(f) with f(t) monic of degree m. Let f ∈
A+

R0
W(k)

[T ] be a lift of f as a monic polynomial of degree m. Define A+
R0 := A+

R0
W(k)

[T ]/(f(T ))

and AR0 := A+
R0 ⊗A+

R0
W(k)

AR0
W(k)

. Note that AR0 is finite and free as AR0
W(k)

-module

and AR0/pAR0 = ER0
W(k)

[t]/(f) = ER0 . The latter is an étale ER0
W(k)

-algebra of degree m. In

particular, AR0 is the unique étale AR0
W(k)

-algebra lifting the ER0
W(k)

-algebra ER0 . By étaleness

there is a unique homomorphism of AR0
W(k)

-algebras AR0 → ÃR0
∞

lifting the inclusion ER0 ⊂
ẼR0

∞
. It is injective since it is injective modulo p and AR0

W(k)
, and hence AR0 , is p-adically

separated. Furthermore, by uniqueness of étale lifts AR0 ⊂ ÃR0
∞

is stable under the actions
of ΓR and ϕ.

Since A+
R0 coincides with the image A+

R0
W(k)

{T}→ ÃR0
∞

and since A+
R0/pA+

R0 = E+
R0 , we

conclude from C.2 that A+
R0 satisfies the assumptions of C.1. In particular, A+

R0 and AR0 are

closed in ÃR0 .

∞
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We now construct AR. We proceed as follows. Let R0 ⊂ R1 ⊂ R be extensions obtained
iterating the operations given in 7.6. Note that R1 fulfills the hypotheses of 2.2. Suppose that we
have constructed A+

R1 ⊂ ÃR1
∞

satisfying the assumptions of C.1 and such that A+
R1/pA+

R1
∼=

E+
R1 and the closure AR1 of A+

R1 [π−1] in ÃR1
∞

for the weak topology is stable under ϕ and ΓR.

Let R1 ⊂ R2 be obtained applying (ét), (loc) or (comp) of 7.6. We then construct A+
R2 ⊂ ÃR2

∞

satisfying the assumptions of C.1 and such that A+
R2/pA+

R2
∼= E+

R2 and the closure AR2

of A+
R2 [π−1] in ÃR2

∞
for the weak topology is stable under ϕ and ΓR. In particular, AR2 has

the properties given in 7.4.

C.5. Case (ét)

Let N be as in 4.5. Since R1
N/pεR1

N ⊂ R2
N/pεR2

N is étale by assumption, R2
N/pεR2

N
∼=

R1
N/pεR1

N [z1, . . . , zh]/J with J = (g1, . . . , gh) and J/J2 ∼= R2
N/pεR2

N dz1 ⊕ · · · ⊕
R2

N/pεR2
N dzh by the Jacobian criterion of étaleness; see [11, 0.22.6.1]. Since E+

R2 is π-adically
complete, there is a unique prime over π and it is principal and π is not a zero divisor in E+

R2 , we
get from 4.5(1) that E+

R2 is the quotient of the ring of power series E+
R1{y1, . . . , yh}, convergent

for the π-adic topology, modulo an ideal I = (f1, . . . , fh) such that I/I
2 ∼= E+

R2
dy1 ⊕ · · · ⊕

E+
R2

dyh as E+
R2 -modules.

Let A+
R1{y1, . . . , yh} be the ring of power series convergent with respect to the weak

topology on A+
R1 . We have A+

R1{y1, . . . , yh}/pA+
R1{y1, . . . , yh} ∼−→ E+

R1{y1, . . . , yh} by C.2.
Let f1, . . . , fh be lifts of f1, . . . , fh to A+

R1{y1, . . . , yh} and define A+
R2 := A+

R1{y1, . . . , yh}/I
with I = (f1, . . . , fh). Modulo p it is isomorphic to E+

R2 and, in particular, it is noetherian.
Furthermore, I/I2 ∼= A+

R2 dy1 ⊕ · · · ⊕ A+
R2 dyh as A+

R2 -modules since this holds modulo p.

Thus, by C.2(ii) there is a unique homomorphism of A+
R1 -algebras A+

R2 → ÃR2
∞

lifting the

natural inclusion E+
R2 ⊂ ẼR2

∞
. It is injective since it is injective modulo p and A+

R2 is p-adically
separated. By C.2 it satisfies the assumptions of C.1. In particular, the closure AR2 of A+

R2 [π−1]
in ÃR2

∞
for the weak topology coincides with AR1{y1, . . . , yh}/I so that AR2 is formally étale

as AR1 -algebra. Since AR1 is stable under ΓR and ϕ, then AR2 is stable under the actions of ΓR

and ϕ on ÃR2
∞

.

C.6. Case (loc)

In this case R2 is the p-adic completion of the localization of R1 with respect to a
multiplicative system S. Since R2

n = R2 ⊗R1 R1
n and R1

n is finite and free as R1-module, R2
n

is the p-adic completion of R1
n[S−1]. It follows from 4.5(1) that E+

R2 is the π-adic completion
of the localization of E+

R1 with respect to a multiplicative system U stable under ϕ and ΓR.
Let U ⊂ A+

R1 be the set of elements reducing to U modulo p. Using C.2 define A+
R2 as

the subring of ÃR2
∞

given by A+
R1{u−1}u∈U . By loc. cit. it satisfies the hypotheses of C.1

and A+
R2/pA+

R2
∼= E+

R2 . Let AR2 be the closure of A+
R2 [π−1] in ÃR2

∞
for the weak topology.

By C.1 it is also the closure of the localization of AR1 with respect to the subset of elements
reducing to U modulo p. In particular, since U and AR1 are stable under ϕ and ΓR, also AR2 is
stable under the actions of ϕ and ΓR.

We are left to discuss Case (comp) i.e., R2 is the completion with respect to an ideal J
containing p. Since R2

n = R2 ⊗R1 R1
n and R1

n is finite and free as R1-module, R2
n is the

completion of R1
n with respect to JR1

n. With the notation of 4.5(1) define I to be kernel
of E+

1 → R1
N/(J + pεR1

N ). Since it contains π̄pnε
0 , the completion of E+

1 with respect to the
R R
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ideal I is π̄ε
0-adically complete and, by 4.5(1), it is isomorphic to E+

R2 modulo any power of π̄ε
0 .

In particular, it coincides with E+
R2 . Furthermore, I is stable under the actions of ϕ and ΓR. We

start with the following:

C.7. LEMMA. – For every s ∈N the ring A+
R1/psA+

R1 is I-adically separated.

Proof. – Since A+
R1/psA+

R1 is noetherian, by [2, Thm. 10.17] the intersection
⋂

n In consists
of elements killed by some element of 1 + I . It suffices to show that 1 + I does not contain
zero divisors. This is proven by induction on s using that pnA+

R1/pn+1A+
R1

∼= E+
R1 for every

integer n � 0 and the latter is a domain and, in particular, it does not have any non-trivial zero
divisors. �
C.8. Case (comp)

Let A+
R2 be the (p, I)-adic completion of A+

R1 . Then, A+
R2/pA+

R2
∼= E+

R2 . Since A+
R1

is noetherian, the extension A+
R1 → A+

R2 is flat. Since p is not a zero divisor on ÃR1
∞

,

it is not a zero divisor on A+
R2 ⊗A+

R1
ÃR1

∞
either. Consider the p-adic completion Ã2

of A+
R2 ⊗A+

R1
ÃR1

∞
. Modulo p it coincides with E+

R2 ⊗E+
R1

ẼR1
∞

and p is not a zero divisor

on Ã2. Frobenius ϕ on E+
R2 is injective by 4.5(2). Since E+

R1 ⊂ ẼR1
∞

= Ẽ+
R1

∞
[π̄−ε

0 ] is flat

by 4.15(2), also ϕ⊗1 is injective on E+
R2 ⊗E+

R1
ẼR1

∞
. By 4.15(2) Frobenius is an automorphism

on ẼR1
∞

. Thus, Frobenius on E+
R2 ⊗E+

R1
ẼR1

∞
, which coincides with ϕ⊗ϕ, is injective. Note that

E+,perf
R2 = E+

R2 ⊗E+
R1

E+,perf
R1 by 4.7. Hence, ϕ⊗ϕ is surjective on E+

R2 ⊗E+
R1

ẼR1
∞

i.e., the latter

is a perfect ring. In particular, Ã2 coincides with the ring of Witt vectors W(E+
R2 ⊗E+

R1
ẼR1

∞
)

by [15, II.5, Thm. 5]. We then get a homomorphism of A+
R1 -algebras

ρ :A+
R2 →A+

R2 ⊗A+
R1

ÃR1
∞
→ Ã2

∼= W
(
E+

R2 ⊗E+
R1

ẼR1
∞

)
→W(ẼR2

∞
) = ÃR2

∞
.

Since ρ is injective modulo p and A+
R2 is p-adically separated, ρ is injective.

We prove that A+
R2 satisfies the assumptions of C.1. By construction A+

R2 is p-adically

complete, A+
R2/pnA+

R2 injects in ÃR2
∞

/pnÃR2
∞

and it is π-adically complete. We are left

to show that the π-adic topology on A+
R2/pnA+

R2 is finer than the weak topology induced

from ÃR2
∞

/pnÃR2
∞

. It follows from 4.7 and from 4.15, applied to the extension W(k) ⊂ V ,
that there exists t ∈N such that for every m

(
E+

R2

)(pm) = E+
R2

[
x

1
pm

1 , . . . , x
1

pm

d

]
⊗E+

W(k)

(
E+

V

)(pm) ⊂ 1
πt

E+
R2

[
ε

1
pm , x

1
pn

1 , . . . , x
1

pm

d

]
.

For every z ∈ E+
R2 the Teichmüller lift w(z)

1
pm of z

1
pm in Ã2/pnÃ2 coincides with the pn-th

power of any lift of z
1

pm+n . Hence, in ÃR2
∞

/pnÃR2
∞

we have

πtpn

Wn

(
E+,perf

R2

)
⊂
(
A+

R2/pnA+
R2

)[
w(ε)

1
p∞ ,w(x1)

1
p∞ , . . . ,w(xd)

1
p∞
]
.

Passing to π-adic completions we then get that

πtpn

Ã+
R2 /pnÃ+

R2 ⊂
(
A+

R2/pnA+
R2

){
w(ε)

1
p∞ ,w(x1)

1
p∞ , . . . ,w(xd)

1
p∞
}
.

∞ ∞

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



646 F. ANDREATTA
Since E+
R2{ε

1
p∞ , x

1
p∞
1 , . . . , x

1
p∞
d } ⊂ Ẽ+

R2
∞

, one proves by induction on m � n that

πmtpn(
A+

R2/pmA+
R2

){
w(ε)

1
p∞ ,w(x1)

1
p∞ , . . . ,w(xd)

1
p∞
}
⊂ πtpn

Ã+
R2

∞
/pmÃ+

R2
∞

.

Hence, π(n−1)tpn

(A+
R2/pnA+

R2)⊂ Ã+
R2

∞
/pnÃ+

R2
∞

. The claim follows.

Let AR2 be the closure of A+
R2 [π−1] in ÃR2

∞
for the weak topology. We prove that AR2

is stable under ϕ and ΓR. By C.1 and the assumption on A+
R1 , we have AR1/pnAR1 =

(A+
R1/pnA+

R1)[π−1] and the weak topology induced from ÃR1
∞

/pnÃR1
∞

coincides with the one
induced from the π-adic topology on A+

R1/pnA+
R1 . Since ϕ and γ ∈ ΓR act continuously, the

image of A+
R1/pnA+

R1 under ϕ (resp. γ) is contained in 1
πh (A+

R1/pnA+
R1) for some h. If x ∈ I ,

since I is stable under ϕ (resp. ΓR), there exists y ∈ I such that ϕ(x) ≡ y (resp. γ(x) ≡ y)
modulo p. Then, ypn

coincides with ϕ(x)pn

(resp. γ(x)pn

) in ÃR1
∞

/pnÃR1
∞

. We conclude
that the system of neighborhoods

{
IsA+

R1

}
s

is preserved by ϕ (resp. γ). It follows from C.7
that Cauchy sequences relative to the given system of neighborhoods have at most one limit
in ÃR2

∞
/pnÃR2

∞
. In particular, A+

R1/pnA+
R1 → ÃR2

∞
/pnÃR2

∞
extends in at most one way to

(A+
R2/pnA+

R2)[π−1]. Since ρ defines such an extension and ϕ (resp. γ) preserves the ring AR1

and is continuous for the topology defined by the system
{
IsA+

R1

}
s
, then (A+

R2/pnA+
R2)[π−1]

is stable under ϕ (resp. γ). We conclude from C.1 that AR2 is stable under ϕ and ΓR.
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