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INTEGRABILITY OF HAMILTONIAN SYSTEMS
AND DIFFERENTIAL GALOIS GROUPS
OF HIGHER VARIATIONAL EQUATIONS
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CARLES SIMÓ

ABSTRACT. – Given a complex analytical Hamiltonian system, we prove that a necessary condition for
its meromorphic complete integrability is the commutativity of the identity component of the Galois group
of each variational equation of arbitrary order along any integral curve. This was conjectured by the first
author based on a suggestion by the third author. The first-order non-integrability criterion, obtained by the
first and second authors using only first variational equations, is extended to higher orders by the present
criterion. Using this result (at order two, three or higher) it is possible to solve important open problems of
integrability which escaped the first order criterion.
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RÉSUMÉ. – Nous montrons qu’étant donné un système hamiltonien analytique complexe, une condition
nécessaire pour qu’il soit méromorphiquement intégrable, au sens de Liouville, est que la composante
connexe de l’identité du groupe de Galois différentiel de toute équation variationnelle, d’ordre arbitraire, le
long de toute courbe intégrale, soit commutative. Ceci avait été conjecturé par le premier auteur, à la suite
d’une suggestion du troisième, motivée par des observations numériques et analytiques sur des équations
variationnelles d’ordre supérieur. Le critère présenté dans cet article étend aux équations d’ordre supérieur
le critère de Morales–Ramis, obtenu antérieurement par les deux premiers auteurs, qui n’utilisait que la
première équation variationnelle. Utilisant le nouveau critère (aux ordres deux, trois ou plus), il est possible
de résoudre d’importants problèmes d’intégrabilité pour lesquels le critère de Morales–Ramis ne permettait
pas de conclure.

© 2008 Elsevier Masson SAS

1. Introduction

The problem of integrability by quadratures of dynamical systems is a particularly old,
important and difficult one. We know that, given an algebraic or analytic dynamical system,
defined by ordinary differential equations, a solution always exists locally and can be sometimes
prolonged for arbitrary time values, whether negative or positive. This said, and much in the spirit
of the eighteenth-century mathematician, an attempt could be made at finding the general solution
analytically in an “explicit” way. Whenever this is possible, we call the system “integrable”.
Unfortunately, it is an empirical fact that a “general” dynamical system does not adhere to
any known definition of integrability, and that, moreover, such a unified definition is nowadays
unavailable for arbitrary dynamical systems. In other words, the “majority” of dynamical systems
are non-integrable (one can even suspect integrability is a codimension infinity property in some
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reasonable sense) and it is impossible to find their general solution in closed form. For some
remarks about the meaning of integrability see [60]. The situation is similar to the problem of
solvability by radicals of algebraic equations, and the fact that our approach in this paper follows
a Galoisian path should not come across as surprising.

In this paper we will only consider analytical dynamical systems over the complex field; in
the applications it is necessary to go back to the real field, a task which is not always easy
to perform. This said, there are at least two families of finite-dimensional complex-analytical
dynamical systems for which the notion of integrability is well-defined: Hamiltonian systems
and linear differential equations. For Hamiltonian systems, integrability is defined in the sense
of Liouville: the existence of a complete set of independent first integrals in pairwise involution.
Whenever this happens the Hamiltonian system is said to be completely integrable, or simply
integrable for the sake of simplicity. For linear ordinary differential equations, integrability is
defined in the context of differential Galois theory, also called Picard–Vessiot theory.

Let us specify both definitions a bit further. A system with Hamiltonian H defined over a
symplectic analytic complex manifold M of (complex) dimension 2n,

ẋ = XH(x),(1)

is integrable if there exist n first integrals H = f1, f2, . . . , fn independent and in pairwise
involution, {fi, fj} = 0, 1 � i, j � n, { ,} being the Poisson bracket defined by the symplectic
form.

In general, we will assume f1, f2, . . . , fn meromorphic, but we will sometimes require them
to be somehow more regular, for instance meromorphic at ∞, i.e., rational functions, if M is
an open set (in the algebraic sense) of a complex projective space. For specific facts about the
integrability of complex Hamiltonians see [59, Chapter 3].

We assume that the reader is acquainted with both the algebraic approach and the geometric
connection approach to Picard–Vessiot theory. For the necessary definitions and results one can
look at [59, Chapter 2]; for a more complete study, including detailed proofs and other references,
a standard monograph is [80].

Given a system of linear ordinary differential equations

ξ̇ = Aξ,(2)

with coefficients in a differential field K , A ∈ Mat(m,K), we call it integrable if its general
solution is obtained by a combination of quadratures, exponentials of quadratures and algebraic
functions. In other words, if L := K(uij) is the Picard–Vessiot extension of K , uij being
a fundamental matrix of solutions of (2), then there exists a chain of differential extensions
K1 := K ⊂ K2 ⊂ · · · ⊂Kr := L, where each extension is given by the adjunction of one element
a, Ki ⊂ Ki+1 = Ki(a,a′, a′′, . . .), such that a satisfies one of the following conditions:

(i) a′ ∈Ki,
(ii) a′ = ba, b ∈Ki,

(iii) a is algebraic over Ki;
the usual terminology is that the Picard–Vessiot extension L/K is Liouvillian. Then, it can be
proved that a linear differential equation is integrable if, and only if, the identity component G0

of the Galois group G of (2) (which is an algebraic group over the constant field) is solvable.
In particular, if the identity component is commutative, then the equation is integrable. In this
paper we will only consider the case in which the coefficient field K is the field of meromorphic
functions over some suitable Riemann surface.

Given a complex analytic Hamiltonian system (1) as before, we can consider a particular
solution, φ(x0, t), (x, t) �→ φ(x, t) being the flow of equation (1). If not an equilibrium point,
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φ(x0, t) defines a Riemann surface Γ immersed in M . The first-order variational equation VE 1

of (1) along Γ is given by

d

dt

∂φ

∂x
(x0, t) =

∂XH

∂x

(
φ(x0, t)

)∂φ

∂x
(x0, t)(3)

which, setting φ(1) = φ(1)(t) = ∂φ
∂x (x0, t), can be written as

φ̇(1) =
∂XH

∂x

(
φ(x0, t)

)
φ(1).(4)

The solution of (4) yields the linear part of the flow φ(x, t) along Γ. Now we assume that we
can complete the Riemann surface Γ to a Riemann surface Γ̄ by possibly adding equilibrium
points, singularities of the Hamiltonian field XH and points at ∞, the coefficients of (4) being
meromorphic at all of them. Then the differential field of coefficients of the linear differential
equation (4) is by definition the field of meromorphic functions over Γ̄, see [62] (or [59]) for the
details. Then the first and second authors proved the following

THEOREM 1 ([62]). – If the Hamiltonian system (1) is completely integrable with meromor-
phic first integrals in a neighbourhood of Γ, not necessarily independent on Γ itself, then the
identity component G0 of the Galois group G of Equation (4) is commutative.

This result is a typical variant of several possible theorems in [62] when, instead of Γ, we
consider a Riemann surface Γ̄ obtained from Γ by adding some points. It is possible to give
equivalent versions of theorem 1:

. . . then the Lie algebra of the Galois group of Equation (4) is abelian,
or
. . . then the Galois group G of Equation (4) is virtually commutative (i.e., it admits a
commutative invariant subgroup H such that G/H is finite).

In this last statement we can replace the differential Galois group G by the monodromy group,
clearly a subgroup of G:

COROLLARY 1. – If the Hamiltonian system (1) is completely integrable with meromorphic
first integrals in a neighbourhood of Γ, not necessarily independent on Γ itself, then the
monodromy group of (4) is virtually commutative.

Theorem 1 follows a tradition tracing back to Poincaré, who introduced the variational
equations and found a relation between integrability and the monodromy matrix along real
periodic orbits [71]. More recently Ziglin considered the monodromy group of the variational
equations of (1) in the complex analytic setting in order to study necessary conditions for
the existence of a complete set of independent first integrals, albeit without any involution
assumption [86]. For more information and precise statements about the history of the method of
the variational equations in connection with the integrability problem of Hamiltonian systems,
see [59]. Theorem 1 can be considered as a generalisation of the aforementioned result by Ziglin;
actually, the latter is easily proved to follow from the results of [62] as a corollary (see [59]).
Theorem 1, as well as its alternative versions in [62], is clearly a non-integrability criterion; since
the end of the nineties it has been applied by several authors to the study of the non-integrability
of a wide range of systems:

a) N -body problems, problems with homogeneous potentials and cosmological models [5,6,
13–15,17,16,37,38,45,46,48,49,53–55,63,64,66,69,68,78,81,84,85].

b) Some physical problems [3,4,12,27–29,51,72].
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c) Other mechanical problems (rigid body, spring–pendulum, . . . ) [44,47,50,52,83].
d) Systems with some chaotic behaviour (splitting of asymptotic surfaces) [61,82].
Some surveys and general expository works have been also published: [9–11,21,22].
Thus, Theorem 1 and its variants can provide for new proofs of non-integrability, in turn either

solving longtime open problems or else simplifying already existing proofs, as was the case for
the heavy top problem [50]. Applied to some systems, however, the sole use of this theorem is
insufficient for the above purpose, even in the presence of overwhelming numerical evidence
of non-integrability. This is the situation faced, for instance, for some third-order polynomial
potentials—and, more generally, for some very degenerate situations in parametrised families
of potentials. Considering this situation, the third author proposed the use of higher-order
variational equations in order to obtain proofs of non-integrability. Then a precise conjecture
was stated by the first author (see next section).

2. Our main results

Beyond the first-order variational equation (4), it is possible to consider the higher-order
variational equations VEk along Γ, with k > 1. The “fundamental” solution of VEk is given
by (φ(1)(t), φ(2)(t), . . . , φ(k)(t)),

φ(x, t) = φ(x0, t) + φ(1)(t)(x− x0) + · · ·+ φ(k)(t)(x− x0)k + · · ·

being the Taylor series up to order k of the flow φ(x, t) with respect to the variable x at the
point (x0, t). That is, φ(k)(t) = 1

k!
∂k

∂xk
0
φ(x0, t). The initial conditions are clearly φ(1)(0) = id

and φ(j)(0) = 0 for all j > 1. It must be stressed that, as opposed to alternative definitions, we
regard the order k variational equation as the differential system satisfied by (φ(1), φ(2), . . . , φ(k))
rather than the one satisfied by the single vector function φ(k). For some examples on the use of
higher-order variational equations see e.g. [75].

Although the variational equation VEk is not a linear differential equation, it is in fact
equivalent to one: there exists a linear differential equation LVEk with coefficients in the field
of meromorphic functions over Γ (resp. Γ̄) such that the differential extensions generated by
the solutions of VEk coincide with the Picard–Vessiot extensions of LVEk . This leads to the
consideration of the Galois group Gk of VEk , i.e., of the LVEk , naturally justifying our attempt
at generalising Theorem 1 to the higher-order variational equations. Indeed, it was already
conjectured in [59, Chapter 8], by the first author, that a necessary condition for complete
integrability of the Hamiltonian system (1) by means of meromorphic first integrals is that the
identity component (Gk)0 be commutative for any k � 1. The present paper is devoted to proving
this conjecture. This result was announced in [60] and our proof essentially follows along the
same lines as the one involving the first-order variational equation in [62]. A completely new
tool, however, will be central here, namely a flatness argument in the context of completion of
analytical power series. Not only does this argument replace Ziglin’s lemma; it actually yields a
new proof of the first-order case (Theorem 1) without the use of said lemma.

We will now state our main results. The precise definitions and complete proofs will follow
later. As before we consider a non stationary particular solution Γ of (1); for simplicity we
“identify” the abstract Riemann surface Γ with its immersion ιΓ in M . For each point m ∈
Γ ⊂ M , there is a natural faithful representation of the Galois group Gk of the k-th variational
equation VEk in the group of k-jets at m of symplectic diffeomorphisms Diffk

Sp(M,m)
fixing m. We will identify the groups Gk with their images.
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There are natural group homomorphisms Gk+1 → Gk which happen to be surjective as a
consequence of the differential Galois correspondence. We introduce the inverse limit Ĝ =
lim
← kGk , which is a pro-algebraic group endowed with the Zariski topology. We can identify it

with a subgroup of the group of formal jets at m of symplectic diffeomorphisms D̂iffSp(M,m)
fixing m. We have then surjective morphisms Ĝ→ Gk , for k ∈N∗.

PROPOSITION 1. – Given k ∈N∗:
(i) we have natural isomorphisms of finite groups

Gk/(Gk)0 → G1/(G1)0,

Ĝ/Ĝ0 → G1/(G1)0;

(ii) Gk (resp. Ĝ) is Zariski connected if and only if G1 is Zariski connected;
(iii) (Gk)0 (resp. Ĝ0) is solvable if and only if (G1)0 is solvable. In particular if (G1)0 is

commutative, then (Gk)0 and Ĝ0 are solvable.

THEOREM 2. – If the Hamiltonian system (1) is completely integrable with meromorphic first
integrals in a neighbourhood of Γ, not necessarily independent on Γ itself, then:

(i) for each k ∈ N∗ the identity component (Gk)0 of the Galois group Gk of the k-th
variational equation VEk is commutative;

(ii) for each k ∈N∗ the Galois group of the equation VEk is virtually commutative;
(iii) for each k ∈ N∗ the Lie algebra Gk of the Galois group Gk of the k-th variational

equation VEk is abelian;
(iv) the identity component Ĝ0 of the group Ĝ is commutative;
(v) the group Ĝ0 is virtually commutative;

(vi) the Lie algebra Ĝ of the group Ĝ0 is abelian.

We remark that if there is no obstruction to integrability at the first level, meaning (G1)0

is commutative and thus Theorem 1 fails to prove non-integrability, we can then try to find a
k > 1 such that the group G0

k is non-commutative. This group will automatically be solvable,
however. Therefore, notably, Hamiltonian non-integrability will be countered by Picard–Vessiot
integrability of the variational equations.

As was the case for Theorem 1, we obtain valid variants of our current main result when adding
some distinguished points to Γ. In such situations we have the following result.

PROPOSITION 2. – Let k ∈N∗. Then the k-th variational equation is regular singular if and
only if the first variational equation is regular singular.

If we do not add points to Γ then all the VEk are regular singular because they correspond to
holomorphic connections.

From the preceding facts, we can derive purely topological results on the dynamics of
integrable Hamiltonian systems, extending Ziglin’s results (cf. also [36]).

Let γ be a continuous closed loop of Γ at m ∈ Γ. The flow of the Hamiltonian system
(1) near γ will give a germ ψγ ∈ DiffSp(M,m) of the group of germs of analytic symplectic
diffeomorphisms. We call it the holonomy of γ. Using the time parametrization, we can interpret
the time “along γ” as a time translation. If we continuously deform the closed loop γ at m, then
the germ ψγ will not change, the immediate outcome being a group homomorphism

ρ :π1(Γ,m)→ DiffSp(M,m)

called the holonomy representation. Note that we must take the opposite group law on the
fundamental group π1(Γ,m).
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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We have natural maps

DiffSp(M,m)→ D̂iffSp(M,m).

Identifying DiffSp(M,m) with a subgroup of D̂iffSp(M,m), we obtain Imρ⊂ Ĝ and the k-jets
of the holonomies, ρk , satisfy Imρk ⊂Gk . Adding equilibrium points and points at infinity to Γ
does not change the holonomy groups but can change the Galois groups, however.

COROLLARY 2. – If the Hamiltonian system (1) is completely integrable with meromorphic
first integrals in a neighbourhood of Γ, not necessarily independent on Γ itself, then, denoting
by Imρ the holonomy group associated to a solution Γ:

(i) Imρ⊂ Ĝ is virtually commutative;
(ii) for k ∈N∗, the groups of k-jets Imρk ⊂ Gk are virtually commutative;

(iii) Imρ is Zariski dense in Ĝ, and for k ∈N∗, the group Imγk is Zariski dense in Gk .
Statement (iii) remains true when adding some points to Γ if we assume, moreover, that the
meromorphic extension of the first variational equation to the completed curve is regular
singular.

As for the case of the first variational equations, we can, in the case of higher variational
equations, “eliminate the trivial solutions”. We can moreover restrict ourselves to the energy
hypersurface M0 containing our solution Γ. This is where we obtain the normal variational
equations of higher order. Choosing a small fibration transversal to the flow M1 in M0, the
corresponding Galois groups are subgroups of k-jets on M1 at m. For these groups we have an
evident version of our main theorem, that is Theorem 2.

There is also a topological version: in Corollary 2, we can replace the holonomy group of
the flow by the holonomy group of the corresponding one-dimensional foliation, or, in order to
keep the symplectic property, the holonomy of the one-dimensional foliation of the Hamiltonian
system restricted to the energy hypersurface.

3. Jets and variational equations

3.1. Jets and jet groups

We will make an essential use of the jet formalism due to C. Ehresmann. We recall the basic
definitions and results here. Our references are [19, Chapter 1, paragraph 3], [40,39,58] or the
paper [77] where the reader can find more details. In general the jet formalism is described for
C∞ real functions. Here we will only use complex holomorphic functions.

As usual, given a manifold M and a point p ∈ M , we denote as (M,p) the germ of the
manifold M at p. Let f, g : (C,0) → C be two germs of holomorphic functions at the origin
and k ∈ N. We assume that f(0) = g(0). We will say that f and g have the same k-jet at 0 if
f (j)(0) = g(j)(0) for j � k.

Now let M , N be complex analytic manifolds, and let p ∈ M , q ∈ N . Let f :M → N and
g :M → N be holomorphic maps of M into N . We will say that f and g have the same k-jet at
p whenever

– f(p) = g(p) = q,
– for all p-based parametrized analytic curves: v : (C,0) → (M,p) and all q-based complex

valued holomorphic functions u :N →C, the holomorphic maps u◦f ◦v and u◦g ◦v have
the same k-jet. It is an equivalence relation and the corresponding equivalence class will be
denoted by jk

p (f). The point p is the source of jk
p (f) and the point q is its target.

We need to clarify the implications of the preceding definition in local coordinates.
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Let U be an open neighbourhood of 0 in Cm. Let f, g be two differentiable maps f, g :U →
Cn, with f(0) = g(0) = 0. In coordinates x = (x1, . . . , xm), f(x) = (f1(x), . . . , fn(x)), g(x) =
(g1(x), . . . , gn(x)). We will use the classical notations for partial derivatives: for a multi-index
μ = (μ1, . . . , μm), Dμ

x = Dμ = ∂μ1

∂x
μ1
1

· · · ∂μm

∂xμm
m

. Then f and g have the same k-jet at the origin if

and only if

Dμ
xfi(0) = Dμ

xgi(0), 1 � i � n, |μ|=
m∑

i=1

μi � k.

Let Jk
p,q(M,N) denote the set of all k-jets of maps from M to N of source p and target q. We

define the set

Jk(M,N) =
⋃

p∈M, q∈N

Jk
p,q(M,N).

We have the classical source and target projections

α :Jk(M,N)→ M, β :Jk(M,N)→ N,

defined by α(jk
p (f)) = p and β(jk

p (f)) = f(p) = q.
Now let {Ui}i∈I and {Vj}j∈J be, respectively, open coordinates coverings of M and N . We

then have an open covering {Wij}i∈I, j∈J of Jk(M,N):

Wij =
{
jk
p (f) | α

(
jk
p (f)

)
∈ Ui, β

(
jk
p (f)

)
∈ Vj

}
.

If {x1, . . . , xm} and {y1, . . . , yn} are the coordinate functions on Ui and Vj , respectively, we
can define coordinate functions (called natural coordinates) on Wij by(

xi(p), yj(q),Dμ
x(yj ◦ f)(p)

)
, 1 � i � m, 1 � j � n, 1 � |μ|� k.

Holomorphic changes of local coordinates in Ui and Vj induce holomorphic changes of
coordinates in Wij . Hence, we have a complex analytic structure on Jk(M,N). If dimM = m
and dimN = n, then

dimJk(M,N) = m + n

(
m + k

k

)
.

We have dimJk(M,C) := νm,k = m +
(
m+k

k

)
. If m is already fixed, we set νm,k = νk .

Examples. – The cotangent bundle T ∗(M) is identified with J1(M,C) and the tangent bundle
T (M) is identified with J1(C,M).

For r � k there is a natural map πk,r :Jk
p,q(M,N)→ Jr

p,q(M,N).
Let M1,M2,M3 be three complex analytic manifolds. Let pi ∈ Mi, i = 1,2,3. The composi-

tion of applications induces an algebraic map

Jk
p2,p3

(M2,M3)× Jk
p1,p2

(M1,M2) → Jk
p1,p3

(M1,M3).

This follows from the chain rule, which allows for the expression of the partial derivatives of a
composition map g ◦ f as polynomials in the partial derivatives of g and f .

In the special case M1 = M2 = M3 = M , p1 = p2 = p3 = p, this composition map induces
a product in Jk

p,p(M,M). We will denote by Diffk(M,p) the subset of Jk
p,p(M,M) of
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invertible elements. There is a natural isomorphism Diff1(M,p) � GL(Tp(M)). In particular,
Diff1(Cm,0)� GL(m;C).

We set Jk
p,0(M,C) = Jk(M,p). The group Diffk(M,p) acts linearly on Jk(M,p) by

composition on the right. The corresponding representation is faithful. In particular we have
a linear action of Diffk(Cm,0) on Jk(Cm,0) and a faithful representation of Diffk(Cm,0) (or
more precisely of the opposite group) into GL(Jk(Cm,0)).

Using local coordinates we obtain the obvious identifications Jk(M,p) � Jk(Cm,0),
Jk

p,p(M,M) � Jk
0,0(C

m,Cm), Diffk(M,p)� Diffk(Cm,0).
The C-algebra structure of C gives a C-algebra structure on Jk(Cm,0) and the maps πk,r

are surjective homomorphisms of C-algebras. The linear action of Diffk(Cm,0) on Jk(Cm,0)
gives an automorphism of C-algebras of Jk(Cm,0). More precisely, we have the following
result.

PROPOSITION 3. – Let Φ be a linear endomorphism of Jk(Cm,0). The following conditions
are equivalent:

(i) Φ is an homomorphism of C-algebras.
(ii) There exists φ ∈ Jk

0,0(C
m,Cm) such that Φ(Y ) = Y ◦ φ for all Y ∈ Jk(Cm,0).

Moreover, if these conditions are satisfied, then Φ is an automorphism of C-algebras if and only
if φ ∈Diffk(Cm,0).

Proof. – The implication (ii) ⇒ (i) is trivial. It remains to prove (i) ⇒ (ii). Let x1, . . . , xm be
the coordinate functions in Cm. We denote the corresponding jets in Jk(Cm,0) in identical
manner. Then we set φi = Φ(xi).

Let Y ∈ Jk(Cm,0). We can write Y as an element of C[x1, . . . , xm]: Y = P (x1, . . . , xm).
Then Φ(Y ) = Φ(P (x1, . . . , xm)) = P (Φ(x1), . . . ,Φ(xm)) = P (φ1, . . . , φm) = P ◦ φ =
Y ◦ φ. �

The group Diffk(Cm,0) is a linear complex algebraic group. We have an exact sequence of
algebraic groups:

{id}→ Ik(Cm,0)→ Diffk(Cm,0)
πk,1−→GL(m;C)→{id},

where Ik(Cm,0) is the subgroup of Diffk(Cm,0) of germs tangent to identity. Using
coordinates it is easy to build a section of the homomorphism πk,1. Therefore Diffk(Cm,0)
is a semi-direct product of GL(m;C) by the unipotent group Ik(Cm,0). More precisely we
have exact sequences of algebraic groups

{id}→ Ik+1,k(Cm,0)→ Ik+1(Cm,0)→ Ik(Cm,0)→{id},

Ik+1,k(Cm,0) being the vector group in Ik+1(Cm,0) of elements with only non-trivial
contributions of order k + 1, i.e., Ik+1(Cm,0) is the semi-direct product of Ik(Cm,0) by the
additive group of a finite-dimensional vector space. Therefore we obtain Diffk(Cm,0) from
GL(m;C) by a sequence of semi-direct products with additive groups of finite-dimensional
vector spaces [39,77].

We need some symplectic variations. We denote (q, p) = (q1, . . . , qn, p1, . . . , pn) ∈ C2n, and
we set Ω = dq ∧ dp =

∑n
i=1 dqi ∧ dpi. We will denote by Diffk

Sp(C2n,0) the subgroup of jets
of diffeomorphisms φ such that φ ∗ Ω = Ω, in the evident sense. This subgroup is clearly an
algebraic subgroup. It is easy to check that, for k � r, the homomorphisms of group πk,r induce
a surjective homomorphism of groups

πk,r :Diffk
Sp(C2n,0)→ Diffr

Sp(C2n,0).
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We easily see that Diffk
Sp(C2n,0) is the semi-direct product of Sp(2n;C) by a unipotent group.

More precisely we obtain Diffk
Sp(C2n,0) from Sp(2n;C) by a sequence of semi-direct products

with additive groups of finite-dimensional vector spaces.
It is easy to extend the preceding definitions when we replace (C2n,0) by a complex

symplectic manifold germ (M,m) = ((M,Ω),m). We shall denote by Diffk
Sp(M,m) the

subgroup of germs of symplectic diffeomorphisms in Diff(M,m), etc.

3.2. Relations and flatness

In the statement of the central result of the next Section 3.3, namely Theorem 3, we will use
formal power series of several complex variables. This is essential for the application to higher
variational equations, the convergent case being insufficient. In the proof of Theorem 3, it is
necessary to extend a result which is true for convergent power series “for geometric reasons”
to a similar result for formal power series. The flatness of the ring of formal power series on the
ring of convergent power series is a classical tool in order to handle such problems.

The important result for the application in the next section is Corollary 3. There exists a more
general and difficult version of this result, Artin’s theorem [7], allowing nonlinear equations.
Readers acquainted with this latter result may skip the remainder of this section and apply it
directly in the next one.

We will use some definitions and results from [8, Chapters 2 and 10] (cf. also [18, Chapter 1]
or [73, Annexe, p. 34]). Henceforth, all rings will be assumed to be commutative and unitary and
all modules will be assumed unitary.

DEFINITION 1. – Let A be a ring and let M be a A-module. We say M is A-flat (or flat) if,
for every A-module N and every submodule N ′ of N , the natural map

M ⊗A N ′ →M ⊗A N

is injective.

This definition is equivalent to the following property.
(R) Let a1, . . . , ap ∈ A and (m1, . . . ,mp) ∈ Mp a relation between ai, i = 1, . . . , p with

coefficients in M (i.e.
∑p

i=1 aimi = 0). Then there exist bij ∈ A (i = 1, . . . , p, j =
1, . . . , q; q ∈N) and nj ∈ M such that:
(i) for every j, (b1j , . . . , bpj) is a relation between ai, i = 1, . . . , p;

(ii) for every i, mi =
∑q

j=1 bijnj .
Property (R) essentially means that relations between a1, . . . , ap with their coefficients in M

are generated by relations having coefficients in A.
We recall that if M is A-flat, for every exact sequence of A-modules N ′ → N → N ′′, the

sequence M ⊗A N ′ →M ⊗A N → M ⊗A N ′′ is exact.

PROPOSITION 4. – The ring of formal power series Â = C[[x1, . . . , xn]] is a flat module on
its subring of convergent power series A = C{x1, . . . , xn}.

Proof. – We denote by M the maximal ideal of A, i.e., the elements of A without zero-
order term; Â is the completed ring of the local ring A relatively to the M-adic topology.
A is Noetherian in virtue of Hilbert’s basis theorem. Then Proposition 10.14 of [8] implies Â
is flat. �

In an entirely analogous manner, we denote by M̂ the maximal ideal of Â.
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COROLLARY 3. – We set, as above, A = C{x1, . . . , xn} and Â = C[[x1, . . . , xn]]. We
consider an analytic system of m linear equations, with p unknowns t1, . . . , tp:

a1ht1 + · · ·+ aphtp = 0 (h = 1, . . . ,m, aih ∈A).(5)

We assume this system admits a formal solution T̂ = (t̂1, . . . , t̂p) ∈ Âp. Then, for every μ ∈ N,

the system admits an analytic solution (t(μ)
1 , . . . , t

(μ)
p ) ∈ Ap such that, for i = 1, . . . , p, t̂i = t

(μ)
i

(mod. M̂μ+1).

Proof. – We denote Φ:Ap → Am (resp. Φ̂ : Âp → Âm) the A-linear (resp. Â-linear) map
defined by the matrix a = (aih).

Using Proposition 4, we have Ker Φ̂ = KerΦ ⊗A Â. Therefore the formal solutions of the
system (5) are generated, over Â, by the analytical solutions. Then, if T̂ = (t̂1, . . . , t̂p) is a formal
solution, there exist n̂1, . . . n̂q ∈ Â and q analytic solutions Tj = (t1j , . . . , tpj) (j = 1, . . . , q),

such that (t̂1, . . . , t̂p) =
∑q

j=1 n̂jTj . Replacing the n̂j by their k-jets n
(k)
j (which we interpret

as polynomials in the variables x1, . . . , xn), we obtain an analytic solution T (k) =
∑q

j=1 n
(k)
j Tj

of (5). If we choose k = μ, then T (μ) = (t(μ)
1 , . . . , t

(μ)
p ) and T̂ have the same μ-jet . �

3.3. Some properties of Poisson algebras

In this section we describe some properties of the Poisson algebras of germs of meromorphic
and formal meromorphic functions defined on a neighbourhood of the origin of a complex
symplectic vector space.

Let E be a complex symplectic vector space of complex dimension 2n. The symplectic
product is denoted by ω : (v,w) �→ ω(v,w). Using the unique 2-form Ω invariant by translation
and satisfying Ω(0) = ω over E, we will consider E as a symplectic manifold. We can choose
symplectic coordinates (q, p) over E and thus achieve Ω =

∑
i=1,...,n dpi ∧ dqi.

We will consider the C-algebras of polynomials, convergent series and formal series
over E: C[E], C{E},C[[E]], and the corresponding fraction fields C(E), C({E}),C((E)),
respectively. On all these algebras we have a Poisson product

{f, g}= Ω(df �, dg�).(6)

We consider the spaces of germs at the origin of vector fields X of different kinds: holomor-
phic, meromorphic, formal, formal-meromorphic. That is X =

∑
i ai

∂
∂qi

+
∑

i bi
∂

∂pi
, ai, bi ∈

C{E},C({E}),C[[E]],C((E)), respectively.
The corresponding complex vector spaces are endowed with the Lie algebra structures defined

by the usual bracket of vector fields. A germ of a vector field X of one of the previous kinds is
said to be Hamiltonian if there exists a germ of a function f of the same kind such that

X = df �.(7)

Then we will denote X = Xf .
The following results are well known [1] (3.36, Proposition, page 189).

PROPOSITION 5. – For a germ of a vector field X of one of the above kinds, the following
conditions are equivalent:

(i) X is Hamiltonian;
(ii) d(X�) = 0;
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(iii) LXΩ = 0;
(iv) (exp X)∗Ω = Ω.

PROPOSITION 6. – The germs of Hamiltonian vector fields of any of the kinds above are a Lie
subalgebra by defining

[Xf ,Xg] = X{f,g}.

Let ((M,Ω),m) be a germ of a complex analytic symplectic manifold (dimC M = 2n). We
recall that the natural maps

Diffk+1(M,m)→Diffk(M,m), Diffk+1
Sp (M,m)→ Diffk

Sp(M,m)

are surjective morphisms of algebraic groups.
Taking inverse limits we obtain the pro-algebraic group D̂iff(M,m) = lim

← k Diffk(M,m) and
the pro-algebraic subgroup D̂iffSp(M,m) = lim

← k Diffk
Sp(M,m). These pro-algebraic groups are

endowed with the Zariski topology, which by definition happens to be the direct limit topology.
We have surjective morphisms

D̂iff(M,m)→ Diffk(M,m), D̂iffSp(M,m)→ Diffk
Sp(M,m).

A k-jet at m ∈ M of a vector field X vanishing at m acts linearly on the space Jk(M,m)
of k-jets of functions by truncation of the Lie derivative LX . Then expX = expLX can be
interpreted as an element of Diffk(M,m). It is easy to check that, using this remark, we can
identify the space Lk(M,m) of k-jets of vector fields vanishing at m with the Lie algebra of
the algebraic group Diffk(M,m). Then L̂(M,m) = lim

← kLk(M,m) is identified with the Lie

algebra of the pro-algebraic group D̂iff(M,m). Beware of the fact that the diffeomorphisms
exp X̂ can be analytic, that is exp X̂ ∈Diff(M,m), even when X̂ is divergent.

Similarly we can identify the space Lk
sp(M,m) of k-jets of Hamiltonian vector fields

vanishing at m with the Lie algebra of the algebraic group Diffk
Sp(M,m). Then L̂sp(M,m) =

lim
← kLk

sp(M,m) is identified with the Lie algebra of the pro-algebraic group D̂iffSp(M,m).

There is a k-truncated version of Proposition 5. We leave the details to the reader.
It is possible to define Poisson products on spaces of germs of k-jets Jk(M,m):

Jk(M,m)× Jk(M,m)→ Jk−1(M,m), k > 0,

Jk,2(M,m)× Jk,2(M,m)→ Jk,2(M,m), k > 1,

where Jk,2(M,m) is the space of jets vanishing at order one. We say an endomorphism of
Jk(M,m) preserves the Poisson product if it preserves these Poisson products.

There is a symplectic version of Proposition 3:

PROPOSITION 7. – Let Φ be a linear endomorphism of Jk(E,0). The following conditions
are equivalent:

(i) Φ is an homomorphism of C-algebras and preserves the Poisson product;
(ii) there exists φ ∈ Jk

Sp(E,E) such that Φ(Y ) = Y ◦ φ for all Y ∈ Jk(E,0).
Moreover if these conditions are satisfied, then Φ is an automorphism of C-algebras if and only
if φ ∈Diffk

Sp(E,0).

We will now state and prove the main result of this section, which is also the central tool in our
obstruction theorem. It is also crucial to the analogue result in non-linear Galois theory, due to the
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second author (cf. Section 5 below). Since the result is local, we can choose Darboux coordinates
in a neighbourhood of m in M , and it is sufficient to study the case (M,m) = (E,0). We will
denote Diffk(E,0), . . . the corresponding objects.

Let f1, . . . , f� be � germs of meromorphic functions (resp. formal meromorphic functions) at
m ∈ M . We say they are functionally independent near m if the germ at m of df1 ∧ · · · ∧ df� is
not identically zero. In our hypotheses for the meromorphic case, we pose no obstacle to either
the existence of a singularity at m for some fi or the vanishing of df1 ∧ · · · ∧ df� at m, even if fi

are holomorphic at m.
The following result is easy to prove.

LEMMA 1. – Let f1, . . . , f� be � germs of meromorphic functions (resp. formal meromorphic
functions) at m ∈ M which are functionally independent near m. Let α be a germ of a
meromorphic one-form (resp. a formal meromorphic one-form) at m such that α ∧ df1 ∧ · · · ∧
df� ≡ 0. Then there exist germs of meromorphic functions (resp. formal meromorphic functions)
θ1, . . . , θ� such that α =

∑
i=1,...,� θi dfi.

THEOREM 3. – Let E be a complex symplectic vector space of complex dimension 2n. Let
f1, . . . , fn be n germs at the origin of E of meromorphic functions, functionally independent
near the origin though not necessarily at the origin itself. Assume these germs f1, . . . , fn are in
pairwise involution and let L̂ be a Lie algebra of Hamiltonian formal vector fields at the origin
of E. Assume f1, . . . , fn are invariant by L̂. Then the Lie algebra L̂ is abelian.

Theorem 3, a particular case of which was suggested some years ago to the second author by
L. Gavrilov in relation to Theorem 1, is a corollary of the following.

THEOREM 4. – Let E be a complex symplectic vector space of complex dimension 2n. Let
f1, . . . , fn be n germs at the origin of E of meromorphic functions, functionally independent near
the origin (not necessarily at the origin itself ). Assume these germs f1, . . . , fn are in involution.
Let A be the C-subalgebra of the field C((E)) generated by f1, . . . , fn. Then

(i) A is involutive,
(ii) the orthogonal A⊥ of A in C((E)) is an involutive C-subalgebra of C((E)).

Proof. – We start with a preliminary result.

LEMMA 2. – Under the hypotheses of Theorem 4, let ϕ̂ ∈A⊥ ⊂C((E)). Then ϕ̂, f1, . . . , fn

are functionally dependent near the origin, that is

dϕ̂∧ df1 ∧ · · · ∧ dfn ≡ 0.

We will prove a slightly more general version.

LEMMA 3. – Under the hypotheses of Theorem 4, let α̂ be a meromorphic (resp. formal mero-
morphic) one-form. We set X = α̂�. Assume that dfi(X) = ιXfi

α̂ = α̂(Xfi) = ω(Xfi ,X) = 0
for i = 1, . . . , n. Then,

α̂∧ df1 ∧ · · · ∧ dfn ≡ 0.

Proof. – First case. Assume α̂ = α is meromorphic. Then, in each open neighbourhood of 0
in E, there exists a point x0 such that f1, . . . , fn and α are holomorphic at x0 and such that
df1 ∧ · · · ∧ dfn does not vanish at x0. These properties remain true in an open neighbourhood
U of x0. Then, for x1 ∈ U , the set V = Vx1 = {x ∈ U | f1(x) = f1(x1), . . . , fn(x) = fn(x1)}
is an analytic submanifold of complex dimension n of U . We have dfi(X) = 0, i = 1, . . . , n.
Therefore the analytic vector field X is tangent to V . We also have dfi(Xfj ) = 0, i, j = 1, . . . , n,
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and the analytic vector fields Xfi , i = 1, . . . , n, are also tangent to V . Since the vectors
Xf1(x), . . . ,Xfn(x) are independent at each point of x ∈ U , they generate the tangent space
of V at each point of V . We obtain a relation X = θ1Xf1 + · · · + θnXfn over U , where θi are
holomorphic. The relation α = θ1 df1 + · · ·+ θn dfn follows and α∧ df1 ∧ · · · ∧ dfn ≡ 0 over U .
Hence the similar relation holds for the germs at the origin by analytic continuation.

Remark. – If we assume that the one-form α is closed, then {dfj , α}� := [Xfj ,X] = 0. Now
we consider the previous relation X = θ1Xf1 + · · ·+ θnXfn over U . We have

[Xfj ,X] =
∑

i=1,...,n

(LXfj
θi)Xfi = 0, j = 1, . . . , n.

Therefore LXfj
θi = 0, i, j = 1, . . . , n and the analytic functions θi, i = 1, . . . , n are constant on

each manifold Vx1 , (x1 ∈ U ).

Second case. We assume that α̂ is a formal one-form, without singularity at the origin. We set
α̂ =

∑
i yi dpi +

∑
i zi dqi. Then we can interpret the system of equations

α̂(Xfi) =
n∑

j=1

zj
∂fi

∂pj
− yj

∂fi

∂qj
= 0, i = 1, . . . n,(8)

as a system of equations having 2n unknowns (y(x), z(x)) which is linear analytic with respect
to x = (q1, . . . , qn, p1, . . . , pn).

Let M̂ ⊂C[[E]] be the maximal ideal, that is, the formal series in E without zero-order term.
Then, using Corollary 3, or else Artin’s theorem [7] if preferred, for every μ ∈ N∗ there exists
a germ βμ =

∑
i ȳi dpi +

∑
i z̄i dqi of analytic one-forms such that (ȳ, z̄) satisfies the same

analytic system, i.e. βμ satisfies (8):

βμ(Xfi) = 0, i = 1, . . . n,(9)

and such that

α̂ = βμ (mod M̂μ),

i.e. the germs α and β, their coordinates being (y, z) and (ȳ, z̄), coincide up to order μ− 1 in x.
Using the result for the first case, we obtain

βμ ∧ df1 ∧ · · · ∧ dfn ≡ 0

for every μ ∈N∗. The formal relation

α̂∧ df1 ∧ · · · ∧ dfn ≡ 0

follows easily.
General case. Assume α̂ is a formal meromorphic one-form. Then there exist a formal one-

form ζ̂ and a non-zero formal power series ĝ ∈ C[[E]] such that ĝα̂ = ζ̂ . Hence ζ̂ satisfies a
system similar to (8). We can apply the result of the second case to ζ̂: ζ̂ ∧ df1 ∧ · · · ∧ dfn =
ĝα̂∧ df1 ∧ · · · ∧ dfn ≡ 0. The result for α̂ follows: α̂∧ df1 ∧ · · · ∧ dfn ≡ 0. �
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This ends the proof of the lemmae and we can return to the proof of Theorem 4. Let ϕ̂, ψ̂ ∈A⊥.
From Lemmae 1 and 2 we obtain

dϕ̂ =
∑

i=1,...,n

θ̂i dfi,

with θ̂i ∈C((E)). Therefore

{ϕ̂, ψ̂} = dϕ̂(Xψ̂) =
∑

i=1,...,n

θ̂i dfi(Xψ̂) =
∑

i=1,...,n

θ̂i{fi, ψ̂} = 0.

This ends the proof of Theorem 4.
It remains to prove Theorem 3. Let X ∈ L̂. By definition we have LX(fi) = 0 (i = 1, . . . , n).

There exists a formal power series expansion ĝ ∈C[[E]] such that X� = dĝ (the formal field X
is Hamiltonian). Then, with the notations of Theorem 3, we have ĝ ∈ A⊥. The result follows
easily. �
3.4. Variational equations. Linearised variational equations

We will briefly recall the definition of the higher-order variational equations VEk, k > 1. First
we shall use local coordinates, giving the equations in a compact form. These equations are
clearly non-linear. However, if we start from the solutions of the equations of order � k, then it
is possible to solve the equation of order k + 1 by a quadrature. But it is not a priori evident that
the theory of Picard–Vessiot extensions is applicable to the higher-order variational equations.
Therefore it is necessary, for our purpose, to introduce an equivalent linearised version of these
equations LVEk; roughly speaking this is related to the fact that the jet groups are linear groups.
The first author described in [59] how to linearise the second and third variational equations
([59], Section 8.3). Here this will be done in a systematic way. First a local version of this
linearisation using coordinates is introduced. Later on we will use a geometric interpretation of
the corresponding computations (based upon a duality trick) to derive a global version.

The global geometric version is indispensable for the proof. The coordinate version is not
needed, strictly speaking, but can be useful for explicit computations in the applications—
for instance, when using computer algebra or performing numerical checks by means of the
variational equations, [49]. See also Appendix B. What follows should ensure users of our
main theorem that performing these computations without an explicit need for the linearised
variational equations, while at the same time remaining automatically in a convenient Picard–
Vessiot extension (depending on the order k) of a “field of rationality”, is actually possible.
Therefore, even if our main result seems abstract, one can admit and use it very easily for some
practical applications, albeit forgetting about the proofs.

Let

ẋ = X(x)(10)

be an analytic differential equation defined by an analytic vector field X over a complex
connected manifold M of complex dimension m (m = 2n in the symplectic case).

To a non-stationary solution φt(x0) := φ(x0, t), we associate an immersion ι : Γ → M ,
Γ being a connected Riemann surface. Consider the local situation to start with. In this case,
we can identify M with an open subset of Cm and Γ with an open subset of C, and assume ι is
an embedding. The initial data are t0 = 0 ∈ Γ and x0 = (x0,1, . . . , x0,m) ∈ Cm. The coordinate
functions of the solution will be denoted as φ = (φ1, . . . , φm). We can assume this solution is
maximal with the initial data, as well as defined for initial y0 close enough to x0.
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We consider the germ of the flow φ along the graph Δ = {(t, ι(t)) | t ∈ Γ} a family of
germs of diffeomorphisms φt : (Cm, x0) → (Cm, φt(x0)). Then, we have the convergent power
series

φt(y0) =
∑
k�0

φ
(k)
t (x0)(y0 − x0)k,(11)

where we introduce φ
(0)
t (x0) := φt(x0) and φ

(k)
t (x0) := Dk

x0
φt/k!.

Our immediate goal is to obtain the equations for the derivatives of φt with respect to x0 and,
therefore, for φ

(k)
t (x0). Working first in coordinates, let Xi be the components of X and let us

introduce the notation

Ds
i1,...,is

φj =
∂sφj

∂x0,i1 . . . ∂x0,is

, Dr
k1,...,kr

Xi =
∂rXi

∂xk1 . . . ∂xkr

.

It will be also useful to introduce the power series expansion for X

X(y) =
∑
k�0

X(k)(x)(y − x)k,

with X(0)(x) := X(x), similarly to what was done before. It is clear that φ
(k)
t (x0) and X(k)(x)

are k-linear symmetric maps.
Then, by successive derivation of (10) with respect to the coordinate functions of x0 and

exchange of the order of the derivations, we obtain the desired equations

d

dt
Dkφj = DiXjDkφi,

d

dt
D2

k1,k2
φj = DiXjD

2
k1,k2

φi + D2
i1,i2XjDk1φi1Dk2φi2 ,

d

dt
D3

k1,k2,k3
φj = DiXjD

3
k1,k2,k3

φi + D2
i1,i2XjD

2
k1,k2

φi1Dk3φi2

+ D2
i1,i2XjD

2
k1,k3

φi1Dk2φi2 + D2
i1,i2XjDk1φi1D

2
k2,k3

φi2

+ D3
i1,i2,i3XjDk1φi1Dk2φi2Dk3φi3 ,

. . . = . . . ,

(12)

where summation is performed with respect to repeated indices as usual. The first line in (12)
gives the first variational equations VE 1, the first two (resp. three) lines give the second (resp.
third) variational equations VE 2 (resp. VE 3), etc. It is possible to write these equations in a
general, more compact form, by making use of φ

(k)
t and X(k):

φ̇
(1)
t = X(1)φ

(1)
t ,

φ̇
(2)
t = X(1)φ

(2)
t + X(2)

(
φ

(1)
t

)2
,

φ̇
(3)
t = X(1)φ

(3)
t + 2X(2)

(
φ

(2)
t , φ

(1)
t

)
+ X(3)

(
φ

(1)
t

)3
,

. . . = . . . ,

(13)

or, in general,
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φ̇
(k)
t =

∑ j!
m1! · · ·ms!

X(j)
(
(φ(i1)

t )m1 , (φ(i2)
t )m2 , . . . , (φ(is)

t )ms
)
, k � 1,(14)

where the X(k) are evaluated at φt(x0), the symmetry of the multilinear maps has been used and
the composition of multilinear maps has the obvious meaning: a term in the right hand side of
(14) acts on a string of k vectors (u1, . . . , uk) as

X(j)
(
φ

(i1)
t (u1, . . . , ui1), . . . , φ

(is)
t (uk−is+1, . . . , uk)

)
.

In (14) the summations are carried out for

1 � j � k, i1 > i2 > · · ·> is,

s∑
r=1

mr = j,

s∑
r=1

mrir = k.

The obvious initial conditions for φ
(k)
t (x0) are φ

(1)
t (x0) = id and φ

(k)
t (x0) = 0 for k > 1. The

equations for VE 1 are linear and homogeneous, while the remaining VEk are neither of both,
the non-linear part depending on the previous φ

(j)
t , j < k as is evident from (12) or (13). The

linear homogeneous part has the same form for all of the equations. Hence, as said before, the
solutions can be obtained in a recurrent way by quadratures using, for instance, the variation of
constants method. More specifically: if we assume that we know a solution (φ(1)

t , . . . , φ
(k)
t ) of

VEk , then we can write the equation for the new terms appearing in VEk+1:

φ̇
(k+1)
t (x0) = X(1)

(
φt(x0)

)
φ

(k+1)
t (x0) + P

(
φ

(1)
t , . . . , φ

(k)
t

)
.(15)

In Equation (15) P denotes polynomial expressions in the components of its arguments. The
coefficients depend on t through X(j)(φt(x0)).

The problem is now to find a system of linear equations for (φ(1)
t (x0), . . . , φ

(k)
t (x0))

equivalent to the system of higher variational equations. It is enough to write the equations
satisfied by the monomials appearing in P . This is the content of the next lemma, and is similar
to typical procedures in automatic differentiation and Taylor integration routines.

LEMMA 4. – Let z ∈ Cq . Assume the components (z1, . . . , zq) of z satisfy linear homoge-
neous differential equations żi =

∑q
j=1 aij(t)zj . Then the monomials zk of order |k| also satisfy

a system of linear homogeneous differential equations.

Proof. – Let k = (k1, . . . , kq) be a multi-index of non-negative integers. Then

d

dt
zk =

q∑
j=1

(
kjz

kj−1
j

q∑
r=1

ajrzr

q∏
i=1, i �=j

zki
i

)
,(16)

the right hand side being also homogeneous of degree |k| in z. �
We observe that the above lemma is nothing but the pullback to the symmetric fibre bundle,

Sk(Cq), of the connection associated to the linear differential equations.
In our application to linearise the VEk it is clear that the ajr = ajr(t) depend on t through

the components of the X(i)(φt(x0)) for 1 � i � k. We realise that after the last equation
corresponding to VEk we can supplement the system of linear differential equations with the
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equations for the components of ((φ(i1)
t )m1 , (φ(i2)

t )m2 , . . . , (φ(is)
t )ms). More concretely, after

the first, second, . . . , equations in (13) we must add equations of the form

d

dt

(
φ

(1)
t

)2 = L2

(
φ

(1)
t

)2
,

d

dt

(
φ

(2)
t , φ

(1)
t

)
= L3,1

(
φ

(2)
t , φ

(1)
t

)
,

d

dt

(
φ

(1)
t

)3 = L3,2

(
φ

(1)
t

)3
,

. . . ,

(17)

where the coefficients in Li,j are obtained using (16). In this way we obtain recurrently the
desired linearised version LVEk .

It is easy to reformulate the construction of this linearisation in matrix form using a
composition by an arbitrary scalar function (or jet) at the target.

At this point we need to consider the action of the flow on jets of functions. We set z =
φt(y0)− φt(x0). Let f : (M,φt(x0)) → (C,0) be a germ of holomorphic function. Let us write
its power series expansion:

f(z) = f (1)z + f (2)(z)2 + · · · .(18)

We will assume that, for each k ∈ N∗, the multilinear symmetric map f (k) is independent of t.
Beware of the fact that the source of the infinite jet of f depends on t: among the natural
coordinates of this jet, only the source coordinates φt(x0) depend on t. Then f �→ f ◦ φt is a
linear map. We set f ◦ φt = ϕt(f (1), f (2), . . .). Again (f (1), f (2), . . .) �→ ϕt(f (1), f (2), . . .) is a
linear map.

For each fixed value of (f (1), f (2), . . .), independently of t, we can write a differential system,
of infinite order, satisfied by ϕt(f (1), f (2), . . .). Then ϕt will appear as a fundamental solution
of this linear system. Using “infinite matrix” form, we will obtain a linearisation LVEω of the
higher variational equations altogether. Finally we will obtain, for each k, the linearisation LVEk

of VEk by truncation, i.e., replacing (f (1), f (2), . . .) by the k-jet (f (1), f (2), . . . , f (k)).
Then (f (1), f (2), . . .) �→ ϕt(f (1), f (2), . . .) yields

F �→ FΦt

in matrix form, where F is the infinite vector containing all components of the f (k),
supplemented at every order by the required products of lower order terms. We see that ϕt → Φt

is a faithful representation of Diff(Cm,0) in a group of invertible infinite-dimensional matrices.
We have d

dt (f ◦ φt) = df(X) ◦ φt. In matrix form, the infinite matrix Φt satisfies a linear
differential system

Φ̇t = AtΦt,(19)

where the infinite matrix At collects all coefficients appearing in (12) and (17).
The LVEk are obtained by truncation of triangular matrices:

˙jkΦ = jkAjkΦ.

The map jkϕ → jkΦ is a faithful representation of Diffk(Cm,0) in a group of invertible upper
triangular matrices. It follows that jkA takes its value in a corresponding Lie algebra, in turn a
faithful representation of Jk(Cm,0).
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PROPOSITION 8. – The VEk and the LVEk are equivalent. More precisely, we can establish
a bijection between solutions t �→ φt of the VEk such that φ0 = id and fundamental solutions of
the LVEk equal to the identity for t = 0.

Proof. – It follows immediately from the preceding considerations. �
We now have the following problem: preceding computations rely on a coordinate choice,

but in order to apply differential Galois theory we need a global geometric formulation
in terms of connections. We will now give such a geometric intrinsic formulation. The
fundamental idea relies on the use of duality. The starting point is to replace the family
of diffeomorphisms φt : (Cm, x0) → (Cm, φt(x0)) by the family of inverse diffeomorphisms
ψt = φ−1

t : (Cm, φt(x0)) → (Cm, x0). The key point is that now the targets are independent
of t. We have φ0 = id, ψ0 = id.

We denote by f a germ of holomorphic function at x0 on M , vanishing at x0. The map
f �→ f ◦ψt is linear. We write it in matrix form

F �→ FΨt.

We clearly have Ψ0 = Φ0 = I and ΦtΨt = I . By derivation, we obtain

Ψ̇t = −Φ−1
t Φ̇tΦ−1

t

and, using (19):

Ψ̇t = −ΨtAt

and by transposition

˙tΨt = (−tAt)tΨt.(20)

Therefore tΨt is the “fundamental solution” of the “dual” differential system of (19). By
truncation we have a true duality: jk(tΨt) is the fundamental solution of the dual system of

˙jkΦt = jkAtj
kΦt. We denote this dual system by LVE∗

k .
Now we will see these dual systems are associated to natural connections on fibre bundles

admitting the groups Diffk(Cm,0) as structure groups. A connection on a fibre bundle is
essentially a parallel transport on the fibres and such a transport will happen to appear in our
situation in a natural way.

Let M be a connected complex manifold of dimension m. Let X be a holomorphic vector field
on M . We choose a non-stationary solution ι : Γ→ M , Γ being a connected Riemann surface and
ι an embedding. Let Δ ∈ Γ×M be the graph of ι.

Using Δ, we can interpret the collection of germs of analytic manifold {(M,ξ) | ξ =
ι(τ), τ ∈ Γ} along ι(Γ) as a non-linear locally trivial fibre bundle on Γ, the fibres being
isomorphic to (Cm,0) and the structure group being Diff(Cm,0). Then we can regard the
flow of (10) along ι(Γ) as a parallel transport along this fibre bundle. Now, if we replace
the collection of germs of the analytic manifold {(M,ξ) | ξ = ι(τ), τ ∈ Γ} by the “dual”
collection of germs of holomorphic functions {Oξ | ξ = ι(τ), τ ∈ Γ}, we obtain a locally
trivial infinite-dimensional holomorphic linear fibre bundle Jω

Γ M = ι∗JωM on Γ, the fibres
being isomorphic to the complex vector spaces (C{x1, . . . , xm},0) and the structure group
being Diff(Cm,0). The flow acting “dually” on the functions gives a linear parallel transport
on this bundle corresponding to a “connection” ∇ω . Replacing the spaces Oξ of germs of
holomorphic functions by the quotient spaces of k-jets Jk(M,ξ), we obtain locally trivial finite-
dimensional holomorphic linear fibre bundles on Γ: ι∗JkM = Jk

ΓM . By quotients of our parallel
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transport we have holomorphic parallel transports on the bundles Jk
ΓM . These parallel transports

define holomorphic connections ∇k which are quotients of ∇ω . We will see that (Jk
ΓM,∇k)

corresponds to LVE∗
k if we introduce local coordinates.

It is possible to justify the preceding considerations using Grothendieck’s definition of
infinitesimal calculus [32] (infinitesimal neighbourhoods of the diagonal). Here we shall do the
work explicitly and in an elementary way.

We will build each connection locally and subsequently check that our constructions glue
together yielding global connections. Hence we can assume Γ is a simply connected open subset
of C. For each non-vanishing holomorphic vector field δ, we will then define the covariant
derivative ∇δ associated to ∇. It is sufficient to do that for the vector field δ = d

dt , t being a
local coordinate.

We introduce the vector field X̃ = d
dt + X on Γ × M . The graph Δ is invariant by X̃ . By

definition the horizontal sections of ∇ω are the first integrals of X̃ . More precisely,

DEFINITION 2. – Let t0, t1 ∈ Γ and let f0, f1 be two germs of holomorphic functions on
M , respectively at the points ξ0 = ι(t0) and ξ1 = ι(t1). We will say that we obtain f1 from
f0 by parallel transport (from t0 to t1), if there exists a first integral f : (Γ × M,Δ) → C of
X̃ holomorphic on an open neighbourhood of Δ in Γ × M such that f(t0, ξ) = f0(ξ) and
f(t1, ξ) = f1(ξ). In this definition we allow restriction to Γ, this open set remaining simply
connected and t0, t1 remaining fixed.

The function f is a first integral of X̃ if and only if

L
X̃

f(t, ξ) = Ld/dtf(t, ξ) + LXf(t, ξ) = 0.(21)

This is equivalent to the following condition:

ḟ(t, ξ) :=
∂

∂t
f(t, ξ) = − ∂

∂ξ
f(t, ξ)X(ξ).(22)

LEMMA 5. – Let f : (Γ × M,Δ) → C be a holomorphic function on a neighbourhood of Δ
in Γ×M . Let t0 ∈ Γ be a fixed point. The following conditions are equivalent:

(i) ft (where ft(ξ)) = f(t, ξ)) comes by parallel transport from ft0 for every t ∈ Γ.
(ii) There exists a unique family of germs of holomorphic diffeomorphisms φt : (M,ι(t0))

→ (M,ι(t)) such that ft ◦ φt = ft0 , for t ∈ Γ.
Moreover, if these conditions are satisfied, then:

(a) φt0(ξ) = φ(t0, ξ) = ξ (i.e., φt0 = id);
(b) φ̇t(ξ) = ∂

∂tφ(t, ξ) = X(φ(t, ξ)), that is φ is the flow of the field X , with initial conditions
(t0, ξ0).

Proof. – The proof is clear: conditions (i) and (ii) are obviously equivalent to the condition
that f(t, x) is constant along the flow curves. Later on we will need a similar lemma for k-jets.
Hence, we give another proof that will be later useful in the jet context.

We assume that (ii) is satisfied: ft ◦ φt = ft0 . Then, by t-derivation we have:

ḟ
(
t, φ(t, ξ)

)
+ Dxf

(
t, φ(t, ξ)

)
φ̇(t, ξ) = ḟ

(
t, φ(t, ξ)

)
+ Dxf

(
t, φ(ξ)

)
X

(
φ(ξ)

)
= 0.(23)

We conclude using equivalence of (i) and (22). �
Let now jkft(ξ) = jkf(t, ξ) be a holomorphic family of k-jets along Δ in Γ × M

(a holomorphic function on the k-infinitesimal neighbourhood Δ(k) of Δ in Γ × M ). For a
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fixed t consider jkft ∈ Jk(M,ι(t)). We will say that it is a first integral of X̃ if and only if

(jkf )̇(t, ξ) =
∂

∂t
jkf(t, ξ) = − ∂

∂ξ
jkf(t, ξ)X(ξ),(24)

in the evident jet sense. If we interpret jkf as a holomorphic section of Jk
ΓM , (24) is a

holomorphic differential system

Ẏ = jkAtY.(25)

The matrix function t �→ At takes its value in Lk(Cm,0). Therefore (25) corresponds to a
connection with structure group Diffk(Cm,0). Moreover, if we are in a symplectic situation
(M symplectic, m = 2n, X Hamiltonian), then At ∈ Lk

sp(C2n,0) and the structure group is

Diffk
Sp(C2n,0).

We can now give an analogue of Lemma 5 for k-jets.

LEMMA 6. – Let jkft(ξ) = jkf(t, ξ) be a holomorphic family of k-jets along Δ in Γ × M .
Let t0 ∈ Γ be a fixed point. The following conditions are equivalent:

(i) jkf(t, ξ) is a first integral of X̃ (in the k-jet sense).
(ii) There exists a unique family of germs of k-jets of holomorphic diffeomorphisms

jkφt : (M,ι(t0)) → (M,ι(t)) such that jkft ◦ φt = jkft0 , for t ∈ Γ.
Moreover, if these conditions are satisfied, then:

(a) jkφt0 = jk id.
(b) (jkφ)̇(t, ξ) = ∂

∂tj
kφ(t, ξ) = jk(X(φ(t, ξ))).

Proof. – We prove the implication (ii) ⇒ (i) by t-derivations in the functional case above. Let
us now prove the implication (i) ⇒ (ii).

Assume we have (24):

(jkf )̇(t, ξ) =
∂

∂t
jkf(t, ξ) = − ∂

∂ξ
f(t, ξ)X(ξ).

We interpret this equation as a differential system (25)

Ẏ = jkAtY,

where jkAt ∈ Lk(Cm,0) (resp. jkAt ∈ Lk
sp(Cm,0) in the symplectic case). Let jkΦt be the

unique holomorphic fundamental solution of this system such that jkΦ0 = id. Then we have the
following result.

LEMMA 7. – We have jkΦt ∈ Diffk(Cm,0) (resp. jkΦt ∈ Diffk
Sp(C2n,0) in the symplectic

case).

This follows from the following Lemma [24] (6.25 Lemme, p. 238).

LEMMA 8. – Let G be a linear complex algebraic group and G its Lie algebra. Let Ẏ = AtY
be a holomorphic linear system in a neighbourhood of t = 0. We assume that At ∈ G. Then the
unique holomorphic fundamental solution of this system takes its value in G (more precisely in
the identity component G0 of G).

Now it is easy to end the proof of Lemma 6. �
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4. The differential Galois groups of the variational equations. The main theorem

Let

ẋ = XH(x)(26)

be the analytic differential equation defined by a Hamiltonian vector field XH over a complex
connected symplectic manifold M of complex dimension 2n. To a non-stationary solution we
associate an immersion ι : Γ → M , Γ being a connected Riemann surface. We choose a non-
trivial derivation ∂ over the field kΓ of meromorphic functions on Γ.

Let m ∈ Γ. We denote by Om (resp. Mm) the algebra of germs of holomorphic functions over
Γ at m (resp. the field of germs of meromorphic functions over Γ at m). Here we will use the
linear variational equations LVEk of order k, which we defined in the preceding section. They are
holomorphic connections ∇k over the “restrictions” (more precisely pullbacks by ι) (Jk)∗ΓM of
the dual bundles (Jk)∗M of the fibre bundles Jk

M of k-jets of scalar holomorphic functions on Γ.
The structure groups of these connections are the groups of symplectic k-jets of diffeomorphisms
Diffk

Sp(C2n,0). We will also use the LVE∗
k which are holomorphic connections ∇∗

k on the
bundles Jk

ΓM . The structure groups of these connections are also the groups of symplectic k-jets
of diffeomorphisms Diffk

Sp(C2n,0). For k = 1 we get (J1)∗ΓM = TΓM and J1
ΓM = T ∗

ΓM and
the structure group is Sp(C2n,0).

We recall that, for r � k, (Jr)∗ΓM (resp. Jr
ΓM ) is a sub-bundle (resp. a quotient bundle) of

(Jk)∗ΓM and that ∇r (resp. ∇∗
r) is a subconnection (resp. a quotient) of ∇k (resp. ∇∗

k).
We recall also (cf. Appendix A) that each holomorphic bundle Jk

ΓM or (Jk)∗ΓM is
meromorphically trivialisable over Γ (as a bundle with structure group Diffk

Sp(C2n,0)) and we
will assume in this section that we have fixed such a trivialisation for each k. Then we can write
LVEk or LVE ∗

k as a differential system of order one:

Ẏ = AkY,(27)

where Ak is a meromorphic function taking its values in the Lie algebra Lk
sp(C2n,0).

This differential system can have singularities, depending on the choice of trivialisation;
however they are clearly removable singularities. In the following we will work at a regular
point for the most part, but the results extend immediately to a removable singularity.

Let m ∈ Γ. Applying Cauchy’s theorem, we obtain a fundamental system of solutions Fk

whose entries belong to Mm (and the same happens for F ∗
k ) for the trivialisations of the LVEk

(and LVE ∗
k). They are holomorphic, that is ∈ Om if m is regular, and meromorphic if m is

an apparent singularity. We denote by Lk the sub-differential field of Mm generated by the
entries of Fk over kΓ. It is also the sub-differential field of Mm generated by the entries of F ∗

k

over kΓ and it is independent of the choice of the trivialisation. Then Lk is a Picard–Vessiot
extension of kΓ associated to LVEk and also to LVE ∗

k . We have inclusions of differential fields
kΓ ⊂ L1 ⊂ · · · ⊂ Lk ⊂ Lk+1 ⊂ · · · . All the corresponding extensions of differential fields are
normal.

By definition “the” differential Galois group Gal∇k of LVEk (or LVE ∗
k) is Gal∇k =

Aut∂
kΓ

Lk . It depends up to a non-natural isomorphism on the choice of a Picard–Vessiot
extension, and thus, in this case, on the choice of m.

Using the differential Galois correspondence, we have short exact sequences

{e}→ Aut∂
L Lk+1 → Gal∇k+1 → Gal∇k →{e}.(28)
k
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We denote by Solk (resp. Sol∗k) the linear complex space generated by the entries of Fk

(resp. F ∗
k ). From each of these spaces we easily obtain the solutions of the (non-linear) classical

k-variational equation VEk .
The differential Galois group Gal∇k = Aut∂

kΓ
Lk acts naturally on the linear spaces Solk and

Sol∗k and we obtain natural faithful representations of Gal∇k in GL(Solk) and GL(Sol∗k). We
will use these representations to build a natural homomorphism of algebraic groups

Gal∇K →Diffk
Sp(M,m).

We denote Diffk
Sp(M,m) the pullback of Diffk

Sp(M,ι(m)) by the map ι. We will see that this
homomorphism is injective. By definition its image will be “the” differential Galois group of the
higher variational equation VEk .

Our construction will be local. We will use coordinates, although the result is independent of
any choice thereof as one easily checks. Near ι(m) we can choose Darboux coordinates on the
symplectic manifold M centred at ι(m). Then we can use these coordinates to locally trivialise
our scalar jet bundles (Jk)∗ΓM and Jk

ΓM : we write them as products of the basis by Jk(C2n,0)
and (Jk)∗(C2n,0), using the standard coordinates on the jets—we identify (M,ι(m)) with
(C2n,0) with its standard symplectic structure of linear space. Then we can interpret an element
P of the fibre at ι(m) of Jk

M as an element of Jk(C2n,0) and this last element as a polynomial
in y with values in C. On Γ we can use the temporal parametrisation t setting t = 0 at m = x0.

We will make an essential use of the following result [62, Theorem 14, Appendix C, page 92].

PROPOSITION 9. – Let G be a complex linear algebraic group. Let ∇ be a G-meromorphic
connection on a trivial G-bundle over a connected Riemann surface Γ. Then its differential
Galois group “is” a Zariski closed subgroup of G.

As before, we denote by φt the flow map (φ0 = id) and we set ψt = φ−1
t ; ψk

t is the k-jet of
ψt. Its source is φ(x0) and its target is x0 = m. Let f ∈ Jk(C2n,0). We consider it as an initial
condition for LVE∗

k . The corresponding solution is (locally) f(t) = f ◦ψk
t (f(0) = f ). We have

f(t) ∈ Sol∗k and σ ∈Gal∇k transforms f(t) into another solution g(t) ∈ Sol∗k . We set g(0) = g.
Then g(t) = g ◦ ψk

t . We obtain a faithful representation of Gal∇k = Aut∂
kΓ

Lk in the linear
space Jk(C2n,0) (the differential Galois group acts on the initial conditions):

ρk :Gal∇k → GL
(
Jk(C2n,0)

)
, σ �→ (f �→ g).

This action is clearly compatible with the ordinary product of scalar jets; therefore, if σ ∈
Gal∇k , ρk(σ) is an automorphism of the C-algebra Jk(C2n,0). Using Proposition 3, we can
interpret ρk(σ) as an element of Jk

0,0(C
2n) = Diffk(C2n,0). We obtain a faithful representation

(with the same notation):

ρk :Gal∇k → Diffk(C2n,0).

It remains to prove that ρk(σ) ∈ Diffk(C2n,0) is a symplectic jet. This is the delicate point.
We recall that we choose our trivialisation of LVE∗

k without changing the structure group
Diffk

Sp(C2n,0): the matrix A of the corresponding differential system takes its values in the

Lie algebra Lk
sp(C2n,0). Now we can apply Proposition 9: the image of ρk in Diffk(C2n,0)

is contained in the algebraic subgroup Diffk
Sp(C2n,0) (the structure group of our system). We

obtain a faithful representation and henceforth indulge in the corresponding abuse of notation:

ρk :Gal∇k →Diffk
Sp(C2n,0).
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It is easy to check that this representation is independent of the choice of trivialisation and
local coordinates (it depends only on the point m) and we obtain a faithful natural representation,
without changing notation:

ρk :Gal∇k → Diffk
Sp(M,m).(29)

By definition the image of the homomorphism ρk in Diffk
Sp(M,m) is “the” differential Galois

group of the higher variational equation VEk . We will denote it Gk , or Gm,k if necessary. If γ is
a continuous path from m1 to m2 on Γ, then the flow from m1 to m2 along γ, or more precisely
its k-jet, induces an isomorphism between Gm1,k and Gm2,k .

PROPOSITION 10. – The natural homomorphism of algebraic groups Gal∇k →
Diffk

Sp(M,m) is a morphism of algebraic groups and an injection. Therefore Gal∇k → Gk is
an isomorphism of algebraic groups. In other words, the differential Galois groups of the LVEk

and of the VEk are isomorphic.

We have commutative diagrams (G∇k = Gal∇k)

As we saw above (see (28)), the natural maps G∇k+1 → G∇k are surjective morphisms of
algebraic groups. Therefore the natural maps Gk+1 → Gk are also surjective homomorphisms
of algebraic groups. This is an essential result in our approach.

PROPOSITION 11. – The natural maps Gk+1 → Gk are surjective homomorphisms of alge-
braic groups.

We denote by Gk the Lie algebra of Gk . It is identified with a Lie subalgebra of Lk
sp(M,m).

By definition the formal differential group of the Hamiltonian system (1) along ι(Γ) is the
pro-algebraic group Ĝ = lim

← kGk ⊂ Diff∞(M,m).

The Lie algebra Ĝ of Ĝ is Ĝ = lim
← kGk . It is identified with a Lie subalgebra of the Lie algebra

of formal Hamiltonian vector fields L̂k
sp(M,m). Then we obtain

PROPOSITION 12. –
(i) The natural maps Gk+1 →Gk are surjective homomorphisms of Lie algebras.

(ii) The natural maps Ĝ → Gk are surjective homomorphisms of Lie algebras.
(iii) The natural maps Ĝ → Gk are surjective homomorphisms of algebraic groups.

Remark. – Ĝ (resp. Gk , k � 1) is Zariski connected if and only if G1, that is, the differential
Galois group of the VE 1, is Zariski connected: the successive extensions Gk+1 → Gk (k � 1)
are extensions by unipotent algebraic groups. This follows from the recursive integration of the
VEk (k � 2) by the variation of constants method, or if one prefers from the structure of the
groups Diffk .

The main result of this paper is the following.

THEOREM 5 (Main theorem). – If the Hamiltonian system (1) is completely integrable with
meromorphic first integrals along ι(Γ), then

(i) the identity component Ĝ0 of the formal differential Galois group along ι(Γ) is
commutative,
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(ii) the identity components (Gk)0 of the differential Galois groups of the variational
equations along ι(Γ) are commutative (k ∈N∗).

Now, as in the case of the first variational equation, we can add some equilibrium points, or
some points at infinity, to Γ. If we denote this completed Riemann surface by Γ̄, substitute in the
a priori smaller field kΓ̄ for the differential field kΓ and replace Aut∂

kΓ
Lk by the a priori bigger

differential Galois group Aut∂
kΓ̄

Lk , and if we add only equilibrium points or singular points of
the field, we have a similar statement, mutatis mutandis. If we add some points at infinity, we need
to be careful: if the extended connection is not regular singular at the corresponding points—a
property that can be checked on the first variational equation—it is necessary to assume, as in the
first variation case, that the first integrals used in the definition of integrability are meromorphic
at infinity.

We can also obtain a similar result by considering the local Galois group at a singular point,
a ∈ Γ̄, i.e. we can assume the field of coefficients to be the differential field Ma. Then the
non-commutativity of the identity component of the local Galois gives us an obstruction to
the meromorphic integrability of the Hamiltonian system in a neighbourhood of the point ι(a)
in M . Of course, the most interesting case appears when a is an irregular singular point.
This is potentially relevant for the applications, when our complex Hamiltonian system is the
complexification of a real system: if a belongs to the real part of M , then a local obstruction
gives an obstruction to the real integrability (by real meromorphic first integrals).

In order to prove the main theorem, we need a preliminary result. Let m ∈ Γ̄ be a non-
singular point (m ∈ Γ). We recall that the differential Galois group Ĝ of the Hamiltonian system
along ι(Γ̄), with base point m, is a subgroup of Diff∞

Sp(M,ι(m)). If fm is a germ at ι(m)
of meromorphic function on M , for σ ∈ Ĝ, we set fm ◦ σ = fσ

m; it is in general a formal
meromorphic germ.

PROPOSITION 13. – We allow for equilibrium points and points at infinity. If f is a
meromorphic first integral, and assuming f meromorphic at whichever points at infinity there
might be, then

(i) its germ fm at m ∈ Γ is invariant (in the evident sense) by the formal differential Galois
group Ĝ with m as a base point,

(ii) the germ fm is orthogonal to the Lie algebra Ĝ.

Here orthogonality means, by definition, that LX̂fm = dfm(X̂) = 0 for every formal vector
field X̂ belonging to Ĝ.

Proof. – Claim (ii) follows easily from (i), similarly to the proof given in [62] for the first-order
variational equations.

It remains to prove statement (i), which seems rather natural and is actually easy to establish if
Γ = Γ̄, as we will see, i.e. if there are neither equilibrium points nor points at infinity. This case
is sufficient for the applications in this paper—and, for the moment, for all the applications of
our main theorem by various authors. We need some preliminary lemmae.

LEMMA 9. – We allow for stationary points and points at infinity. Let m be a point of Γ. Let
fm be a germ of meromorphic function on (M,m) (i.e. on M at ι(m)). Let Ĥ ⊂ Ĝ be a Zariski-
dense subgroup of the differential Galois group Ĝ ⊂ Diff∞

Sp(M,m). If f is invariant by Ĥ , then

it is invariant by Ĝ.

Proof. – Let fm = gm/hm, where gm, hm are germs at m of holomorphic functions on
(M,m). If σ ∈ Ĥ , then fσ

m = fm. Therefore gσ
mhm − gmhσ

m = 0 and, setting Jkσ = σk ,

Jk(gσ
mhm − gmhσ

m) = Jkgσk

m Jkhm − JkgmJkhσk

m = 0
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in the k-jet sense, for every k ∈N∗. Then

Jkgσk

m Jkhm − JkgmJkhσk

m = (Jkgm ◦ σk)Jkhm − Jkgm(Jkhm ◦ σk) = 0.

Let τ ∈ Ĝ, its k-jet τk belongs to Gk . The group Hk is Zariski-dense in Gk , therefore
(Jkgm ◦ τk)Jkhm − Jkgm(Jkhm ◦ τk) = 0. Then, we have

Jk(gτ
mhm − gmhτ

m) = Jkgτk

m Jkhm − JkgmJkhτk

m = 0,

for every k ∈N∗, and passing to the projective limit on k, we obtain

gτ
mhm − gmhτ

m = 0,

and finally fτ
m = fm. �

LEMMA 10. – We assume that the VE are regular singular (it is always the case if we do not
allow for equilibrium points or points at infinity). Let m be a non-singular point of Γ̄, (m ∈ Γ). If
f is a meromorphic first integral, then its germ fm at ι(m) is invariant by the differential Galois
group Ĝ.

Proof. – Let ρ :π1(Γ̄,m) → Diff∞
Sp(M,m) be the holonomy representation at m. We set

Ĥ = Im ρ, the holonomy group at m. We have Ĥ ⊂ Ĝ. The first variational equation VE = VE 1

is regular singular. Therefore all the VEk are also regular singular. Then Hk is Zariski-dense in
Gk (for every k ∈N∗) and Ĥ is Zariski-dense in Ĝ. Then the result follows from the preceding
lemma.

This lemma is the same as Proposition 13 (i), when Γ = Γ̄ or when the singularities at the
equilibrium points and at the points at infinity are regular-singular. If some of these singularities
are irregular, we need to work a tad more.

The proof of the following lemma is a generalization of an argument used for a similar
statement in the case of the VE 1 in [62].

LEMMA 11. – We allow for equilibrium points and points at infinity. If f is a holomorphic
first integral or a meromorphic first integral which is the quotient of two holomorphic functions
defined on a neighbourhood of Γ̄, then its germ fm at m ∈ Γ is invariant by the differential
Galois group Ĝ.

Proof. – We begin with some notations and remarks. We choose a base point m ∈ Γ. We will
work in an arbitrarily small simply connected neighbourhood V of m in Γ, and in an arbitrarily
small neighbourhood U of ι(m) in M , and we will assume that ι|V is an embedding of V in U .
We “pull back” the germ (M,ι(m)) as a germ (M,m). We will choose the time parametrisation
t on Γ, with t = 0 corresponding to m, and we will set ι(m) = ι(0) for simplicity.

We return to the constructions of the beginning of this section. Let k ∈ N∗ and M̄ the
completion of M by a hypersurface at infinity. We recall that there exists a meromorphic
trivialisation of the pullback on Γ̄ of the meromorphic bundle of scalar k-jets on M̄ , compatible
with the structure group Diffk

Sp(2n;C). We write this trivialisation ¯̄Γ × Jk
m(M,m) → ¯̄Γ. The

differential system LVE∗
k corresponds to ∇∗

k after the trivialisation. We denote by ap some
coordinates on Jk

m((M,m),C), identifying this jet algebra with Jk
0 (C2n,C) ( p is a multi-

index). We denote by φt : (M,m)→ (M,ι(t)) the flow on U , with φ0 = id(M,m), and we identify
it with the corresponding map φt : (M,0) → (M,t). We set ψt = φ−1

t as before. The entries of
the matrix versions of Jkφt = φk

t and Jkψk
t = ψk

t corresponding to our coordinate choice are
holomorphic on V and they belong to the Picard–Vessiot extension Lk of kΓ̄.
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Let f (k) ∈ Jk
m((M,m),C) be a scalar k-jet. We set f (k),t = f (k) ◦ ψk

t . We have f (k),t ∈
Jk

m((M,ι(t)) and we identify it with an element of Jk
m((M,t)). Then t → f (k),t is a solution

of the LV E∗
k on V and the corresponding holomorphic functions ap(t) belong to the Picard–

Vessiot extension Lk of kΓ̄. Let G(LVEk) be the differential Galois group of LVE∗
k associated

to this Picard–Vessiot extension, σk ∈ G(LVEk) acts on each of the ap(t), and we obtain
a holomorphic family g(k),t of k-jets on V , whose coordinates are the σk(ap)(t). If we set
gk = g(k),0, then g(k),t = g(k) ◦ ψk

t (t �→ g(k),t is also a solution of the LV E∗
k on V ). We

consider (ψk
t )σk ◦ ψk

t
−1 = (ψk

t )σk ◦ φk
t . It is independent of t and it is equal to the natural

image ρk(σk) of σk in Diffk
Sp(M,0) (cf. (29)). If we identify ρk(σk) and σk , we obtain finally

g(k) = f (k) ◦ σk = (Jkf)σk

.
We will return now to the proof of Lemma 11.
First case. We will start by assuming that the first integral f is holomorphic.
To a holomorphic function f on U , we can associate the holomorphic family of germs of

holomorphic functions t �→ f t = f0 ◦ ψt, on V . The germ f t is a germ at ι(t) ∈ M , and we can
identify it with a germ “at t” (i.e. on (M,t)). We have f0 = fm = f0. The function f is a first
integral of X = XH if and only if f t = fι(t), fι(t) being the germ at ι(t) ∈ U of the holomorphic
function f .

Let k ∈ N∗. We set Jkf = f (k) and we do the preceding constructions. If σk ∈ G(LVE ∗
k) =

Gk , we have g(k),t = f (k) ◦ (ψk
t )σk

= (Jkf t)σk

and g(k) = Jk
0 f ◦ σk . If moreover f is the

restriction to U of a first integral which is holomorphic on a neighbourhood of ι(Γ̄) in M̄ ,
then g(k),t = (Jkf t)σk

= (Jkfι(t))σk

on V , but x → Jk
ι(x) (x ∈ Γ̄) is holomorphic on Γ and it

extends to a meromorphic function on Γ̄. Therefore, the coordinates ap of Jkf t = Jkfι(t) extend

to meromorphic functions on Γ̄. That is, they are elements of the field kΓ̄. Then (Jkfι(t))σk

=
Jkfι(t) = Jkf t, g(k),t = Jkf t, g(k) = Jk

0 f and finally

Jk
0 f = Jk

0 f ◦ σk.(30)

Therefore, for every k ∈ N∗, the k-jet at m of a first integral f , which is holomorphic on a
neighbourhood of ι(Γ̄) in M , is invariant by the group Gk . Taking projective limit in k, f (i.e.
its infinite jet) is therefore invariant by Ĝ.

Second case. We will assume now that the first integral f is meromorphic and it is the quotient
of two functions g and h which are defined and holomorphic on a neighbourhood of Γ̄. We set, as
before, f t = f0 ◦ ψt, gt = g0 ◦ ψt, ht = h0 ◦ ψt. If f is a first integral, then f t = fι(t), therefore
gt

ht = gι(t)

hι(t)
and gthι(t) − gι(t)h

t = 0.

Let k ∈N∗. Then we have: JkgtJkhι(t)−Jkgι(t)J
kht = 0, in the k-jet sense. The coordinates

of the jets Jkgι(t) and Jkhι(t), are holomorphic functions on V and they extend to meromorphic
functions on Γ̄, that is, they belong to the field kΓ̄. The coordinates of the jets Jkgt and Jkf t

belong to the Picard–Vessiot extension Lk of kΓ̄.
Let σk ∈ G(LV E∗

k) = Gk . We apply it to JkgtJkhι(t) − Jkgι(t)J
kht = 0 and we get

(Jkgt)σk

Jkhι(t) − Jkgι(t)(Jkht)σk

= 0. Then (copying what we did in the first case and taking
t = 0) we obtain

Jk
(
(g ◦ σ)h− g(h ◦ σ)

)
= (Jkg ◦ σk)Jkh− Jkg(Jkh ◦ σk) = 0.(31)

Let σ ∈ Ĝ. We set σk = Jkσ ∈ Gk and taking the projective limit on k of the relations (31), we
have (g ◦ σ)h− g(h ◦ σ) = 0 and f = g

h = g◦σ
h◦σ = f ◦ σ = fσ . Then f is invariant by Ĝ.

We now consider a local case.
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LEMMA 12. – Let f be a meromorphic first integral on a neighbourhood U ′ ⊂ M̄ of an
equilibrium point or of a point at infinity ι(a) ∈ M̄ (a ∈ Γ̄ \ Γ). Let V ′ be a simply connected
neighbourhood of a in Γ̂, such that ι(V ′)⊂ U ′. Let m �= a be a point of V ′. If f is a meromorphic
first integral, then its germ fm at m is invariant by the local differential Galois group Ĝ(a).

Proof. – In this statement, we interpret “the” local differential Galois group at a, which
depends on the choice of a “base point”—for instance a direction issued from a on the tangent
space Ta(M)—as a subgroup of Diff∞

Sp(M,m). If m′ �= a is another point of V ′, then the
analytic continuation along an arbitrary continuous path from ι(m) to ι(m′), on ι(V ′), induces an
isomorphism between Diff∞

Sp(M,m) and Diff∞
Sp(M,m′), depending of course on the homotopy

class of the path in V \ {a}). Then, for the proof of the lemma, we can change m arbitrarily and
replace U ′ by a smaller neighbourhood. Therefore we can assume that f is the quotient of two
functions g and h which are holomorphic on U and that V ′ \ {a} is a connected component of
ι−1(U ′ \ {ι(a)}, and we can subsequently apply Lemma 11 (replacing Γ̄ by V ′ and M̄ by U ′).

We can now prove the statement (i) of the Proposition 13 in the (most general) meromorphic
case. We assume f is a meromorphic first integral on a neighbourhood of ι(Γ̄) in M̂ . Let m be
a point of Γ. We consider the differential Galois group Ĝ ⊂ Diff∞

Sp(M,m). We can identify the

Galois group Ĝ′ of the restriction to Γ of our “system” with a subgroup of Ĝ and “interpret” the
local Galois groups Ĝ(a) (a ∈ Γ̂ \ Γ) as subgroups of Ĝ, using a finite set of continuous paths
(on Γ) from m to some points which are “sufficiently near” to the points a—of course, this is
generally not canonical, but such fact is of no importance here. Then the germ fm is invariant by
Ĝ′ (cf. Lemma 11) and by the local groups Ĝ(a), up to our interpretation (cf. Lemma 12). For
every k ∈N∗, the differential Galois group Gk is the Zariski closure of the subgroup generated
by the elements of G′

k and G(a)k (cf. [62]), therefore Ĝ is the Zariski closure of the subgroup
generated by Ĝ′ and the Ĝ(a). Using Lemma 9, we obtain the invariance of fm by Ĝ. This ends
the proof of Proposition 13. �

Now we can finish the proof of our main theorem. With the hypotheses of this theorem, the
Lie algebra Ĝ is symplectic and orthogonal to the germs f1, . . . , fn. Therefore it is abelian (see
Theorem 3) and by Proposition 12 (ii) the Lie algebra Gk must be also abelian. �

5. Obstructions to integrability and non-linear Galois theory

Whenever one wants to prove the non-integrability of some Hamiltonian system, having to
choose a “nice” solution of the system (a solution we can parametrise using some “special
functions”) sounds a priori quite strange. It seems on the contrary reasonable to think of solutions
of non-integrable systems as “very transcendental”. In fact in all the applications done of our
theory up to now, this is not the case: the “generic solution” of the system is presumably highly
transcendental (there are few precise results in this direction), but there are invariant integrable
subsystems giving interesting “nice” solutions. Perhaps this is due to the fact that applications
are done to simple enough systems.

However, from a theoretical point of view, it remains interesting to try to avoid the choice of
a particular solution Γ. In order to do this, a natural tool is the non-linear differential Galois
theory. This theory was introduced by J. Drach [25,26], and developed later by J. Drach and
E. Vessiot. J. Drach studied some applications of his theory to various questions of geometry
and mechanics such as the spinning top. P. Painlevé gave a “proof” of the fact that Painlevé
transcendents are “new transcendents” using Drach’s theory. Unfortunately there are important
gaps in the foundations of Drach’s theory, and in its applications. Therefore, when we began to
work on the present paper some years ago, no satisfactory non-linear Galois theory was available.
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The situation is completely different nowadays, as we have two such theories due respectively to
H. Umemura [79] and B. Malgrange [56,57]. We will explain the analogue of our main theorem
using Malgrange’s approach (the similar result must be true with Umemura’s approach, but this is
conjectural). This analogue is due to the second author (unpublished). We will be very sketchy;
the interested reader will find some details about this result, and the necessary definitions and
theorems in [56,57,20] (cf. in particular [20, 5.4]).

The main tool due to B. Malgrange is the notion of Lie D-groupoid on a complex analytic
manifold M . Roughly speaking it is a sub-groupoid of the groupoid M of germs of analytic
diffeomorphisms of M defined by analytic PDE. We recall that a groupoid is a (small)
category whose all the morphisms are isomorphisms. Here we start with the groupoid M
whose objects are the points (a, b, . . .) of M and the morphisms are the invertible germs g of
analytic maps g : (M,a) → (M,b) (f(a) = b). A D-groupoid has a D-Lie algebra defined by
PDE. B. Malgrange defines the Galois D-groupoid or D-hull of an analytic dynamical system
(differential equation, foliation, etc.) as the smallest D-groupoid such that “its Lie algebra
contains the infinitesimal transformations of the dynamics” (more precisely these transformations
must be solutions of the D-Lie algebra). The (very) difficult point is whether such a smallest
groupoid exists. This definition is, a posteriori, very natural: “that which algebra sees from the
dynamics”, as B. Malgrange puts it. It is related to the idea that there is no “Lie third theorem”
for Lie D-groupoids.

For an autonomous system we get the smallest D-groupoid such that its “Lie algebra contains
the corresponding vector field”.

The computation of the Galois D-groupoid seems extremely difficult (even for apparently
“simple” cases as Painlevé equations). There are only partial theoretical results (cf. in
particular [20]) and nothing is effective as there are no algorithms. Therefore the following result
is, for the moment, quite agreeable, albeit theoretical.

As for the computation of differential Galois groups in the linear case, a natural idea is to try
to reduce the problem using “majorants” of the Galois D-groupoid, i.e. D-groupoids containing
the Galois D-groupoid.

THEOREM 6. – Let (M,ω) be a connected symplectic analytic manifold of dimension 2n.
Let H :M → C be an analytic function, the Hamiltonian. We assume that the corresponding
Hamiltonian system is completely meromorphically integrable. Then the D-Lie algebra of the
Galois D-groupoid of the system (i.e., the D-hull of the vector field XH ) is abelian.

An evident majorant of our Galois D-groupoid is the D-groupoid defined by the analytic
system of PDE:

g∗fi = fi, i = 1, . . . , n, g∗ω = ω.(32)

Its linearisation is

LXfi = 0, i = 1, . . . , n, LXω = 0.(33)

This D-Lie algebra is clearly abelian. This follows from Theorem 3. (We need only the simple
meromorphic version, not the formal version.) Then Theorem 6 follows immediately.

One works with D-groupoids systematically on the “complementary of a hypersurface” (in
some “algebraic” delicate sense). On the contrary our theory (more precisely its applications)
is (are) centred on the choice of non-generic solutions Γ, which in general will live into the
exceptional hypersurfaces. Therefore a comparison between both approaches seems difficult.
We will only suggest an analogy: in terms of topology of foliations, Galois D-groupoids will
correspond to holonomy groupoids, our Γ (the “interesting” one) will correspond to holonomy
carriers (exceptional leaves).
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6. On the applications

From now on we identify the linearised variational equation with the variational equation
VEk in a further abuse of notation. We will give some indications and references about a few
interesting applications of our main result (Theorem 5).

A typical situation [59] is the following:
– the Riemann surface Γ is a punctured elliptic curve, the corresponding elliptic curve being

denoted as Γ̄ = Γ∪ {∞};
– the extension to Γ̄ of the first variational equation is regular singular.
In the classical applications parametrised families of Hamiltonian systems appear. With

the above hypotheses we get parametrised families of regular singular equations on Γ̄ (the
corresponding VE = VE 1), and in many cases we obtain obstructions to integrability for all
the values of the parameter except for a finite or discrete subset using theorem [62] (that is the
first VE ). The exceptional values of the parameter correspond typically to direct sums of Lamé–
Hermite equations where each of the equations fall in the Lamé case with one solution in the
field of elliptic functions of the coefficients (see [59], page 147). In such a situation the identity
component of the differential Galois group G1 of VE 1 is commutative (isomorphic to an additive
group Cp) and there is no obstruction.

We denote by ℘ the Weierstrass function corresponding to a double pole at the origin of C
(℘(0) =∞∈ Γ̄). Then a Lamé equation is a linear ODE

d2ξ

dt2
=

(
A℘(t) + B

)
ξ.(34)

The unique singular point is the origin modulo periods of the Weierstrass ℘ function, that is
∞∈ Γ̄. The equation is regular singular. The classical notation is A = n(n + 1).

The differential Galois group of (34) is commutative if and only if n ∈ Z. It is the Lamé–
Hermite case. In that case there exists a meromorphic solution (an elliptic one, more precisely)
and the differential Galois group is triangular. Its elements are represented by unipotent triangular
2× 2 matrices of the form (

1 0
α 1

)
.(35)

It is trivial or isomorphic to the additive group C. Therefore it is commutative and connected.
We assume now that the VE is a direct sum of Lamé–Hermite equations. For the sake of

simplicity we can consider the case of two such equations:⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
α 1 0 0
0 0 1 0
0 0 β 1

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .(36)

The 2 × 2 unipotent matrices in the elements of G1 give us the Galois group of each of the
Lamé equations (34). It is either trivial or the additive group C. As a consequence G1 is a
commutative connected group.

The variational equation VE 1 is regular singular. Therefore all the higher-order variational
equations VEk (more precisely their linear counterparts LVEk) are also regular singular (for
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k � 1) and their Galois groups Gk are given by the Zariski closure of their monodromy groups.
Furthermore, Gk is connected because G1 is connected. We have the following lemma.

LEMMA 13. – Assume that the first-order variational equation VE 1 decomposes in a direct
sum of Lamé–Hermite type equations. Then Gk is commutative if and only if the solutions of
VEk are meromorphic functions on the covering C of Γ̄.

The proof is simple. The monodromy group of each of the VEk is a linear representation of the
fundamental group of Γ = Γ̄\{∞} (the point ∞ is represented in the Weierstrass parametrisation
by the origin modulo periods) and this fundamental group is free, non-commutative and
generated by the translations along the periods. The commutator of these two generators
is represented by a simple loop around the singular point ∞. Hence, a monodromy group
is commutative if and only if the monodromy associated to this simple loop is trivial. By
Zariski closure, a differential Galois group Gk is commutative if and only if the corresponding
monodromy subgroup is commutative. Therefore we can check the commutativity of Gk locally
at ∞. Recursively, by local power series expansions of the solutions of VEk−1 and quadratures,
it is easy to check if VEk has solutions which ramify around 0. One only needs to check for
the existence of a residue different from zero, which will give rise, by integration, to a local
logarithm.

In [49], the authors completely solved the problem of meromorphic integrability of two-
degrees of freedom Hamiltonian systems with homogeneous potentials of degree three. After
reduction, the problem boils down to the study of the 2-parameter family of potentials

V (x1, x2) =
1
3
ax3

1 +
1
2
x2

1x2 +
1
3
cx3

2, a, b ∈C.(37)

The authors made a considerable use of Theorem 1—see their Introduction—exploiting the
commutativity of (G1)0. More precisely, they used a corollary of it stated in [64]. Moreover,
several of the subfamilies for which no obstruction to integrability is obtained from the first-
order analysis are well-known integrable systems, except the 1-parametric subfamily with
potential c = 1 and arbitrary a in (37). In order to study the meromorphic integrability of this
subfamily, the authors applied the main theorem of the present paper, Theorem 5, and checked
the commutativity of the identity component of the Galois groups of the higher-order variational
equations: if one of them is non commutative, the system is not integrable with meromorphic
first integrals. It is interesting to point out that the problem of the integrability of a member of
this subfamily (i.e., for a = 0) was considered as an open problem in the recent monograph [2]
(page 180).

They used the above mentioned Lamé–Hermite approach. Back to the Hamiltonian systems
with cubic potential (37), the first-order variational equations decompose in two Lamé equations
with Galois group G1 given by 4 × 4 matrices such as (36). In [49] a residue different from
zero is obtained for the integrand of a solution of the second-order variational equation if a �= 0
(resp. of the third-order variational equation if a = 0). Then G2 = (G2)0 (resp. G3 = (G3)0) is
non-commutative and this family is non-integrable.

Along the same lines, it is possible to prove that the two-degree-of-freedom Hamiltonian
system defined by the cubic Hamiltonian

H =
1
2
(y2

1 + y2
2) +

1
2
x2

1 +
1
2
x2

2 +
1
3
x3

1 +
1
2
x1x

2
2(38)

is non-integrable. This system belongs to the Hénon–Heiles family of one-parameter Hamilto-
nians considered by Ito [35]. By means of the first-order variational equation it was proved that
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for all except four of the values of the parameter, the systems in this family are non-integrable,
see [35,65,59]. Three of these remaining cases are trivially integrable. The fourth case is (38)
and its non-integrability was conjectured from numerical experiences. But every single attempt
at a rigorous proof of this fact has been unsuccessful during the last years. Now we can prove
the non-integrability of this last case, using our main theorem and the Lamé–Hermite approach.
We get an obstruction (a non-trivial residue) for the third variational equation. See the details in
Appendix B.

In this way it is possible to close the problem of integrability for the Hénon–Heiles family of
Ito. This example was in fact the motivation for the Section 8.3.2 in [59] and it also was the initial
motivation for the present paper, following an idea of the third author.

7. Open problems

The main theorem in this paper is a necessary condition for integrability of Hamiltonian
systems by meromorphic first integrals: the identity components of all the Galois groups Gm

of the higher-order variational equations, m � 1, must be commutative. This gives an infinite
number of conditions to be satisfied. It is now very natural to ask whether or not these necessary
conditions for meromorphic integrability, if fulfilled simultaneously, are also sufficient. This
problem was already formulated in [59], p. 146, in the following manner. Assume that the identity
components of the Galois groups Gk of all the variational equations VEk of order k � 1 (or,
more precisely, their linear counterpart LVEk) are commutative, then:

Is the Hamiltonian system XH completely integrable with meromorphic first integrals in some
neighbourhood of the completed integral curve represented by the Riemann surface Γ̄?

We remark that, without any further additional assumption about XH (or about Γ), the answer
to this problem is negative.

An example of a non-integrable system with an integral curve such that all the groups Gk

are commutative, is the planar three-body problem along the parabolic solutions of Lagrange,
see [14,78]. When the angular momentum of the bodies is zero, the Galois groups of all the
variational equations VEk are commutative. The fundamental group of the Riemann surface Γ
defined by such a solution is commutative: Γ is the Riemann sphere with two points deleted.
The variational equations VEk are of Fuchs class and their monodromy groups, which are
representations of this fundamental group, are also commutative. Since the Galois groups Gk

are given by the Zariski adherences of the corresponding monodromy groups, they are also
commutative.

So, the problem is to understand if it is possible to impose some natural generic conditions in
order to get a positive answer to our question:

PROBLEM. – Let XH be a complex analytical Hamiltonian system defined over a complex
analytical symplectic manifold and let Γ be the immersed Riemann surface defined by a particular
integral curve of XH which is not reduced to an equilibrium point.

Under which conditions is XH completely integrable with meromorphic first integrals in some
neighbourhood of the completed integral curve represented by the Riemann surface Γ̄, provided
the identity components of the Galois groups Gk are commutative for all k?

Another problem concerns the dynamical implications of non-integrability. In two-degree-of-
freedom systems a typical effect of non-integrability is the existence of transversal homoclinic
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orbits. It is well known that this kind of orbits prevents from the existence of analytic first
integrals in a vicinity of the orbit. See [67] for a general exposition. For early applications to
the three-body problem see [41–43]. In [65] the non-integrability of some systems is illustrated
by the existence of hyperbolic periodic orbits whose invariant manifolds have transversal
intersection. In this example there is a strong numerical evidence that such orbits do not exist
in real phase space. For this reason the search for homoclinic orbits was done in the complex
phase space. In systems with a larger number of degrees of freedom the problem is even more
subtle.

It seems natural to ask for the following question:

PROBLEM. – Assume a complex analytical Hamiltonian is proved to be non-integrable by the
methods presented in this paper.

Is it true that some transversal homoclinic orbit to an invariant object exists?

Finally, there is another kind of related problems worth clarifying. In the seminal work [33] not
only numerical evidence of non-integrability was given, but also some quantitative information
on the lack of integrability. This has primordial relevance for physical applications. The method
used was the computation of an indicator, analogous to the maximal Lyapunov exponent, such
that it takes the value zero in ordered orbits and is positive on chaotic orbits. This allows to
define a fraction of integrability on selected levels of the energy. For instance, for the Hénon–
Heiles system the system can be considered integrable for any practical purpose for energies in
the range [0,0.05].

For small perturbations of an integrable system (e.g., near a totally elliptic fixed point in a
general system, where the integrable approximation is a Birkhoff normal form) it is well known
that the lack of integrability is exponentially small in the small parameter. See [70] for upper
bounds using averaging theory and [30,31] for upper bounds of the related splitting. Equivalently
to a quantitative measure of the lack of integrability, we can look for the existence of quasi-
integrals, which are approximately preserved in the real phase space.

On the other hand, most of the proofs of non-integrability make use of special orbits with
singularities for some t ∈ C. The measures of splitting use also, typically, the behaviour of
invariant manifolds in a neighbourhood of these singularities. Then, the next question, which
is certainly related to [82], seems relevant:

PROBLEM. – Assume some singularities are used to detect non-integrability by applying the
main theorem of this paper.

What kind of information is also needed to produce quantitative estimates of the lack of
integrability? (e.g., to give estimates of a suitable splitting, or of the measure of the domain
with positive maximal Lyapunov exponent, or of the metric entropy, in the real phase space).
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Appendix A. A trivialisation theorem

In order to apply differential Galois theory to the higher variational equations LVEk ,
we need to replace these connections by ordinary differential systems, that is to trivialise
(meromorphically) our jet bundles. We can avoid this problem if we use the Tannakian approach
of the differential Galois theory [23].

Let k,n ∈ N. Let E = C2n. We set Diffk
Sp(2n;C) = Diffk

Sp(E). For k = 1, we have
Diff1

Sp(2n;C) = Sp(2n;C). We recall that Diff1
Sp(2n;C) is the semi-direct product of

Sp(2n;C) and a unipotent linear algebraic group Uk(2n;C) = Uk(E). Let X be a connected
Riemann surface. Let G be a complex linear algebraic group. In [62], Appendix A, we defined
locally trivial meromorphic bundles over X admitting G as structure group.

PROPOSITION 14. – Let X be a complex connected, non-compact Riemann surface and let
(F , p,X) be a locally trivial holomorphic vector bundle over X having Diffk

Sp(2n;C) as
structure group. Then, F is holomorphically trivial.

The algebraic group Diffk
Sp(2n;C) is connected for the ordinary topology (Sp(2n;C) and

Uk(2n;C) are connected for this topology). Then the proposition follows from a theorem by
Grauert ([62], Appendix A, Theorem A.1).

PROPOSITION 15. – Let X be a complex connected compact Riemann surface. Let (F , p,X)
be a locally trivial holomorphic vector bundle over X with structure group Diffk

Sp(2n;C). Then
F is meromorphically trivial.

We will resort to comparison between analytic bundles and algebraic bundles (in “GAGA”
style). It is equivalent to work with principal bundles. For a complex algebraic manifold X (resp.
a complex linear algebraic group G) we denote Xh the corresponding analytic manifold (resp.
Gh the corresponding analytic group). Then every principal bundle with basis Xh and group
Gh is algebraic (cf. [74, Théorème 3, pp. 1–34]). In general this algebraic bundle is not locally
trivial (in the algebraic sense); it is only locally isotrivial (that is, trivial up to a finite unbranched
covering). However this bundle is trivial if the algebraic group G is special (cf. below). Then,
Proposition 15 will follow from the fact that the algebraic group Diffk

Sp(2n;C) is special (cf.
Corollary 4 below).

DEFINITION 3. – Let G be a complex algebraic group. We will say that it is special if every
principal bundle with group G is locally trivial.

Every special group is connected and linear (cf. [73, Théorème 1]). We have the following
result (cf. [73, Théorème 2, pages 1–24]).

THEOREM 7. – An algebraic subgroup G of Gl(n;C) is special if and only if the following
condition is satisfied:

(R) there exists a regular section of the fibration Gl(n;C)/G→ Gl(n;C).

THEOREM 8. –
(i) The group Sp(2n;C) is special.

(ii) Every connected solvable linear algebraic group is special.
(iii) Let G be an algebraic group and H be an invariant subgroup. If H and G/H are special

algebraic groups, then G is special.

(i) If G = Sp(2n;C), the homogeneous space is the space of antisymmetric non-degenerate
2-forms

∑
aijxi ∧ xj , and the condition (R) is satisfied: the generic form
i<j
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∑
i<j uijxi ∧ xj is equivalent to the canonical form

∑n
i=1 x2i−1x2i up to a linear co-

ordinate change with coefficients in the field C(uij) (cf. [73, page 34]).
(ii) It is a result of Rosenlicht (cf. [73]), [74].

(iii) Cf. [74, Lemme 6, pages 1–25].

COROLLARY 4. – The algebraic group Diffk
Sp(2n;C) is special.

This completes the proof of Proposition 15.

Appendix B. Proof of non-integrability of system (38)

This special case of the Hénon–Heiles problem has only two fixed points: one of them, totally
elliptic, located at the origin; the other fixed point, Php, located at x1 = −1, x2 = y1 = y2 = 0
on the level H = h∗ = 1/6, is of hyperbolic-parabolic type. We note that the plane x2 = y2 = 0
is invariant. On that plane and on the level H = h∗ the system has a separatrix, tending to Php

for t →±∞ on the real phase space. We shall make use of this special solution. The fact that the
point Php has a degeneracy is certainly related to the difficulties in proving non-integrability for
this system.

Working on the real phase space, a Poincaré section through x2 = 0 on the bounded component
of the level H = h, for h ∈ (0, h∗), displays only a tiny amount of chaoticity. However, for
energies h > h∗ the chaotic domain is clearly visible. Fig. 1 shows an illustration for h = 1/5.
The point marked as Q corresponds to an hyperbolic periodic orbit. It belongs to a family born
at h = h∗.

The special solution Γ is given by

x1(t) =
3/2

cosh2(t/2)
− 1, y1(t) =

−(3/2) sinh(t/2)
cosh3(t/2)

, x2 = y2 = 0,(39)

Fig. 1. Part of a Poincaré section of (38) through x2 = 0 in the energy level h = 1/5, displayed in the
(x1, y1) variables. Initial points are taken on y1 = 0 and 20,000 iterates are computed for each initial point,
keeping only the ones in the window shown.
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where the origin of time has been taken on y1 = 0, to have a symmetric expression. It has
singularities for cosh(t/2) = 0, i.e., for t = (2k + 1)πi, with k ∈ Z. Our approach starts by
computing the third-order monodromy, that is, the solution of the variational equations up to
order three, starting at the point (x1(0), y1(0)), along a path γ ⊂ Γ which encloses only the
singularity t = πi and has index 1 with respect to it. It is clear that the result is independent on
the path. For concreteness we introduce the following notation (see (12))

(i) x3 = y1, x4 = y2,
(ii) the components Dkxj will be denoted as xj,k . In a similar way, the components

D2
k1,k2

xj ,D
3
k1,k2,k3

xj will be denoted as xj,k1k2 , xj,k1k2k3 , respectively.
We recall that one should take xj,k = δjk, xj,k1k2 = 0, xj,k1k2,k3 = 0 as initial conditions for
t = 0. In principle, first, second and third variational equations give rise to 42,43 and 44

equations, respectively. But, from one side, these equations have the symmetries of the
differential operators D2 and D3. From the other, due to the special solution chosen and to
the simplicity of (38), it is immediate to prove the following lemma.

LEMMA 14. –
(i) The xj,k with j and k of different parity are identically zero.

(ii) For xj,k1k2 , if the cardinal of the set of indices k which have parity different from the one
of j, has the parity of j, then these elements are identically zero.

(iii) For xj,k1k2k3 , if the cardinal of the set of indices k which have parity equal to the one of
j is even, then these elements are identically zero.

Before starting the analytic computations, some information regarding the expected results is
worth inferring. To this end we numerically integrated the required variational equations along
paths γ as described before. The results show that, when returning to the initial point, the final
values of the elements xj,k coincide again with δjk , the ones of xj,k1k2 are again zero and the
ones of xj,k1k2k3 are also zero with the following exceptions:

x2,222, x2,224, x2,244, x2,444, x4,224, x4,244, x4,444.

Taking a different initial point one can also have x4,222 �= 0 after closing the loop. For our
purposes it is enough to show that some of the final elements xj,k1k2k3 is different from 0. We
select the x2,222, whose numerically computed value is ≈ 90.477868423386i.

Let a31 = −1 − 2x1, a42 = −1 − x1 the only non-zero and non-trivial elements in DX
along Γ. To obtain x2,222 we only need to integrate the following systems(

ẋ2,2

ẋ4,2

)
=

(
0 1

a42 0

)(
x2,2

x4,2

)
,(

ẋ1,22

ẋ3,22

)
=

(
0 1

a31 0

)(
x1,22

x3,22

)
+

(
0

−x2
2,2

)(40)

and (
ẋ2,222

ẋ4,222

)
=

(
0 1

a42 0

)(
x2,222

x4,222

)
+

(
0

−3x2,2x1,22

)
.(41)

It is clear that to integrate (40) and (41) we need to solve the first-order variational equations,
both tangential (in the (x1, x3) variables) and normal (in (x2, x4)), which are uncoupled. The
solutions can be written explicitly. To shorten the notation we introduce c := cosh(t/2) and
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s := sinh(t/2). Then

x1,1 = −15ts

16c3
+

15
8c2

− 5
8
− c2

4
, x1,3 = −4

3
y1,

x3,1 = −15t(3− 2c2)
32c4

− 45s

16c3
− sc

4
, x3,3 =

4
3
(x1 + x2

1),

x2,2 = 2x1, x2,4 =
tx1

2
+

3s

2c
,

x4,2 = 2y1, x4,4 =
x1

2
+

ty1

2
+

3
4c2

.

(42)

Furthermore

x1,22 = x1,1

(
2
8
− 16

9
x3

1

)
+ x1,3K(t),(43)

where

K(t) = t

(
− 45

16c6
+

45
8c4

− 15
4c2

)
+ s

(
− 45

8c5
+

15
2c3

− 3
c

+ c

)
.

We remark that one of the columns of the fundamental matrix of the normal variational equations
coincides (except by a factor of 2) with (39). This is true for any h because (x1, y1) are solutions
of the first equation in (40).

Having (42) and (43) we are ready to solve (41). As the homogeneous part coincides with the
first order normal variational equation, the solution, after closing the loop, is given by

(
x2,222

x4,222

)
=

(
x2,2 x2,4

x4,2 x4,4

)∫
γ

(
−x2,4R

x2,2R

)
, where R(t) =−3x2,2x1,22.(44)

It is readily checked that the residues inside the integral are 72/5 and 0, respectively. Hence, the
final value of x2,222 after the loop is 72

5 2πi, which coincides with the value given above in all the
digits shown. This computation also explains why the final value of x4,222 is zero.

We are now ready to prove the desired non-integrability of (38). We remark that in all the
computations of order less than three no residue appears.

PROPOSITION 16. – The system (38) in non-integrable in a vicinity of the solution given
by (39).

Proof. – One can take a solution on the invariant plane x2 = y2 = 0 as Γ and an energy level
h < h∗ close to h∗. Then the solution is given by elliptic functions with a parallelogram of
periods and a double pole. When h → h∗ the periods tend to πi and ∞. Take paths γ1 and γ2

along the generators. To compute the commutator it is enough to carry out the integration along
a path γ of index 1 around the pole.

Since all the solutions are obtained by quadratures, we have (Gk)0 = Gk for all k. Hence,
commutativity of (Gk)0 implies commutativity at the (k-th order) monodromy level.

The integrals along γ are continuous as functions of h. As for h = h∗ there are integrals
different from zero, the same happens for nearby values h < h∗. This implies (G3)0 non-
commutative. �
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