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COARSE TOPOLOGY, ENLARGEABILITY,
AND ESSENTIALNESS

ʙʏ B�ʀɴʜ�ʀ� HANKE, Dɪ���ʀ KOTSCHICK, J�ʜɴ ROE
�ɴ� Tʜ���� SCHICK

Aʙ��ʀ���. – Using methods from coarse topology we show that fundamental classes of closed
enlargeable manifolds map non-trivially both to the rational homology of their fundamental groups
and to the K-theory of the corresponding reduced C∗-algebras. Our proofs do not depend on the
Baum–Connes conjecture and provide independent confirmation for specific predictions derived from
this conjecture.

R�����. – En utilisant des méthodes de topologie à grande échelle, on prouve que les classes
fondamentales des variétés agrandissables ne s’annulent pas, ni dans l’homologie rationnelle de leurs
groupes fondamentaux, ni dans la K-théorie des C∗-algèbres réduites correspondantes. Nos résultats
ne dépendent pas de la conjecture de Baum–Connes, et confirment de façon indépendante certaines
conséquences de cette conjecture.

1. Introduction and statement of results

In this paper we use methods from coarse topology to prove certain homological prop-
erties of enlargeable manifolds. The defining property of this class of manifolds is that they
admit covering spaces that are uniformly large in all directions. The intuitive geometric
meaning of enlargeability is naturally captured by concepts of coarse topology, in particular
by the notion of macroscopic largeness. We proceed by showing that enlargeability implies
macroscopic largeness, which in turn implies homological statements in classical, rather
than coarse, algebraic topology.

Using completely different methods, related results were previously proved in [15, 16]. We
shall discuss the comparison between the two approaches later in this introduction, after set-
ting up some of the terminology to be used. Suffice it to say for now that our results here,
unlike those of [15, 16], are relevant to the Baum–Connes conjecture for the reduced group
C∗-algebra, in that we verify specific predictions derived from this conjecture.
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474 B. HANKE, D. KOTSCHICK, J. ROE AND T. SCHICK

Enlargeability. – Several versions of the notion of enlargeability or hypersphericity were in-
troduced by Gromov and Lawson in [13, 14]. Here is the basic definition:

D��ɪɴɪ�ɪ�ɴ 1.1. – A closed oriented manifold M of dimension n is called enlargeable if
for every � > 0 there is a covering space M� −→ M that admits an �-contracting map

f� : M� −→ (Sn, gcan)

to the n-sphere with its canonical metric, which is constant outside a compact set, and is of
nonzero degree.

Here all covering spaces M� are given the pullback metrics induced by an arbitrary metric
on M . The choice of metric on M matters only in that it has to be independent of �.

A variation on this definition is obtained by restricting the kind of covering space allowed
for M�. We shall call M universally enlargeable if it is enlargeable and for all � the covering M�

can be taken to be the universal covering �M −→ M . We shall call M compactly enlargeable
if it is enlargeable and all M� can be taken to be compact, equivalently to be finite-sheeted
coverings.

Essentialness. – Recall that Gromov [9] called a closed oriented manifold M essential if
its fundamental class maps non-trivially to the rational homology of Bπ1(M) under the
classifying map of its universal cover. It is natural to extend this definition to more general
situations. For any homology theory E, we say that an E-oriented manifold M is E-essential
if its orientation class maps non-trivially to E∗(Bπ1(M)) under the classifying map of the
universal covering.

In the context of coarse topology, one replaces the usual orientation class of M by the ori-
entation class of the universal covering �M in the coarse homology HX∗(�M), see Section 2
below. Passing to the coarse homology of the universal covering is a procedure not unlike
passing from M to the classifying space of its fundamental group, and the coarse fundamen-
tal class [�M ]X may well vanish. We shall say that a manifold M (or its universal covering)
is macroscopically large if it is essential for coarse homology, i. e. if [�M ]X �= 0 ∈ HX∗(�M).
In fact, Gromov suggested various versions of macroscopic largeness in [10, 11, 12], and this
definition, taken from [8], is just one particular way of formalizing the concept.

We can now state our first main result.

Tʜ��ʀ�� 1.2. – (1) Universally enlargeable manifolds are macroscopically large.

(2) Macroscopically large manifolds are essential in rational homology.

There are results by Dranishnikov [6] addressing the converse to the first part of this the-
orem. He has shown that other notions of macroscopic largeness sometimes imply versions
of enlargeability.

Combining the two implications in Theorem 1.2, we obtain:

C�ʀ�ʟʟ�ʀʏ 1.3. – Universally enlargeable manifolds are essential in rational homology.
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Fɪɢ�ʀ� 1. The connected balloon space Bn

That compactly enlargeable manifolds are essential was conjectured by Burghelea [26,
Problem 11.1] quite some time ago and was proved fairly recently by Hanke and Schick [15],
using index theory and the K-theory of C∗-algebras. One of the motivations for the present
paper was the wish to give a direct and elementary proof of such a result, which does not use
index theory and K-theory. After we achieved this goal by finding the proof of Theorem 1.2
given in Section 3 below, it turned out that the sophisticated methods of [15] can also be
adapted to the consideration of infinite covers [16].

While the ideas involved in our proof of Theorem 1.2 are indeed geometric and elemen-
tary, they do fit naturally into the framework of coarse homology, which we recall in Section 2
following the books [22, 24]. Our argument makes essential use of the coarse space

Bn = [0,∞)
�

{1,2,3,...}

(∪iS
n(i)) .

This balloon space, sketched in Figure 1, is a coarse analogue of the one-point union. It is
defined using a collection of n-spheres of increasing radii i = 1, 2, 3, . . . , with the sphere of
radius i attached to the point i ∈ [0,∞) at the south pole of Sn, and is equipped with the
path metric.

The enlargeability assumption will be used to construct a coarse map

�M −→ Bn

that sends the coarse fundamental class of �M to a nonzero class in the coarse homology of
Bn (see Proposition 3.1). After this has been established, the proof of Theorem 1.2 can be
completed quite easily.

Applications to the Baum–Connes map. – After giving the proof of Theorem 1.2, we proceed
to use coarse topology to study the relation between enlargeability and the Baum–Connes
assembly map in complex K-theory. This will lead us to some novel results on the Baum–
Connes map that are interesting both in their own right and because of what they say about
the relationship between various obstructions to the existence of positive scalar curvature
metrics.

To formulate our results we make the following definition.

D��ɪɴɪ�ɪ�ɴ 1.4. – A closed K-theory oriented manifold M is Baum–Connes essential if
the image of its K-theoretic fundamental class under the composite map

K∗(M)
c∗−→ K∗(Bπ1(M))

µ−→ K∗(C
∗
redπ1(M))

is non-zero. Here, c : M −→ Bπ1(M) classifies the universal covering of M , and µ is the
Baum–Connes assembly map.
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In contrast to [15, 16], we will work with the reduced group C∗-algebra throughout the
present paper. We use the letter K for the compactly supported complex K-homology de-
fined by the K-theory spectrum. This is different from the convention in [22], where K∗ de-
notes the analytically defined, hence locally finite K-homology.

Recall that a smooth manifold M is orientable with respect to K-theory if and only if
its tangent bundle admits a Spinc-structure. If M is compact, then any choice of Spinc-
structure determines a fundamental class [M ] in K-homology given by the corresponding
Dirac operator, cf. [18, Chapter 11]. The image

α(M) = µ ◦ c∗([M ]) ∈ K∗(C
∗
redπ1(M))

is given by the index of the Spinc Dirac operator on M twisted by the flat Hilbert module
bundle

�M ×π1(M) C∗redπ1(M) −→ M

on M , as can be seen for example by a description of the Baum–Connes assembly map via
Kasparov’s KK-theory; cf. [3].

If a Spinc-structure on M is induced by a spin structure, then the above construction can
also be performed in real K-theory, leading to αR(M) ∈ KO∗(C∗redπ1(M)). In this case
α(M) is the image of αR(M) under complexification. The Weitzenböck formula for the spin
Dirac operator implies via the Lichnerowicz argument that if M endowed with the funda-
mental class of a spin structure is Baum–Connes essential, then it does not admit a metric
of positive scalar curvature. The Gromov–Lawson–Rosenberg conjecture predicts that the
vanishing of αR(M) on a closed spin manifold M is not only necessary, but also sufficient for
the existence of a positive scalar curvature metric on M . Although this conjecture does not
hold in general [7, 25], it is expected that αR(M) captures all index-theoretic obstructions to
the existence of a positive scalar curvature metric on M . This expectation is based in part on
the relationship between the Gromov–Lawson–Rosenberg conjecture and the Baum–Connes
conjecture.

Recall [2] that the Baum–Connes conjecture claims that for any discrete group Γ, the as-
sembly map

KΓ
∗ (EΓ) −→ K∗(C

∗
redΓ)

is an isomorphism, where EΓ is the universal space for proper Γ-actions, and K∗ denotes
K-homology with compact supports. The assembly map

µ : K∗(BΓ) −→ K∗(C
∗
redΓ)

considered above factors as

K∗(BΓ)
∼=−→ KΓ

∗ (EΓ)
γ−→ KΓ

∗ (EΓ) −→ K∗(C
∗
redΓ) ,

where the first map is the canonical isomorphism between the equivariant K-theory of the
free Γ-space EΓ and the K-theory of the quotient BΓ and γ is induced by the canonical
map EΓ → EΓ. Stolz [27] has proved that if M is spin and the Baum–Connes conjecture
holds for the group π1(M), then the vanishing of αR(M) is sufficient for M to stably admit
a metric of positive scalar curvature. Here “stably” means that one allows the replacement
of M by its product with many copies of a Bott manifold B, which is any simply connected
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8-dimensional spin manifold with Â(B) = 1. This result can be regarded as an instance of
the universal nature of the index obstruction αR(M).

It can be shown that the map γ is rationally injective. Hence, if the Baum–Connes conjec-
ture is true for π1(M), then M is Baum–Connes essential if, and clearly only if, it is K-theory
essential (for K-theory with rational coefficients). In this direction, we shall prove the follow-
ing unconditional result. We do not assume the Baum–Connes conjecture, which has not yet
been verified in full generality and is actually expected to fail for some wild groups.

Tʜ��ʀ�� 1.5. – Every closed universally enlargeable Spinc-manifold is Baum–Connes es-
sential.

In Section 4 we shall discuss the coarse version of the Baum–Connes conjecture. It will
become clear that if this were known to be true, then Theorem 1.5 would follow from the first
part of Theorem 1.2. However, our proof of Theorem 1.5 will bypass this issue.

In the spin case, Theorem 1.5 essentially shows that the Gromov–Lawson obstruction [13,
14] to the existence of positive scalar curvature provided by enlargeability is subsumed by
the index-theoretic obstruction αR(M), and even by α(M). Hanke and Schick previously
proved this for the corresponding invariant in the K-theory of the maximal C∗-algebra of
π1(M); see [15, Theorem 1.2] and [16]. Our result here neither implies nor is it implied by
that of [15, 16]. On the one hand, the canonical map

K∗(C
∗
maxπ1(M)) −→ K∗(C

∗
redπ1(M))

is not always injective, so that our conclusion here is stronger than the one in [15, 16]. On the
other hand, we also use a stronger assumption, enlargeability, which implies the assumption
of area-enlargeability used in [15, 16]. (For area-enlargeability, the �-contracting property of
f� is required not for lengths, but only for two-dimensional areas.)

Having shown that the enlargeability obstruction to the existence of positive scalar cur-
vature metrics is indeed subsumed by the universal index obstruction αR(M), we want to go
further and also show this for the obstruction derived from Â-enlargeability in the sense of
Gromov and Lawson [13, 14]. We slightly generalize this concept by considering the follow-
ing amalgamation of enlargeability and K-theoretic essentialness:

D��ɪɴɪ�ɪ�ɴ 1.6. – A closed Spinc-manifold M is called K-theory enlargeable if there is
an n ∈ N such that for every � > 0 there is a covering space M� −→ M that admits an
�-contracting map

f� : M� −→ (Sn, gcan)

to the n-sphere with its canonical metric, which maps the complement of a compact set to
the base point (equal to the south pole, say) S ∈ Sn, and sends the K-theoretic orientation
class to a non-trivial element of K∗(Sn, S).

When n is the dimension of M , this definition reduces to Definition 1.1. We shall prove
the following generalization of Theorem 1.5:

Tʜ��ʀ�� 1.7. – Every K-theory enlargeable Spinc-manifold is Baum-Connes essential.
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Note that in addition to considering K-theory enlargeability, we now also allow arbitrary
covering spaces in the definition of enlargeability, whereas in Theorem 1.5 we only used the
universal covering.

If the Spinc structure under consideration is induced by a spin structure, then the image
of the K-theoretic fundamental class under f� is given by the Â-genus of a regular fiber, and
K-theory enlargeability reduces to Â-enlargeability in the sense of Gromov and Lawson. The
conclusion of Theorem 1.7 means that α(M) does not vanish. A fortiori the real index αR(M)
does not vanish either, so that the obstruction to the existence of a positive scalar curvature
metric on M provided by Â-enlargeability is completely subsumed by αR(M).

Just like Theorem 1.5, we prove Theorem 1.7 unconditionally, without assuming any
unproved version of the Baum–Connes conjecture. However, if the Baum–Connes con-
jecture does hold for π1(M), then the special case of this theorem for Spinc-structures
induced by spin structures can be derived from the result of Stolz mentioned above, because
Â-enlargeability is preserved by stabilisation with the Bott manifold.

Although Theorem 1.5 is a special case of Theorem 1.7, we shall first give a proof of this
special case using the same ideas as in the proof of Theorem 1.2. Then, in order to prove
Theorem 1.7 in full generality, we will face serious additional complications explained in Sec-
tion 5 below. The more straightforward proof we give for the special case of Theorem 1.5 does
have another advantage in addition to its simplicity, which is that it allows us to derive the
following:

C�ʀ�ʟʟ�ʀʏ 1.8. – If M is universally enlargeable and its universal covering �M is spin, then
�M does not admit a metric with uniformly positive scalar curvature which is quasi-isometric to
a pullback metric from M via the identity.

In the more general situation considered in Theorem 1.7, the corresponding statement is
not true. In fact, Block and Weinberger [4] give examples of spin manifolds M which are
Â-enlargeable (with n = 0), but whose universal coverings do admit positive scalar curva-
ture metrics that are quasi-isometric to pullback metrics from M . Corollary 1.8 shows in
particular that examples of the kind considered in [4] can never be universally enlargeable.

Acknowledgements. – D. Kotschick would like to thank S. Weinberger, who in conversations
in 2004 suggested detecting essentialness of enlargeable manifolds by mapping to (a coarse
analogue of) a one-point union of spheres. B. Hanke, D. Kotschick and T. Schick are mem-
bers of the DFG Priority Program in Global Differential Geometry.

2. Coarse homology

In this section we recall a few salient features of coarse homology, which we need for the
proof of Theorem 1.2. Our reference is [22], see also [24].

Let M be a topological space. Its locally finite homology H lf

∗ (M ; Q) is the homology of
the chain complex (Clf

∗ (M), ∂), where Clf

i
(M) is the abelian group of infinite rational linear

combinations �

σ

ασ · σ

4 e SÉRIE – TOME 41 – 2008 – No 3



COARSE TOPOLOGY, ENLARGEABILITY, AND ESSENTIALNESS 479

of singular i-simplices σ : ∆i → M with the property that each compact set in M is met by
only finitely many simplices.

This locally finite homology theory is a functor on the category of topological spaces and
proper continuous maps.

Now let M be a proper metric space. The coarse homology HX∗(M ; Q) is defined as fol-
lows. Let Ui be a coarsening sequence of covers of M in the sense of [22, p. 15]. We then
set

HX∗(M) := lim
→i

H lf

∗ (|Ui|) ,

where |Ui| is the geometric realization of the nerve of Ui. Coarse homology is functorial for
coarse maps, which in the case of length spaces are precisely the proper maps which are large
scale Lipschitz, see the definitions in [22, p. 9].

Lastly, let Mn be a closed oriented manifold. Fix a metric and a triangulation of M . The
sum of all the lifts (with induced orientations) of the n-simplices in M with respect to the
projection �M −→ M defines the locally finite fundamental class

[�M ]lf ∈ H lf

n
(�M) .

Note that there is a canonical map

H lf

∗ (�M) −→ HX∗(�M) .

Indeed, let d be the maximal diameter of simplices in M . Then the set of all open balls of
radius 2d around each vertex in �M defines an open cover U of �M which we can use as a par-
ticular cover in the coarsening sequence (Ui) in the definition of coarse homology. It follows
from the definition of the geometric realization |U| that the simplicial complex �M has a nat-
ural simplicial map to |U| and the above map is simply the composition

H lf

∗ (�M) −→ H lf

∗ (|U|) −→ HX∗(�M) .

The coarse fundamental class [�M ]X of �M is defined as the image of [�M ]lf under this map.
This construction actually applies not just to universal covers of closed manifolds, but to

all complete manifolds with bounded geometry. Using it, we now define macroscopic large-
ness.

D��ɪɴɪ�ɪ�ɴ 2.1 ([8]). – A complete oriented Riemannian manifold N with bounded
geometry is called macroscopically large if

[N ]X �= 0 ∈ HXn(N) ,

where HX∗ denotes the coarse homology.

As an example for the calculation of coarse homology, fix a natural number n and consider
the balloon space

Bn = [0,∞)
�

{1,2,3,...}

(∪iS
n(i)) .

Pʀ����ɪ�ɪ�ɴ 2.2. – The coarse homology of Bn with Q-coefficients in degree n is given
by

HXn(Bn) ∼=

� ∞�

i=1

Q
�

/

� ∞�

i=1

Q
�

.
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Proof. – For 1 ≤ l < ∞, let
Bn

≥l
⊂ Bn

be the subspace defined by removing the first l spheres in Bn. We obtain a directed system

Bn = Bn

≥1 → Bn

≥2 → Bn

≥3 → · · ·

where each map
Bn

≥l
→ Bn

≥(l+1)

collapses the lth sphere onto the point l ∈ [0,∞). Then (by use of an appropriate coarsening
sequence for Bn), HXn(Bn) can be calculated as

lim
−→l

H lf

n
(Bn

≥l
) ∼= lim

−→l

� ∞�

i=1

Q
�

/

�
l�

i=1

Q
�

=

� ∞�

i=1

Q
�

/

� ∞�

i=1

Q
�

.

3. Proof of Theorem 1.2

The first implication in Theorem 1.2 is a consequence of the following:

Pʀ����ɪ�ɪ�ɴ 3.1. – Let M be a closed oriented n-dimensional manifold which is univer-
sally enlargeable. Then there is a coarse map

φ : �M −→ Bn

such that for each i ∈ N the composition

�M φ−→ Bn −→ Sn(i)

has degree di �= 0. Furthermore,

φ∗([�M ]X) = (d1, d2, . . . ) ∈
� ∞�

i=1

Q
�

/

� ∞�

i=1

Q
�
∼= HXn(Bn) .

In particular, �M is macroscopically large.

Proof. – Pick a Riemannian metric g on M . We construct a cover of �M by a sequence of
compact balls

B1 ⊂ B2 ⊂ B3 ⊂ · · · ⊂ �M
as well as a sequence of 1-contracting maps

fi : �M → Sn(i) ⊂ Bn , i = 1, 2, 3, . . .

as follows. Set B0 := ∅ and assume that Bi has been constructed. Because M is enlargeable,
there is a 1-contracting map

fi+1 : (�M, �g) → Sn(i + 1)

which is constant (mapping to the basepoint in Sn) outside a compact subset Ki+1 ⊂ �M and
of non-zero degree di+1. By precomposing fi+1 with a deck transformation of �M if neces-
sary, we can assume that

dist(Bi, Ki+1) ≥ 1 .
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For i = 0, this condition is empty. Now for Bi+1 we choose a closed ball containing Ki+1∪Bi

and such that dist(�M \Bi+1, Bi) ≥ 1. Then we define

φ(x) =






fi+1(x), if x ∈ Ki+1 ,

i + dist(x,Bi), if 0 < dist(x,Bi) ≤ 1 ,

i + 1, if x ∈ Bi+1 \Ki+1 and dist(x,Bi) ≥ 1 .

The map φ is proper by definition, and it is large scale Lipschitz also by definition and be-
cause each fi is 1-contracting. Thus φ is indeed a coarse map.

The claim about the image of the fundamental class follows from the calculation of
HXn(Bn) in Proposition 2.2.

This proof makes clear why we use the space Bn, rather than the one-point union of the
spheres– using the latter would not give us a proper map.

The following is the contraposition of the second part of Theorem 1.2.

Pʀ����ɪ�ɪ�ɴ 3.2. – If M is not essential, then �M is not macroscopically large.

Proof. – Assume that M is not essential. Then there is a finite subcomplex S ⊂ Bπ1(M)
such that c(M) ⊂ S, the inclusion S ⊂ Bπ1(M) induces an isomorphism on fundamental
groups, and c∗([M ]) = 0 ∈ Hn(S; Q). Note that we use ordinary homology. Hence, if a
chain in Bπ1(M) is a boundary, it is also a boundary in some finite subcomplex of Bπ1(M).

We may assume without loss of generality that M is a finite subcomplex of S and
c : M −→ S is the inclusion. We choose a metric on S. The induced inclusion

�M �c−→ �S

is then a coarse equivalence.

We claim that the induced map

HX∗(�M)
�c∗−→ HX∗(�S)

sends [�M ]X to zero. This is true for the following reason. Let the simplicial chain CM ∈
Cn(M ; Q) represent the fundamental class of M , and let b ∈ Cn+1(S; Q) be a simplicial
chain with ∂b = CM . This exists by the choice of S. As above we find an open cover U of �S
by open balls with radius 2d (where d is the maximal diameter of the simplices in S) so that
�S is a subcomplex of |U|. In particular, the chain b induces a chain �b ∈ Cn+1(|U|) (by lifting
b to �S ⊂ |U|) and the boundary of �b is equal to C‹M , where C‹M is the lift of CM . Hence, we

can indeed conclude that the homology class of C‹M vanishes in HXn(�S).

The inclusion �c is a coarse equivalence and so [�M ]X ∈ HXn(�M) vanishes. Therefore �M
is not macroscopically large.
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4. Proof of Theorem 1.5

In this section we use the ideas from the proof of Theorem 1.2 to prove Theorem 1.5 and
Corollary 1.8, using K-homology instead of ordinary homology.

The coarse Baum-Connes conjecture, see [22, Conjecture 8.2.], predicts that for a metric
space M of bounded geometry, the coarse assembly map

µ∞ : KX∗(M) −→ K∗(C
∗(M)) ,

see [22, Chapter 8], is an isomorphism. Here, KX∗(M) denotes coarse homology based on
locally finite complex K-homology and C∗(M) is the C∗-algebra of locally compact finite
propagation operators on M , see [22, Definition 3.4.].

At this point it is useful to remark that locally finite K-homology can be defined in two
ways. On the one hand, the operator-theoretic description of K-homology, which is used
in [22] for defining the assembly map µ∞, leads directly to a locally finite theory. On the other
hand, the paper [19] associates to any homology theory E a Steenrod homology theory Est

∗
defined on compact metric pairs. One then defines the locally finite E-homology Elf

∗ (M)
of a locally compact metric space M as the Steenrod E-homology of the compact pair
(M ∪ {∞}, {∞}), where M ∪ {∞} is the one-point compactification of M . If M is a
countable and locally finite CW complex and E is ordinary homology, then this definition
coincides with our previous definition from Section 2, see [21, Theorem 1]. In the case of
K-homology, the two descriptions of the locally finite theory coincide by [20].

Pʀ����ɪ�ɪ�ɴ 4.1. – The balloon spaces Bn satisfy the coarse Baum-Connes conjecture.

This can be seen by referring to a deep result of Yu [29] saying that the coarse Baum–
Connes conjecture is true for metric spaces of bounded geometry which admit uniform em-
beddings into seperable complex Hilbert spaces. However, the spaces Bn are simple enough
to check the coarse Baum-Connes conjecture by a direct calculation. This will be performed
later in this paper for slightly different spaces Bn, see Proposition 5.2, and can be adapted
easily to the Bn.

We now start the proof of Theorem 1.5. Let M be a closed universally enlargeable Spinc-
manifold. We set π = π1(M).

The composition
K∗(M)

c∗−→ K∗(Bπ)
µ−→ K∗(C

∗
redπ) .

can alternatively be regarded as the composition

K∗(M)
PD
= K∗+1(D

∗
π
(�M)/C∗

π
(�M))

∂−→ K∗(C
∗
π
(�M)) ∼= K∗(C

∗
redπ) .

Here we work with the operator-theoretic description of K-theory and the assembly map
from [22, Chapter 5] using a Paschke duality map PD and a connecting homomorphism ∂.
Recall from that reference that D∗(�M) is the C∗-algebra generated by all pseudolocal finite
propagation operators on �M and the subscript π indicates that only π-invariant pseudolocal
(or locally compact) finite propagation operators are contained in the generating set.

It is therefore enough to show that the composition

K∗(M) −→ K∗(C
∗
π
(�M)) −→ K∗(C

∗(�M))
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sends the K-theoretic fundamental class of M to a non-zero class. This composition can be
factored through the transfer map

tr : K∗(M) = K∗+1(D
∗
π
(�M)/C∗

π
(�M)) −→ K∗+1(D

∗(�M)/C∗(�M)) = Klf

∗ (�M) .

This map simply forgets the π-action. We obtain a commutative diagram

(1)

K∗(M) −−−−→ K∗(C∗(�M))

tr

� =

�

Klf

∗ (�M) −−−−→ K∗(C∗(�M))
� =

�

KX∗(�M)
µ∞−−−−→ K∗(C∗(�M))

�φ∗ φ∗

�

KX∗(Bn)
µ∞−−−−→∼= K∗(C∗(Bn)) ,

where φ∗ is induced by the coarse map φ : �M −→ Bn defined in Section 3.

Because µ∞ is an isomorphism for Bn by Proposition 4.1, it is enough to show that the
image of the K-theoretic fundamental class [M ]K of M in KX∗(Bn) is non-zero. This can
be done exactly as in the proof of Theorem 1.2 (1), using K-homology instead of ordinary
homology. Namely, one establishes that KXn(Bn) ∼= (

� Z)/(
� Z), and that again [M ]K

is mapped to the sequence represented by the degrees of the f1/i, which is by assumption
non-zero in the quotient group.

This completes the proof of Theorem 1.5. To prove Corollary 1.8, notice that if the uni-
versal covering �M is spin, then we can start the argument with the K-theoretic orientation
class of the spin structure in the group Klf

∗ (�M) in (1), rather than starting at K∗(M) and
applying the transfer. Then the usual Lichnerowicz argument and the coarse invariance of
K∗(C∗(�M)) imply the conclusion.

5. Coarse C∗-algebras with coefficients

5.1. Outline of the proof of Theorem 1.7. – The proof of Theorem 1.7 is based on ideas simi-
lar to those in our proofs of Theorems 1.2 and 1.5. However, the discussion of manifolds that
are enlargeable with respect to arbitrary coverings requires a substantial refinement of these
methods because we cannot work with the universal covering only and have to use many dif-
ferent coverings at once. We do this by introducing the coarse space

M :=
�

i=1,2,3,...

M1/i

where M1/i is the covering of M with an 1/i-contracting map to Sn given by enlargeability,
and where the distinct components are placed at distance∞ from each other. Note that this
does not mean that these components are independent from each other - for the coarse type
of this space, global metric bounds (i. e. referring to all components at once) will be crucial.
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Fɪɢ�ʀ� 2. The balloon space Bn, with infinite whiskers attached to each sphere.

The balloon space Bn considered before now has to be replaced by the disjoint union

Bn :=
�

i=1,2,3,...

Sn(i) ,

where the notation Sn means that a whisker of infinite length is attached at the south pole of
Sn, see Figure 2.

In a similar fashion as in the proof of Theorem 1.2, the fact that M is Â-enlargeable leads
to a coarse map

M−→ Bn

which maps the coarse K-theoretic fundamental class of M to a nonzero class in the coarse
K-homology of Bn. The region outside the respective compact subset in each M1/i (outside
of which the map to Sn is constant) is mapped to the whisker in Sn(i) in order to get a proper
map.

Our strategy for proving Theorem 1.7 can now be outlined as follows. The information
carried by

α(M) ∈ K∗(C
∗
redπ1(M))

will be split into two parts; one goes to the K-theory of the coarse algebra of M and the
other is captured by introducing a collection of coefficient C∗-algebras for this coarse alge-
bra which is equivalent to C∗redπ1(M1/i) over M1/i. The relevant element in the K-group of
C∗(M) is then sent to the K-theory of the coarse algebra of Bn with coefficients in the same
collection of C∗-algebras. We will analyze this class by showing that the coarse assembly map
with coefficients is an isomorphism for the space Bn and finally using a homological version
of Atiyah’s L2-index theorem [1].

5.2. Technical preliminaries for the proof of Theorem 1.7. – Let A be a C∗-algebra and let
M be a coarse metric space.

D��ɪɴɪ�ɪ�ɴ 5.1. – An adequate M -module with coefficients in A is a Hilbert A-module
H together with a left C0(M)-action, i. e. a C∗-homomorphism

C0(M) −→ B(H) ,

where B(H) is the C∗-algebra of adjointable A-module homomorphisms H → H ;
see [3, Definition VI.13.2.1]. In addition, the module H is required to be sufficiently
large in the sense of [17, Defintion 4.5].
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For an adequate M -module H the coarse algebra C∗(M ;A) is defined as the algebra gen-
erated by the locally A-compact finite propagation operators in B(H). Note that by [17,
Proposition 5.5] this construction is functorial after composing with the K-theory functor.

We define the coarse K-homology of M with coefficients in A as

KX∗(M ;A) := lim
→i

KK∗(C0(|Ui|); A) ,

where (|Ui|)i is a coarsening sequence for M . Recall that KK∗(C0(M);A) is a locally finite
theory. If M is a manifold we can start with a (fine) covering whose nerve is homeomor-
phic to M and will therefore obtain a canonical map Klf

∗ (M ;A) −→ KX∗(M ;A), called a
coarsening map.

In analogy with [22, Chapter 5] we have an assembly map

µ : KK∗(C0(M);A) −→ K∗(C
∗(M ;A))

which factors through KX∗(M ;A) and defines the coarse assembly map

µ∞ : KX∗(M ;A) −→ K∗(C
∗(M ;A)) ,

compare p. 75 of [22].

As discussed in Section 4 above, the coarse Baum-Connes conjecture predicts that for a
metric space M of bounded geometry, the coarse assembly map

µ∞ : KX∗(M ; C) −→ K∗(C
∗(M))

is an isomorphism. Here C∗(M) = C∗(M ; C) is the usual coarse algebra of locally compact
finite propagation operators on M as considered before. We shall now prove a generalized
version of this conjecture with coefficients for the spaces

Bn :=
�

i=1,2,3,...

Sn(i)

introduced in Subsection 5.1. Recall that Sn denotes an n-sphere to which a whisker of infi-
nite length has been attached at the south pole.

Pʀ����ɪ�ɪ�ɴ 5.2. – Let A be a C∗-algebra. Then the coarse assembly map

KX∗(Bn;A)
µ∞−→ K∗(C

∗(Bn;A))

is an isomorphism.

This proposition plays the same role in the proof of Theorem 1.7 as did Proposition 4.1
in the proof of Theorem 1.5. The proof of Proposition 5.2 is by induction on n and uses
a Mayer-Vietoris argument. Let us first collect some facts concerning Mayer-Vietoris se-
quences for coarse K-theory and for K-theory of coarse algebras.

1. The K-theory of coarse C∗-algebras with coefficients has a Mayer–Vietoris sequence
for coarsely excisive decompositions, by [17, Corollary 9.5]. Here a decomposition
X = X1 ∪X2 is coarsely excisive if for each R > 0 there is an S > 0 such that the in-
tersection of the R-neighborhoods of X1 and X2 is contained in the S-neighborhood
of X1 ∩X2.
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2. The theory KX∗(·, A) has a Mayer–Vietoris sequence under the same assumptions as
above. Recall that coarse K-homology with coefficients in A is obtained by calculating
KK(C0(|Ui|), A) and then passing to a limit. We now use that X �−→ KK(C0(X), A)
is a homology theory, and therefore has a Mayer–Vietoris sequence (compare [22, Sec-
tion 5] for a proof if A = C), and observe that the coarse excisiveness implies that this
Mayer–Vietoris sequence is compatible with coarsening (the intersection of the nerves
of the coarsening sequences for X1 and X2 can be chosen to give a coarsening sequence
for X1∩X2). By passing to the direct limit, we obtain the required Mayer–Vietoris se-
quence in coarse K-homology. (Note that the direct limit functor is an exact functor).

3. The two Mayer–Vietoris sequences are natural with respect to the coarse assembly
map.

In addition, we recall that a coarse space X is called flasque if there is a coarse map t : X → X
which is close to the identity (in the sense of coarse geometry) and such that for each R > 0
there is an S > 0 such that d(tn(x), tn(y)) < S for each n ∈ N and each x, y with d(x, y) < R,
and such that for each compact set K ⊂ X we have tn(K)∩K = ∅ for all sufficiently large n;
cf. [17, Section 10].

L���� 5.3. – [17, Proposition 10.1] If a coarse space X is flasque, then the K-theory of
its coarse C∗-algebra with coefficients vanishes.

Proof of Proposition 5.2. – We start by describing the induction step based on the above
statements.

Let n > 0 and consider the decomposition

Bn = Dn

+ ∪ Dn

− ,

whereDn

+ andDn

− are the unions of the left and right hemispheres in the n-spheres contained
in Bn, both with infinite whiskers attached at the south pole (considered as a point on the
boundary of each of the two hemispheres). This decomposition is coarsely excisive. By the
Mayer–Vietoris principle, it suffices to prove that the coarse assembly map is an isomorphism
for Dn

± and for their intersection. For the intersection, this is an immediate consequence of
the induction hypothesis. Concerning the spaces Dn

±, we will prove that the coarse K-theory
as well as the K-theory of the associated coarse C∗-algebras (both with coefficients A) van-
ish. The last statement holds because the spaces Dn

± are flasque. The required map t is con-
structed in the following way. We use polar coordinates to identify each hemisphere with
the corresponding flat Euclidean disc of the same radius. This map has bounded distortion
independent of the radii and hence gives a coarse equivalence of the spaces Dn

± and a dis-
joint union (whose components have distance infinity to each other) of discs of increasing
radii with whiskers on their boundaries (“lollipops”). It is therefore enough to construct the
flasque map t on this disjoint union of lollipops. For each lollipop the map t moves the points
one unit along a straight line towards the boundary point where the “stick” is attached and
then uniformly down the stick.

Concerning the first statement, we observe that there is a coarsening sequence (Ui) for
Dn

±, so that the first i components of the nerve of Ui are properly homotopy equivalent to a
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ray [0,∞). Because the locally finite K-homology of such a ray vanishes, we get indeed

KX∗(Dn

±;A) = lim
−→i

Klf

∗ (|Ui|;A) = 0 .

After finishing the induction step, it remains to verify that the assembly map is an isomor-
phism for n = 0. In this case, we have a disjoint union decomposition

B0 =
�

i

�
{0} ∪ [2i,∞)

�

where the spaces {0} ∪ [2i,∞) carry the metric induced from [0,∞). Here, despite the fact
that for different i the subspaces {0}∪[2i,∞) ⊂ B0 are at distance infinity, it is crucial that the
definition of the coarse C∗-algebra requires uniform bounded propagation for its operators.
For each k ∈ N, we define the space

B0
k

=
�

i=1,...,k−1

[0,∞) ∪
�

i=k,k+1,...

�
{0} ∪ [2i,∞)

�

which can be identified with the nerve of the k-th member of an appropriate coarsening se-
quence for B0. For each k, we have a canonical coarse equivalence

B0
k
→ B0

mapping [0, 2i) to {0} for i ≤ k − 1. We need to show that the induced map

lim
−→k

Klf

∗ (B0
k
, A) → lim

−→k

K∗(C
∗(B0

k
, A)) ∼= K∗(C

∗(B0, A))

is an isomorphism. Equivalently, we will prove that

lim
−→k

K∗(D
∗(B0

k
, A)) = 0 .

Let k be fixed and let us work with the adequate B0
k
-module of L2-function with values in

the standard Hilbert A-module
HA = l2(N)⊗A .

For each l > k, we define a C∗-subalgebra

D∗(B0
k
, A)l ⊂ D∗(B0

k
, A) ,

the closure of the set of all pseudolocal finite propagation operators that for i ≥ l do not
interact between the two components of

{0} ∪ [2i,∞) ⊂ B0
k
.

Note that this condition is weaker than restricting to operators of propagation less than 2l -
this last condition does not define a subalgebra of D∗(B0

k
, A). Because K-theory commutes

with direct limits,
K∗(D

∗(B0
k
), A) = lim

−→l

K∗(D
∗(B0

k
)l, A) .

The last K-theory groups can be calculated explicitely. Note the canonical decomposition

D∗(B0
k
)l = D∗(Ω, A)×

�

i≥l

B(HA) ,

where
Ω =

�

i=1,...,k−1

[0,∞) ∪
�

i=k,...,l−1

({0} ∪ [2i,∞)) ∪
�

i=l,l+1,...

[2i,∞) .
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The algebra
�

i≥l
B(HA) is the multiplier algebra of

�
i≥l

K(HA) and therefore has vanish-
ing K-theory, cf. [28]. The K-theory of the algebra D∗(Ω, A) appears in the long exact se-
quence

· · ·→K∗(C
∗(Ω, A)) → K∗(D

∗(Ω, A)) → Klf

∗−1(Ω, A)
µ∞→ K∗−1(C

∗(Ω, A)) → · · ·

and can therefore be studied by examining the coarse assembly map µ∞. Now Ω is coarsely
equivalent to the flasque space

�
i∈N[0,∞) and hence

K∗(C
∗(Ω, A)) = 0 .

On the other hand,

Klf

0 (Ω, A) =
�

k≤i≤l−1

Z , Klf

1 (Ω, A) = 0 ,

by the fact that the locally finite K-homology of a disjoint union is the direct product of the
locally finite K-homologies of the individual components. Altogether, we have

K1(D
∗(B0

k
, A)) = lim

−→l

K1(D
∗(B0

k
, A)l) =

�

i≥k

Z

and K0(D∗(B0
k
), A) = 0. We conclude

lim
−→k

K1(D
∗(B0

k
, A)) = lim

−→k

�

i≥k

Z = 0

which finishes the proof of Proposition 5.2.

For the proof of Theorem 1.7 in the next section we need a generalization of the construc-
tion underlying Lemma 5.14 in [22]. Let M be a complete connected Riemannian manifold
of positive dimension with fundamental group π. We denote by �M the universal cover of
M . The adequate C0(�M)-module L2(�M) carries an induced (right) unitary π-operation.
As usual, let C∗

π
(�M) be the C∗-algebra generated by locally compact π-invariant operators

L2(�M) −→ L2(�M) of finite propagation. We furthermore consider the adequate C0(M)-
module L2(M, L), where

L = �M ×π C∗redπ

is the Mishchenko line bundle on M (we equip �M and C∗redπ with the canonical right respec-
tively left π-actions). Note that L2(M, L) is a Hilbert-C∗redπ-module in a canonical way. De-
noting by C∗(M, C∗redπ) the algebra generated by locally compact C∗redπ-linear finite prop-
agation operators L2(M,L) −→ L2(M,L) we wish to define a C∗-algebra map

ψ : C∗
π
(�M) −→ C∗(M,C∗redπ) .

The construction of ψ is almost tautological. Let

T : L2(�M) −→ L2(�M)

be a π-invariant locally compact operator of propagation R > 0 and let σ : M −→ L be an
L2-section of the Mishchenko line bundle. We can identify σ with a π-equivariant map

f : �M −→ C∗redπ .

Here π acts on the right on C∗redπ by ξ ·γ := γ−1 ·ξ. Let us assume for the moment that f has
image contained in C[π] ⊂ C∗redπ. This map can be considered as a π-labeled family of maps
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�M −→ C. To each of these maps, the operator T is applied. Because T is π-equivariant, the
resulting map

T (f) : �M −→ C[π]

is again π-equivariant and hence induces a section of the bundle
�M ×π C[π] −→ M .

The construction for general f is by completion. By definition, the section of L −→ M
obtained in this way is equal to ψ(T )(σ). By construction,

ψ(T ) : L2(M,L) −→ L2(M,L)

is locally compact and has propagation less or equal to R. (Notice that part of the propaga-
tion may go in the C∗redπ-direction.) We emphasize that the map Ψ is not in general an iso-
morphism of C∗-algebras, because the propagation into the C∗redπ direction is not required
to be bounded in C∗(M, C∗redπ).

R���ʀ� 5.4. – Note that this construction also works if, instead of π, a subgroup H
acts freely on �M , and we work with the Hilbert C∗redπ-module bundle �M ×H C∗redπ.

6. Proof of Theorem 1.7

By a suspension argument, we may restrict to the case of even n. For each i ∈ {1, 2, 3, . . .},
choose a connected cover

M1/i −→ M

together with a 1
i
-contracting map

f1/i : M1/i −→ Sn

which is constant (with value equal to the south pole S ∈ Sn) outside a compact subset of
M1/i and which is of nonzero K-theoretic degree zi ∈ Z. The maps f1/i induce a coarse map

φ : M =
�

i∈N
M1/i −→ Bn .

Thanks to the whisker present in Sn, we simply map a point on the region outside the com-
pact set, where f1/i is constant, to the point on the whisker whose distance to the origin is
the distance to the compact set. Further, we set

Γi = π1(M1/i)

with respect to an arbitrary basepoint and consider the adequate M1/i-module with coef-
ficients in C∗redΓi defined by L2(M1/i, Li), the space of L2-sections of the Mishchenko line
bundle

Li = �M ×Γi C∗redΓi −→ M1/i .

Recalling that �M is a disjoint union of copies of �M , we have a transfer map

∆: C∗(�M) −→ C∗( �M)

induced by the diagonal embedding

B(L2(�M)) −→
�

i

B(L2(�M)) ⊂ B(L2( �M)) .
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This map restricts to a map between algebras of locally compact operators of finite propa-
gation and hence induces the map ∆.

Let
Γ :=

�

i

Γi ⊂
�

i

π1(M) .

We define the Mishchenko bundle

L :=
�

i∈N

flM1/i ×Γi C∗redΓ →
�

i

M1/i = M .

Our argument uses C∗redΓ as a coefficient C∗-algebra where we work with the adequate
M-module L2(M,L). (Here we assume again that dim M > 0 to make sure that this
module is adequate.)

R���ʀ� 6.1. – The heuristic meaning of this construction is that we would have to
choose a coefficient C∗-algebra on M that varies from component to component and is
equal to C∗redΓi over M1/i; we artifically blow this up to C∗redΓ to avoid the necessity to
develop additional theory.

By performing the construction at the end of Section 5, in particular Remark 5.4, on each
component of M separately, we get a map of C∗-algebras

ψ : C∗Γ( �M) −→ C∗(M;C∗redΓ)

as follows. Fix an L2-section σ of the Mishchenko line bundle L, which is a bundle of free
Hilbert-C∗redΓ-modules of rank one over M. The section σ is the direct sum of sections (σi),
where σi is the restriction to flM1/i, a section of the restriction of L to the Mishchenko bundle
over M1/i. Moreover, Γ acts on flM1/i via the projection Γ → Γi with a free and discrete
action of Γi. Consequently, Remark 5.4 applies and we can define ψ(T )(σ) as the direct sum
ψ(T )(σ) := (ψ(Ti)(σi))i∈N. With this definition ψ(T ) has propagation R, and this gives the
required homomorphism of C∗-algebras

ψ : C∗Γ( �M) −→ C∗(M;C∗redΓ) .

If X is a topological space and A a C∗-algebra, we define Klf (X;A) := KK(C0(X), A).
The proof of Theorem 1.7 now proceeds via the following commutative diagram, where

we set π := π1(M):

K0(M)
∼=−−−−→

PD

K1(D∗π �M/C∗
π
�M)

∂−−−−→ K0(C∗π �M)
∼=−→ K0(C∗redπ)

�tr

�tr

�tr

Klf

0 (M)
∼=−−−−→

PD

K1(D∗Γ �M/C∗Γ �M)
∂−−−−→ K0(C∗Γ �M)

�[L]∩−
�ψ

Klf

0 (M, C∗redΓ) −−−−→ KX0(M, C∗redΓ) −−−−→
µ∞

K0(C∗(M, C∗redΓ))
�φ∗

�φ∗

�φ∗

Klf

0 (Bn, C∗redΓ)
cX−−−−→ KX0(Bn, C∗redΓ)

∼=−−−−→
µ∞

K0(C∗(Bn, C∗redΓ)) .
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The horizontal arrows denoted PD are Paschke duality isomorphism, compare e.g. [23, Sec-
tion 3] and [18]. The vertical maps tr are transfer maps, on the level of C∗ and D∗ they are
simply given by diagonal embedding. The map ∂ is a boundary map in a long exact K-theory
sequence, the compositions of tr and ∂ are Baum–Connes assembly maps µ (compare [23]
again). Finally, cX is the coarsening map from locally finite to coarse K-homology.

In order to detect the nonvanishing of α(M) claimed by Theorem 1.7, we chase the
K-theoretic fundamental class [M ]K ∈ K0(M) through this diagram. Because the coarse
assembly map µ∞ is an isomorphism for the space Bn by Proposition 5.2, we only need to
show that the image of [M ]K under the map

ω = cX ◦ φ∗ ◦ ([L] ∩ −) ◦ tr : K0(M) −→ KX0(Bn;C∗redΓ)

is non-zero. This will ultimately follow from a form of Atiyah’s L2-index theorem.
For a metric space X and a C∗-algebra A, we define the K-homology with compact sup-

ports and coefficients in A as

KKR(X;A) := lim
Q⊂X

KK(C0(Q);A) ,

where the limit goes over the set of compact subsets of X ordered by inclusion. Note in par-
ticular that KKR(X; C) = K0(X), if X is homotopy equivalent to a CW -complex. The
canonical inclusions C → C0(Q) induce an augmentation map

� : KKR(X;A) → KK(C;A) .

Now let E → Sn be a finite dimensional unitary bundle so that (with k := dimE) the
virtual bundle E −Ck represents a generator of K0(Sn, S) compatible with the orientation
used for defining the K-theoretic degrees zi at the beginning of this section. (Recall that n is
even by assumption.) We define a map

KK(C0(Bn);C∗redΓ) =
�

i

KK(C0(S
n(i));C∗redΓ) −→

�

i

K0(C
∗
redΓ) −→

�

i

R

where each component of the last map is the composition

KK(C0(S
n); C∗redH)

−∩[E−Ck]−−−−−−−→ KKR(Sn;C∗redΓ)
�−→ KK(C;C∗redΓ)

τ−→ R .

Here, the first map is given by the cap product with the K-cohomology class with compact
support represented by the virtual bundle [E−Ck]. The last map is induced by the canonical
trace τ : C∗redΓ → C.

L���� 6.2. – The composition

Klf

0 (Bn;C∗redΓ) −→
�

i

K0(C
∗
redΓ) −→

�

i

R −→ (
�

i

R)/(
�

i

R)

factors through the canonical map

Klf

0 (Bn;C∗redΓ) −→ KX0(Bn;C∗redΓ) .

This is an immediate consequence of the calculation appearing in the proof of Proposi-
tion 5.2.

The following proposition concludes the proof that α(M) �= 0.
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Pʀ����ɪ�ɪ�ɴ 6.3. – The composition

K0(M)
ω−→ KX0(Bn;C∗redΓ) −→

�
�

i

R
� ��

�

i

R
�

sends the K-theoretic fundamental class of M to the element represented by the sequence
(z1, z2, . . . ).

Recall that zi ∈ Z is defined as the K-theoretic degree of the map

f1/i : M1/i −→ Sn

and non-zero by assumption. Hence, the sequence given in Proposition 6.3 represents a non-
zero class in the quotient (

� R)/(
� R) and the proof of Theorem 1.7 is complete modulo

the proof of Proposition 6.3.

To prove this proposition, we first need to recall a form of Atiyah’s L2-index theorem. Let
Γ be an arbitrary (countable) discrete group. We consider the composition

K∗(BΓ)
µ−→ K∗(C

∗
redΓ)

τ−→ R ,

where the first map is the Baum–Connes assembly map and the second map is induced by the
canonical trace τ : C∗redΓ → C. Now the homological form of the L2-index theorem reads
as follows. The elegant proof in [5] applies without change.

Pʀ����ɪ�ɪ�ɴ 6.4. – The composition τ∗ ◦ µ is equal to the map

K∗(BΓ) −→ K∗(pt.) ∼= Z �→ R,

induced by mapping BΓ to a point (recall that K∗(BΓ) denotes K-homology with compact
support). Of course, given a (not necessarily compact) manifold X and a map c : X → BΓ,
τ∗ ◦ µ ◦ c∗ : K∗(X) → K∗(C) is then equal to the map induced by the projection X → pt.

Proof of Proposition 6.3. – It is enough to show that under the composition

K0(M) −→ KK(C0(Bn);C∗redΓ) −→
�

i

K0(C
∗
redΓ) −→

�

i

R

the fundamental class is sent to the sequence (z1, z2, z3, . . . ). This will follow from the fact
that the composition

K0(M) −→ KK(C0(M1/i);C
∗
redΓ)

(f1/i)∗−−−−→ KK(C0(S
n);C∗redΓ)

−∩[E−Ck]−−−−−−−→ KKR(Sn;C∗redΓ)
�−→ KK(C;C∗redΓ)

τ−→ R

sends the K-theoretic fundamental class to zi (the first map is a composition of the transfer
map and the slant product with the Mishchenko bundle).
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First we observe that the preceding composition is equal to the composition

K0(M)
tr−→ Klf

0 (M1/i) = KK(C0(M1/i); C)

−∩f
∗
1/i([E−Ck])

−−−−−−−−−−→ K0(M1/i)

−∩[L]−−−−→ KKR(M1/i;C
∗
redΓ)

�−→ KK(C;C∗redΓ)
τ−→ R .

Now the composition

K0(M1/i)
−∩[L]−−−−→ KKR(M1/i;C

∗
redΓ)

�−→ KKR(C;C∗redΓ) = K0(C
∗
redΓi)

is (by one possible definition of µ) equal to the composition

K0(M1/i)
c∗−→ K0(BΓ)

µ−→ K0(C
∗
redΓ) .

Here c is the composition
c : Mi −→ BΓi → BΓ

where the first map classifies the universal cover of Mi and the second is induced from the
canonical inclusion.

Therefore, using Proposition 6.4, we need to show that the composition

K0(M)
tr−−−−→ Klf

0 (M1/i)
−∩f

∗
1/i([E−Ck])

−−−−−−−−−−→ K0(M1/i)
�−−−−→ K0(pt.) = Z

�(f1/i)∗

�(f1/i)∗

�=

K0(Sn, S)
∩[E−Ck]−−−−−−→ K0(Sn)

�−−−−→ K0(pt.)

sends the K-theoretic fundamental class of M to zi. But this assertion is immediate.
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