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ON THE INFINITE FERN OF GALOIS
REPRESENTATIONS OF UNITARY TYPE

" G#$%#8&HENEVIER

To Julia and Valeria

Al'%(#)%. — Let E be a CM number field, p an odd prime totally split in E, and let X be
the p-adic analytic space parameterizing the isomorphism classes of 3-dimensional semisimple p-adic
representations of Gal(E/E) satisfying a selfduality condition “of type U(3)”. We study an analogue
of the infinite fern of Gouvéa-Mazur in this context and show that each irreducible component of
the Zariski-closure of the modular points in X has dimension at least 3[E : Q]. As important
steps, and in any rank, we prove that any first order deformation of a generic enough crystalline
representation of Gal(@p /Qp) is a linear combination of trianguline deformations, and that unitary
eigenvarieties are étale over weight space at the non-critical classical points. As another application,
we give a surjectivity criterion for the localization at p of the adjoint’ Selmer group* of a p-adic Galois
representation attached to a cuspidal cohomological automorphic representation of GL,, (Ag) of type
U(n) (for any n).

R*'+,* . — Soient E un corps de nombres CM, p un nombre premier impair totalement décom-
posé dans E, et soit X ’espace analytique p-adique paramétrant les classes d’isomorphie de représen-
tations p-adiques semisimples de dimension 3 de Gal(E/E) satisfaisant une condition d’autodualité
«de type U(3) ». Nous étudions un analogue de la fougére infinie de Gouvéa-Mazur dans ce contexte et
démontrons que I'adhérence Zariski des points modulaires de X a toutes ses composantes irréductibles
de dimension au moins 3[E : Q]. Au passage, nous prouvons en toute dimension que toute déformation
a l'ordre 1 d’une représentation cristalline su- samment générique de Gal(@p /Qjp) est une combinai-
son linéaire de déformations triangulines, et que les variétés de Hecke unitaires sont étales sur ’espace
des poids aux points classiques non critiques. Enfin, nous obtenons un critere de surjectivité de I'ap-
plication de localisation en p du groupe de Selmer adjoint’ d’une représentation galoisienne p-adique
attachée a une représentation automorphe cuspidale cohomologique de GL,, (Ag) qui est de type U(n)
(pour tout n).

The author is supported by the C.N.R.S.
* Pronounce “adjoint primed Selmer group.”
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964 G. CHENEVIER

Introduction

Let E be a number field, p a prime number, S a finite set of places of E containing the
places above p and oo, G, s the Galois group of a maximal algebraic extension of E unram-
ified outside S, and let n > 1 be an integer. We are interested in the set of n-dimensional,
semisimple, continuous representations

p: GE,S — GLn(Qp)

taken up to isomorphism. This set turns out to be the @p-points of a rigid analytic space X
(or X,,) over Q, in a natural way'"). An interesting subset

Xt C X(Q,)

is the subset of representations which are geometric in the sense they occur as a subquotient
of H} (X%, Q,)(m) for some proper smooth algebraic variety X over E and some integers
i > 0 and m € Z. There are several basic open questions that we can ask about X and its
locus X&; here are some of them:

Questions — Does X8 possess some specific structure inside X? What can we say about
its various closures in X (for example, for the Zariski or the p-adic topologies)? What if we
replace X8 by its subset X° of p’s which are crystalline at the places of E above p?

Regarding the first question, a trivial observation is that X is countable, as the set of
isomorphism classes of algebraic varieties over E is countable, thus it certainly contains no
analytic subset of X of positive dimension. In the simplest case E = Q and S = {oo, p} then
X1 is the space of p-adic continuous characters of Z;, (a finite union of 1-dimensional open
balls) and X° is the subset of characters of the form z +— z™ for m € Z, which is Zariski-
dense in X;. For a general F and S, we leave as an exercise to the reader to check that class
field theory and the theory of complex multiplication show that X¢ is also Zariski-dense in X
assuming Leopoldt’s conjecture for E at p.

As a second and much more interesting example, let us recall the discovery of Gouvéa
and Mazur [33]. They assume that d = 2, E = Q, and say S = {00, p} to simplify. Let g be
a power of an odd prime p and let

p: GQ,S — GLQ(]Fq)

be an absolutely irreducible odd Galois representation. Let R(p) denote the universal odd
Gg,s-deformation ring of 5 in the sense of Mazur and let X(p) be its analytic generic fiber: it
is the connected component of X, parameterizing the p with residual representation p. In
general X(p) is a rather complicated space, and Mazur first studied it in the unobstructed
case” H?(Gg,s,ad(p)) = 0, for which class field theory shows that R(p) ~ Z,[[z,y, #]],
hence X(p) is the open unit ball of dimension 3 over Qq. In this case, Gouvéa and Mazur
showed that X° is Zariski-dense in¥(p). They actually show that the subset

xmod C x( ﬁ)
(M We will not use this space in the sequel, but for its definition see [13, Thm D].
@ The philosophy of special values of L-functions suggests that this unobstructed case is the generic situation. It is

now known for instance that for p = pa attached to Ramanujan’s A = Zn>0 7(n)q"™, p > 13 and p # 691, the
deformation problem of g is unobstructed (Mazur, Weston [39]).
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ON THE INFINITE FERN OF GALOIS REPRESENTATIONS OF UNITARY TYPE 965

of p-adic Galois representations ps(m) attached to an eigenform f € Sy (SL2(Z)) for some
weight k, and some m € 7Z, is Zariski-dense in X(p). This subset is non empty as g is modular
(Khare-Wintenberger).

Their proof relies heavily on the theory of p-adic families of modular eigenforms due to
Coleman, extending pioneering works of Hida, that we briefly recall. Let f = q + a2q® +
azq® + .-+ € Q,[[q]] be a classical modular eigenform of level 1, of some weight k, and
such that gy = p; the representation py corresponds to some z; € X(p)(Q,). Attached
to f we have two p-Weil numbers of weight £ — 1 which are the roots of the polynomial
X?%—a,X +p"!. The main result of Coleman asserts that if ¢ is one of them, we can attach

to (f, ¢) an a- noid (equidimensional) subcurve

Cire) C X(p)

containing x ¢ as well as a Zariski-dense subset of modular points, and such that for each
modular point zy: € C(y, .y then f’ has a p-Weil number with the same p-adic valuation as ¢.
This curve C; . is not quite canonical but its germ at z is. The infinite fern of Gouvéa-
Mazur is by definition the union of all the C; ) for all f and choice of ¢. A simple but
important observation made by Gouvéa and Mazur is that in some neighborhood of z
in X(p) the two curves C(y,y and C(y /) only intersect at the point x if ¢ and ¢’ have
di. erent valuations: this essentially follows from the previous properties and the fact that
the “weight” varies analytically in Coleman’s families. From this “fractal” picture it follows
at once that the Zariski-closure of the modular points, or which is the same the Zariski-
closure of the fern, has dimension at least 2 inside X(p), and a simple argument of Tate-twists
using Sen’s theory gives then the result. The story does not quite end here as some years later,
Coleman and Mazur defined a wonderful object, the eigencurvewhich sheds new light on the
infinite fern. They define a rePned modular poinds a pair

(z,¢) € X(p) X G,

where £ = z; is modular and ¢ is a p-Weil number of f. The interesting fact is that the
Zariski-closure of the refined modular points in X(p) x G,, is an equidimensional curvehe
so-called p-eigencurvelts image in X(p) is the complete inPnite fernwhich simultaneously
analytically continues each leaf of the infinite fern itself. This picture for X(p) provides a
rather satisfactory answer towards the first of the main questions above, even though very
little is known about the geometry of the eigencurve at present. It is believed that &(p)
has only finitely many irreducible components. An amazing consequence of this conjecture
would be that for a well chosen modular point € X(p) the analytic continuation of a well
chosen leaf at x would be Zariski-dense in X(p)! However, as far as we know there is no non-
trivial case in which this conjecture or its variants in other dimensions > 1 is known.

Let us mention that when S is general and p is possibly obstructed, the approach above
of Gouvéa-Mazur still shows that each irreducible component of the Zariski-closure of the
modular points in ¥(p) has dimension at least 3. In a somehow opposite direction, it is
conjectured that in all cases X(p) is equidimensionnal of dimension 3, and that each of
its irreducible components contains a smooth modular point. This conjecture, combined
with the result of Gouvéa-Mazur, implies the Zariski-density of the modular points in X(p)
for each odd p (say absolutely irreducible). Relying on R = T theorems of Taylor-Wiles,
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966 G. CHENEVIER

Diamond et al., Boeckle was able to show that conjecture under some rather mild assumption
on p, hence the Zariski-density in most cases: we refer to [60] for the precise statements.

Our main aim in this paper is to study a generalization of this picture to the higher
dimensional case. Our most complete results will concern some pieces of X3 satisfying some
sort of self-duality condition. Let F be a CM field®, and let

p: GE,S — GLg(Fq)

be an absolutely irreducible Galois representation such that p* ~ p¢, where c is a generator
of Gal(E/F) and F the maximal totally real subfield of E. Let X(p) C X3 denote the
closed subspace of + € X3 such that pf ~ p¢ and p, ~ p. This X(p) has conjectural
equidimension 6[F : Q], and under an unobstructedness assumption similar to Mazur’s one
itis actually an open unit ball over Q, in that number of variables. There is a natural notion of
modular points in X(p): they are the z such that p,, is a p-adic Galois representation attached
to a cuspidal automorphic representation IT of GL3(Ag) such that II, is cohomological,
IV ~ II° and such that for v finite dividing p or outside S, II, is unramified. Those
Galois representations have been constructed by Rogawski; they are cut out from the étale
cohomology of (some abelian varieties over) the Picard modular surfaces and they are related
to automorphic forms on unitary groups in 3 variables associated to E/F'.

T/01(0, A. - Assume thap is totally splitin E. Then each irreducible component of the
Zariski-closure of the modular points i€(p) has dimension at leasi[F" : Q].

In particular, in the unobstructed case the set of modular points¥{p) is Zariski-dense if
it is non-empty.

In the appendix, we give several examples of elliptic curves A over QQ such that the defor-
mation problem of type U(3, E/Q) of p := Sym?A[p] e, (—1) is unobstructed for p = 5 and
E = Q(4). As in the work of [6] in the GL(2, Q) case, we expect that combining Theorem A
with suitable R = T theorems (as in [16] and subsequent work), one should be able to remove
the unobstructedness assumption under suitable assumptions on . However, we postpone
this to a subsequent study.

As in the work of Gouvéa-Mazur, a very important “constructive” ingredient of our
proofis the theory of families of modular forms (for U(3, E/F’) here), or better, the related
eigenvarieties. They can be quickly defined as follows, from the notion of rePned modular
points Assume F' = Q for simplicity and fix some prime v of E above p, so E, = Q, by
assumption. For each modular point z € X(p), it is known that p; p := py|q,, 18 crystalline
with distinct Hodge-Tate weights, say ki(x) < ka(z) < ks(z). Define a refined modular
point as a pair (z, ($;(z))) € X(p) x G3, such that z is a modular point and such that

(" @ @1(x), pDPa(2),p™ D P3(2))

is an ordering of the eigenvalues of the crystalline Frobenius of Deyys(pz,p); there are up to 6
ways to refine a given modular point. We define the p-eigenvariety

~ ~ 3
£(p) C X(p) x G,
® Throughout this paper, a CM field is assumed to be imaginary.
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as the Zariski-closure of the refined modular points); the complete inbnite fern of
type U(3,E/Q) is the subset F(p) C X(p) image of &(p) under the first projection. By
a former result of the author, this eigenvariety turns out to be equidimensional of dimen-
sion 3, and has some additional properties. The analogues of Coleman’s arcs through a
modular point z € X(p) are now 3-dimensional locally closed subspaces C;, ,, (the “leaves
of the fern at ) indexed by each refinements (z, ) of 2. The germ of C; , at x is canon-
ical, and the modular points are actually Zariski-dense in C; ,,. The p-inPnite fern of type
U(3, E/Q) is the union of all the leaves C ,, constructed this way when (z, ) runs over all
the refined modular points: see the figure above.

For dimension reasons, this situation is subtler than the one of Gouvéa-Mazur. Indeed,
assume that p is unobstructed to simplify, so ¥(p) is the open unit ball of dimension 6.
Remark that there is a one dimensional family of twists by Galois characters of type U(1),
and &(p) is stable by this family of twists as well, so we should rather think of X(5) as a
5-dimensional space in which evolves the 2-dimensional fern & (p) (with a Zariski-dense
accumulating subset of six times multiple points). The problem is that even if we knew that
any two of the six leaves are transversal at each modular point, this would not be enough to
exclude the possibility of a 4-dimensional Zariski-closure. The situation is even worse when
[F : Q] > 1 asin this case we have to pass from dimension 3[F : Q] to 6[F : Q).

) Let us warn the reader that it is actually not quite the right definition (for instance Theorem D below may not
hold with this one), although we shall content ourselves with it in this introduction and refer to Def.2.2 for the right
one.
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968 G. CHENEVIER

The idea of our proof is to study the relative positions of the tangent spaces of the local
leaves C; ,, when ¢ varies, at a given modular point € X(p). A key intermediate result is
the following:

T/01(0, B. — Assumep modular. There exist modular points € X(5) such thatp, , is
absolutely irreducible and has distinct crystalline Frobenius eigenvaludgir). If z is such a
point, then the image of the natural map on tangent spaces

P 1K) — T(X(p)
y—x,y€E(p)
has dimensior» 6.

Itis not di- cult to show that Theorem B actually implies Theorem A (see §2.8). The first
part of Theorem B is a simple application of eigenvarieties, but its second part is rather deep.
It relies on two general results of independent interest whose proofs form the technical heart
of this paper. The idea is to study the image of the map in Theorem B in the tangent space
of the deformation space of the local representation p, ,, on which we will have a su- ciently
e- cient control as we shall see. As an indication of this, recall that since the works of Kisin,
Colmez and Bellaiche-Chenevier, it is known that the restriction at Gg, of the family of
Galois representations over &(p) has some very specific properties: they are trianguline in
the neighborhood of the “non-critical and regular” modular points.

The first important result we prove is a purely local theorem about the deformation space
of a given crystalline representation of Gg, = Gal(@p /Qp). Let L be a finite extension
of Q, and let V' be a crystalline representation of G, of any L-dimension n. Assume that
Endg,, (V) = L, that V has distinct Hodge-Tate numbers, and that the eigenvalues ¢; of the
crystalline Frobenius on Dq,ys(V') belong to L and satisfy (p,-(p}l # 1,pforalli # j. Let Xy
be the deformation functor of V' to the category of local Artinian L-algebras with residue
field L. It is pro-representable and formally smooth of dimension n? + 1. For each of the n!
orderings & of the ¢; (such an ordering is called again a rePnementf V, for some obvious
reasons), we defined in [1, §2] the -trianguline deformation subfunctor Xy, o C Xy, whose
dimension is % + 1. Roughly speaking, the choice of & corresponds to a choice of a
triangulation of the (¢, I")-module of V' over the Robba ring, and Xy, parameterizes the
deformations such that this triangulation lifts. When the @-stable complete flag of De,is(V')
defined by & is in general position compared to the Hodge filtration, we say that & is non-
critical.

T/01(0, C. - Assume thain Owell-chosenO rePnementd/ore non-critical (e.g. all of
them), or thatn < 3. Then on tangent spaces we have an equality

Xv(Ll) =) Xvg(Le).
g

In other words, any brst order deformation of a generic crystalline representation
is a linear combination of trianguline deformationgMaybe surprisingly, our proof
of this result is by induction on the dimension of V', which requires first to extend the
statement to the world of non-étale (¢, I')-modules over the Robba ring and work in this
general setting (as in [1]). We also have to extend and complete several results of [1] to
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general paraboline deformation functors, and even in the trianguline case the proofs given
here are actually slightly di. erent from the ones there. Following the ideas of this paper,
Theorem C has another purely local application to the Zariski-density of the crystalline
points in some components of the representation space of G, (for instance in the residually
irreducible ones), that will however be given elsewhere. Last but not least, let us remark that
the codimension of the crystalline locus in Xy, namely %, actually coincides with the
(conjectural) dimension of X(p) if p is of type U(n) (see below). This numerical coincidence
reminds of course the ones discussed in [16] and is fundamental to the application to the

Zariski-density of modular points (e.g. in the unobstructed case of Thm. A).

The second key ingredient for the proof of Theorem B is an important theorem about
eigenvarieties that we simply state as a slogan in this introduction:

T/01(0, D. — Eigenvarieties are Ztale over the weight space at non-critically rePned,
regular, classical points.

See Theorems 4.8 and 4.10 for precise statements concerning unitary eigenvarieties. In
terms of families of p-adic automorphic forms, this theorem means that the natural p-adic
family passing through a non-critically refined (and regular) automorphic representation
may be parameterized by a polydisc with weight maps for parameters (either automorphic,
or Hodge-Tate-Sen weights), which is maybe the most natural statement we may expect in the
theory of p-adic families. For ordinary refinements several instances of this slogan have been
proved by Hida. Our proof relies in particular on a number of properties of automorphic
representations for unitary groups (including some multiplicity one results of Rogawski
for U(3) and of Labesse for U(n)), on the generalized theta-maps studied by Jones, and on
a result of Kisin.

Let us go back to Theorem A. We have dealt with cases of absolutely irreducible g to
fix ideas, but it holds in any residually reducible case, with the same proof, if we work with
pseudocharacters instead of representations (using [13] for p = 3!). More interestingly, we
expect that our approach will lead to a proof of the Zariski-density of the infinite fern of
type U(n) for any n. In this case X(p) has conjectural dimension [F : Q]w, &(p) has
dimension n[F : @], and there are generically n!!¥*@ local leaves in Z(p) through each
modular point. (When n = 3, the coincidence 3! = 3(3 + 1)/2 = 6 actually plays no
specific role.) Although Theorems C' and D apply in this generality, we were faced with a new
di- culty concerning the existence of su- ciently many global automorphic representations
which are generic enouglt p: we refer to §5.5 for a discussion about it. On the other hand,
the degree of the base field is rather insensitive to our method, which allowed us for instance
to extend the result of Gouvéa-Mazur to the Hilbert modular case (see Theorem 5.9):

T/01(0, E. - Let F' be atotally real Peld of even degreean odd prime totally splitinF",
0 the Leopoldt defect ofF" at p, and letp : Gp s — GLo(FF,) be an absolutely irreducible
modular Galois representation.

Then the irreducible components of the Zariski-closure of the essentially modular points
in X(p) all have dimension at leadt+ o +2[F : Q]. If H*(GF,s,ad(p)) = 0, then the modular
points are Zariski-dense i (p).
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We end this introduction by stating an interesting general result about adjoint’ Selmer
groups that follows from the theory of eigenvarieties and Theorems C' and D above. Letn > 1
be any integer, let E/F be a CM field, and let IT be a cohomological cuspidal automorphic
representation of GL,, (A g) such that ITV ~ II¢. Assume that p is totally split in E and that
IT is unramified at each place of E above p. Let

on: Gg — GLn(@p)

be a p-adic Galois representation attached to II. It turns out that the adjoint representation
ad(pr) has a natural extension to G'r that we denote by Ad’(pr1), and whose H* has a natural
interpretation as the tangent space of the deformation functor of py of type U(n). This
interpretation allows us to define subspaces H.(F, Ad’(pr)) for any choice of refinements
of the pr|g, for each place v of F' dividing p. In the following statement, we use standard
notations from the theory of Selmer groups: f is the Bloch-Kato condition (automatic
outside p for Ad’(prr)) and H} = H'/H}. See also §3.24 for the precise definition of weakly
generic and regularet us simply say that a crystalline representation of Gg, with su- ciently
generic crystalline Frobenius eigenvalues and whose refinements are all non-critical has this
property (in particular it is absolutely indecomposable).

T/01(0, F. - Assume thapr g, is weakly generic and regular for eaalp. Then

H'(F, A (pn) — [] HX(Fu, Ad'(pm)

vlp

is surjective. MoreoverH'(F,Ad'(pn)) = 3.4 H(F, Ad'(p)) and for S big enough we
havedim Hz(Gﬂs,Adl(pH)) = dim H}(F, Ad/(pn)).

The second part of this theorem is a variant for Selmer groups of Theorem C. It is the
infinitesimal counterpart of the infinite fern of type U(n, E/F) in the adjoint’ Selmer group.
It says in particular that H*(F, Ad’(pr)) is spanned by elements which are not too far from
being geometric. As far as we know, this is the first example of such a statement. The first part
of the theorem is actually deduced from the second one, and the assertion on H?2 follows from
the computation of the sign of pry in [2]. We believe that a variant of Theorem F should hold
for a huge class of Selmer groups. Let us mention here that the proof of Theorem F also uses
some base-change trick to reduce to a situation where the multiplicity one results of Labesse
(and Theorem D) apply.

The theorem above has a corollary concerning the Galois representations associated to
essentially-selfdual cuspidal, cohomological, automorphic representations of GL,, over a
totally real field: see Thm. 6.11. Here is a special case. Let II be a selfdual, cohomological,
and cuspidal, automorphic representation of GL,, (Ag), and let pr; : Gg — GLn(@p) be an
associated p-adic Galois representation, normalized so that pj; ~ prr(n—1). Recall that pry is

symplectic if n is even and orthogonal otherwise by [2]. Assume again that II,, is unramified.

T/01(0, G. - Assume thatpH|G@p is weakly generic and regular, and sét =

Symm?(pr)(n — 1) if n is even,V = A%(pr)(n — 1) otherwise. Then the restriction map
HY(Q,V) — H!(Q,, V) is surjective.
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Let f = g+a2q® +- - - be a classical modular eigenform of weight k > 1, level prime to p,
and let py : Gg,s — GL2(Q,) be an associated p-adic Galois representation.

T/01(0, H. - Assume tharpflGQ is absolutely indecomposable and that the ratio of the

two roots of the Hecke polynomiak? — a, X + ¢(p)p*~! of f at p is not a root of unity. Set
Vi, = Symm" (ps) ® det(pys) /2,

For n = 2 and n = 6, the restriction H*(Q,V,,) — H!(Q,,V,) is surjective and
dim H}(Q, V,,) = dim H*(Gg,s, Vn).-

As the reader may have noticed, all the global statements of this paper concern number
fields which are totally split at p. It is clear from our method that this assumption could be
removed but we simply did not have the energy to do so. One reason for this is our reliance
on the local results of [29] and [1], which are only written at the moment for the base field Q,,.
Another slightly annoying assumption we have is the regularity condition in Theorems D and
F. Again, we expect that it could be removed if the technical problems discussed in [1, §4] and
occurring in studying “refined families” were solved. For instance, these two improvements
together, combined with the recent developments on the Sato-Tate conjecture, would lead to
an extension of Theorem H to any n = 2 mod 4.

Aknowledgements— We are grateful to Gebhard Bockle for some stimulating discussions
at the origin of this paper. Part of our proof relies on my book with Joél Bellaiche, it is a
pleasure to thank him here for the many fruitful exchanges we had the past years. We also
thank Laurent Berger and Kevin Buzzard for some useful discussions, Owen Jones for having
made his preprint available, Karim Belabas for some discussions about the use of PARI GP,
and the referee for his remarks. Some results of this paper were explained by the author in
a Cours Peccot at the College de France in March-April 2008 [11], it is a pleasure to thank
this institution as well as the Fondation Peccot for their support.

1. The universal Galois representation of type U(n)

1.1. Galois representations of type U(n) with n odd and their deformations

Let E be a CM field, F' its maximal totally real subfield and fix ¢ € Gp a complex
conjugation. Let p be an odd prime number. Let S be a finite set of primes of E containing
the primes ramified over F' and the primes above p. We assume that ¢(S) = S and we shall
sometimes view S as a set of places of F' containing the subset S, of all the Archimedean
primes. We fix an odd integer n; eventually we shall take n = 3.

Let A be a commutative ring and let p : Gg ¢ — GL, (A) be an absolutely irreducible
representation, in the sense that A[p(Gg s)] = M, (A). We say that p is of type U(n) if

p* ~ pC
as A[Gg, s]-modules, or which is the same if trace p(¢9~') = trace p(cgc) for all g € Gg.
Let Gal(E/F) act on GL,, by c(g) := *g~! and view §, := GL,, x Gal(E/F) as a group
scheme over Z. The terminology p is of typeU(n) comes from the fact that &, may be viewed

as the reduced Langlands dual group of the unitary groups in n variables associated to E/F
(recall n is odd) and the following lemma, which is a variant of [16, §1].
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972 G. CHENEVIER

LO,# 1.2. — pisoftypeU(n) if, and only if, there exists a representation
p:Gpgs — GL,(A) x Gal(E/F)
where the induced ma@ir s — Gal(E/F) is the natural map ang |, ; = p-

Indeed, p(c) := Pc, with P € GL,, (A), defines an extension of p as in the statement if, and
only if, ‘P = P and *p(g)~! = P~1p(cgc)P for all g € Gg,s. This last condition actually
implies 'P = pP for some p € A* as p is absolutely irreducible, and 4 = 1 as n is odd.
Note that the extension g'is not unique, but p’ is another one if, and only if, p’(¢) = P’c with
P’ =)XPand )\ € A*.

Let g be a power of p and let us fix from now on
p:Ggs — GL,(F,)

an absolutely irreducible, continuous, representation of type U(n). Let Z, be the Witt vectors
of F, and let & be the category of Artinian local Z-algebras with residue field A/m 4 = F,.
Consider the deformation functor

D : 6 — Sets

defined as follows: for any object A of &, D(A) is the set of A-isomorphism classes of
continuous representations p4 : Ggs — GL,(A) of type U(n) such that ps ®4 F,
is isomorphic to p. As p is absolutely irreducible, this functor is pro-representable by a
complete local noetherian Z,-algebra R(p) with residue field F,. Indeed, it is the quotient
of Mazur’s universal Gg g-deformation ring R’(5) by the ideal generated by the elements
trace p“(g~1) — trace p“(cgc), for all g € Gg g, where p* is Mazur’s universal R’ (p)-valued
deformation. (Note that the argument so far did not use the assumption p odd.)

Using class field theory and arguments of Mazur we will see below that the Krull dimen-
sion of R(p)/(p) is always > [F : Q]w The precise structure of R(p) is presumably
extremely complicated in general, however we shall not be interested in these kinds of com-
plications in this paper.

Let g, ~ M, (F,) be the Lie algebra of ¢, over F, viewed as a representation of & (IF,).
Fix once and for all some p lifting g as in Lemma 1.2. Thanks to this choice we may view g,
as a Gp g-module, that we shall denote by Ad’(5). This latter module does not depend on
the choice of p. By definition, Ad’(p)|q,, is the usual adjoint representation of 5. Moreover,
if p(c) = Pec, then c acts on Ad'(p) = M, (F,) as® X +— —PXP~! In particular,
H°(GFrs,Ad (p)) = 0 as p is absolutely irreducible and p is odd.

D023&3%31&. — We say that theU(n)-deformation theory ofp is unobstructed, or for
short that p is unobstructed, iff?(Gr,s, Ad’(p)) = 0.

By Tate’s global and local duality theorems, p is unobstructed if, and only fif,
1% (Grs,Ad'(5)(1)) =0 and H(F,,Ad’(5)(1)) = 0 for all finite prime v € S
(note that g, is a selfdual Fy[#, (IF,)]-module and see [34, Rem. 5.2.(c)]).

(9 As an exercise, the reader can check that up to conjugating 5 if necessary, we may choose a p such that p(c) = ¢,
i.e. P = id (use that n and p are odd).
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P(141'3%31& .4. — If pis unobstructed, thet®(p) is formally smooth ovefZ, of relative

dimension
n(n+1)
—

Set V = Ad’'(p). Tate’s global Euler characteristic formula shows that

[F: Q]

dim H'(Gp.s,V) = [F : Q) dim VP©="1 4 dim H*(Gp.s, V) + dim H*(Gp.s, V)

(dimensions are over [, and recall that p is odd). But X — X P identifies Mn(]Fq)f’;(c):_1

n(n+1
% , SO

with the subspace of symmetric matrices in M, (F,), which has dimension
dim H'(Gpg,Ad’(p)) = [F : Q™) if 5 is unobstructed.

The proposition follows from this computation and from the following general lemma.
If A is an object of &, two group homomorphisms with target &, (A) are said equivalent
if they are conjugate by an element in Ker(%, (4) — 4, (F,)). Define another functor
9’ € — Sets as follows: for an object A of &, 9'(A) is the set of equivalence classes of
continuous homomorphisms 74 : Gp,s — ¢, (A) such that 74 ® 4 F; = p (which has been

fixed above).

LO,# 1.5. - The mapra — 74|, induces an isomorphisn®’ = 9. Moreover,
D(F,le]) = HY(Grs,Ad (p)) and if H*(GFrs,Ad'(p)) = 0, then P is formally smooth
overZ,.

Proof. — For each A, 9'(A) — %D(A) is surjective by the proof of Lemma 1.2. Let
1,79 € 9'(A) be such that IGs = T2|Gp> UP to equivalence we may assume that r1|q, = T2j,-
Set r;(c) = P;c, where P; € GL,(A). Then both P; and P, intertwine the conjugate and
dual of r1)q,, s0 P1 = AP, for some A € A*. As each r; lifts p, A € 1 + ma. As pis odd,
A = p? for some g in 1 + my, so p~tryp is equivalent to r; and coincides with 5. This
concludes the proof of the first part of the statement, the other assertions follow from this
and standard facts from group cohomology. O

Set Qg = Zg[1/p]. If R is a local complete noetherian Zg-algebra, the functor Homgz, (R, —)
(continuous Z,-algebra morphisms) from the category of a- noid Qg-algebras to Sets is
representable by a rigid analytic space'® over QQ, called Berthelot’s generic fiber of R (see [27,
§7] for the basics on this construction). If R = Z,[[T4, ..., T;]]/I, this space is simply the
closed subspace defined by I = 0 in the r-dimensional open unit ball |T;| < 1 (i =1,...,7)
over Q. In the sequel, we will be interested in Berthelot’s generic fiber of R(p), that we shall
denote by

X(p)-
For example, in the unobstructed case X(p) is isomorphic to the open unit ball over Q, of
dimension [F : Q) % Before stating the universal property of X(p) we need to set some
notations and review some facts concerning families of representations.

Let Y be an a- noid over Q, and p : Gg s — GL,,(O(Y")) a continuous representation.
For y € Y a point, with residue field k(y), we denote by p, : Gg,s — GL,(k(y)) the
evaluation of p at y and by g, : Gg,s — GL,(k,) the semi-simplification of its residual

() We use the foundations of rigid spaces in [7].
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representation. Here k, denotes the residue field of k(y); it comes with a natural morphism
F, — k,. We say that pis aliftof pif p, ~ p ®p, k, forally € Y.

Let 9°" be the (contravariant) functor from the category of Qg-a- noids to Sets
where 9*"(Y) is the set of O(Y)-isomorphism classes of continuous homomorphisms
py : Ggs — GL,(0O(Y)) which are of type U(n) and lift 5. As p is absolutely irreducible,
py — trace py induces a bijection between 9" (Y") and the set of continuous pseudochar-
acters Ty : Gg s — O(Y) lifting trace p (for the obvious definition) and of type U(n), that is
such that Ty (g7 1) = Ty (cge) for all g € G, s. The following fact is probably well-known,
it follows for instance from [13, Thm. 3.16], but this is much simpler here as p is absolutely
irreducible.

LO,,# 1.6. — X(p) represents)™".

This space X(p) is actually a connected component of the U(n)-type locus of the space X,,
mentioned in the introduction.

1.7. Modular Galois representations of type U(n) and examples

We keep the assumptions of §1.1. The main source of Galois representations of type U(n)
is the degree n — 1 étale cohomology of the quotients of the complex open unit ball

" '2i|? < 1in C*~! by the arithmetic congruence subgroups of U(n — 1, 1)(R) attached
to E/F. When n = 3 these are also called Picard modular surfaces. Thanks to the advances
in the theory of automorphic forms we may describe them using GL(n).

Let IT be a cuspidal automorphic representation of GL,,(Ag) such that:

(P1) IV ~T1I°,
(P2) 11, is cohomological for each Archimedean place v of E,
(P3) II,, is unramified whenever v ¢ S or v divides p.

Fix once and for all a pair ¢ = (1, tos) of field embeddings ¢, : Q — @, and 1oo : Q — C.
Class-field theory for n = 1, work of Rogawski for n = 3, and recent works of Shin [38] and
of the participants of the book project of the Paris GRFA seminar for any n [15, 24], attach
to such a IT and ¢ a continuous semi-simple representation

P11 - GE,S — GLn(@p)

of type U(n) which is compatible with the Frobenius semi-simplified local Langlands cor-
respondence at all primes v not dividing p and which is crystalline at each prime v of E
above p. In particular, this representation is geometric in the sense of Fontaine-Mazur. Actu-
ally, infinitely many suitable real quadratic base changes of it are even geometric in the sense
of the introduction by construction (all when [F' : Q] > 1). It is known that pyy is irre-
ducible when n = 3, and conjectured in general. Fix a ring homomorphism Z, — F,. Denote

by pi : Gg,s — GL,(FF,) the isomorphism class of the semi-simplification of pry.

D023&3%31&8. — A representationp : Gg s — GL,(Q,) is modular of type U(n) if
there exists all satisfying (P1) to (P3) as above such thap ~ pr. A representation

p: Gg,s — GL,(F,) ismodular of type U(n) if there exists all as above such that ~ pr.

For short, we shall often say modularfor modular of typeU(n). It is tempting to believe
that a variant of Serre’s conjecture holds in this context:
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Is any continuous absolutely irreducibfeof type U(n) modula®?

When n = 3, by Rogawski’s construction, any modular p occurs in HZ (S5, Fp(1)) where
S is a suitable Picard modular surface over E. A delicate aspect of this variant of Serre’s
conjecture is that such an H? might contain some classes'”’ that do not lift to cohomology
classes in characteristic 0: this happens for instance for Mumford’s fake projective planes.
Nevertheless, the recent advances on R = T theorems and potential modularity in this
context (e.g. by Clozel, Harris and Taylor and their co-workers) suggest a positive answer.

E5#,460 1.9. — If f is a classical modular eigenform then Symm?(ps) ® det(pf)lfGlEys
is of type U(3). When F'/Q is Galois and solvable, it is modular by results of Arthur-Clozel
(if FF # Q), Gelbart-Jacquet and Rogawski. By the modularity theorem, this applies in
particular to Symm? A[p]*(1) for any elliptic curve A over Q.

1.10. Statement of the theorem

Let p be a Galois representation of type U(n) and X(p) the generic fiber of its universal
deformation ring of type U(n). A point z € X(p) is called modularif the Galois representa-
tion p, : Gg,s — GL,(k(x)) attached to x is modular. Let

xmod C %(/_))

be the (countable) subset of modular points. By definition, p is modular if, and only if,
xmod -£ & We can now state the main result of this paper.

T/01(0, 1.11. — Assume thaip is modular of typeU(3), unobstructed, and thap splits
in E. ThenXx™°d is Zariski-dense irk(p).

A subset of points Z of a rigid space Y is called Zariski-denseif the only reduced closed
subspace of Y containing Z is Y;eqa. When Y is quasi-Stein (which is the case of the X(p)),
it is equivalent to ask that any global function f € ©(Y) vanishing at all points of Z is
locally nilpotent. In the context of the theorem, X(p) is the open unit ball of dimension
d = [F : Q]H(HTH) over Q,, so the statement simply means that any power series
f € Cpl[t1,.-.,t4]] converging on the whole open ball |t;| < 1 and vanishing on X™°d
is identically 0.

E5#,460 1.12. — Set E = Q(i),p =5, 5 = {c0,2,5,17} and let A be the elliptic curve
y? + a2y +y = 23 — 22 — 2 over Q, which is isogenous to the Jacobian of X(17). Then

p = Symm?(A[5])(-1) | 18 modular of type U(3) and unobstructed (see the appendix).
C1(166#(" 1.13. — Under the same assumptions, for any objedtof & and any lift
pa € D(A) of p, there is a Pnite extensiod of Q, and a setp;, p2,...,p, Of modular

Galois representation& g s — GL3(#)1) of type U(3) such that theZ,[G g s]-modulep 4 is a
subquotient ofb]_, p;.

(M 1 do not know any example of such a class that generates an irreducible Galois representation of dimension 3.
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Indeed, this follows from the theorem and the following general fact due to Chevalley: if
A is a complete local noetherian ring, and if {a;, ¢ € I'} is a family of proper, cofinite length,
ideals of A such that the intersection of all the a; is zero, then the topology defined by the a;
is the adic topology of the maximal ideal of A.

We will actually prove the following result, of which Theorem 1.11 follows at once by
Prop. 1.4.

T/01(0, 1.14. — Assume thatp splits in E. Then the irreducible components of the
Zariski-closure of X™°4 insideX(p) all have dimension at leas{{F : Q).

We are led to the following optimistic conjecture (for any integer n).

C1&70)%+(01.15. — Let p be any Galois representation of typ8(n), then x™°d is
Zariski-dense inX(p).

2. The infinite fern of Galois representations of type U(3)

The main ingredient in the proof of Thm. 1.14 is the so-called infinite fern inside X(p) and
its study. We use the notations of §1.1 and we assume furthermore thatis a modular Galois
representation of typdJ(3) and that the odd prime splits in E. We denote by S, the set of
places of F dividing v, So = S\(S« U Sp), and we fix once and for all, for each v € S, a
place ¥ of E above p, so Q, = F,, = Ey. Set I = {1,2,3}.

2.1. The eigenvariety and the complete infinite fern

Let W and W, be the rigid analytic spaces over Q,, parameterizing respectively the p-adic
continuous characters of Q; and Zj. So W) is a finite disjoint union of 1-dimensional open
unit balls over Q, and W ~ G,, x Wy. Consider the subset

Z C X(p)(Q@,) x W(Q,)""*r
of pairs (p, ) satisfying (i) and (ii) below:
(1) pr1 is the modular Galois representation of type U(3) associated to II.

In particular pr, = (pm)q,. is crystalline with distinct Hodge-Tate weights for each
v € Sp. We denote by ki, < ko2, < ks, these weights by increasing order, with the
convention that the cyclotomic character has Hodge-Tate weight —1.

(ii) 8 = (d,») where for each (i,v) € I x S, the character §; , : Q — @; is the product
of  +— x % and of the character sending Zy to 1 and p to ¢; ,, where (@;4)icr is an
ordering of the eigenvalues of the crystalline Frobenius of De,ys(pm,) (recall that E; = Qp).

Each such pair is called a rePned modular pointThere are up to 6/7:@ ways to refine a
given modular point, corresponding to the number of ways to choose an ordering of the
eigenvalues of the crystalline Frobenius of De,ys(pm,») for each v € S,,.
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D023&3%32&. — Theeigenvariety of type U(3) of p is the Zariski-closure
6(p) C X(p) x W
of the subsefZ insideX(p) x W xSe, The complete infinite fern of type U(3) of p
I(p) C X(p)

is the set theoretic image of(p) via the brst projectiorpr; : X(p) x WS X(p).

By definition &(p) is a reduced analytic space. The weight spaces the space WéXSp. The
natural map W — Wy and the second projection induce a natural map

K 6(p) — Wy,

This map turns out to refine the Hodge-Tate-Sen map. Indeed, recall that the work of Sen
defines, for each v € S,,, a monic polynomial

PSen,U(t) € @(%(f)))[t]

of degree 3 whose evaluation at any z € X(p) is the usual Sen polynomial of p, , (the
roots of which are the generalized Hodge-Tate weights of p, ,). The coe- cients of this
collection of polynomials give rise to a natural map kyt : X(p) — A*5». The morphism
R ‘W(I)XS‘“ — AT*» given by the formula 8((6;.4)) = [[;(t+ (a‘s“ ) ‘z_l) is the composite

ox
of a finite covering of AT*5» of degree 6[F*, étale over the locus parametrizing polynomials
with nonzero discriminant, with an étale morphism of infinite degree (essentially a p-adic
logarithm). By definition, we have kg7 opr; = Bok on &(p).

T/01(0, 2.3. — &(p) is equidimensional of dimensiod{F : Q]. The mapx is locally
Pnite: £(p) is admissibly covered by the open alnoid8 such thatx(U) C ‘Wéxs‘“ is open
alnoid and x|y : U — w(U) is Pnite.

This follows from the main theorem of the theory of p-adic families of automorphic
forms for the definite unitary group U(3) (see [10],[12]), and from the base change results of
Rogawski [35]. This point of view on eigenvarieties is a generalization of the one of Coleman
and Mazur in [18]. Concretely, the equations defining &(p) inside X(p) x W are given
by characteristic power series of certain compact Hecke operators acting on the flat family
of Banach spaces of p-adic automorphic forms for the definite unitary group U(3). Let us
explain now how to deduce this statement from other ones in the literature. Our method is
actually a bit di. erent from the one in [18].

Proof. — First, consider the unitary group U/ F in three variables attached to the positive
definite hermitian norm (21, 2o, 23) +— $.7_, Normpg /F(2;) on E3. This group is necessarily
quasi-split at all finite places of F, as we are in odd dimension. The work of Rogawski defines
by base change a bijection between automorphic representations = of GL3(Ag) satisfying
(P1) and (P2) and stable tempered L-packets II of U, which is compatible with a local base
change (that Rogawski also defines) at all places ([35, §13]). The following lemma follows for
instance from Rogawski’s classification [35, p. 174, §13.1].
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LO,# 2.4. — For any bnite union of Bernstein componefff of GL3(A s, ), there is a
Pnite unions of Bernstein components @f (A r s, ) such that for each irreducible’ in %' and
any irreducibler of U(Ar,s,) whose base-changes$, we haver € 3.

As X(p) has finitely many irreducible components, and by [1, Lemma 7.8.17], there is a
finite union of Bernstein components %’ of GL3(A g s, ) such that for each IT with p; € %(p)
we have ITg, € $'. Choose an associated % as in the above lemma. Up to enlarging % if
necessary, we may find a compact open subgroup K C U(Apg,) cutting exactly the union
of components 3, in the sense that an irreducible representation 7 of U (A, s,) belongs to B
if, and only if, 7 # 0.

Let X/Q, be the p-adic eigenvariety of U associated to (tp,ts0), to the tame level K
(spherical outside \S), to the set of all places S, above p, and with respect to the spherical
Hecke algebra # outside S (see [12, Thm. 1.6]). By Rogawski’s results and [1, Cor. 7.5.4] (or
[10, Cor. 7.7.1]), this eigenvariety carries a continuous pseudocharacter T : Gg s — O(X)
such that for each refined classical point z associated to some II satisfying (P1)—(P3) the
evaluation of T' at z is trace(pr). In turn, for each x € X we have a natural associated
semi-simple Galois representation p, : Ggs — GL3(k(z)), whose residual semi-simple
representation will be denoted by p, : Gg.s — GL3 (E), where k, is the residue field
of k(z) (a Fq-algebra, as k(z) is a Q4-algebra). The locus X (5) C X of x such that p, ~ p
is an admissible closed and open subspace of X (this follows for instance from the Brauer-
Nesbitt theorem and [13, Lemma 3.9]). By definition of 8 and the properties of X (p), there
is a natural injection j : Z — X(p)(Q,), and j(Z) is a Zariski-dense subset of X(p).
The universal property of X(p) defines a canonical analytic map ¢ : X(p) — X(p). The
eigenvariety X is also equipped with a finite analyticmapv : X — WS, By definition we
have (¢ x v) o j = idy and property (i) of [12, Thm 1.6] ensures that

¢ xv:X(p) — X(p) x W

is a closed immersion (it is finite because v is finite). As a consequence, ¢ x v induces an
isomorphism X (5) = &(p), and the last statement follows from the properties of X (p). [

RO,#(8 2.5. — The proof above is pseudo-character theoretic, hence extends verbatim
to the case of any semi-simple p. Moreover, this theorem would also hold for any odd n
by the same argument, if we appeal instead of Rogawski’s work to the recent works of
Moeglin (definition of the tempered L-packets for quasi-split unitary groups) and Labesse
(base change to GL(n)) instead of the work of Rogawski, as long as [F' : Q] > 2 (assumption
occurring in Labesse’s base-change at the moment).

An important property of the eigenvariety is the so-called classicity criterion Say that
(0i0) € W, is algebraicif for each (i,v) € I x S, there exists an integer k; ,, such that §; ,
is the character u — u~Fiv. Say that (z,8) € &(p) is of algebraic weightf x(z) is algebraic.
In this case, we denote by k; ,,(x) the k; , above and set ¢; ,(x) = pki’v(“)&,v(p). The next
proposition is [12, Thm. 1.6.(vi)].

P(141'3%31&.6. — Let z € &(p) be of algebraic weight. Assume th&v € .S),:
(1) kl,v(x) < kgﬂ,(ﬂc) < kng(x),
(i) v(p1,0(2)) < k20(2) < v(p30(2)),
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(i) Vi,j €1, pin(x)pjo(z)™t #p.
Thenz € Z.

In particular, Z is an accumulation subset @ (p). More precisely, ifU C &(p) is an open
alnoid as in the statement of Thm.2.3, then Z is Zariski-dense inU if and only if each
connected component @f{U) contains an algebraic weight.

Recall that if A and B are two subsets (of points) of a rigid analytic space, we say that A
accumulates aB if for each b € B and for each a- noid neighborhood U of b, there exists an
a- noid neighborhood V' C U of b such that A NV is Zariski-dense in V. An accumulation
subseis a subset accumulating at itself. For instance the positive integer N is an accumulation
subset of the closed unit disc over Q,, and the algebraic weights form an accumulation subset
of Wi,

2.7. The local leaves and the infinite fern

Let z = pn € X(p) be a modular point, and choose ¢ so that (z,d) € Z. By Theo-
rem 2.3 and Prop. 2.6, we may find a basis of a- noid neighborhoods U, s C &(p) of (z, )
such that Z is Zariski-dense in U, s, such that (U, s) is an open a- noid, and such that
k : Ugzs — k(U ) is finite (necessarily surjective when restricted to any irreducible com-
ponents of U ). As (3 is étale at x(x) we may even choose U, s small enough so that the pre-
vious assertion holds with 5 o k = kg7 o pry instead of . In particular, if V = 8(k(Uy,s))
then the induced map pr; : U, s — x5(V) is a finite map, thus pr, (U, s) is a locally closed
subset of¥(p), and even a closed subset of the admissible open &+ (V) C X(5).

We have constructed this way up to 65! locally closed subspaces of X(5), inside 7 ()
and containing z, namely the pr, (U, s), that we will call the leaves of the fermat z. Each of
these leaves has equidimension 3[F' : Q]; with this definition, only its germ at x is canonical.
By construction, each of these leaves also contains a Zariski-dense subset of modular points,
a Zariski-dense subset of which even has the extra property that the eigenvalues of its crys-
talline Frobenius at p are distinct (see e.g. the proof below of Lemma 2.9), so that each of
them will admit exactly 6/°»! associated refined modular points and so on... The inbnite fern
is the union of all the leaves constructed this way, from any modular point, namely

U pri(Ues) C X(p),
(z,0)€Z

a picture of which has been given in the introduction. Our main aim from now one will be
to bound below the dimension of the Zariski-closure of the infinite fern. As explained in
the introduction, the idea of our proof is to study the relative positions of the local leaves
pr; (Ug,5), when § varies, at a given modular point z € X(p).

2.8. First reduction toward Theorem A
Let
xmod’ C xmod

be the subset of modular points x such that for all v € S, pm,, is irreducible and the
eigenvalues of its crystalline Frobenius are distinct and in k(z)*. We claim first that gmod’ g
dense in ¥™°d:
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LO,# 2.9. - Foranyz € X™°4 and any a'noid neighborhoodU of = in X(5), we have
xmed’ N 7 £ @, In particular, X4 £ &,

Proof. — We use an argument similar to [1, §7.7]: starting from any modular point we
show that by moving in at most two leaves of the fern we may find such a modular point
by an argument of Newton polygon. So let z € X™°9 be any modular point and U as in
the statement. Choose any refinement § of z and consider an a- noid neighborhood U, 5
of (z,0) in &(p) as in §2.7, and such that pr, (U, s) C U. Over this a- noid, the maps
y — |v(d;(p)(y))| are bounded by some integer M by the maximum modulus principle.
We may choose a point y € U, of algebraic weight such that ks ,(y) — k1,(y) and
k3 »(y) — ko, (y) are both bigger than M + 1 for each v, and such that

V(i,v) € Sp, V(9i,0(P) () = V(0in(p)(2)) = V(piu(2)) = kiw(2).

In particular, such a y is modular by Prop. 2.6. Moreover, for each (i,v) € S, we have
v(piv(y)) # kit1,0(y) where the index ¢ is taken mod 3. In particular, up to replacing z
by y if necessary, we may assume that the point x we started from has this property as well,
and also that we had chosen a refinement ¢ with the property that

V(i,v) € I x Sp, v(din(p)(z)) #0.

But then, a modular point y as above has the property that for any (3, j,v) € I x I x Sp,
v(piv(y)) # kjwu(y), s0 py,. is absolutely irreducible by weak admissibility of its Dgyys.
Its crystalline Frobenius eigenvalues have distinct valuations, so they are distinct and
in k(y). O

RO, #(8 2.10. — In the examples given in the appendix, the natural modular lift
Symm?(V,,(A))(~1)|a,, s never belongs to x™°d",

If Y is a rigid analytic space and y € Y a point we denote by T,(Y") the tangent space
of Y at y (a k(y)-vector space).

T/01(0, 2.11. - Foranyz € xmed’ the image of the natural magdpr; :

P 1,060) — T.(x(p)

y=(=,5)€6(P)

has dimension at leasi[F : Q].

(Note that for any z € ¥™°%, the residue field of any (z,8) € &(p) is k(z) by definition.)

Let us first show that Thm 2.11 implies Thm 1.14. Let W be the Zariski-closure of ¥™°d
in X(p), equipped with its reduced structure. Let C be an irreducible component of W. Recall
that a- noid algebras are excellent and Jacobson, so the regular locus of any reduced rigid
analytic space is a Zariski-open and Zariski-dense subspace (see e.g. [20, §1]). Thus we may
choose some modular point 2z, € C N X™°4 such that z, is a smooth point of W (hence
of C). Choose U C X(p) an a- noid neighborhood of zg, which is small enough so that
U N W is regular, and equal to U N C. By Lemma 2.9, we may find a modular point z in U
that furthermore belongs to X™°9’, by construction z € U N W = U N C. We are going
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to apply Theorem 2.11 to this point . Note that for each associated refined modular point

(2,) € £(p).
2.1) Im ( dpr, : Tia,s)(6(5) — Ta(X(5)) ) C Tu(C).

Indeed, let U, s C &(p) be an a- noid neighborhood of (z,d) in &(p) asin §2.7. As Z is
Zariski-dense in U, ; we have pry(Uzs) C W. Thus if U, s is chosen small enough, then
pri(Uss) CUNW = UnNC,and (2.1) follows. As a consequence, Theorem 2.11 implies
thatdim 7, (C) > 6[F : Q]. As z is a smooth point of C, it follows that C'itself has dimension
at least 6[F : ], and we are done.

The end of the paper will be devoted to the proof of Theorem 2.11. As explained in the
introduction, there are two important ingredients, treated in the next two chapters. The first
one is a purely local result on the deformation space of a crystalline representation, and
the other one a geometric property of eigenvarieties at non-critical classical points. As a
motivation, the reader may already have a look to the end of the proofin §5.1.

3. The linear span of trianguline deformations

3.1. The setting

Let L be a finite extension of Q,, Gg, = Gal(@p /Qp), n > 1 an integer and let V be a
continuous L-linear representation of G, of dimensionn. If m € Z, weset V(m) = V@ x™
where x : Gg, — Zj is the cyclotomic character.

Denote by & the category whose objects are the finite dimensional local Q,-algebras A
equipped with an isomorphism 7 : A/m4 — L (so A has a unique structure of L-algebra
such that 7 is L-linear), and whose morphisms are the local L-algebra homomorphisms. Let

Xy : G — Sets

be the deformation functor of V to &. Recall that for an object A of G, Xy (A) is the set
of isomorphism classes of pairs (V4, ) where V4 is a free A-module of rank n equipped
with a continuous A-linear representation of Gg, and 7 : V4 ®4 L = V is an L[Gg,]-iso-
morphism. Assume that Endg,, (V) = L and that Homg, (V,V(-1)) = 0, so that
H'(Gg,,Endg(V)) = 0ifi > 2 and dim; H'(Gg,,End(V)) = n? + 1 by Tate’s
results on Galois cohomology of local fields. By standard results of Mazur [32], Xy is
pro-representable, formally smooth over L, of dimension n? + 1:

P(141'3%31&.2. — Xy ~ Spf(L[[Xo, - , Xnz]]).

Our main aim in this section will be the study and comparison of a collection of subfunc-
tors of Xy when V is crystalline in the sense of Fontaine. Two of them are the subfunctors
of crystalline and Hodge-Tate deformations, but we shall actually mostly be interested in an
additional collection of subfunctors introduced in [1, Chap. 2] under the name of trianguline
deformation functorsThey are some sorts of analogues of the ordinary deformation functors
of an ordinary representation defined by Mazur but that apply to any crystalline represen-
tation; they depend on the datum of a rePnemenbf the crystalline representation. In rank 2
they are close to the h-deformation functors previously defined by Kisin in [29]. They belong
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to an even more general collection of paraboline deformation functorehat we define and study
below using the theory of (¢, I')-modules over the Robba ring.

3.3. Paraboline deformation functors of (¢, I')-modules over the Robba ring

Let A be a finite dimensional Q,-algebra, equipped with the topology given by any norm
of Q,-vector space on A. Recall that the Robba ring with coe- cientsin A is the A-algebra R 4
of power series

f= Zan(z— n*, a, € A,
neEZ
converging on some annulus of C, of the form r(f) < |z — 1| < 1. It is a topological
A-algebra, namely an inductive limit of projective limits of a- noid algebras. It is equipped
with A-linear commuting actions of ¢ and I := Zj, given by the formulae ¢(f)(z) = f(2P)
andy(f)(z) = f(27), the action of T being continuous. We set £ = Rq,,s0 R4 = R®q, A.

A (p,T)-module over R 4 is a finite free £ 4-module D equipped with commuting semi-
linear actions of ¢ and T, such that £p(D) = D (“non degeneracy of ¢”) and such that
the action of " on D is continuous.® We refer to [, §2.2] for a summary of the basic facts
concerning the theory of (¢, I')-modules over the Robba ring. If V' is a Q,-representation
of Gq,, denote by D,iz(V) its associated (¢,I')-module over X. Recall that the functor
V = Dyig(V) is a tensor equivalence between the category of Q,,-representations of G, and
étale (p, I')-modules over £ (Fontaine, Colmez-Cherbonnier, Kedlaya). In this equivalence,
if V' is a Q,-representation of Gg, equipped with a Q,[Gg,]-linear action of A, then V' is free
as A-module if and only if Dz (V) is a (¢, T")-module over £ 4 by [1] Lemma 2.2.7.

Let D be a (o, T)-module over Ry, and let # = (Fil;(D));ecz be an increasing filtration
of D by (¢, T')-submodules of D, each Fil; (D) being a direct summand as &, -submodule. As
a convention, we shall always assume that such filtrations are normalized so that Fil;(D) = 0
ifi <0and, fori > 1,if Fil;(D) = Fil;_;(D) then Fil;(D) = D. Let us define the paraboline
deformation functorof D associated to &

Xp,gp: € — Sets

as follows. For an object A of & define X, »(A) as the set of isomorphism classes of triples
(Da,Fil;(Da), ) where D4 is a (¢, T')-module over R 4, Fil;(D 4) is an increasing filtration
of D4 by (p,T')-submodules over R4 of D, each Fil;(D,4) being a direct summand as
R 4-submodule, and where 7 : D4 ® 4 L = D is a (¢,T')-module L-isomorphism such that
for each ¢ > 0 we have 7(Fil;(D4)) = Fil;(D). To be explicit, by an isomorphism between
two such triples we mean a ® 4-linear isomorphism ¢ : D4 — D’, commuting with ¢ and
I', mapping Fil; onto Fil;, and such that 7 = 7’ - 4.

When Fil;(D) = D then Xp » is simply the deformation functorof D, and we
shall simply denote it by Xp. When Fil; is a complete flag in D, i.e. rky, (Fil;(D)) =i
fori=1,...,1kg, (D), Xp, » has been studied in [1, §2.3] under the name of trianguline or

® It means the following. Fix an ®K-basis of D and for v € T' let M., be the matrix of . Then the coe- cients of
all the M., v € T, have to converge on some fixed annulus 7 < |z — 1| < 1, and for any r < ' < 1in p@ the
map vy — My, ' — My, (0[r,r’]) is continuous, where O[r, r’] is the a- noid algebra of analytic functions on the
annulus r < |z — 1] < 7/ for the sup. norm.
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triangular deformation functor of D. In the case D = D,z (V) is étale, then — +— Dyig(—)
induces an equivalence Xy — Xp by [I, Prop. 2.3.13], and we shall set as well

Xy,p=Xv Xz, Xp g

(= Xp,»). When furthermore each Fil; (D) is étale, hence is the Dy, of a unique Galois sta-
ble filtration Fil;(V'), then Xy, »(A) coincides with the isomorphism classes of deformations
of V to A equipped with some Galois stable filtrations over A lifting Fil;(V'); however, there
is no such description for a general .

By a well-known result of Mazur [32, Prop. 1], Xp is pro-representable if End(,, ry(D) = L
and D is étale. Let End, 1) »(D) be the L-vector space of (o, I')-module endomorphisms
of D preserving Fil;(D) for each .

P(141'3%31&.4. - Xp » admits a versal pro-deformation. [End , 1y »(D) = L, then
it is pro-representable.

Proof. — Set F' = X . We obviously have |[F/(L)| = 1. Let A” — Aand A” — Abe two
morphisms in &. By Schlessinger’s criterion [36] we need to check that the natural map

(32) F(A, XA AN) — F(A/) XF(A) F(A,)

is bijective whenever A” — A is surjective.

Let E : © — Ens be the following functor: for an object A of G, let E(A) be the set
of (p,T')-module structures over £ 4 on the £ 4-module D ®;, A that preserve the constant
Pltration Fil;(D) ®, A and that induce the (¢, I')-module structure of D via the given map
A — L.Forall A, A’ and A”, we claim that (3.2) is bijective when F is replaced by E. Indeed,
Rarx jar = ye’A X g, Rar,andif R(A) denotes the “parabolic” £ 4-algebra of £ 4-module
endomorphisms of D ®j, A preserving Fil;(D) ® A, then R commutes with finite fiber
products in & as well. Moreover, if we fix some basis (e;)7; of D adapted to the filtration
Fil;(D), then it is equivalent to give an element of E(A) and a collection of matrices M,,
for x = ¢ or in T, lifting the matrices in M,,(#£1) defined by the (¢, T")-module structure
of D, and satisfying y(M,)M, = x(M,)M, for all z,y € {p,7 € T'}. Indeed, the non
degeneracy of ¢ and the continuity of I follow automatically from these properties for D.

Set R*'(A) = Ker(R(A)* — R(L)*), the group R'(A) acts by conjugacy on E(A)
and we have F(A) = R'(A)\E(A) by definition. If A” — A is any surjection in @, then
RY(A”) — RY(A) is surjective as well, as parabolic subgroups of GL,, are smooth over Q,.
Moreover, R! obviously commutes with finite fiber products in @. It follows at once that
(3.2) is surjective whenever f : A” — Ais. It is even bijective if for all x € E(A”), the group
homomorphism induced on stabilizers

(3.3) RY(A")s — RY(A)p(5)@)

is surjective (these observations really are Mazur’s, see [32, p. 390]). This is clearly satisfied
if A = L as the latter stabilizer is trivial. As a consequence, conditions (H1) and (H2) of
Schlessinger hold. In particular F'(L[¢]) is an L-vector space and we shall see in Prop. 3.6
below that it is always finite dimensional (contrary to E(L[e]) in this (p, I')-module context),
hence (H3) and the first part of the statement follow. When End, 1y #(D) = L, then
R'(A), = A* for any A and x € E(A) by Remark 3.5 below, hence (3.3) is surjective, and
(H4) holds. O
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RO,#(8 3.5. — If End(, 1), »(D) = L, then a simple induction on the length of A
shows that for each element (D 4, Fil;, w) of Xp »#(A), we have End(, ) (ri1,)(Da) = A. In
particular, X, »(A) is in canonical bijection with the isomorphism classes of pairs (D 4, Fil;)
lifting D with its filtration (forgetting the 7).

If Dy and D, are two (¢,T’)-modules over Ry, then Homg, (D1, D7) has a natural
structure of (¢,T")-module as follows: for any v € Homg, (D1, Ds), set y(u)(z) :=
y(u(y~1(x))) and o(u)(¢(z)) := ¢(u(z)). This last formula defines a unique element
¢(u) € Homg, (D1, Ds) as Dy admits an Rp-basis in ¢(D1) by definition. In particular,
Endg, (D) is a (¢, I')-module of rank n? over &1, and we check at once with the formulas
above that the & -submodule

End (D) := {u € Endg, (D), u(Fil;(D)) C Fil;(D) Vie N}
isa (¢, T')-submodule of End &, (D) (which is actually a direct summand as &, -submodule).
For i € Z we set gr;(—) := Fil;(—=)/Fil_1(=). If n; = rk ¢, (gr;(D)), we obviously have
(3.4) rkg, (Endg(D)) = > nin;.
(59

We refer to [19, §2] and [31] for the main properties of the cohomology of (¢, T')-modules
over R, that we shall denote by H{,, (). In particular, H{), ., (End»(D)) = End(, ) ¢(D)
and H@’F)(End@(D)) is dual to the L-vector space of (p,I')-morphisms D — D(-1)
preserving P.

P(141'3%31&.6. — (i) If Hom(, r)(gr;(D), D/Fil;(D)) = 0 for eachi, thenXp, 4 is
a subfunctor ofX p.
(i) There is a natural isomorphist p »(L[e]) = H,, 1) (Endy(D)) and

dimp, Xp o(Lle]) = dimy, HY, 1 (Endg(D)) + dimp HY, 1 (Endp(D)) + > nin;.
1<j

(iii) If Hf, 1) (Endp(D)) = 0thenXp, » is formally smooth over.

Proof. — Part (i) follows as in [1, Lemma 2.3.7]. The second part of (ii) follows from the
first one, (3.4) and the Euler characteristic formula of Liu [31]. Let us check the first part of
(i1). It is a semi-linear analogue of a well-known fact in the context of group representations.
Using the notations of the proof of Prop. 3.4, for all A we have a natural identification
Zp o(4) = R1(A)\E(A).

Consider the R [e]-module Dy := D ®r, Lle] = D @& €D equipped with its constant
filtration as in the proof of Prop. 3.4. Any element of E(L[e]) is given by unique elements
¢« € Endg (D), where x = ¢ or v € T, satisfying the formulas

V() == () + ey (v(2))e, B(z) = (2) + cp(p(z))e, Vo €D CD@deD.

Note that the map c,, (resp. ¢,) is well-defined as D admits an R -basis in ¢ (D) (resp. as v
is bijective on D). A straightforward computation shows that the commutation of ¢ and 5
is equivalent to the relation (¢ — 1)cy = (v — 1)c, in Endg(D), for the (¢,I')-module
structure recalled above on End (D). The continuity of the action of I' is automatic, as
well as the non degeneracy of @. Moreover, * preserves each Fil; D ® , L[e] if, and only if,
¢« € Endgp(D). In other words, ¢, is a 1-cocycle in End»(D) and E(L[¢]) coincides with
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this space of cocycles. Another straightforward computation shows that two such lifts are
isomorphic in Xp »(L[e]) = E(L[e])/R'(L[e]) if and only if the associated 1-cocycles c,
and ¢, di. er by (x — 1)u for some v € Endg(D) independent of *, hence a coboundary,
which concludes the proof of (ii) (the L-linearity part of the statement is immediate).

For part (iii), let A be an object of &, m its maximal ideal, and I an ideal of A such
that mI = 0. Fix an element of E(A/I), hence a R, ,;-linear (¢,T')-module structure
on D®y, A/I preserving Fil;(D)®y, A/I, and consider the problem of lifting this structure to
an element of F(A). First, we may certainly lift the actions of ¢ and of I to D ® A in such
a way that they preserve Fil;(D) ®p, A. If ¢ and 7 denote such a lift, consider the # -linear
map (@,7) € Endg(D) ®p, I defined by the formula

Vz e D@L A, (97 —79)(z) = (£,7)(¢7(Z)),
where 7 is the image of  in D. This map (3, 7) is well-defined as ~ is bijective on D and as
D admits an R-basis in p(D). The elements & and 7 are uniquely defined up to adding any
elements u(¢(7)) and v(y(7)) where u,v € End»(D) ®, I, and

@+ u(e(),7+0(y()) = (&N + (@ —v—(y - 1u.
This concludes the proof as H(Z%F) (End»(D)) = Endgp(D)/(¢ — 1,7 — 1)End (D). Note
that as in the classical case, it is straightforward to check that the set of lifts is either empty
or an a- ne space under H(l%F)(End@(D)) ®r 1. O

Let I C N be the (finite) subset of jumps of the filtration Fil;, i.e. the integers ¢ such that
gr;(D) # 0. There is a natural functor morphism Xp g — [];c; Xgr,(p) sending an object
(Da, Fil, ) to (gr;(Da), gr;(7))ier-

P(141'3%318&.7. - It H?, |, (Homg(D/Fili(D),gr;(D))) = 0 for each 4, then

Xp,» = licr Xgr,(p) is formally smooth. In particular, it is surjective on points.

Proof. — The proposition is obvious when |I| < 1 so assume that |I| > 1. Considering
the filtration Fil' on D such that Fil';(D) = Fil;(D) for j the biggest integer such that
Fil;(D) # D, Fily(D) = D, and arguing by induction on |I|, we may assume that I = {1, 2}.
So D is an extension of D, := D/Fil;(D) by Dy := Fil; (D), which defines a unique class
c € H(l%r) (Homg(D1, D5)). Let A be an objet of &, m its maximal ideal, and I an ideal
of A such that mI = 0. Fix (U,Fil;(U),n) € Xy p(A/I), it defines as above an element
car € H(l%F)(Hom%(U/Fill(U)7 Fil; (U))) that maps to ¢ modulo m. For ¢ = 1,2, choose
(D}, m;) € X%p,(A) lifting respectively U/Fil; (U) and Fil; (U). We have to show that the
natural map

H{, ry(Homg (D}, Dy)) — H{,, r)(Homg(U/Fil (U), Fil (U)))
is surjective. But its cokernel injects into H (Q%F)(Homge(Dl, D»)). O
E5#,460 3.8 (The rank 1 case). — Let A be an object of & and leté : Q;, — A* be a
continuous character. We denote by £ 4(8) the (p,T')-module of rank 1 over 4 having a
basis e such that ¢p(e) = d(p)e and y(e) = d(y)e for all v € T'. By [I, Prop. 2.3.1], each

(¢, T')-module of rank 1 over R 4 has the form % 4(d) for a unique character § as above. In
particular, if D is a (¢, I')-module of rank 1 over R, then Xp ~ Spf(L[[X,Y]]).
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3.9. Crystalline (¢, I')-modules

If D is any (¢, ')-module over R, we set Derys(D) = (D[1/t])T, where t = log(z) € R.
As R is a domain and Frac(®)" = Q,, a standard argument shows that

(3.5) Derys(D) @1, Ri[1/t] — D[1/1]

is injective for any D, so we have dimg, Derys(D) < 1kgD. Mimicking Fontaine, we
say that D is crystalline if the equality holds. By left exactness of — +— D,ys(—), any
(¢, T')-module subquotient of a crystalline D is also crystalline. Note that De,ys(D) has a
Qyp-linear invertible action of ¢.

LO,,# 3.10. — Let D be a(¢,I')-module over® . The map
D' — Derys(D")

induces a bijection between the set of crystallife, I')-submodules ofD which are direct
summand ask;-module, and the set ap-stable subspaces &..s(D). The inverse bijection
isSW — (R[1/t]- W) N D.

Indeed, a (¢,I')-submodule D’ C D is a direct summand as £7-module if, and only if
D’ = D'[1/¢] N D by [1, Prop. 2.2.2], so the lemma follows from (3.5). In particular, there is
always a biggest crystalline (¢, I')-submodule of D, namely (®[1/t] - D[1/¢]') N D. Further-
more, when D is crystalline then Lemma 3.10 induces a rank preserving bijection between
the set of filtrations of D as in §3.3 and the set of increasing filtrations (Fil;);cz of Derys(D)
by -stable Q,-vector space (normalized with the same conventions as before), we shall often
identify such filtrations below. In particular, the paraboline deformation functors of D can
(and will) be viewed as attached to such filtrations.

Consider the following properties of a crystalline (¢, I')-module of rank n over R

(i) ¢ has n distinct eigenvalues in L* on De,ys(D).
(ii) For any two such eigenvalues ¢, ¢’, we have ¢'¢~1 # p.
(111) End(%p)(D) = L.

C1(166#(" 3.11. — Let D be a crystalline(y, I')-module over®;, satisfying (i), (ii) and
(iii). Then each paraboline deformation functéi, » of D is a pro-representable subfunctor
of Xp, formally smooth overL of dimensiornck ¢, (Endg(D)) + 1.

Proof. — The pro-representability follows from Prop. 3.4 and (iii). As D is crystalline,
remark that Hom, ) (D, D’) C Homp o) (Derys(D), Derys(D")) for any (¢, T')-module D’
over K1,. By Prop. 3.6, the subfunctor property follows from (i) and the formal smoothness
from (ii). O

For any D, Berger defines as well a decreasing, exhaustive, filtration on De,ys(D) called
the Hodge-pltration that we shall denote with upper indices Fil° for i € Z (see [3], [4],
as well as [1, §2.2.7]). A first important result of Berger is that when D = D,;(V), the
filtered p-module PDe,ys(D) is canonically isomorphic to the classical De,ys(V) defined by
Fontaine. In particular, V is crystalline if, and only if, D is. Another beautiful result of
Berger [4] is that D +— D.,s(D) induces an exact ®-equivalence of category between the
category of crystalline (o, I')-modules over & and the category of filtered p-vector space,
¢tale corresponding to weakly admissible.
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Let D be a crystalline (¢, I')-module over ®y. Define Xp orys C Xp as the subfunctor
of deformations (D4, 7) such that D, is crystalline, viewed as (¢, I')-module over R. As
the crystalline (¢, I')-modules are stable by direct sums, subquotients, and tensor products,
XD erys — Xp is relatively representable (Ramakrishnan’s criterion).

P(141'3%31&.12. — Let D be a crystalline(,, I')-module overR ..

(a) If D is equipped with an action of an objegt of &, thenD is free as® 4,-module if and
only if Fil'(Derys(D)) is free asA-module for eachi € Z.

(b) The functor — — 9D,ys(—) induces a canonical bijection betwe&p ,ys(A) and the
set of isomorphism classes of paitE 4, 7) whereE 4 is a blteredA[y]-module such that
Fil'E, is free and direct summand a4-module andr : E4 ®4 L = Derys(D) is an
A-linear isomorphism in the category of blterestmodules.

(c) If D satisbes propertieé) and (iii) above, thenXp .,y is formally smooth overL of

dimension
1 + Z nmj,
i<j

wheren; = dimy, Fil'( Derys (D)) /Fil'™ ! (Derys (D)) for all i € Z.

Proof. — Part (a) holds by the same proof as [, Lemma 2.2.7]. Part (b) follows from (a)
and Berger’s equivalence. Using (b), part (c) is a simple exercise on deformations of filtered
p-modules using (i) and (iii) that is left to the reader. O

Let D be a crystalline (¢,I')-module over &y, and let W C Deyys(D) be an L-subvec-
torspace. We say that W is non-critical (in Derys (D)) if there exists an integer j € Z such that
Derys(D) = W @ Fil (Derys (D). If P = (Fil;) is a p-stable filtration of De,ys(D) as above,
we say that & is non-critical if Fil; is non-critical for all i > 0.

P(141'3%31&.13. — Let D be a crystalline(p, T')-module over®;, satisfying (i) and
(iii). For any non-critical bltration?, we haveXp crys C Xp o

Proof. — By (i), Xp » is a subfunctor of Xp. Fix (Da,7) € Xpis(A) and let
W C Derys(D) be an element of #. By (i) again, there is a unique ¢-stable A-submod-
ule W4 C Derys(Da) which is free over A and such that 7(W,4) = W. Note thatif W c W’
then Wy C W. Set Ta = (R[1/t]W4) N D, we will show that it is free over 4 and lifts
(R[1/)W) N D.

By Prop. 3.12 (a) and Berger’s equivalence, it is equivalent to check that if we equip
W4 with the induced Hodge-filtration of Derys(Da), then Fil'(Wa) is free over A for
each ¢ and lifts Fili(W). But if j is such that Filj(@crys(D)) & W = Days(D), then
Fil! (Derys(Da)) @ Wa = Derys(Da) by Nakayama’s lemma, and the result follows. O

Let D be a crystalline (o, T')-module over &r. For the applications of this paper, the
most important paraboline deformation functors of D will be the ones associated to the
L[p]-stable filtrations # = (Fil;) of Derys(D) which are complete RBagsi.e. dimy, Fil; = ¢
for0 < i <rkg, (D). Such afiltration is called a rePnemendf D, and we shall usually denote
them by the letter &. Via Lemma 3.10, refinements of D correspond to triangulations of D
in the sense of Colmez [19]. Note that D admits a refinement (or a triangulation) if and only
if the characteristic polynomial of ¢ on De,ys(D) splits in L. Before stating the main result

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



988 G. CHENEVIER

about the trianguline deformation functors of D, we need some preliminary remarks about
the extension of Sen’s theory to (¢, I')-modules.

For any (¢, T')-module D over &, it makes sense to consider its evaluation at a p™-th root
of unity for any su- ciently big n, which defines a semi-linear I'-module Dgen(D) of rank
rk D over Q,(upe) by extending the scalars (see e.g. [1, §2.2.7]). The characteristic polyno-
mial of the Sen operator of Dgep, (D) will be denoted by Pge,, (D), its eigenvalues are called the
(generalized) Hodge-Tate weights of D. As in the classical case, let us say that D is Hodge-
Tate if its Sen operator is semi-simple with integral eigenvalues. If D is crystalline, it is Hodge-
Tate and its Hodge-Tate weights are the jumps (with multiplicity) of its Hodge-filtration.
When D is a (¢, T')-module over R 4, then Dgen (D) is a free A ®g, Qp(pp)-module, hence
we may also consider the relative characteristic polynomial Psep /4 (D) of the Sen operator
viewed as an A-linear endomorphism.

Let D be a Hodge-Tate (¢, T')-module over &1, There is a relatively representable sub-
functor Xp sen C Xp parameterizing deformations D4 which are Hodge-Tate, viewed as
(p,T)-module over K. For any D, the relative Sen polynomial induces a natural functor
Psen : Xp — (@a)d, this latter space being identified with the completion at Pge, (D)
of the (a- ne) space of monic polynomial of degree d. The following lemma is easy
([1, Lemma 2.2.11, Prop. 2.3.3]).

LO,# 3.14. - (a) If0— D — D' — D” — 0is an exact sequence 6p, I")-modules
overR 4, thenPsen /4 (D’) = Psen/a(D)Psen a(D”).

(b) If 6 : Q;; — A*isacontinuous characteRsen 4 (Ra(0)) = T+ (%) - In particular,

[y
if D has rankl over ®;, thenPg.,, : Xp — G, is formally smooth.
Consider the following property:
(iv) Psen;r(D) hastky, distinct roots in Z.

Under (iv), Xp gen i simply the locus of Xp defined by Pgen, = Pgen (D). When D is
crystalline, Xp crys C XD Sen-

P(141'3%31&.15. — Let D be a crystalline(¢, I') module of rankn over &, satisfying
(1), (11), (ii1) and(iv) above. LetY be a non-critical rebnement db.

Then Xp orys and Xp o are pro-representable subfunctors &fp, and they are formally
smooth overL of respective dimensioA” + 1 and ") + 1. The morphismPs., is
formally smooth andXp c;ys = Xp sen X%, Xp,o. In particular, we have an exact sequence
on tangent spaces:

0= XD crys(Lle]) = Xp,g(LIe]) 5" L™ — 0.
Proof. — Thisis [I, Thm. 2.5.1, Thm. 2.5.10]. Here is a slightly di. erent proof. The first
assertion follows from Cor. 3.11, Prop. 3.12 (c) and Prop. 3.13, as well as the inclusion
xD,Crys C xl = xD,Sen X%p xD,g'

The formal smoothness of Pgen follows from Lemma 3.14 and Prop. 3.7. It implies the
surjectivity of Pge, in the sequence of the statement, as well as the exactness of the whole
sequence for dimensions reasons. It also implies that X’ is formally smooth over L, hence
that Xp crys = X’ as they have the same dimension. O
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The other kind of paraboline deformation functor that will play a role in the sequel is
the “miraboline” case. Assume that D is a crystalline (¢, I')-module over R, satisfying (i)
and let ¢ € L* be an eigenvalue of ¢ on Derys(D). By Lemma 3.10, there is a unique
(¢,T')-submodule Dy of rank 1, as well as a unique (¢, I')-module D? of rank n — 1, both
direct summands as &1 -modules, such that

@cryS(D¢)¢=¢ #0 and @Crys(D/D¢)SD=¢ #£0.

Consider the filtration %, (resp. ¢¢) of D whose unique proper subspace is Fil; = Dy
(resp. Fil; = D?). It will be convenient to modify a little bit those functors by fixing some
Hodge-Tate weight. Assume that (iv) holds and let k1 < ko < --- < k,, be the Hodge-Tate
weights of D. We define X p,¢| (resp. Xp 1) as the subfunctor of X o, (resp. X, 4 ) defined
by PSen(kl) = 0 (resp. PSen(kn) = 0).

P(141'3%31&.16. — Assume thatD is a crystalline (p,T')-module of rankn over %,
satisfying (i), (ii), (iii) and (iv) and let¢ be an eigenvalue @b on De,ys(D). ThenXp 4, is a
pro-representable subfunctor &, formally smooth overL of dimensiom? — n + 1.

Assume that,ys (D)?=? is non-critical in Deyys (D). TheNX p crys € Xp, ). Furthermore,
for any objectA in &, Xp 4, (A) is the subset o{D4,7) € Xp(A) such that there exists

5 e A* lifting ¢ and such tha@crys(DA)*”:¢’ is free of rank1 over A.

Proof. — By Lemma 3.11 (i), Xp ¢, is a subfunctor of Xp, formally smooth over L of
dimension n? — n + 2. The assertion on Xp 4| follows from this, property (ii), Prop. 3.7 and
Lemma 3.14. The inclusion Xp crys C Xp,¢| follows from Prop. 3.13.

Before checking the last assertion, remark that for an element (D4, Fil;, 7) € Xp g, (A),

and ¢ € A* lifting ¢, the natural inclusion induces a bijection

(3.6) Derys(Fili(Da))?=? = Derys(Da)#=7.
Indeed, — — @Crys(—)“’:¢ is left exact over the category of (p,T')-modules over £ 4 and
@CryS(DA/Fill)*”:g vanishes by a dévissage as De,ys(D/Fil; (D))¥=% = 0.

Let us check the last assertion. Define X’(A) as the subset of (Dy4,n) € Xp(A) having
the property given in the statement. Assume first that (D4, Fil;, ) € Xp g (A). Write
Fil; =~ Ra(d) for some character § : Q, — A" As Derys(Dg) 1s non-critical
Psen/,(Dy) = T — k1, so the reduction § : Q5 — L* of § modulo m, is the algebraic
character z — z~ %1 over Zy (Lemma 3.14 (b)). As k; is a simple root of Pgen (D) by (iv),
the assumption Psen 4 (D) (k1) = 0 and Lemma 3.14 ensure that

Psen/a(Fili(Da)) = Psen/a(Ra(9)) =T — k1.
This implies that §(z) = 2 =% for any = € Z, so Fil; (D) is crystalline, hence a crystalline
deformation of Dy. By (3.6), this implies that (D4, 7) € X'(A) (even with ¢ = &(p)p~*1).
We now check the other inclusion X'(A) C Xp ¢, (A). Fix (Da,m) € ¥'(A) and let
¢ € A* be as in the statement. We claim first that

Fil' (Derys(DA)P=%) = 0 for all i > ki.

Indeed, let us argue by induction on dim, A. It holds when dimy, A = 1 as Dy is non-critical.
When dimy, A > 1 we may find an ideal I C A of L-dimension 1, and as D 4 is free over R 4
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we may consider the exact sequence 0 — IDy = D — D — D45 — 0 of (¢, I')-modules
over &1, (and of R 4-modules). Applying @crys(—)‘/’zg we obtain for any ¢ an exact sequence
0 — Fil° Derys(D)9=% — Fil* @Crys(DA)S":g — Fil* @CryS(DA/I)“’zg from which we get
the claim by induction. As a consequence, the crystalline (¢, I')-submodule Dy, C Dgu
corresponding to the filtered submodule Derys(D A)V’:g is free over £ 4 by Lemma 3.12. The
natural map 7 : D’y — D surjects onto Dy as it is so after applying Derys(—), and we are
done. (For an alternative argument, see [|, Lemma 2.5.2].) O

RO,#(8 3.17. — The duality E — EY = Homg,(E,R4) on (¢,I')-modules F
over & 4 induces an isomorphism ¢ : Xp = Xpv. Note that DV satisfies (i), (ii), (iii), or (iv) if
D does. If P is a filtration on D, then there is a natural dual filtration " on DV. When D is
crystalline, & is non-critical if and only if #" is. The isomorphism ¢ induces an isomorphism
Xp.o = Xpv v, as well as an isomorphism Xp 41 = Xpv 4-1, (when it makes sense). In
particular, the proposition above has an obvious analogue for Xp »1 whose statement is left
as an exercise to the reader.

3.18. The main theorem

Let D be a crystalline (o, T')-module of rank n > 1 over K. We say that D is generic
if it satisfies (1), (i) of § 3.9, and if all of its n! rePnements are non-criticaAs we shall see
below, such a D necessarily satisfies (iii) and (iv) as well. In the algebraic variety of all filtered
p-modules of dimension n over L whose filtration admits n jumps, the generic condition is
Zariski-open and Zariski-dense.

Let us denote by t the tangent space X p(L[e]), and for x € {F, ¢ |, crys. ..} let t, denote
the tangent space Xp .(L[e]). By Lemma 3.11, t contains the L-subvector-space ty for any
of the n! refinements & of D.

T/01(0, 3.19. — If Dis genericthernt = >, tq.

In other words, any Prst order deformation of a generic crystalline representation is a linear
combination of trianguline deformations

We will actually prove a more general statement, whose formulation requires some more
definitions. Let I C {1,...,n} be a non-empty subset and denote by i; < --- < i, its
elements. An element o in &,, will be called an ordered cycleon I if either o = (i1, 42, ..., i)
oro = (ip,4r—1,...,%1). Byanestedequence of intervalsin {1, ..., n} we mean a decreasing
sequence of subsets

Li={1,...,n} DL D>---DI,

such that foreach 1 <i <n —1, I, = I,_1\{y;} where y; € {Min(J;_1), Max(l;_1)}. Such
a sequence is uniquely determined by the sequence (y;) entering in its definition. For each
1 <i<n—1wedefine as well an element y € {1,...,n} by {y;, ¥} } = {Min(l;_1), Max(l;_1)}.

We will say that a sequence of n permutations og, 01, ...,0,_1 € &, is nestedf oy = id
and if there exists a nested sequence of intervals (I;) of {1,...,n} such that

Vi € {1,...,’!1—].}, 0; = Ci0i_1,
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where ¢; is the ordered cycle on I;_; such that ¢;(y}) = y; (the y; and y; being associated

to I; as above). For n > 1 there are exactly 2”2 nested sequences in &,,. For instance, id,

(1, 2, 3), (2, 3)(1, 2, 3) and id, (3,2,1), (1, 2)(3, 2, 1) are the two nested sequences in Ss.
We will say that a sequence of 2n — 1 permutations

00,01, O'T, 02, 0;, ey On—1, 02_1 S Gn
is weakly nestedf o = id and if there exists a nested sequence of intervals (I;) of {1,...,n}
such that
Vie{l,...,n—1}, o0;=m0,—1 and o] =c¢;04_1,

where ¢; is the ordered cycle on I;_; such that ¢;(y) = y;, and where 1; € &,, is any element
such that 7;(y}) = y; and such that 7;,(j) = jforallj € {1,...,n}\I;_;. For example,
the nested sequence of intervals defined by y; = ¢ for each ¢, and the elements 7; = (4, n)
for 1 < ¢ < n — 1, define a unique weakly nested sequence in G,,.

Of course, a nested sequence defines a weakly nested sequence if we set o] = o;, but there
are far more weakly nested sequences in general. When 7;(y;) # vy forl < i <n—1(so
for most weakly nested sequences, but not for the one in the example above), note that the
elements o; determine uniquely the nested sequence of intervals entering in their definition,
hence the o as well.

Let D be a crystalline (¢, T')-module of rank n over &, satisfying (i). Any refinement
& of D determines an ordering (1, ..., ¢s,) of the eigenvalues of ¢ on Derys(D) defined
by det(@|Fit, (Derye (D)) = H§=1 ;, which of course determines &, so we shall also write & =
(15, %n). In particular &,, acts on the set of refinements of D, via o((¢:)) = (¢o-1(:))>

this action being simply transitive. We say that a sequence of refinements ¥,..., 5,1 is
nestedf there exists a nested sequence of permutations o; of &, such that &; = 0;(¥) for
each i. We say that a sequence of refinements 7, 71,7, ..., Fn_1, 7, _; is weakly nested

if there exists a weakly nested sequence of permutations o;, o of &,, such that #; = 0;(¥9)
and ;] = 0} (Fo) foreachi=1,...,n— 1.

T/01(0, 3.20. — Let D be acrystallingp, I')-module of rankn over®, satisfying(i) and

(). If Fo,F1,F1,...,Fn_1,T,_, is a weakly nested sequence of non-critical reenements
of D, thent = 37}t

In particular, if Yq,...,%,_1 is a nested sequence of non-critical rePnement®othen
t=S""to,.

Note that this result implies Theorem 3.19. Let us settle first the underlying representabil-
ity questions (property (iii)).

LO,# 3.21. — Let D be a crystalline(p, I')-module satisfyingi). If D admits a weakly
nested sequence of non-critical rebnements, ttinand(iv) hold. Any subquotient of a generic
(¢,T)-module is generic.

Proof. — If D admits a non critical refinement, then (iv) is easily checked. By (i),
End(,,r)(D) C Endpy)(Derys(D)) =~ L™ (a diagonal L-algebra), so (iii) for D is equivalent
to the fact that D is not the direct sum of two (p, I')-modules over R, .

Assume that D = Dy & Do and let by < ko < --- < k, be the Hodge-Tate weights
of D. This defines a partition {1,2,...,n} = A[[Bbyi¢ € Aif and only if, k; is a
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Hodge-Tate weight of D;. Let (1, ..., ®,) be a non-critical refinement of D. Observe that
for all 4, ¢, is an eigenvalue of ¢ on De,ys(D1) if and only if ¢ € A: indeed, if (Fil;(D)) is
the triangulation of D associated to &, then for all j the jump of the Hodge filtration on the
line Derys(D/Fil;_1(D))¥=%5 is exactly k; as & is non-critical, and we are done by induction
on j. As a consequence, if & and o (&) are both non-critical, then o(A) C A. If o is a cycle,
A = @or A = {1,...,n}, which concludes the proof of the first part. The second part
follows at once. O

The remainder of this section is devoted to the proof of Theorem 3.20. Recall that for each
non critical refinement & we have an inclusion

tcrys - t(J - ta

with respective dimensions ”("2_1) +1, "("2+1) + 1 and n? 4 1. SO tg /terys i @ subspace
of dimension n inside t/teys, which has dimension % The idea of the proof is to show
that such an & being given, the tangent space of a suitable paraboline deformation functor of
type (n—1,1) or (1,n—1) is in direct sum with t modulo t.,ys, and then argue by induction
onrkg, (D) inthe (n — 1) x (n — 1) square. Note that even if we start from an étale D, we
will lose this property in the induction process, which justifies the generality adopted in §3.9.

In the following lemma, D is a crystalline (¢, I')-module over &, satsfying (i), (ii), (iii)
and (iv). Fix & a refinement of D and setc = (1, 2, ..., n) € G,,.

LO,# 3.22. — If ¥ andc(¥) are non critical, and if¢ is the last element of7,
t=tg +ty) and tg Nty = terys-

Similarly, if 7 andc™! () are non critical, and ifg is the brst element o7, thent = to + ty;
andtg Nter = terys-

Proof. — The second part follows from the first one by duality by Remark 3.17, so we
focus on the first part. First of all, by Prop. 3.15 and 3.16, teys C to Nte) and

n(n+1)
2
(Prop. 3.15 applies as Derys(D)¥$=? is non-critical, since ¢ is the first eigenvalue of the non

critical refinement ¢(¢).) Thus it only remains to show that tg Nty C terys. As & is non-
critical, it is enough to show that

3.7) dim(tg /berys) + dim(tg) /torys) = = dim(t/berys)-

(3.8) XpgNXp,g C XD sen
by Prop. 3.15. Fix an object A of @, let (D4,Fil;,7) € Xp s(A), and assume that
(Da,m) € Xp,4(A) as well. By property (iv), we may write

n

Pgen/a(Da) = [[(T — r:) € A[T],
i=1

where k; € A lifts k;. Choose QZ € A* lifting ¢ such that Deyys(D A)‘Pzg is free of rank 1
over Aand let 0 < j < n — 1. As ¢ is the last element of 7, Deyys(Fil;(D))¥=¢ = 0
and an immediate dévissage shows that De,ys(Filj(D4))?=? = 0. Applying the left exact
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functor @Crys(_)v:$ to the exact sequence 0 — Fil;(D4) — D4 — Da/Filj(Da) — 0
of (p,T')-modules over & 4, we obtain an A[y]-linear injection

(3.9) Derys(D4)*=% <> Deryo(D 4 /Fily (D 4))#=7.

On the other hand, as ¢ is an eigenvalue of multiplicity 1 in Dc,ys(D), another immediate
dévissage shows that the length of the A-module @CryS(DA/Filj(DA))‘P=¢ is < length(A),
thus (3.9) is an isomorphism. As ¢(¥) is non critical, the Hodge-Tate weights of D /Fil;(D)
are ki1, ..., kn and Derys(D/Fil;(D))?=% is non-critical in Depys(D/Fil;(D)). Thus
Prop. 3.16 applies, and shows that for the obvious n’ we have (D4/Fil;j(Dj),n’") €
Xp/ril, (D)6 (A). In particular,

Psen/a(Da/Filj(Da))(kj41) = 0.

AsPsenja(Da/Filj(Da)) = [Tij+1(T— ki) by Lemma 3.14, we conclude that ;11 = kj11
forall0 < j <mn — 1: Dy is Hodge-Tate, and we are done. O

We now prove Theorem 3.20 by induction on n = rkg, D. When n = 1 the theorem is
obvious as Xp g = Xp, soassumen > 1. Let 7o, 71,97, ..., Tn_1,,_; be a weakly
nested sequence of non-critical refinements of D. Applying the above lemma to & = &, we
obtain a fortiori

(3.10) f = to, + by

where either ? = P, and ¢ is the last element of ¥ (case o7 = ¢), or P = #? and & is
the first element of Jg (case 0f = c¢7'). Set D’ = D/Dy in the first case and D’ = D?
in the second case. By definition, for i = 1,...,n — 1 the refinements &; and & have the
form (¢, 7;) and (¢, F];*) (resp. (77, ¢) and (92*, ¢)) in the first case (resp. second case).
Moreover,
T T T T T

is a weakly nested sequence of refinements of D’. Each &/ (resp. 7} ") is non-critical for D’
as 7; (resp. ;) is non critical for D. As D’ obviously still satisfies (i) and (ii), we obtain by
induction:

n—1

(3.11) =ty

i=1
where t, = Xp/ . (L[e]). Note that fori = 1,...,n — 1 we have Xp &, C Xp ». By Prop. 3.7
and property (ii), the natural map X » — Xp- induces isomorphisms

(3.12) Xpg, =Xp.y X2, Xpr.g1-

By (3.11)and (3.12) we have tp = Z?Z_ll tg,, and we are done by (3.10). O
Another consequence of the proof of Lemma 3.22 is the following proposition.

P(141'3%31&.23 (Transversality of trianguline deformation functors)

Assume thatD satisbegi), (ii) and let7 and ' be two rebnements db. If &' starts with
the last element of7, and if 7, ¢(¥) and &' are non-critical, Xp o N Xp 4 is exactly the
subfunctor of deformations oD which are crystalline up to a twist.
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3.24. Some examples

Note that any (¢, ')-module of rank 2 satisfying (i), (ii), (iii) and (iv) is generic. The
following other example plays some role in the main global result of this paper.

E5#,460 3.25. — Assume thatD = D,;;(V) for some representatiofy” of dimension3
over L satisfying (i), (iii) and (iv). Then D admits a nested sequence of non-critical
rebnements.

Proof. — Let X be the set of Frobenius eigenvalues of ¢ on De,ys(V), and let ki < ko < kg3
be the Hodge-Tate weights of V. A line L C Dgys(V) (resp. a plane P) is critical if
L C Fil*2(Dys(V)) (resp. P D Fil® (D gy (V).

Assume first that there is some ¢ € X such that the line Ly := DcryS(V)‘P=¢ is critical.
Then we claim that there is a unique such ¢ in X and that no ¢-stable plane P C De,ys(V') is
critical. In particular, the critical refinements of D are exactly the two ones starting with ¢.
This implies the lemma in this case as each refinement of the nested sequence

(¢, 0.¢"), (¢",¢".9), (¢".6,¢)

is non-critical. If there is no critical line Ly as above, then either D is generic or there is a
-stable critical plane Ly @ L. It follows from the preceding claim applied to V* that in
the latter case such a plane is unique, hence the critical refinements of D are the ones ending
by ¢ and

(¢',0.8"), (6,¢",¢"), (¢".6,¢)
is a nested sequence of non-critical refinements, and we are done again.

Let us check the claim. As V' is indecomposable, D¢,ys(V') is not the direct sum of an
admissible line and of an admissible plane. Write X = {¢,¢’,¢”} and do not assume
anything about ¢ for the moment. If Ly @ Ly = Fil*2(Deys(V)), the weak admissibility
property of D,y (V') implies that Ly and Ly @ Ly are admissible, which is absurd. Similarly,
Ly # Fil*® (Derys(V)) otherwise Ly and Ly @ Ly would be admissible. Assume now that L,
is critical. If P is a p-stable critical plane, then P # Fil*?(Dy(V)) and P does not contain
L, by what we just proved, so P = Ly @ Ly and the jump indices of the Hodge filtration
on P are k; and k3. But weak admissibility implies that L and P are admissible, and we are
done. O

E5#,460 3.26. — Let D be a crystalline(¢,I')-module of rank2 over £, satisfying
(i), (ii)) and such that the ratior between its two Frobenius eigenvalues satiskPest 1
fori=1,...,n.

Then Symmy, (D) satisbegi) and all of its rePnements are non critical.

Proof. — We leave as an exercise to the reader to check that the statement follows from
the following claim: if I C {0,...,n} has i elements and if we have a polynomial identity
Q(z)(1 + 2)* = Y ,craix’ where a; € Land Q € L[] has degree < n + 1 — 4, then
@ = 0. To check the claim, consider the i successive derivatives at —1 of the right hand side.
This is a linear system in the unknown (a;);c; whose determinant (in absolute value) is the
Vandermonde determinant over the ¢ elements of 1. O
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Let us end this paragraph by introducing some regularity conditionsthat will arise for
technical reasons in the subsequent global applications. Let D be a crystalline (p, I')-module
over R, satisfying (i). We say that a refinement & = (1, ..., @, ) is regularif forall 1 < j < n,
the element o195 - - - ¢; is a simple root of the polynomial [];(7T" — [[;cr ¥:), the product
being over the I C {1,...,n} with [I| = 5.¢)

D023&3%31&7. — We say thatD is weakly generic and regular if it satisbP¢€s, (ii), and
if it possesses a weakly nested sequence of non-critical rePnerfi€nts7; } such that7; is
regular for eachi = 0,...,n — 1. If D = D,,(V'), we say thatV is regular if D is.

The condition of being weakly generic and regular is Zariski-open and Zariski-dense in
the algebraic variety of all filtered p-modules of dimension n over L (whose filtration admits
n jumps). This is actually still true if we restrict to filtered ¢-modules satisfying a self-duality
condition (orthogonal or symplectic, possibly with a similitude factor, in which cases the
filtration is fixed by a Lagrangian in L™). Indeed, set k& = [n/2], let (X;);=1,..x be some
indeterminates and consider the sequence s = (Xq,..., Xk, X,:l, .. ,Xfl) if n = 2k, or
s=(X1,..., X, 1, X7 ", ..., X7 ) if n = 2k + 1. Observe that s is regular (for the obvious
definition), moreover each permutation of s whose first k terms do not contain both some X;
and its inverse X; " is regular as well (for instance, there are 2¥k! such permutations when
n is even). We conclude as we may find a weakly nested sequence of permutations of &,,,
associated to the nested sequence of intervals y; = i, whose o; have the property above: for
instance take 7; = (¢,n — 4, n) for all i < k if n is even.

E5#,460 3.28. — Let D be generic of rank4 over #; and assume that it admits
rePnement of the fornfu, ux, ux?, px®) for someu,z € L*. If 27 # 1for 1 < j < 4,thenD
is weakly generic regular.

Proof. — The refinement & of the statement, F; = (ux?, pz, p, pr?), 7o = (pz3, pz?,
pr,p) and F3 = (uxd, px?, p, pz) form a weakly nested sequence of regular refinements
of D (associated to y; = 7). O

4. The eigenvariety at non-critical tempered classical points

Our main goal in this section is to show that the eigenvarieties of U(3) or even U(n) are
étale over the weight space at the (stable, tempered) non-critical classical points.

4.1. An infinitesimal classicity criterion

Let n > 1 be any integer and let U/F be a unitary group in n variables attached
to E/F. We need to recall some definitions of the theory of p-adic automorphic forms
for U. The reader may consult [12, §2] for a detailed discussion and complete proofs of the
statements of this section, as well as [10] and [1, §7.3]. We assume that U (F;,) is compact for
all Archimedean places v and that U(F,) ~ GL,(Q,) if v divides p. In particular p splits
in E and for each v in the set .S, of finite places of F' dividing p we fix such an isomorphism,
which defines as well a place v of E above p (so Q, = F, = E).

® When n < 3, this condition is a consequence of property (i) of D.
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We need to introduce some group theoretic notations concerning GL,, (Q,)%, that we
shall view as an algebraic group over Q,. Let B be its upper triangular Borel subgroup, T’
its diagonal torus, X *(T") the algebraic characters of T, I the subgroup of GL,,(Z,)» whose
elements are upper triangular modulo p, N the subgroup of lower triangular elements of 1,
T° = TNI, T~ C T the submonoid whose elements ¢ satisfy t "' Not C No,and M = IT~I
(it is a submonoid of GL,,(Q,)"?).

For each B-dominant weight x € X*(T), let W, be the irreducible algebraic Q,-repre-
sentation of GL,,(Q,)"» with highest weight x. For any x € X*(T), let &, be the standard
analytic principal series of the Iwahori subgroup I. It may be defined as follows. If J is a finite
set, a function f : ZZ — @, is said analytic if f((x;)) belongs to the Tate algebra Q,((z;),).
Let J be the set of triples (i, j,v) with 1 < i < j < nand v € 5. Identifying Z7 with N via
the bijection (z(; j.)) + (p%;,;)v, We obtain a notion of analytic function on Ng and set:

¢ _{f:IB—>(@p, f(zb) = x(b)f(z) V=€ IB, beB,}
X .

fWo is analytic.

The product in GLn(Qp)SP induces an isomorphism Ng x B 5 I B. Moreover, as
t71Nogt C Ny fort € T—, we have M~1IB C IB, thus left translations (m.f)(z) :=
f(m™'z) define a representation of M on @,. When x is dominant, and if v is a highest
weight vector in W, the map ¢ — (g — ¢(g(v))) defines a Q,[M]-equivariant embedding
WXv — 6, whose image is the subspace of polynomial elements in &,

The spaces of p-adic automorphic forms for U are built from these representations &, .
Let K be any compact open subgroup of U(Af s) of the form K = I x K*» . For any
Qp[M]-module W, consider the Q,-vector space

FOW) = {f L UF\U(Apg) — W, } .
F(gh) = ([ujp ko) 71 (9), Vg € Ulhry), Yk € K.

This defines an exact functor from Q,[M]-modules to Q,-vector spaces. Moreover, F'(W) is
in a natural way a module over the Atkin-Lehner algebra 20~ which is the Q-subalgebra of
the Iwahori Hecke-algebra of GL,,(Q, )" relative to I, consisting of functions with support
in M. Recall that the map T~ /T° — A=, t +— 14y, is a multiplicative homomorphism
inducing an isomorphism
QT~/T°) = A~

(in particular 2(~ is commutative). Using this latter isomorphism we will view elements of 7'~
as elements of 2. Last but not least, F'(W) also admits a natural structure of module
over the Hecke Q-algebra of (U(Aif’f), K9v) that commutes with 2. We fix a commutative
subring # of this latter Hecke-algebra that contains the spherical Hecke-algebra for almost
all finite primes v of F.

Let x € X*(T). The space of p-adic analytic automorphic forms of U of weight x and
level K is the space F(€). It is a Q,-Banach space in a natural way, on which the Hecke-
operators A~ ® J¢ act continuously. Moreover, if T~ C T~ denotes the submonoid whose
elements ¢ are such that t =1 Nt vanishes mod p, then any t € T~ acts compactly on F(©,).

When x is dominant, F/(€,) contains as 2~ ® #-submodule the subspace F(W,/) of
automorphic forms of weight x and level K, often called the subspace of classicalp-adic
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automorphic forms. If we fix a ¢« = (¢p, L) as in §1.7, this subspace is a canonical Q,-struc-
ture of the complex Q[U (A, r)//K]-module

(4.13) P m(m)rf,

where 7 varies in the set of irreducible automorphic representations of U(Ap) such that
Too = W, and with finite multiplicity m(r) in L2(U (F)\U(AFr)).

We shall also need to use the global base-change from U/F to GL, /E. It is currently
known in the following cases:

— n < 3 (Rogawski) or,

— there is a finite place v such that U (F;,) is the group of invertible elements of a central
division algebra over F;, (Clozel-Labesse, Harris-Labesse) or,

— [F: Q] > 2 (Labesse),

and we definitely assume that we are in one of these three cases. Thanks to [38] and [15, 24],
it follows that for any automorphic representation 7 of U there is a semi-simple continuous
Galois representation
pr:Gg — GLn(@p)a

which is unramified above any finite place v ¢ S, of F such that 7, and U/ F), are unramified,
and which is characterized by the following property: for any such v which splits'? in E the
characteristic polynomial of Frobj coincides (via ¢) with the characteristic polynomial of the
Langlands conjugacy class of m,| - |1_T" It has the following extra properties:

— pl¢ =~ pr(n — 1) (note that n is not necessarily odd in this paragraph).

— For each finite place v ¢ S, of F such that U(F,) =5 GL,(F,) the Frobenius semi-
simplification of p, 5 corresponds to ¢ttty |.| 3" via the local Langlands correspon-
dence ([38],[15, 241,[9)).

— If v € S, and 7, is unramified, then p, is crystalline at ¥. Its Hodge-Tate weights
are related to I, via ¢ and the usual recipe, and the characteristic polynomial of its
crystalline Frobenius is the characteristic polynomial of the Langlands conjugacy class
of my| - |1_Tn (of course via ¢, see [14]).

Before stating the inPnitesimal classicity criteriorwe need to recall the relation between
refinements and eigenvectors of 2. Let f # 0 € F(W)/) ®q, @, be a common eigenvector
for all the elements of 2A~ ® # . Let w be any automorphic representation of U with mo, >~ W,
and which occurs as a summand of the representation generated by toot,, L £ the Galois
representation py := p, does not depend on the choice of = by Cebotarev’s theorem.
According to the recipe described in [1, §6.4], the action of 2~ on f determines for each
v € S, a canonical ordering (¢; )7, of the eigenvalues of the Langlands conjugacy class
associated to the representation m,| - |% (which has Iwahori invariants by construction).
When @i,vwgi # p for all ¢ # j then 7, is unramified, so p it is crystalline. If furthermore
%,v@j_,i # 1for all i # j, then (p; , )7~ defines a refinement of Pi in the sense of §3.9 (see
the discussion preceding Thm 3.20).

10 So U(Fy) ~ GLy (Fy) and the choice of such an isomorphism defines a unique place ¥ of E above v.
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P(141'3%31&.2. - Let f € F(W)) ®q, Q, be an eigenvector for all the elements
of A~ ® #. Assume that for eachy € S,, the sequencéy; ,)?* ; debned above satisbes
<pi,vga;5 # 1,pfor anyi # j, and debPnes a non-critical, regular, rebnemenp%v.

Then the generalizedd~ ® J-eigenspace off inside F(%y) ®q, Q, is included

in F(WY) ®q, Q,.

When (¢; )", is numerically non-critical, this result follows from the standard classicity
criterion (compare [1, Rem. 2.4.6] with [12, Thm. 1.6 (vi)]). However, this simple case is not
enough for our purpose in this paper, and the general case is much deeper. It is the analogue
of the classical fact that an ordinary modular eigenform which is in the image of the theta
map is split at p (Mazur-Wiles).

The first ingredient of the proofis the following result of Jones, which is a (locally) analytic
version of the Bernstein-Gelfand-Gelfand resolution, and plays the role of the theta map in
the context of p-adic modular forms.

LO,# 4.3([26, Thm. 29]). — Assume thaty € X*(T) is dominant. There exists an exact
sequence o, [M]-modules:

0 — W, — Gy — H Cottr)—p-
l(o)=1

In this statement, o is an element in the Weyl group & = G of T, p 18 the half-sum of
the positive roots (this is not quite an element of X*(T'), but o(x + p) — p is anyway). By
exactness of the functor F' we obtain an exact sequence of 2~ ® #-modules 0 — F(W)/) —
F(6y) = [Tio)=1 F(Co(x+p)-p)- Let ¢ : A~ @ H — Q, be the Q-algebra homomorphism
defined by f:a(f) = ¢(a)f foralla € A~ @ . If E'is any Q, @ A~ ® #-module we denote
by E[v] the generalized eigenspace associated to v:

Ef] ={e€ E®q, Q,, IneN, Vac A~ @ H, (a—1p(a)id)"e=0}.

As f is classical, ¥(T~) C @;, and by compactness of any ¢ € T~~ we obtain an exact
sequence of finite dimensional @p-vector spaces:

0 — FW) W] — F(G)W] — [I F(Coiuin-n)¥]-
l(o)=1
We claim that for each simple reflection o = (4,4 + 1), we have F(€5(y4,)—p)[¥] = 0.
Indeed, it is enough to show that there isno g # 0 € F(€ (54 p)—p)[¢/] that is an eigenvector
for 24~ ® #. Assume for a contradiction that there are such ¢, v € S, and g.

As g and f share the same system of Hecke-eigenvalues under 2~ ® 4, the form g is of
finite slope and its associated p-adic Galois representation p, : Gg — GL,(Q,) coincides
with ps. However, the form f has weight x whereas its “companion form” g has weight
a(x + p) — p. Let us denote by

kl,v < kg’v < < kn’u

the Hodge-Tate weights of p P They are related to the weight x of f by the usual recipe,
namely an identification X*(T") ~ (Z")% making the dominant elements of X *(T) corre-
spond to increasing sequences as above. According to the same recipe, the ordering of the
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Hodge-Tate numbers of Py corresponding to o (x + p) — p is the same one except that k; ,,
and k;41 , are interchanged. As the actions of 2~ on g and f coincide, Kisin’s result [29, §5]
on the continuity of crystalline periods in refined families ensures that p, has the following
property':

(414) Filkl,v+k2,v+"'+ki—1,v+ki+l,v (Dcrys (Aipg;)cp:(’pl’mpz‘”m%’“) 7& 0.

As (¢; )", is regular, if F; = @;lecrys(p )#=%?iw C Derys(p. ~) we have

g,v g,v

DcryS(Aipg 5)¢:¢1'U¢2'U“.%'U = AZ(FZ) - AiDcryS(pg fq}/)‘

On the other hand, (y; )~ is non critical so the jumps of the filtration on F; induced by
the Hodge filtration on Dcrys(pg ;) are ki y, k2,v, - - - , ki v, Which contradicts (4.14). O
4.4. Non critical classical points are étale over the weight space

The preceding result, combined with some properties of automorphic forms, allows to
show that eigenvarieties are étale over the weight space at non critical classical points.

Let £ # p be a prime and E; a finite extension of Q,. We denote by W, the Weil-group
of Eyand Iy, C W, its inertia subgroup. If p : Wg, — GLn(@p) is continuous, it admits an
associated Frobenius semi-simple Weil-Deligne representations (r, V). Recall that we have
fixed some embeddings ¢,, too. We say that p is defined over Q if r is. In this case, the local
Langlands correspondence associates to (r, N) (and ¢,, Lo ) @ canonical irreducible smooth
complex representation of GL,,(E;). For two continuous representations p, p’ : Wg, —
GL,(Q,), with associated Weil-Deligne representations (r, N') and (', N'), we write p < p’
ifrr,, ~ 1"" Ie, and if p has less monodromy thasi in the following sense: for each irreducible
@p-representation 7 of Ig,, the nilpotent conjugacy class of the monodromy operator is
greater on the 7-isotypic component of r’ than on the 7-isotypic component of r (for the
dominance ordering, the conjugacy class of 0 being by convention the smallest one). Recall
thatif r = >°7_ ;7 and v = 22;1 r;- are irreducible decompositions of r and 7/, then
T\, rl’ I, if and only if s = s’ and, up to renumbering the r;, r; is an unramified twist
of r; foreach i € {1,...,s} (see, e.g., [12, Lemme 3.14 (i)]).

LO,# 4.5.— Let X be an irreducible alnoid overQ,, Z c X(Q,) a Zariski-dense
subset, and lep : Wg, — GL,,(£(X)) be a continuous representation.

(i) There is a Zariski-dense subset’ C Z such thatp, < p, and Pz\1p, = P |Ip, for all
2,72 € Z' andz € X.

(D To deduce this result from the literature, we may refer as follows to [1]. First, choose by Lemma 7.8.11 an a- noid
neighborhood €2 of the point x corresponding to g in the eigenvariety of U of level K. There is a surjective alteration
Q' — Q and a locally free Og-module M with a continuous O -linear action of G g which is generically semi-
simple and whose trace is the pull-back of the natural family of pseudo-characters on Q. Apply Theorem 3.3.3
to A’bﬂ/ (M) and any point ' € Q' above z, its assumptions are satisfied by Prop. 7.5.13 and §4.2.4. We obtain
(4.14) with M, instead of P But [ is the semi-simplification of 1, ® @p, so (4.14) follows from the left-

exactness of the functor Fil® (Deyys(—)¥=9).
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(i) For eachz € Z assume thap, is dePned ove® and that its Langlands correspondent
m, is tempered. Then for any, 2’ € Z, we have

pleE[ ~ pz,uEz and WZIGLR(OEZ) >~ ﬂ-zllGLn(OEg)'

Proof. — Part (i) is [1, Prop. 7.8.19] (in the notations there, apply it to the tautological
pseudo-character T' : GL,(6(X)) — O(X) and to the morphism Wg, — GL,,(0(X)) of
the statement). Let us check part (ii).

Let 7 and 7’ be two irreducible temperedrepresentations of GL,,(E,), with associated
Weil-Deligne representations (r, N) and (r’, N'). If (r|;, N) and (r(;, N') are isomorphic,
then 7 and «’ are fully induced from discrete series A and A’ of a same Levi subgroup
of GL,,(E), and A and A’ only di. er by a unitary unramified twist (Langlands, Zelevinski).
In particular, 7 and 7’ are isomorphic restricted to GL,, (@, ). As a consequence, the second
assertion in part (ii) follows from the first one, that we check now. We may assume 2’ € Z'.
Moreover, by the inequality in part (i) it is enough to check that p, In, ~ P'|I, holds after
a finite base change. As base change preserves temperedness, we may assume that for each z
in Z,if (r,, N,) is the Weil-Deligne representation associated to p,, then r, is trivial over Ig, .

Let ¢ € Wg, be alift of a geometric Frobenius and let P € ©)(X)[T] be the characteristic
polynomial of p(F'). Up to replacing X by a finite covering and Z by its inverse image, we
may assume that P splits in O(X)[T]; let Fy,...,F, € B(X) be its roots. By part (i) the
conjugacy class of N, does not depend on z € Z’, let us call it N; it is determined by a
partition ny + ng + -+ + ns = n. For each z € Z’, there is a renumbering F; of the F;
such that whenever 1 < j <mnjorny+ne+---4+n,+1<j<ny+ny+---+n,41 we have
Fj(2) = qF},(2), where g is the cardinal of the residue field of E,. For z in a Zariski-dense
subset Z"” C Z’, this numbering will be the same, hence up to renumbering the F; once and
for all we may assume thatif 1 < j < mnyorifn;+ng+---4+n,+1 < j <ni+ng+---+n.41,

(415) FJ(Z) = qFj+1(Z) Ve Z".

Thus F; 1 = ¢F}; in O(X) (we may assume X is reduced) for any j as above, hence (4.15)
holds as well for any z € Z. But the temperedness of 7, and the inequality N, < N imply in
turn that NV, is conjugate to N. (Note the funny interplay between the complex and p-adic
sides in this proof.) O

Assume now that Ej is a quadratic extension of Fy (¢ is still prime to p) and let U(F}) be
the quasi-split unitary group in n variables attached to E,;/F,. For n < 3, the standard base-
change between U(F}) and GL,,(E,), conjectured by Langlands and proved by Rogaswki
in [35, Prop. 11.4.1, Thm. 13.2.1], is an injection from the set of L-packets of U(F}) to the
irreducible smooth representations 7 of GL,, (E) such that V¥ ~ 7 (w € Wpg,\WEg,) and
whose central character is trivial over F}; if n is odd.

LO,# 4.6. — We keep the assumptions of Lemmias and assume that < 3.

For eachz € Z assume that, is debPned ove@ and that there is a tempered-packet
I1, of U(F,) whose base-change 6L3(E,) corresponds tg.. Then for any compact open
subgroupK, of U(F;) and anyz, 2’ € Z, we have

(P ik, ~ (P ™,

well, well,,
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If x is a character of Ej, we shall denote by x* the character z — x(c(x))~! where
c generates Gal(Ey/Fy).

Proof. — Assume n = 3. The lemma is obvious when the isomorphism class of p, is
constant when z varies in Z, as then I, does not depend on z. We claim that this occurs
in particular when there is some z € Z such that p, ® @p is either irreducible, of the form
r @ x with r irreducible of dimension 2, or of the form x; & x2 @ x3 where the x; are distinct
characters such that x;- = x; for each i (the associated L-packet of U(F}) is discrete and has
respectively 1, 2 or 4 elements by [35, §13]).

Indeed, in the first case part (i) shows that for any z € X(Q,) there is an unramified
character y, such that p,, ®@p = (p. ®@p) ® Xz, and the self-duality like condition forces x .
to vary in a finite set when z varies. This implies that for all g € Wg,, trace(p(g)) is constant
i.e. belongs to the biggest finite extension of Q,, in the domain #(X), hence the statement.
The second case is similar. In the last case, part (i) implies that trace(p) factors through a
pseudo-character of Wa';’ = E;. We may find a normal a- noid Y, a finite map ¥ — X, as
well as continuous characters x; : Wg, — O(Y)* such that

3
(4.16) trace(p) = Z Xi
i=1

thus up to replacing X by Y and Z by its inverse image in Y we may assume that X = Y.
The self-duality like condition and the assumption that the evaluation of the x; at z are all
self- L and distinct imply that x;= = x; for each i. As they are constant on I g, by part (1),
we see again that there is only a finite number of possibilities for the p, ® @p withz € X,
and we conclude as before.

In the non-constant case, then for any z in Z we have
PrRQ,=x.®v. ®v;

for some characters x,v, : B} — @;, with x£ = x,. This implies that x is trivial over F;
(as x.v.v; is), hence is the base change to E; of a unique character X, of U(1). This case is
more subtle as there are in general four possible kinds of L-packets for IT,, labelled as (1), (2),
(6) and (8) in [35, p. 174] and to which we shall refer several times. We shall argue according
to the generic monodromy of p:

(a) If the monodromy of p, has nilpotent index 3, then from that list we see that IT,, is some
twist of the Steinberg representation (case (8)). If this occurs for some z € Z’, Lemma 4.5 (i)
implies that this also occurs for all z € Z’, so that II, is independent of z € Z’ in this case
(the twist alluded to above does not depend on z by an argument similar to the ones above).
Assume it is so and fix x € Z. This implies

4.17) {Ve, v} = {Xal -l xa| 7}

We claim that Rogawski’s list shows that IT,, is the twist of the Steinberg representation by .,
soIl, = II, forany z € Z'. This would conclude the proof'in case (a). To check the claim note
that property (4.17) of v,, excludes the packets of type (1) (irreducible principal series as well
as those of type (6) (I.d.s. L-packet9, so it only remains to exclude the type (2) (endoscopic
transfer of a twist of the Steinberg representation&f(2) x U (1), an L-packet with 2 elements).
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But the Weil-Deligne representation (r, N), r : Wg, — GL3(C), of the base-change of an
L-packet of type (2) has a non trivial N and r is the sum of three characters

(4.18) x®v|.| V2@ v| |2

where x = x*, v = v, xpr = 1 and v+ # 1. These conditions contradict (4.17).

(b) If the monodromy of p, has nilpotent index 2, the unique possibility from the list is
that the L-packet IT, is of type (2). If this occurs for some z € Z’, an argument similar to the
one in case (a) shows again that I, is independent of z € Z.

(¢) In the remaining case, p, has no monodromy for all z € Z, so we see from Rogawski’s
description that IT, is the set of irreducible constituents of the parabolic induced representa-
tion Ind(n,) of the character n, = v,x; ' X X, of the diagonal torus E} x U(1) of U (Fy) (this
covers the two possibilities (1) and (6)). Arguing as for (4.16), we may assume that x, and v,
have been chosen so that they vary analytically when z € Z C X. But then 7, O3, xU(L) does
not depend on z € Z by part (i), so we check at once that Ind(7,)|x, = Ind(n.)x, for all
T,z € Z.

This concludes the case n = 3. The case n = 2 is similiar and only easier (use the
description of L-packets given in [35, Chap. 11]) and n = 1 is trivial. O

LO,# 4.7. — Lemmas4.5and4.6still hold if p is replaced by the restriction téV g, of a
continuous pseudo-charact@t: Gal(E/E) — ©(X) of dimensiom.

In this setting, if z € X (Q,) we mean by p, the restriction to W, of the (unique) semi-
simple representation Gal(E/E) — GL,(Q,) whose trace is the evaluation of T at z.

Proof. — Indeed, Lemmas 4.5 (ii) and 4.6 only relied on the existence of a p such that
trace(p) = T via its Corollary Lemma 4.5 (i). But part (i) in this more general setting follows
again from [1, Prop. 7.8.19]. O

We now prove the main results of this section. Recall that p splits in E and that U is
a unitary group in n variables attached to E//F as in §4.1. Recall also that we have fixed
a compact open subgroup K C U(Ap ) that we assume now of the form [], K,,. Let S
be a finite set of finite primes of F' containing the primes ramified in £ and such that K,
is maximal hyperspecial for each v ¢ S. Let & be the p-adic eigenvariety of U of level K
associated to the set S, of all places above p and to the global Hecke-algebra # unramified
outside S.

T/01(0, 4.8. — (n < 3)Let 7w be an automorphic representation dfwhich is unramibed
abovep and such thatr® # 0. We assume that the base-changemofo GL,,(Ag) is cuspidal
and that for eachw € S, the crystalline Frobenius has distinct eigenvalues oﬁ)crys(pmfvv).

Let {Z.,} be a collection of rePnements of the ~ for v € S, and letz € & be the point
associated tqr,{,}). If &, is non-critical for eachv € S,, then & is Ztale atr over weight
space.

This solves conjecture (CRIT) of [1]§7.6, for n < 3, to which we refer for a more complete
discussion and motivations. The non-critical assumption is very important in this statement.
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Proof. — For each point y € & (resp. y € £(Q,)) we denote by k(y) its residue field and
by, 1 A~ @H — k(y) (resp. ¢y : A~ @H — @p) the evaluation at y of the structural ring
homomorphism A~ ® # — O(&) aty.

By construction of the eigenvariety, we may find a connected a- noid neighborhood B of
the weight xo of z (as defined in the statement) in the weight space and a finite locally free
O(B)-module M equipped with an §)(B)-linear action of A~ ® J such that:

(a) The a- noid spectrum V of Im (O(B) ® A~ ® # — Endgp)(M)) is an a- noid
neighborhood of z in &. Denote by « : V' — B the natural map (so k(z) = xo).
(b) For each algebraic weight x € B, there is an isomorphism of Q, ® A~ ® # -modules

My k)= @ F(E),
yer~1(x)
up to some normalizing twist depending on x for the action of 2.
(c) K Y(k(z))™ = {z} (in particular, V is connected) and the natural surjection
(V) — k(z) has a section.

The classicity criterion implies that for y € B algebraic, dominant and su- ciently far
from the walls of its Weyl chamber, M ®¢p k(x) C F(W)/), so for z € £~ (x) we have

(4.19) FWY):] = F(Cy) ).
Let Zy C B be a Zariski-dense subset of such weights, and let Z C V be the union of {z} and
k~1(Zy), this a Zariski-dense subset of classical points of V. Up to reducing Zj if necessary,
we may assume that the refinements associated to any z € Z and any v € S, are regular, and
that « is étale at each point in Z\{z}.

The first important fact is that

(4.20) M ®g(p) k(xo) = F(Wy,)[te] = F(Ex,)[¥a]-

Indeed, by (b) and (c) above it is enough to check that F(6y,)[¢s] € F(WY,) but this
is Proposition 4.2 as the &, are regular and non-critical (note that <p¢’u<pjf}, # pasm,is
tempered and unramified).

For each z € Z (@p), let I, be the (unique) global discrete A-packet of representa-
tions of U(Ar) containing the representations 7 which are unramified outside S\S,, with

. K ) ~
Too = W2y, and whose system of A~ ® -eigenvalues on 7 S\SS\:" iStootly Y(4,). LetIl, C II,

be the (finite) subset of representations having these last three properties. We deduce from

(4.13) that for each z € Z(Q,), if we set 6(z) := dim@p F(6,(2))[t-], then
4.21) 5(z)= > m(r)dime(mg 3™,
mell,

where m(m) denotes the multiplicity of 7 in the discrete spectrum of U. To obtain the formula
above, we have used that 7%+ has dimension 1 for v ¢ S and that for v € S, the generalized
eigenspace of 4.~ on w/ is also one-dimensional as the ; , are distinct for each v € S,
by assumption.

By (4.19) and (4.20), we have F(W)/)[¢.] = F(©y)[t.] for each z € Z. Note that the
action of 2~ ® # on each F(W/)[3).] for z € Z is actually scalar. As a consequence, if we
can show that Vy € Zy, x~1(x) has a single element, and that the residue field of this element
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is k(z), then (a), (b) and (c) above, as well as the local freeness of M over §)(B), ensure that
O(V) = O(B) ®q, k(x) and we are done. By the local freeness of M again, it is enough to

show that §(z) doesnot depend on z € Z(Q,), or atleast that 6(z) > d(z) forany zin Z(Q,).
We shall use for this the natural n-dimensional pseudo-character Ty : Gal(E/E) — O(Y)
for each irreducible component Y of V'; these components all meet at z by (c).

We have not used so far that 7 has a cuspidal base change to GL,,(Ag). This implies
that p, = p, is absolutely irreducible (by Ribet, Blasius and Rogawski). As the absolutely
irreducible locus is Zariski open in V, up to reducing Z; if necessary we may assume that
forallz € Z (@p) the packet II, has a cuspidal base change as well. In this case, II, is
tempered (hence a "tensor product” of local tempered L-packets) and each element = € II,
is automorphic and has multiplicity m(w) = 1 by [35, Thm. 13.3.3 (c), Thm. 14.6.1] (when
n = 2 this is due to Labesse-Langlands). By Lemmas 4.5, 4.6 and 4.7, as well as For-
mula (4.21), we obtain that §(z) is independent of z € Z(Q,), which concludes the proof.
These lemmas apply as for each «’ with cuspidal base-change II', 7’ is tempered and
IT' — p, is compatible with the Frobenius semi-simplified local Langlands correspondence
at all primes prime to p (that follows from Rogawski’s strong base change).

Note that strictly, we have not considered the case of a split place v € S such that U(F,,)
is the group of units of a central simple algebra over F,. But in this case the statement of
Lemma 4.6 still makes sense and holds: it follows from Lemma 4.5 (ii) and the fact that if m;
and 79 are two represesentations of U (F),) whose Weil-Deligne representations are inertially
equivalent, then 7; and 7y di. er by an unramified twist, hence coincide over the maximal
compact subgroups of U(F,). O

RO,#(8 4.9. — A similar statement is probably true in many other cases (all?) when  is
only assumed to be tempered, but this would have forced us to look at Rogawski’s multiplicity
formula in unpleasant detail. This is however simple enough if S\\S, does not contain any
non split prime. Indeed, in this case the multiplicity formula [35, Thm. 14.6.5] implies that if
ITis a discrete tempered (possibly endoscopic) packet of U, then all the elements = € II which
are unramified at p and such that 7% # 0 have multiplicity one, so the argument above still
applies.

We end this paragraph with a result valid for any n. Assume that E/F is unramified
everywhere and that U is quasi-split at each finite place of F (so [F' : Q)] is even if n is even, by
Hasse’s principle for unitary groups). Assume that .S only contains primes which split in E.
Let again & be the p-adic eigenvariety of U of level K associated to the set S, of all places
above p and to the global Hecke-algebra ¢ unramified outside S.

T/01(0, 4.10. — Assume thatU, E/F and K are as above. Letr be a tempered
automorphic representation of/ which is unramibed above and such thatr® # 0. We
assume thatr has multiplicity 1 in the discrete spectrum df and that for eachw € S, the
crystalline Frobenius has distinct eigenvalues oBc.ys(p, 7).

Let {Z,} be a collection of rePnements of the ~ for v € S, and letz € & be the point
associated tdm, {F,}). If &, is non-critical and reéular for each € S, then & is Ztale atx
over weight space.
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By a result of Labesse [30, Thm. 5.4], such a 7= has multiplicity 1 if its base-change
to GL,, (Ag) is cuspidal, in which case it is necessarily tempered. It follows from Langlands’
conjectures that any 7 as in the statement should have multiplicity one.

Proof. — We start with an observation. Let 7w and 7’ be any two automorphic represen-
tations of U. Assume that 7 and #’ are unramified at each finite place v of F which is inert
in F, and that 7, ~ « if v is Archimedean and for almost all finite places v of F'. We claim
that m ~ 7’. Indeed, let Il and IT’ be their respective base change to GL,,(Ag). By Labesse [30,
Cor. 5.3], IT and II’ are induced from discrete automorphic representations of a Levi sub-
group of GL,(Ag), and II, ~ II/ for almost all the finite places v of E. By Moeglin—
Waldspurger classification of the discrete spectrum of GL,,, and by Jacquet-Shalika [25,
Thm. 4.4], this implies that IT ~ II’ (at all places). By Labesse’s theorem above again, this
implies that m ~ 7. Indeed, the global base change is compatible with the obvious local base
change at all the finite places. At the split places it is the identity and at the inert places it is
the spherical base change, so in both cases it is injective, and we are done. As a consequence,
if ¢ is a system of eigenvalues of # ® 2~ on F(W,/), then there is a unique automorphic
representation 7(¢) of U of weight x such that # acts on w(z/;)? as .

We now go back to the proof of the theorem. The arguments of the proof of Thm. 4.8
apply verbatim until “We have not used so far that 7 has a cuspidal base-change” if for any
z € Z(Q,) weset I, = {m(¢,)}. If z and  are as in the statement then m(¢;) ~ 7. As
m(m(v,)) = 1 by assumption, we have

. . K
o(z) := dlm@pF(i?Xo)[wx] = dlmc(yrs\sg:p .

By Lemma 4.7 applied to each irreducible component of V, we obtain that for each
z € Z(Q,) we have §(z) = m(m(¢.))d(z) > é(z), which concludes the proof. This lemma

applies as m(x) is tempered for each z € Z(Q,): at z it is the assumption, and at z # = it
follows from [30, Cor. 5.3] and [9, Thm. 1.2] as x(z) is not in a Weyl wall of X*(T"). O

5. End of the proof of Theorem A and other global applications

5.1. Proof of Theorem 2.11

Fix z € X(p) a modular point. For each place v above p, set V,, := Pz|G,- Assume that
for each v, Endg, (v,) = L, and that the eigenvalues of the crystalline Frobenius of Deis (V)
are distinct and in k(z).

Lety € &(p) be a refined modular point above x. Those y are in natural bijection with
the set of collections of refinements &, of V,,, v € Sp, in the sense of § 3.9. Indeed, they have
the form y = (z, ) and this bijection is

5 — (gu)UGSp = (51,v(p)pklyv752,v(p)pk2’v’63,v(p)pk3’v)vesp7

where k1, < k2, < ks, are the Hodge-Tate weights of V,,. For this reason we shall also
denote those y above z by (z,{F,}). We use the notations of §3.9.
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P(141'3%31&.2. — Let (z,{Y,}) € &(p) be a rebned modular point such th&f, is
non-critical for eachv € S,,. For any Artinian thickeningSpec(4) — &(p) at «, the associated
Galois representatiop4 : Gg — GL3(A) satisPes

PAlG, € Xv,,7,(A).

Note that this statement makes sense as Endg, (v,) = L by Remark 3.5.

Proof. — This is [I, Thm. 4.4.1]. O

Let us set ty .« := Xy, «(L[e]). Fixy = (z,{%,}) a refined modular point and consider
the natural map on tangent spaces:

(5.22) T,(6(0) — To@(@) "5 ] b
vES,

By the proposition above, we know that if &, is non critical for each v then the image of
this map falls inside [[,¢ g, tv,7,. However, this information is still too weak to localize this
image: the space on the left, which is of global nature, tends to have dimension 3:|S,|, whereas
Ioe s, b, which is purely locally defined, has dimension 7 - |\S,|. A key idea is to neglect
the crystalline deformations in the range of (5.22), as they should be conjecturally transversal
to the global ones by the Bloch-Kato conjecture (see [1, Conj. 7.6.5]). This is confirmed by
the following proposition.

P(141'3%31&.3. — Assume again that7, is non-critical for eachv, then the linear map
(5.22) induces an isomorphism

T(w7{g7v})(6(ﬁ)) :) H tv,gv/tv,crys'
vES)

Proof. — By Theorem 4.8 and Prop. 5.2, the composite of the natural maps
_ Psen
Tl g7, 1)(6) — [ to.7./toerys == ] L
vES, vES)

is an isomorphism. But by Prop 3.15 the second map is an isomorphism, hence so is the first
one. O

C1(166#(" 5.4. — The image ofP,_, (v,}) Ty(E(p)) — Tx(X(p)) hask(z)-dimen-
sion at least6[F : Q).

Proof. — Consider the natural map
@ Ty(é(ﬁ)) — T(X(p)) — H tv/tv,crys
y=({7.}) vES,

where we restrict in the sum on the left to those {&,} such that &, is non-critical for all v.
By Theorem 3.20, Example 3.25 and Prop. 5.3, the composite of the two maps above is
surjective. The result follows as the space on the right has dimension "("T’Ll) - |Spl =6+ |Sp]
by Prop. 3.15. O
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5.5. Generalizations and other settings

Assume now that n is any odd (say) integer, and keep the notations of §1.1. Assume again
that p is modular. We expect that the strategy employed when n = 3 will lead to a proof of
the natural variant of Thm.1.14 for any n (with 3 and 6 replaced by n and %). It would
actually follow by the same proof if we could prove the following conjecture on the genericity
of global Galois representations that we believe in:

C1&70)%+(05.6 (Genericity conjecture). — For any modular pointz € X(p) and any
a'noid neighborhood U of z in X(p), there exists a modular poiny € U such thatpy; is
generic for eachv € S,,.

Of course, we expect to find such a point y by starting from x and moving in the piece of
the infinite fern inside U. It would even be enough for our purpose to have a similar statement
with “is generic” replaced by “has a nested sequence of non-critical refinements”. When
n = 3, Lemma 2.9 and Example 3.25 give a positive answer to this weak version, but even
in this case the above conjecture is still open as far as we see. Note that it would not be too
di- cult to show that we may find an y in U such that the Zariski-closure of the image of Pys

is the whole of GL,,(k(z)) (extending Lemma 2.9 for any n). However, this does not seem
to imply that Py is generic enough. In particular, there does not seem to be any variant of
Example 3.25 when n > 3. We hope to come back to this conjecture in the future. Here is
another natural question.

Q+0'%31&.7. — How non-generic can geometric Galois representations be? Are there
some (even conjectural) global conditions implying the genericity at each place ap@ve

The example we have in mind is the classical conjecture that if a p-adic Galois represen-
tation py : Gg — GL2(Q,) attached to a classical modular eigenform f is split at p (hence
non-generic), then the form f is CM.

In another direction, our infinitesimal approach also shed some lights back to the stan-
dard case studied by Gouvéa and Mazur. The following result is a simple consequence of our
method and of Prop. 3.23.

P(141'3%31&.8. — Let py : Ggs — GL2(Q,) be ap-adic Galois representation
attached to a modular eigenfornfi of weightk > 1 and level prime tgp. Assume thal;ofl%p
is indecomposable and that the two eigenvalues of its crystalline Frobenius are distinct. Then
the two leaves of the inPnite fern of Gouvea-Mazur cross transversally at

Let us end this paper by considering the Hilbert modular analogue of Thm 1.14, to which
the arguments of Gouvéa-Mazur do not extend as well when [F' : Q] > 1 (as far as we know).

Here F is a totally real field which is totally split at the odd primep, S a finite set of
places of F' containing the places above p and oo, and p : Gp g — GL2(F,) is absolutely
irreducible and totally odd. In this context, we say that p is modular if it is isomorphic to
the p-adic Galois representation pry attached to a cuspidal automorphic Galois representa-
tion IT of GLy(A ) which is cohomological, unramified above p and outside S (hence to a
Hilbert modular eigenform), and we say that g is modular if it is isomorphic to the residual
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representation of a modular p. Let X(p5) be the generic fiber of the universal G g g-deforma-
tion of p, as defined by Mazur. In the unobstructed case H(GF s, ad(p)) = 0, then X(p) is
the open unit ball over Qg in 1 + 2[F : Q] variables. This unobstructedness assumption also
implies that H2(G 5, F,) = 0, thus Leopoldt’s defect ? of F at p vanishes. To avoid assum-
ing Leopoldt’s conjecture in general it is convenient to work with the notion of an essentially
modular p, which we define as the twist p = pr; ® x of a modularp by a continuous charac-
terx : Gps — @; We obtain this way notions of modular and essentially modular points
in X(p). For simplicity we assume moreover that [F : Q] is even (see Rem. 5.10).

T/01(0, 5.9. — Assume thapis modular. Then the irreducible components of the Zariski-
closure of the essentially modular points #(p) all have dimension at least+ 0 + 2[F : Q).
If H*(GF,s,ad(p)) = 0 then the modular points are Zariski-dense ¥\(p).

Of course, an important ingredient in the proof is the Hilbert modular eigenvarieties.
These eigenvarieties have been studied by several authors: Hida, Kassaei, Buzzard, Kisin—
Lai, Emerton, and Yamagami. We shall mostly rely on Buzzard’s results.

Define X°™°d < X(p) as the subset of essentially modular points. If z € %°™°d and
pz = po ® X, then II is well defined up to a twist by an algebraic Hecke character of F'
unramified above p and we shall denote it by II,. Let X8® < X°™°d be the subset of z
such that for each v|p, pm, ., is absolutely irreducible and with distinct crystalline Frobenius
eigenvalues in k(x) (in particular it is generic).

There is a finite index subgroup I' C )% of the totally positive units such that the universal
character G}'?S — R(p)* is trivial over T via the reciprocity map. Let 7 and W be the
rigid analytic spaces over Q, parameterizing respectively the continuous p-adic characters
of (Fy)? and of (@}}p)2 which are trivial on I" diagonally embedded. The space W is called
the weight spacelt has equidimension dim(W) = 1 + 0 + [F' : Q]. The p-Hilbert modular
eigenvariety

&(p) € X(p) x I
is the Zariski closure of the pairs (z, ) of refined essentially modular points (using a
translation similar as in §5.1 between refinements of an essentially modular p and elements
of 7).

&(p) has been studied by Buzzard in [8, §I11], by switching to a totally definite quaternion
algebra D over F' which is split at all the finite places of F' and using the Jacquet-Langlands
correspondence. Such a D exists as [F : Q] is even. The important properties of &(p) are the
following:

(i) &(p) is equidimensional of dimensiodim(%/). The natural map to the weight space
k: 6(p) — I — W is locally bnite. The set ofz, ) with z € X°™°d is a Zariski-dense
accumulation subset of(p). The same holds for théz, &) with z modular if (and only if)
0 =0.

These properties are not stated this way, loc. cit., but they follow simply from the construc-
tion there and an argument similar to the one of Thm. 2.3. There is a classicality criterion
in this case as well. Arguing as in Thm. 4.10 (note that the strong multiplicity one property
holds for D*), we obtain that:

(i) If z € x°m°d js such thatpr, , has distinct crystalline Frobenius eigenvalues at each
v|p, and if 7, is a non-critical rePnement qf;, ,, for eachw|p, thenx is Ztale at(z, {7, }).
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Moreover, the following (easier) variant of Lemma 2.9 holds:

(iii) Let = € x°™m°d and assume that a collectiof = (7 v)ves, of rePnements of the, ,
has the property that for each|p such thatp, , is ordinary, then the Prst Frobenius eigenvalue
of 7, is the one with the greategt-adic valuation. Then théy, ¥') with y € X8°® accumulate
at (z, ) in &(p).

Proof of Thm. 5.9, — The proof is only easier than in the U(3) case, so we shall be rather
sketchy.

Consider some z € X8°". Let (z, ¥) € &(p) be an associated refined point and consider
the composite of the natural maps
(5.23) T(m,?)(é(ﬁ)) — Tp(X(p)) — H tv/tv,crys

vES,

asin (5.22). Using the étaleness of £(p) — W at (xz, &), Prop. 3.15, and arguing as in §5.1, we
see that the image of (5.23) is exactly the subspace to N t° where tg = [[,c s, tv,, /b crys

and t° C | s, tw /tv,crys 1s the subspace parameterizing the deformations of (pz,v)ves,
whose determinant, viewed as a morphism F — k(x)*, factors through I'. Remark that

dimy(,yt® =3[F: Q] — ([F: Q] —1-2)=1+0+2[F:Q].

Moreover Y s tg Nt = t° by Thm.3.19 (remark that Ngtg — ([],es, to)/t" is surjective
as “families of twists are ¥ -trianguline for each &). It follows that the image of the natural
map

B Tio.n) (6(p) — Tu(X(p))
7

has k(z)-dimension at least 1+0+2[F' : Q]. The first statement follows by the same argument
as in §2.8. The second statement (unobstructed case) follows as well by property (i) of &(p)
and by the local-global numerical coincidence

dim X(p) = dim t°. O

RO,#(8 5.10. — When [F' : Q] is odd, the same result holds, with the same proof, if we
restrict to essentially modular points pi ® x such that IL,, is essentially square integrable
at some finite place w € S\S,, as we may switch to a suitable definite quaternion algebra
in this case as well. However there may sometimes be no such modular point (e.g. when
S = Sp U S). We could actually still conclude in most cases in general using some well
chosen quadratic base-change and results of Kisin—Lai, but this would lead us too far away
from our purposes here.

6. An application to adjoint Selmer groups

6.1. Bloch-Kato Selmer groups

Let p be a prime, L a finite extension of Q,. In what follows, an L-representation of a
topological group G will always mean a continuous, finite-dimensional, L-linear representa-
tion. Let £ be a prime, M a finite extension extension of Q,, and let V be an L-representation
of G'ar. Recall that Bloch and Kato defined in [5, §3] a subspace H(M,V) C H'(M,V).
Set H{(M,V) = H'(M,V)/H};(M,V). Let F be a number field, let S be a finite set of finite
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places of F' containing the set S, of places dividing p, the set S., of Archimedean places, and
let V be an L-representation of G unramified outside S. Let H}, (F, V') be the kernel of the
naturalmap H'(Gps,V) — [Toes\s, HL(F,,V),itdoesnot depend on S as above. In what
follows, we shall be mostly interested in the surjectivity of the natural map:

(6.24) Hp(F,V) = [[HN(F, V).

vlp

The kernel of this map is usually denoted by H}(F, V). We may like viewing the sur-
jectivity of (6.24) as some splitting of the Poitou-Tate exact sequence. By the global
duality theorem, the image of (6.24) is Tate’s orthogonal complement of the image
of Hi(F,VY(1)) — I, H}(Fy, VY(1)). In particular, (6.24) is surjective if and only
if the natural map H(F,VV (1)) — [I,, H' (F,, V(1)) is the zero map.

RO,#(8 6.2. — We shall be mainly concerned with cases where V' is geometric (say in the
strongest sense) of pure weight 0. In this case, the conjectures of Bloch-Kato ([23, §3.4],[5])
assert that H}(F, V) = 0, so (6.24) is expected to be injective. Assume furthermore that F
is totally real, let ¢, denote a complex conjugation at the Archimedean place v, and denote
by h1()0,0) the dimension of the (0, 0)-part of the F,-Hodge structure associated to V. If

trace(cy|yv) = —h{0:0)

for each real place v, then those conjectures predict as well that H } (F,VV(1)) = 0 (compare
them with [37, §3]). In particular, (6.24) should be an isomorphism in this case! As far as we
know, very little is known about this conjecture, possibly nothing when dim(V') > 3 before
the results of this paper.

6.3. The adjoint’ Selmer group of a Galois representation of type U(n)

Assume now that F'is a totally real field. Let E be a totally imaginary quadratic extension
of F' and assume that p is totally split in E (hence in F'). For each v|p fix some place v of E
above v, 50 F,, = E~ = Q. Let ¢ € G be a complex conjugation.

Let IT be a cuspidal automorphic representation of GL,, (Ag) such that ITV ~ II¢ and such
that II, is algebraic regular at each Archimedean place v of E. Let pry be the p-adic Galois
representation of Gg associated to IT and ¢, say with coe- cients in L and normalized so that
oy == pu(n — 1).We make the following assumption.

A"+,4%31& (A). — For each v|p, II, is unramified, its Langlands class has n distinct
eigenvalues, and Endg-(pmjg.) = L.

Note that it implies that pry is absolutely irreducible. We shall assume furthermore that L
is big enough so as to contain (via ¢) the eigenvalues alluded to above, which is harmless.

We are going to define below an L-representation Ad’(pr) of G of dimension n? that
extends the standard representation ad(pr) of Gg. From the self-duality like condition, there
isa P € GL, (L), unique up to L*, such that

pu(cge™) ™t = Ppu(9)P'x(9)"",Vg € Gg
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(x : Gr — Qj is the cyclotomic character). It follows that tP = 4P, and the main
theorem of [2] ensures that P is a symmetricmatrix. Following [16, §2], let us consider the
linear algebraic Q-group

8, = (GL, x GL1) x Gal(E/F),
where ¢ acts on GL,, x GL; by (g,\) — (tg~),\). We check at once that there exists a
unique morphism pr; : Gr — @, (L) such that pri(g9) = (pu(g), x(9)*™") for g € Gg and
pr(c) = (*P~1,1)c. We denote by
Ad'(pmr)
the representation of G g defined by the adjoint representation of pr; on

M, (L) = Lie(GL, x {1}) ® L C Lie(9,) ® L.

The G r-equivalence class of Ad’(prr) only depends on the G g-equivalence class of pr.
The map (X,Y) +— trace(XY) defines a &, (L)-equivariant pairing M, (L) ® M, (L) — L,
thus Ad’(pr) is selfdual. Note that the complex conjugation ¢ acts on M,, (L) = Ad'(pr) as
X — —P!X P~ In particular, Ad'(pr)®F = 0, and the homotheties induce an embedding
EB/F — Ad'(pm), where e/ is the character of order 2 of G associated to E/F.

In what follows we shall be mainly interested in the Selmer group

H},(F, Ad'(pn)).

The purity of prr (see [9] for the most general case) ensures that HO(F,, Ad’'(pm)Y (1))
vanishes, hence so do H%(F,,Ad’(pn)) and H}(F,,Ad (pm)), for each finite place v. In
particular, for each finite set S containing S, So, and the ramification of Ad'(pr1), we have

(6.25) H'(Gr,s,Ad (pn)) = H} (F, Ad' (pm)).

C1&70)%+(06.4. — If V = Ad'(pn), then (6.24) is an isomorphism, ancH}(F, V) =
H}(F,VY(1)) =0.

Indeed, we are in the case of Remark 6.2. Note that for each real place v, hq(jo’o) = n by
the description of the Hodge-Tate numbers of pry, and trace(c, ) = —n by the result of [2]
recalled above.

The adjoint’ Selmer group of pr; has a natural description as the tangent space of a suitable
deformation functor. Fix an S as above and let & be the category defined in §3.1. For an
object A of G let X, (A) be the set of A-isomorphism classes of continuous representations
pa: Grs — GL,(A) such that py ® 4 L ~ ppy and such that trace(p)) = trace(pS)x™ .
This defines a functor X, : & — Sets, equipped with a natural morphism

Xon — H :*:pn::: Xp,
vES) '

where we have set p; ~:= pm|.. This allows to define a collection of subfunctors of the left-

hand side by pulling back the subfunctors of the right-hand side studied in §3. Let & = {¥, }
be a collection of refinements of the pr.. for v € S,. We set

Xon,7 = Xpn X%, prnmyu and X, 5 = Xy X%, prnMcryS'

v
vlp v|p
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Note that conditions (i), (ii), (iii) and (iv) of §3.9 on p;; ~ are satisfied by conditions (i) and
(i) above (and by the known description of its Hodge-Tate weights for (iv)). Similar functors
were previously introduced in [1, §7.6].

P(141'3%31&.5. — X,, : © — Sets is pro-representable and its tangent space is
canonically isomorphic tdH ;, (F, Ad'(pm)).

Moreover, for x € {f,}, X, . is a pro-representable subfunctor &f,,. The tangent
space of¥,, ; coincides withH ;(F', Ad'(pn)). When&, is non-critical for eachv € S, then
Xon,f C Xpn,g-

Proof. — The functor X, is pro-representable by Mazur as pr is absolutely irreducible
(the condition trace(p)) = trace(pS)x™ ! being obviously relatively representable). The
identification of its tangent space with H!(Gr,s, Ad'(pn)) is similar to Lemma 1.5 (using
the &7, here) and is checked in [16, §2]. The other assertions follow from Prop. 3.15. O

D023&3%34&. — For each collection of rePnementg = {¥,} for v € S,, debne
HL(F,Ad (pn)) (resp. H}, (F,,Ad’(IT)) as the tangent space &, 7 (resp. X, _g,).

6.7. The main results

Fix IT as in §6.3. The following statement (in some special cases) was conjectured
in[1,§7.6].

T/01(0, 6.8. — Assume that¥, is non-critical and regular for eaclv € S,. Then the
natural map

Hy(F,Ad'(pn)) — [[ HY, (Fo, Ad'(pn))/H}(Fy, Ad'(pm))

v|p
is surjective. In particulardimz, H, (F, Ad'(pn)) = dimy, H}(F, Ad'(pn)) + n[F : Q).

Proof. — Let us choose F’/F a totally real quadratic extension of F'. Assume that F'/F
is split above p, that F,, = E, for each finite place v of F' which is either ramified in E or
which is inert and such that IT,, is ramified. Let I’ be Arthur-Clozel’s quadratic base-change
of ITto E - F', it is cuspidal by (i). As the f and & conditions can be checked after any finite
base-change which is split above p, the inflation-restriction sequence induces isomorphisms

HYF,V) = H(F',V|g,, ) /1)

for « € {f’, f, ¥ }. As a consequence, it is enough to show the surjectivity of the map of the
statement when F', E and II are replaced by F’, E - F’ and IT'. In particular, we may assume
that [F : Q] is even, that E/F is unramified everywhere, and that the places w of E such
that IT,, is ramified are split over F'. (This kind of trick has been used in another context by
Blasius-Rogawski and Harris-Taylor.)

As [F : Q] is even, there exists a unitary group U/F as in §4.1 which is furthermore
quasi-split at all finite places. By Labesse [30, Thm. 5.4], IT admits a strong descent to an
automorphic representation = of U which has furthermore multiplicity 1. Let S be a finite
set of places of F which split in E, containing Sp, and such that 7 is unramified outside S.
Let K = ][, K, be a compact open subgroup of U(Ag ;) as in §4.1 such that K, is
hyperspecial for each v ¢ S and small enough so that w]{( # 0. Let X be the eigenvariety
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of U of level K associated to « and the spherical Hecke algebra outside S. Let {7, }ves, be
as in the statement and let z € X be the point associated to (m, {&,}). Up to extending the
scalars in X, me may assume that X is defined over the field L of §6.3. The natural pseudo-
character Gg s — O(X) (see e.g. [, Prop. 7.5.4]) and the absolute irreducibility of pr; define
a canonical L-linear map on tangent spaces

(6.20)  Tu(X) — Xpy(L[e]) = H'(Gr,s, Ad'(p)(pn)) = H}, (F, Ad' (pm)).-

By [1, Thm. 4.4.1] (using that &, is non-critical and regular for each v), the image of (6.26)
falls inside H%(F, Ad'(pm)). Consider now the induced map:

(6.27) T.(X) — [[ HY, (Fo, Ad'(p)(pn))/ H} (Fy, Ad'(5) (pm))-
v|p

We claim that this map is an isomorphism, which will conclude the proof. Note that the
subspace T,(X) C HZ(F,Ad (pn)) even furnishes a canonical section of the map of the
statement. Consider the natural map
_ _ (Psen)v /rn
[ HS, (Fo, Ad'(2)(pm))/ H} (Fo, Ad' () (o))~ =5 (L")

vlp

By Prop. 3.15 this is an isomorphism, so it is enough to check that the composite of (6.27)
with this map is an isomorphism. But this composite is the derivative of the map from X to
the weight-space at x, which is an isomorphism by Thm. 4.10, and we are done. O

T/01(0, 6.9. — Assume that v|p, p; ~ is weakly generic and regular (8.24). Then
H},(F,Ad'(pn)) = > HY(F, Ad'(pn))
7
and the natural map
H (F,Ad'(pn)) — [ Hi(F,, Ad (o))

vlp

is surjective.

For each v|p, let &;, be a weakly nested sequence of non-critical regular refinements
of py +. The equality H}, (F, Ad'(pn)) = .5 HE(F, Ad'(pmr)) even holds if we restrict the
sum to the nl*¥ refinements & such that 7, is one of the &; ,, for each v.

Proof. — It is an immediate consequence of Thm. 3.20 and Thm. 6.8. O

C1(166#(" 6.10. — Under the assumptions of TheorefnS, and for eachS as in(6.25),
dimy H}(F,Ad (pn)) = dim H*(G,s, Ad(pn)).

In particular, if H?(Grg,Ad (pn)) = 0 for some residualF,-representation Ad’(pr)
associated toAd'(pmr), then H(F, Ad'(pmr)) = 0.
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Proof. — By Thm. 6.9 and Prop. 3.15, we have

1

(6.28)  dimy, H:(F, Ad'(pn)) — dimy, HE(F, Ad'(pn)) = %[F . Q.

As we already saw, H*(Gr,s,Ad (pn)) = 0 and Ad'(pn)(c)(X) = —P~1XP for some
symmetric invertible matrix P by [2], so

_ 1
dimL Adl(pn)cf_l = 771(”; )

This numerical coincidence with the right-hand side of (6.28), as well as (6.25) and the global
Euler characteristic formula conclude the proof. O

Theorem 6.9 is very general as a lot of Selmer groups are direct summands of adjoint’
Selmer groups. Here is an important special case.

Let F be a totally real field in which p is totally split and let II be a regular algebraic
cuspidal automorphic representation of GL, (Ar) such that IIY = TIIn for some Hecke
character 7 of F' such that the sign 7., (—1) := 7, (—1) is independent''? of the archimedean
place v of F. Denote by ¢ € Z the integer such that 7|.|~7 is an Artin character of F.
Let prr : Gr — GL, (L) be the p-adic Galois representation associated to IT and ¢ ([14]),
and denote by n, : Gp — L* the character associated to n and ¢. Recall that py; ~ prin,x" !
and that pyy is symplectic if n is even and 7o, (—1)(—1)¢ = 1, and orthogonal otherwise by [2,
Cor. 1.3]. Assume that for each place v of F' dividing p, I1, is unramified and its Langlands
class has n distinct eigenvalues. Let E be any totally imaginary quadratic extension of F' in
which p is totally split.

T/01(0, 6.11. — Let II be as above and assume that for eagp, pn,, is weakly
generic regular.

(Symplectic case) If n is even andn.(—1)(—1)¢ = 1, then (6.24) is surjective
for V.= A%pn @ n.eg/px™ ' andV = Sym®pn @ n,x" L.

(Orthogonal case) Otherwise, (6.24) is surjective for V. = A2?ppg ® n,x™ ! and
V = Sym®pn ® neg/px" "

Proof. — Indeed, let II' be Arthur-Clozel’s base change II’ of II to F, it is cuspidal as
PG, 18 indecomposable by assumption. By [16, Lemma 4.1.4], there is an algebraic Hecke
character v of E which is unramified at p and such that I’ ® v is conjugate self-dual. This
latter representation clearly satisfies assumption (A) of §6.3 by the corresponding assumption
on II. A simple computation left to the reader shows that

Ad (pvgy) = Apn @ nieg px" " @ Sym®pn @ X"
in the first case, and
Ad' (prvgy) = Apn @ 1,X" " @ Sym®pn @ n.ep px" !

in the second. O

Let f be a classical modular eigenform of weight £ > 1 and let py : Gg,5 — GL2(Q,)
be the p-adic Galois representation associated to f and ¢. Assume that the level of f is prime
to p and let E be a quadratic imaginary field split at p.

(12) Actually, Langlands’ conjectures imply that this last condition should follow from the others.
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T/01(0, 6.12. — Assume thatpflG@p is absolutely indecomposable and that the ratio of
its two crystalline Frobenius eigenvalues is not a root of unity. THérn4) is an isomorphism
for:

(i) V = Sym"(ps) ® det(p;) /2 if n = 2,6.

(i) V = Sym"(ps) ® det(ps)~"/%egq if n=0,4.
Moreover, for each suclv’ we havefl;(Q, V) = H*(Gq,s, V).

Proof. — Let I, be the cuspidal automorphic representation of GL2(Ag) associated to py

and let 7 be its central character. We normalize IIy so that n = [.|2~* times a Dirichlet
character, so p; = pry,. As is well known, we have 7o, (—1)(=1)k=2 = 1.
By Kim-Shahidi [28] the representation I := Sym®IIy of GL4(Ag) defined at all

places by the local Langlands correspondence is automorphic and cuspidal (note that
f is not CM by the assumption at p). We have IIV ~ IIn~3. Moreover II is symplectic as
(Moo (=1)(=1)k=2))3 = 1. The first part of the theorem is then a consequence of Thm. 6.11
applied to II. Its assumptions are satisfied by Examples 3.26 and 3.28. The last sentence
follows from the global Euler characteristic formula as in the proof of Cor. 6.10. O

Appendix: Some unobstructed Galois representations of type U(3)

Let A be an elliptic curve over Q. Let p > 5 be a prime of good reduction of A and assume
that the representation
Gg — AutAlp] ~ GLy(F),)
is surjective. Let E' be a quadratic imaginary field and S the set of places containing oo,
p and the primes dividing disc(E)cond(A). Assume to simplify that p splits in E and that
ged(dise(E), cond(A)) = 1. By Example 1.9, the representation

p = Symm®A[p](~1)jcp s
is modular of type U(3). Let Ad’(p) be the G s-module associated to g as in §1.1.
LO,,# 6.13. — Thereis anisomorphism df, [Gg,s]-modules:
Ad'(p) = p® epyq ® (Symm* Ap])(~2) ® ex 0,
whereeg q is the non-trivial character ofGal(£/Q).

We are looking for a set of conditions ensuring that H%(Gg s, Ad’(p)) = 0. Let K be
the field of definition of some F-line in Afp] (so [K : Q] = p+ 1), x : Gk — T the
natural character on the quotient of A[p] by this line, and K’ the extension of K cut out by
the character x*eg/g(—1). If £is a prime of good reduction of A, we set ap = £+1—|A(F)|.

P(141'3%31&.14. — If the following conditions are satisbed, thehis unobstructed.
() Ve € S, HO(Q, Ad'(p)(1)) = 0.

(i1) p does not divide the degree of a modular parameterizatiomof

(iii) The class numbers df and K’ are prime top.

Moreover, H?(Q,, Ad’(p)(1)) = 0 if:

(a) £ = p, unlessA is ordinary atp, A[p]|GQp is split, anda,, = +1 mod p.

(b) £|disc(E), £ # 1 mod p anda, # £(£ + 1) mod p.
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(c) £| cond(A), A is semistable at, Alp]|q,, is non-split,¢? and¢*eg/q(¢) # 1 mod p.

Proof. - As O ® F, = CI(E) ® F, = 0 we have III5(Gq,s,€p/q(1)) = 0, thus
assumption (i) ensures first that H?(Gg,s, €g/g) = 0. By (i) again, H°(Qq, Symm®A[p]) = 0
for each £ € S, thus assumption (ii) implies the vanishing of H?(Gq,s,p) by a result of
Flach [22, §3]. We now deal with the last term U := Symm*A[p](—2) ® eg/o = U*. Note
that H°(Gg,s,U*(1)) = 0 by assumption (i), so Tate’s global duality theorem shows that
H?*(Gg.s,U) = 0if and only if IT15(Gg,s, U(1)) = 0.

Let V. = F2 be the standard representation of G = GLy(F,), let B C G denote the
upper triangular subgroup and x : B — T, the unique quotient of V|z. We have an
FF,[G]-equivariant injection Symm*V — Ind$ (x*) and the quotient @ is well known to be

irreducible of dimension p — 4, isomorphic to det(V)2 when p = 5. In particular, in all cases
H°(Gq,s,Q(—1) ® €g/g) = 0 and we have natural injections

H'(Go,s,U(1)) — H'(Gr,s,x"(—V)epj) — H' (Gxr,5,Fp).
Via this injection, 111§ (Gg,s, U(1)) is mapped into CI(K’) ® F,, hence (iii).

The second part of the statement is an immediate computation and is left to the reader.
O

We use the notations of Cremona’s tables of elliptic curves [21].

P(141'3%31&.15 (Under GRH). — Let p =5, E = Q(4¢) and assume tha# belongs to
one of the isogeny classes

17A, 21A, 37B, 394, 51A, 534, 694, 73A, 834, and 91B.

ThenH2(G(@7s, Ad'(p)) = 0.

These curves are exactly the elliptic curves A of odd, square-free, conductor N < 100 such
that each prime divisor of NV is congruent to +2 mod 5, and such that a3(A) # £2 (this rules
out the classes 37A, 43A, 67A and 91 A4). These last two conditions are the ones in (b) and
part of (c) above, and are actually necessary local conditions for the unobstruction of the
deformation functor of A[5] itself.

The third row of the following table gives the degrees of the prime isogenies in a class, note
that there is no isogeny of degree 5. The sixth row gives the j invariant of a certain element in
the class, namely of: 1744, 21 A4, 37B3, 39A4, 51A1, 53A1, 69A1, 73A2, 83A1,and 91B1.
Their valuation at any ¢ dividing cond(A) is < 5, s0 A[p]|q,, is not split for any such £. This
also shows that Gg — Aut(A[5]) is surjective for each A. Using the table below, we see that
the criteria (a), (b) and (c) of the proposition apply, hence (i) holds.

The seventh row gives the modular degree of the strong Weil curve in each class, (ii) follows
(recall that there is no 5-isogeny within a class).
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For each class we computed the field K and found K = Q(x) with:
28 + 425 + 172 — 17 =0,
2% —22° + 92 — 1223 + 2122 — 152+ 3 =0,
2% — 2% — 52* + 1023 — 152% 4+ 82 — 36 = 0,
x5 — 22°% — 52* + 202° — 2522 — 252 4+ 75 = 0,
28 — 22% — 52 —102% + 522 — 4 + 48 = 0,
2% — 2° — 52 + 2023 — 1522 — 462 + 101 = 0,
2% — 2% — 5zt — 8023 + 3522 + 1842 4 1521 = 0,
28 — 225 — 52* + 202° — 2522 — 59z 4 143 = 0,
2% — 325 — 5% — 102° 4 1022 + 75z + 245 = 0,
and z% — 22° — 5% + 302% — 3522 + 202 4+ 80 = 0.
The last row below gives the computation by Pari [17] of the class number of

K’ = K(cos(w/10)), which concludes the proof. This last computation (and only this
one) depends on GRH; it would be interesting to make it unconditional!

class 17A | 21A | 37B | 39A | 51A | 53A | 69A | 73A | 83A 91B
cardinal 4 6 3 4 2 1 2 2 1
isogenies 2 2 3 2 3 2 2

az -1 -1 0 1 0 -1 1 -1

as -2 -2 0 2 3 0 0 2 -2 -3
degree 1 1 2 2 2 2 3 2 4
By 2 2 8 32 2
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