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ON THE INFINITE FERN OF GALOIS
REPRESENTATIONS OF UNITARY TYPE

!" G#$%#&CHENEVIER

To Julia and Valeria

A!'%(#)% . – Let E be a CM number field, p an odd prime totally split in E, and let X be
the p-adic analytic space parameterizing the isomorphism classes of 3-dimensional semisimple p-adic
representations of Gal(E/E) satisfying a selfduality condition “of type U(3)”. We study an analogue
of the infinite fern of Gouvêa-Mazur in this context and show that each irreducible component of
the Zariski-closure of the modular points in X has dimension at least 3[E : Q]. As important
steps, and in any rank, we prove that any first order deformation of a generic enough crystalline
representation of Gal(Qp/Qp) is a linear combination of trianguline deformations, and that unitary
eigenvarieties are étale over weight space at the non-critical classical points. As another application,
we give a surjectivity criterion for the localization at p of the adjoint� Selmer group* of a p-adic Galois
representation attached to a cuspidal cohomological automorphic representation of GLn(AE) of type
U(n) (for any n).

R*'+,* . – Soient E un corps de nombres CM, p un nombre premier impair totalement décom-
posé dans E, et soit X l’espace analytique p-adique paramétrant les classes d’isomorphie de représen-
tations p-adiques semisimples de dimension 3 de Gal(E/E) satisfaisant une condition d’autodualité
« de type U(3) ». Nous étudions un analogue de la fougère infinie de Gouvêa-Mazur dans ce contexte et
démontrons que l’adhérence Zariski des points modulaires de X a toutes ses composantes irréductibles
de dimension au moins 3[E : Q]. Au passage, nous prouvons en toute dimension que toute déformation
à l’ordre 1 d’une représentation cristalline su- samment générique de Gal(Qp/Qp) est une combinai-
son linéaire de déformations triangulines, et que les variétés de Hecke unitaires sont étales sur l’espace
des poids aux points classiques non critiques. Enfin, nous obtenons un critère de surjectivité de l’ap-
plication de localisation en p du groupe de Selmer adjoint� d’une représentation galoisienne p-adique
attachée à une représentation automorphe cuspidale cohomologique de GLn(AE) qui est de type U(n)

(pour tout n).

The author is supported by the C.N.R.S.
* Pronounce “adjoint primed Selmer group.”
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964 G. CHENEVIER

Introduction

Let E be a number field, p a prime number, S a finite set of places of E containing the
places above p and∞, GE,S the Galois group of a maximal algebraic extension of E unram-
ified outside S, and let n ≥ 1 be an integer. We are interested in the set of n-dimensional,
semisimple, continuous representations

ρ : GE,S −→ GLn(Qp)

taken up to isomorphism. This set turns out to be the Qp-points of a rigid analytic space X
(or Xn) over Qp in a natural way(1). An interesting subset

Xg ⊂ X(Qp)

is the subset of representations which are geometric, in the sense they occur as a subquotient
of H

i

et
(X

E
, Qp)(m) for some proper smooth algebraic variety X over E and some integers

i ≥ 0 and m ∈ Z. There are several basic open questions that we can ask about X and its
locus Xg; here are some of them:

Questions. – Does Xg possess some specific structure inside X? What can we say about
its various closures in X (for example, for the Zariski or the p-adic topologies)? What if we
replace Xg by its subset Xc of ρ’s which are crystalline at the places of E above p?

Regarding the first question, a trivial observation is that Xg is countable, as the set of
isomorphism classes of algebraic varieties over E is countable, thus it certainly contains no
analytic subset of X of positive dimension. In the simplest case E = Q and S = {∞, p} then
X1 is the space of p-adic continuous characters of Z∗

p
(a finite union of 1-dimensional open

balls) and Xc is the subset of characters of the form x �→ x
m for m ∈ Z, which is Zariski-

dense in X1. For a general E and S, we leave as an exercise to the reader to check that class
field theory and the theory of complex multiplication show thatXc is also Zariski-dense inX1

assuming Leopoldt’s conjecture for E at p.
As a second and much more interesting example, let us recall the discovery of Gouvêa

and Mazur [33]. They assume that d = 2, E = Q, and say S = {∞, p} to simplify. Let q be
a power of an odd prime p and let

ρ̄ : GQ,S −→ GL2(Fq)

be an absolutely irreducible odd Galois representation. Let R(ρ̄) denote the universal odd
GQ,S-deformation ring of ρ̄ in the sense of Mazur and let X(ρ̄) be its analytic generic fiber: it
is the connected component of X2 parameterizing the ρ with residual representation ρ̄. In
general X(ρ̄) is a rather complicated space, and Mazur first studied it in the unobstructed
case(2) H

2
(GQ,S , ad(ρ̄)) = 0, for which class field theory shows that R(ρ̄) � Zq[[x, y, z]],

hence X(ρ̄) is the open unit ball of dimension 3 over Qq. In this case, Gouvêa and Mazur
showed that Xc is Zariski-dense inX(ρ̄). They actually show that the subset

Xmod ⊂ X(ρ̄)

(1) We will not use this space in the sequel, but for its definition see [13, Thm D].
(2) The philosophy of special values of L-functions suggests that this unobstructed case is the generic situation. It is
now known for instance that for ρ̄ = ρ̄∆ attached to Ramanujan’s ∆ =

�
n>0 τ(n)qn, p > 13 and p �= 691, the

deformation problem of ρ̄ is unobstructed (Mazur, Weston [39]).
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ON THE INFINITE FERN OF GALOIS REPRESENTATIONS OF UNITARY TYPE 965

of p-adic Galois representations ρf (m) attached to an eigenform f ∈ Sk(SL2(Z)) for some
weight k, and some m ∈ Z, is Zariski-dense inX(ρ̄). This subset is non empty as ρ̄ is modular
(Khare-Wintenberger).

Their proof relies heavily on the theory of p-adic families of modular eigenforms due to
Coleman, extending pioneering works of Hida, that we briefly recall. Let f = q + a2q

2
+

a3q
3

+ · · · ∈ Qp[[q]] be a classical modular eigenform of level 1, of some weight k, and
such that ρ̄f = ρ̄; the representation ρf corresponds to some xf ∈ X(ρ̄)(Qp). Attached
to f we have two p-Weil numbers of weight k − 1 which are the roots of the polynomial
X

2−apX +p
k−1. The main result of Coleman asserts that if ϕ is one of them, we can attach

to (f, ϕ) an a- noid (equidimensional) subcurve

C(f,ϕ) ⊂ X(ρ̄)

containing xf as well as a Zariski-dense subset of modular points, and such that for each
modular point xf � ∈ C(f,ϕ) then f

� has a p-Weil number with the same p-adic valuation as ϕ.
This curve C(f,ϕ) is not quite canonical but its germ at xf is. The infinite fern of Gouvêa-
Mazur is by definition the union of all the C(f,ϕ) for all f and choice of ϕ. A simple but
important observation made by Gouvêa and Mazur is that in some neighborhood of xf

in X(ρ̄) the two curves C(f,ϕ) and C(f,ϕ�) only intersect at the point xf if ϕ and ϕ
� have

di. erent valuations: this essentially follows from the previous properties and the fact that
the “weight” varies analytically in Coleman’s families. From this “fractal” picture it follows
at once that the Zariski-closure of the modular points, or which is the same the Zariski-
closure of the fern, has dimension at least 2 insideX(ρ̄), and a simple argument of Tate-twists
using Sen’s theory gives then the result. The story does not quite end here as some years later,
Coleman and Mazur defined a wonderful object, the eigencurve, which sheds new light on the
infinite fern. They define a reÞned modular pointas a pair

(x, ϕ) ∈ X(ρ̄)×Gm

where x = xf is modular and ϕ is a p-Weil number of f . The interesting fact is that the
Zariski-closure of the refined modular points in X(ρ̄)×Gm is an equidimensional curve, the
so-called ρ̄-eigencurve. Its image in X(ρ̄) is the complete inÞnite fern, which simultaneously
analytically continues each leaf of the infinite fern itself. This picture for X(ρ̄) provides a
rather satisfactory answer towards the first of the main questions above, even though very
little is known about the geometry of the eigencurve at present. It is believed that E(ρ̄)

has only finitely many irreducible components. An amazing consequence of this conjecture
would be that for a well chosen modular point x ∈ X(ρ̄) the analytic continuation of a well
chosen leaf at x would be Zariski-dense inX(ρ̄)! However, as far as we know there is no non-
trivial case in which this conjecture or its variants in other dimensions > 1 is known.

Let us mention that when S is general and ρ̄ is possibly obstructed, the approach above
of Gouvêa-Mazur still shows that each irreducible component of the Zariski-closure of the
modular points in X(ρ̄) has dimension at least 3. In a somehow opposite direction, it is
conjectured that in all cases X(ρ̄) is equidimensionnal of dimension 3, and that each of
its irreducible components contains a smooth modular point. This conjecture, combined
with the result of Gouvêa-Mazur, implies the Zariski-density of the modular points in X(ρ̄)

for each odd ρ̄ (say absolutely irreducible). Relying on R = T theorems of Taylor-Wiles,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



966 G. CHENEVIER

Diamond et al., Boeckle was able to show that conjecture under some rather mild assumption
on ρ̄, hence the Zariski-density in most cases: we refer to [6] for the precise statements.

Our main aim in this paper is to study a generalization of this picture to the higher
dimensional case. Our most complete results will concern some pieces of X3 satisfying some
sort of self-duality condition. Let E be a CM field(3), and let

ρ̄ : GE,S −→ GL3(Fq)

be an absolutely irreducible Galois representation such that ρ̄
∗ � ρ̄

c, where c is a generator
of Gal(E/F ) and F the maximal totally real subfield of E. Let X(ρ̄) ⊂ X3 denote the
closed subspace of x ∈ X3 such that ρ

∗
x
� ρ

c

x
and ρx � ρ̄. This X(ρ̄) has conjectural

equidimension 6[F : Q], and under an unobstructedness assumption similar to Mazur’s one
it is actually an open unit ball over Qq in that number of variables. There is a natural notion of
modular points inX(ρ̄): they are the x such that ρx is a p-adic Galois representation attached
to a cuspidal automorphic representation Π of GL3(AE) such that Π∞ is cohomological,
Π
∨ � Π

c, and such that for v finite dividing p or outside S, Πv is unramified. Those
Galois representations have been constructed by Rogawski; they are cut out from the étale
cohomology of (some abelian varieties over) the Picard modular surfaces and they are related
to automorphic forms on unitary groups in 3 variables associated to E/F .

T/01(0, A. – Assume thatp is totally split in E. Then each irreducible component of the
Zariski-closure of the modular points inX(ρ̄) has dimension at least6[F : Q].

In particular, in the unobstructed case the set of modular points ofX(ρ̄) is Zariski-dense if
it is non-empty.

In the appendix, we give several examples of elliptic curves A over Q such that the defor-
mation problem of typeU(3, E/Q) of ρ̄ := Sym

2
A[p]|GE

(−1) is unobstructed for p = 5 and
E = Q(i). As in the work of [6] in the GL(2, Q) case, we expect that combining Theorem A
with suitable R = T theorems (as in [16] and subsequent work), one should be able to remove
the unobstructedness assumption under suitable assumptions on ρ̄. However, we postpone
this to a subsequent study.

As in the work of Gouvêa-Mazur, a very important “constructive” ingredient of our
proof is the theory of families of modular forms (for U(3, E/F ) here), or better, the related
eigenvarieties. They can be quickly defined as follows, from the notion of reÞned modular
points. Assume F = Q for simplicity and fix some prime v of E above p, so Ev = Qp by
assumption. For each modular point x ∈ X(ρ̄), it is known that ρx,p := ρx|GEv

is crystalline
with distinct Hodge-Tate weights, say k1(x) < k2(x) < k3(x). Define a refined modular
point as a pair (x, (�ϕi(x))) ∈ X(ρ̄)×G3

m
such that x is a modular point and such that

(p
k1(x) �ϕ1(x), p

k2(x) �ϕ2(x), p
k3(x) �ϕ3(x))

is an ordering of the eigenvalues of the crystalline Frobenius of Dcrys(ρx,p); there are up to 6

ways to refine a given modular point. We define the ρ̄-eigenvariety

E(ρ̄) ⊂ X(ρ̄)×G3

m

(3) Throughout this paper, a CM field is assumed to be imaginary.
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ON THE INFINITE FERN OF GALOIS REPRESENTATIONS OF UNITARY TYPE 967

E(!̄ )

G3
m

X (!̄ )

as the Zariski-closure of the refined modular points(4); the complete inÞnite fern of
type U(3, E/Q) is the subset F (ρ̄) ⊂ X(ρ̄) image of E(ρ̄) under the first projection. By
a former result of the author, this eigenvariety turns out to be equidimensional of dimen-
sion 3, and has some additional properties. The analogues of Coleman’s arcs through a
modular point x ∈ X(ρ̄) are now 3-dimensional locally closed subspaces Cx,ϕ (the “leaves
of the fern at x”) indexed by each refinements (x, ϕ) of x. The germ of Cx,ϕ at x is canon-
ical, and the modular points are actually Zariski-dense in Cx,ϕ. The ρ̄-inÞnite fern of type
U(3, E/Q) is the union of all the leaves Cx,ϕ constructed this way when (x, ϕ) runs over all
the refined modular points: see the figure above.

For dimension reasons, this situation is subtler than the one of Gouvêa-Mazur. Indeed,
assume that ρ̄ is unobstructed to simplify, so X(ρ̄) is the open unit ball of dimension 6.
Remark that there is a one dimensional family of twists by Galois characters of type U(1),
and E(ρ̄) is stable by this family of twists as well, so we should rather think of X(ρ̄) as a
5-dimensional space in which evolves the 2-dimensional fern F (ρ̄) (with a Zariski-dense
accumulating subset of six times multiple points). The problem is that even if we knew that
any two of the six leaves are transversal at each modular point, this would not be enough to
exclude the possibility of a 4-dimensional Zariski-closure. The situation is even worse when
[F : Q] > 1 as in this case we have to pass from dimension 3[F : Q] to 6[F : Q].

(4) Let us warn the reader that it is actually not quite the right definition (for instance Theorem D below may not
hold with this one), although we shall content ourselves with it in this introduction and refer to Def.2.2 for the right
one.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



968 G. CHENEVIER

The idea of our proof is to study the relative positions of the tangent spaces of the local
leaves Cx,ϕ, when ϕ varies, at a given modular point x ∈ X(ρ̄). A key intermediate result is
the following:

T/01(0, B. – Assumeρ̄ modular. There exist modular pointsx ∈ X(ρ̄) such thatρx,p is
absolutely irreducible and has distinct crystalline Frobenius eigenvalues ink(x). If x is such a
point, then the image of the natural map on tangent spaces

�

y �→x,y∈ E(ρ̄)

Ty( E(ρ̄)) −→ Tx(X(ρ̄))

has dimension≥ 6.

It is not di- cult to show that Theorem B actually implies Theorem A (see §2.8). The first
part of Theorem B is a simple application of eigenvarieties, but its second part is rather deep.
It relies on two general results of independent interest whose proofs form the technical heart
of this paper. The idea is to study the image of the map in Theorem B in the tangent space
of the deformation space of the local representation ρx,p, on which we will have a su- ciently
e- cient control as we shall see. As an indication of this, recall that since the works of Kisin,
Colmez and Bellaïche-Chenevier, it is known that the restriction at GQp of the family of
Galois representations over E(ρ̄) has some very specific properties: they are trianguline in
the neighborhood of the “non-critical and regular” modular points.

The first important result we prove is a purely local theorem about the deformation space
of a given crystalline representation of GQp = Gal(Qp/Qp). Let L be a finite extension
of Qp and let V be a crystalline representation of GQp of any L-dimension n. Assume that
EndGQp

(V ) = L, that V has distinct Hodge-Tate numbers, and that the eigenvalues ϕi of the
crystalline Frobenius on Dcrys(V ) belong to L and satisfy ϕiϕ

−1

j
�= 1, p for all i �= j. Let XV

be the deformation functor of V to the category of local Artinian L-algebras with residue
field L. It is pro-representable and formally smooth of dimension n

2
+ 1. For each of the n!

orderings F of the ϕi (such an ordering is called again a reÞnementof V , for some obvious
reasons), we defined in [1, §2] the F -trianguline deformation subfunctor XV, F ⊂ XV , whose
dimension is n(n+1)

2
+ 1. Roughly speaking, the choice of F corresponds to a choice of a

triangulation of the (ϕ,Γ)-module of V over the Robba ring, and XV, F parameterizes the
deformations such that this triangulation lifts. When the ϕ-stable complete flag of Dcris(V )

defined by F is in general position compared to the Hodge filtration, we say that F is non-
critical.

T/01(0, C. – Assume thatn Òwell-chosenÓ reÞnements ofV are non-critical (e.g. all of
them), or that n ≤ 3. Then on tangent spaces we have an equality

XV (L[ε]) =

�

F

XV, F (L[ε]).

In other words, any Þrst order deformation of a generic crystalline representation
is a linear combination of trianguline deformations. Maybe surprisingly, our proof
of this result is by induction on the dimension of V , which requires first to extend the
statement to the world of non-étale (ϕ,Γ)-modules over the Robba ring and work in this
general setting (as in [1]). We also have to extend and complete several results of [1] to
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general paraboline deformation functors, and even in the trianguline case the proofs given
here are actually slightly di. erent from the ones there. Following the ideas of this paper,
Theorem C has another purely local application to the Zariski-density of the crystalline
points in some components of the representation space of GQp (for instance in the residually
irreducible ones), that will however be given elsewhere. Last but not least, let us remark that
the codimension of the crystalline locus in XV , namely n(n+1)

2
, actually coincides with the

(conjectural) dimension of X(ρ̄) if ρ̄ is of type U(n) (see below). This numerical coincidence
reminds of course the ones discussed in [16] and is fundamental to the application to the
Zariski-density of modular points (e.g. in the unobstructed case of Thm. A).

The second key ingredient for the proof of Theorem B is an important theorem about
eigenvarieties that we simply state as a slogan in this introduction:

T/01(0, D. – Eigenvarieties are Žtale over the weight space at non-critically reÞned,
regular, classical points.

See Theorems 4.8 and 4.10 for precise statements concerning unitary eigenvarieties. In
terms of families of p-adic automorphic forms, this theorem means that the natural p-adic
family passing through a non-critically refined (and regular) automorphic representation
may be parameterized by a polydisc with weight maps for parameters (either automorphic,
or Hodge-Tate-Sen weights), which is maybe the most natural statement we may expect in the
theory of p-adic families. For ordinary refinements several instances of this slogan have been
proved by Hida. Our proof relies in particular on a number of properties of automorphic
representations for unitary groups (including some multiplicity one results of Rogawski
for U(3) and of Labesse for U(n)), on the generalized theta-maps studied by Jones, and on
a result of Kisin.

Let us go back to Theorem A. We have dealt with cases of absolutely irreducible ρ̄ to
fix ideas, but it holds in any residually reducible case, with the same proof, if we work with
pseudocharacters instead of representations (using [13] for p = 3!). More interestingly, we
expect that our approach will lead to a proof of the Zariski-density of the infinite fern of
type U(n) for any n. In this case X(ρ̄) has conjectural dimension [F : Q]

n(n+1)

2
, E(ρ̄) has

dimension n[F : Q], and there are generically n!
[F :Q] local leaves in F (ρ̄) through each

modular point. (When n = 3, the coincidence 3! = 3(3 + 1)/2 = 6 actually plays no
specific role.) Although Theorems C and D apply in this generality, we were faced with a new
di- culty concerning the existence of su- ciently many global automorphic representations
which are generic enoughat p: we refer to §5.5 for a discussion about it. On the other hand,
the degree of the base field is rather insensitive to our method, which allowed us for instance
to extend the result of Gouvêa-Mazur to the Hilbert modular case (see Theorem 5.9):

T/01(0, E. – Let F be a totally real Þeld of even degree,p an odd prime totally split inF ,
d the Leopoldt defect ofF at p, and let ρ̄ : GF,S −→ GL2(Fq) be an absolutely irreducible
modular Galois representation.

Then the irreducible components of the Zariski-closure of the essentially modular points
inX(ρ̄) all have dimension at least1+d+2[F : Q]. If H

2
(GF,S , ad(ρ̄)) = 0, then the modular

points are Zariski-dense inX(ρ̄).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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We end this introduction by stating an interesting general result about adjoint� Selmer
groups that follows from the theory of eigenvarieties and Theorems C and D above. Let n ≥ 1

be any integer, let E/F be a CM field, and let Π be a cohomological cuspidal automorphic
representation of GLn(AE) such that Π

∨ � Π
c. Assume that p is totally split in E and that

Π is unramified at each place of E above p. Let

ρΠ : GE −→ GLn(Qp)

be a p-adic Galois representation attached to Π. It turns out that the adjoint representation
ad(ρΠ) has a natural extension to GF that we denote by Ad

�
(ρΠ), and whose H

1 has a natural
interpretation as the tangent space of the deformation functor of ρΠ of type U(n). This
interpretation allows us to define subspaces H

1

F (F,Ad
�
(ρΠ)) for any choice of refinements

of the ρΠ|Gv
for each place v of F dividing p. In the following statement, we use standard

notations from the theory of Selmer groups: f is the Bloch-Kato condition (automatic
outside p for Ad

�
(ρΠ)) and H

1

s
= H

1
/H

1

f
. See also §3.24 for the precise definition of weakly

generic and regular, let us simply say that a crystalline representation of GQp with su- ciently
generic crystalline Frobenius eigenvalues and whose refinements are all non-critical has this
property (in particular it is absolutely indecomposable).

T/01(0, F. – Assume thatρΠ|Gv
is weakly generic and regular for eachv|p. Then

H
1
(F,Ad

�
(ρΠ)) −→

�

v|p

H
1

s
(Fv,Ad

�
(ρΠ))

is surjective. Moreover,H1
(F,Ad

�
(ρΠ)) =

�
F H

1

F (F,Ad
�
(ρΠ)) and for S big enough we

havedim H
2
(GF,S ,Ad

�
(ρΠ)) = dim H

1

f
(F,Ad

�
(ρΠ)).

The second part of this theorem is a variant for Selmer groups of Theorem C. It is the
infinitesimal counterpart of the infinite fern of type U(n, E/F ) in the adjoint� Selmer group.
It says in particular that H

1
(F,Ad

�
(ρΠ)) is spanned by elements which are not too far from

being geometric. As far as we know, this is the first example of such a statement. The first part
of the theorem is actually deduced from the second one, and the assertion on H

2 follows from
the computation of the sign of ρΠ in [2]. We believe that a variant of Theorem F should hold
for a huge class of Selmer groups. Let us mention here that the proof of Theorem F also uses
some base-change trick to reduce to a situation where the multiplicity one results of Labesse
(and Theorem D) apply.

The theorem above has a corollary concerning the Galois representations associated to
essentially-selfdual cuspidal, cohomological, automorphic representations of GLn over a
totally real field: see Thm. 6.11. Here is a special case. Let Π be a selfdual, cohomological,
and cuspidal, automorphic representation of GLn(AQ), and let ρΠ : GQ −→ GLn(Qp) be an
associated p-adic Galois representation, normalized so that ρ

∗
Π
� ρΠ(n−1). Recall that ρΠ is

symplectic if n is even and orthogonal otherwise by [2]. Assume again that Πp is unramified.

T/01(0, G. – Assume that ρΠ|GQp
is weakly generic and regular, and setV =

Symm
2
(ρΠ)(n − 1) if n is even,V = Λ

2
(ρΠ)(n − 1) otherwise. Then the restriction map

H
1
(Q, V ) −→ H

1

s
(Qp, V ) is surjective.
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Let f = q +a2q
2
+ · · · be a classical modular eigenform of weight k > 1, level prime to p,

and let ρf : GQ,S → GL2(Qp) be an associated p-adic Galois representation.

T/01(0, H. – Assume thatρf |GQp
is absolutely indecomposable and that the ratio of the

two roots of the Hecke polynomialX2 − apX + ε(p)p
k−1 of f at p is not a root of unity. Set

Vn = Symm
n
(ρf )⊗ det(ρf )

−n/2.
For n = 2 and n = 6, the restriction H

1
(Q, Vn) −→ H

1

s
(Qp, Vn) is surjective and

dim H
1

f
(Q, Vn) = dim H

2
(GQ,S , Vn).

As the reader may have noticed, all the global statements of this paper concern number
fields which are totally split at p. It is clear from our method that this assumption could be
removed but we simply did not have the energy to do so. One reason for this is our reliance
on the local results of [29] and [1], which are only written at the moment for the base field Qp.
Another slightly annoying assumption we have is the regularity condition in Theorems D and
F. Again, we expect that it could be removed if the technical problems discussed in [1, §4] and
occurring in studying “refined families” were solved. For instance, these two improvements
together, combined with the recent developments on the Sato-Tate conjecture, would lead to
an extension of Theorem H to any n ≡ 2 mod 4.
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a Cours Peccot at the Collège de France in March-April 2008 [11], it is a pleasure to thank
this institution as well as the Fondation Peccot for their support.

1. The universal Galois representation of type U(n)

1.1. Galois representations of type U(n) with n odd and their deformations

Let E be a CM field, F its maximal totally real subfield and fix c ∈ GF a complex
conjugation. Let p be an odd prime number. Let S be a finite set of primes of E containing
the primes ramified over F and the primes above p. We assume that c(S) = S and we shall
sometimes view S as a set of places of F containing the subset S∞ of all the Archimedean
primes. We fix an odd integer n; eventually we shall take n = 3.

Let A be a commutative ring and let ρ : GE,S −→ GLn(A) be an absolutely irreducible
representation, in the sense that A[ρ(GE,S)] = Mn(A). We say that ρ is of typeU(n) if

ρ
∗ � ρ

c

as A[GE,S ]-modules, or which is the same if trace ρ(g
−1

) = trace ρ(cgc) for all g ∈ GE .
Let Gal(E/F ) act on GLn by c(g) :=

t
g
−1 and view G

n
:= GLn � Gal(E/F ) as a group

scheme over Z. The terminology ρ is of typeU(n) comes from the fact that G
n

may be viewed
as the reduced Langlands dual group of the unitary groups in n variables associated to E/F

(recall n is odd) and the following lemma, which is a variant of [16, §1].
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L0,,# 1.2. – ρ is of typeU(n) if, and only if, there exists a representation

�ρ : GF,S −→ GLn(A) � Gal(E/F )

where the induced mapGF,S → Gal(E/F ) is the natural map and�ρ|GE,S
= ρ.

Indeed, �ρ(c) := Pc, with P ∈ GLn(A), defines an extension of ρ as in the statement if, and
only if, t

P = P and t
ρ(g)

−1
= P

−1
ρ(cgc)P for all g ∈ GE,S . This last condition actually

implies t
P = µP for some µ ∈ A

∗ as ρ is absolutely irreducible, and µ = 1 as n is odd.
Note that the extension �ρ is not unique, but �ρ� is another one if, and only if, �ρ�(c) = P

�
c with

P
�
= λP and λ ∈ A

∗.
Let q be a power of p and let us fix from now on

ρ̄ : GE,S −→ GLn(Fq)

an absolutely irreducible, continuous, representation of type U(n). Let Zq be the Witt vectors
of Fq and let C be the category of Artinian local Zq-algebras with residue field A/mA = Fq.
Consider the deformation functor

D : C → Sets

defined as follows: for any object A of C , D(A) is the set of A-isomorphism classes of
continuous representations ρA : GE,S −→ GLn(A) of type U(n) such that ρA ⊗A Fq

is isomorphic to ρ̄. As ρ̄ is absolutely irreducible, this functor is pro-representable by a
complete local noetherian Zq-algebra R(ρ̄) with residue field Fq. Indeed, it is the quotient
of Mazur’s universal GE,S-deformation ring R

�
(ρ̄) by the ideal generated by the elements

trace ρ
u
(g
−1

)− trace ρ
u
(cgc), for all g ∈ GE,S , where ρ

u is Mazur’s universal R
�
(ρ̄)-valued

deformation. (Note that the argument so far did not use the assumption p odd.)
Using class field theory and arguments of Mazur we will see below that the Krull dimen-

sion of R(ρ̄)/(p) is always ≥ [F : Q]
n(n+1)

2
. The precise structure of R(ρ̄) is presumably

extremely complicated in general, however we shall not be interested in these kinds of com-
plications in this paper.

Let gn � Mn(Fq) be the Lie algebra of G
n

over Fq viewed as a representation of G
n
(Fq).

Fix once and for all some �ρ lifting ρ̄ as in Lemma 1.2. Thanks to this choice we may view gn
as a GF,S-module, that we shall denote by Ad

�
(ρ̄). This latter module does not depend on

the choice of �ρ. By definition, Ad
�
(ρ̄)|GE

is the usual adjoint representation of ρ̄. Moreover,
if �ρ(c) = Pc, then c acts on Ad

�
(ρ̄) = Mn(Fq) as(5) X �→ −P

t
XP

−1. In particular,
H

0
(GF,S ,Ad

�
(ρ̄)) = 0 as ρ̄ is absolutely irreducible and p is odd.

D023&3%31&1.3. – We say that theU(n)-deformation theory ofρ̄ is unobstructed, or for
short that ρ̄ is unobstructed, ifH2

(GF,S ,Ad
�
(ρ̄)) = 0.

By Tate’s global and local duality theorems, ρ̄ is unobstructed if, and only if,

X1

S
(GF,S ,Ad

�
(ρ̄)(1)) = 0 and H

0
(Fv,Ad

�
(ρ̄)(1)) = 0 for all finite prime v ∈ S

(note that gn is a selfdual Fq[ Gn
(Fq)]-module and see [34, Rem. 5.2.(c)]).

(5) As an exercise, the reader can check that up to conjugating ρ̄ if necessary, we may choose a �ρ such that �ρ(c) = c,
i.e. P = id (use that n and p are odd).

4 e SÉRIE – TOME 44 – 2011 – No 6



ON THE INFINITE FERN OF GALOIS REPRESENTATIONS OF UNITARY TYPE 973

P(141'3%31&1.4. – If ρ̄ is unobstructed, thenR(ρ̄) is formally smooth overZq of relative
dimension

[F : Q]
n(n + 1)

2
.

Set V = Ad
�
(ρ̄). Tate’s global Euler characteristic formula shows that

dim H
1
(GF,S , V ) = [F : Q] dimV

�ρ(c)=−1
+ dim H

0
(GF,S , V ) + dim H

2
(GF,S , V )

(dimensions are over Fq and recall that p is odd). But X �→ XP identifies Mn(Fq)
�ρ(c)=−1

with the subspace of symmetric matrices in Mn(Fq), which has dimension n(n+1)

2
, so

dim H
1
(GF,S ,Ad

�
(ρ̄)) = [F : Q]

n(n+1)

2
if ρ̄ is unobstructed.

The proposition follows from this computation and from the following general lemma.
If A is an object of C , two group homomorphisms with target G

n
(A) are said equivalent

if they are conjugate by an element in Ker( G
n
(A) → G

n
(Fq)). Define another functor

D� : C → Sets as follows: for an object A of C , D�(A) is the set of equivalence classes of
continuous homomorphisms rA : GF,S → G

n
(A) such that rA ⊗A Fq = �ρ (which has been

fixed above).

L0,,# 1.5. – The map rA �→ rA|GE
induces an isomorphismD� ∼→ D. Moreover,

D(Fq[ε]) = H
1
(GF,S ,Ad

�
(ρ̄)) and if H

2
(GF,S ,Ad

�
(ρ̄)) = 0, then D is formally smooth

overZq.

Proof. – For each A, D�(A) → D(A) is surjective by the proof of Lemma 1.2. Let
r1, r2 ∈ D�(A) be such that r1|GE

� r2|GE
; up to equivalence we may assume that r1|GE

= r2|GE
.

Set ri(c) = Pic, where Pi ∈ GLn(A). Then both P1 and P2 intertwine the conjugate and
dual of r1|GE

, so P1 = λP2 for some λ ∈ A
∗. As each ri lifts �ρ, λ ∈ 1 + mA. As p is odd,

λ = µ
2 for some µ in 1 + mA, so µ

−1
r1µ is equivalent to r1 and coincides with r2. This

concludes the proof of the first part of the statement, the other assertions follow from this
and standard facts from group cohomology.

Set Qq = Zq[1/p]. If R is a local complete noetherian Zq-algebra, the functor HomZq (R,−)

(continuous Zq-algebra morphisms) from the category of a- noid Qq-algebras to Sets is
representable by a rigid analytic space(6) over Qq called Berthelot’s generic fiber of R (see [27,
§7] for the basics on this construction). If R = Zq[[T1, . . . , Tr]]/I, this space is simply the
closed subspace defined by I = 0 in the r-dimensional open unit ball |Ti| < 1 (i = 1, . . . , r)
over Qq. In the sequel, we will be interested in Berthelot’s generic fiber of R(ρ̄), that we shall
denote by

X(ρ̄).

For example, in the unobstructed case X(ρ̄) is isomorphic to the open unit ball over Qq of
dimension [F : Q]

n(n+1)

2
. Before stating the universal property of X(ρ̄) we need to set some

notations and review some facts concerning families of representations.
Let Y be an a- noid over Qq and ρ : GE,S → GLn( O(Y )) a continuous representation.

For y ∈ Y a point, with residue field k(y), we denote by ρy : GE,S → GLn(k(y)) the
evaluation of ρ at y and by ρ̄y : GE,S → GLn(ky) the semi-simplification of its residual

(6) We use the foundations of rigid spaces in [7].
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representation. Here ky denotes the residue field of k(y); it comes with a natural morphism
Fq → ky. We say that ρ is a lift of ρ̄ if ρ̄y � ρ̄⊗Fq ky for all y ∈ Y .

Let Dan be the (contravariant) functor from the category of Qq-a- noids to Sets
where Dan

(Y ) is the set of O(Y )-isomorphism classes of continuous homomorphisms
ρY : GE,S → GLn( O(Y )) which are of type U(n) and lift ρ̄. As ρ̄ is absolutely irreducible,
ρY �→ trace ρY induces a bijection between Dan

(Y ) and the set of continuous pseudochar-
acters TY : GE,S → O(Y ) lifting trace ρ̄ (for the obvious definition) and of type U(n), that is
such that TY (g

−1
) = TY (cgc) for all g ∈ GE,S . The following fact is probably well-known,

it follows for instance from [13, Thm. 3.16], but this is much simpler here as ρ̄ is absolutely
irreducible.

L0,,# 1.6. – X(ρ̄) representsDan.

This spaceX(ρ̄) is actually a connected component of the U(n)-type locus of the spaceXn

mentioned in the introduction.

1.7. Modular Galois representations of type U(n) and examples

We keep the assumptions of §1.1. The main source of Galois representations of type U(n)

is the degree n − 1 étale cohomology of the quotients of the complex open unit ball�
n−1

i=1
|zi|2 < 1 in Cn−1 by the arithmetic congruence subgroups of U(n− 1, 1)(R) attached

to E/F . When n = 3 these are also called Picard modular surfaces. Thanks to the advances
in the theory of automorphic forms we may describe them using GL(n).

Let Π be a cuspidal automorphic representation of GLn(AE) such that:

(P1) Π
∨ � Π

c,
(P2) Πv is cohomological for each Archimedean place v of E,
(P3) Πv is unramified whenever v /∈ S or v divides p.

Fix once and for all a pair ι = (ιp, ι∞) of field embeddings ιp : Q → Qp and ι∞ : Q → C.
Class-field theory for n = 1, work of Rogawski for n = 3, and recent works of Shin [38] and
of the participants of the book project of the Paris GRFA seminar for any n [15, 24], attach
to such a Π and ι a continuous semi-simple representation

ρΠ : GE,S → GLn(Qp)

of type U(n) which is compatible with the Frobenius semi-simplified local Langlands cor-
respondence at all primes v not dividing p and which is crystalline at each prime v of E

above p. In particular, this representation is geometric in the sense of Fontaine-Mazur. Actu-
ally, infinitely many suitable real quadratic base changes of it are even geometric in the sense
of the introduction by construction (all when [F : Q] > 1). It is known that ρΠ is irre-
ducible when n = 3, and conjectured in general. Fix a ring homomorphism Zp → Fp. Denote
by ρ̄Π : GE,S → GLn(Fp) the isomorphism class of the semi-simplification of ρΠ.

D023&3%31&1.8. – A representationρ : GE,S → GLn(Qp) is modular of type U(n) if
there exists aΠ satisfying (P1) to (P3) as above such thatρ � ρΠ. A representation
ρ̄ : GE,S → GLn(Fp) is modular of type U(n) if there exists aΠ as above such that̄ρ � ρ̄Π.

For short, we shall often say modularfor modular of typeU(n). It is tempting to believe
that a variant of Serre’s conjecture holds in this context:
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Is any continuous absolutely irreduciblēρ of typeU(n) modular?

When n = 3, by Rogawski’s construction, any modular ρ̄ occurs in H
2

et
(S

E
, Fp(1)) where

S is a suitable Picard modular surface over E. A delicate aspect of this variant of Serre’s
conjecture is that such an H

2 might contain some classes(7) that do not lift to cohomology
classes in characteristic 0: this happens for instance for Mumford’s fake projective planes.
Nevertheless, the recent advances on R = T theorems and potential modularity in this
context (e.g. by Clozel, Harris and Taylor and their co-workers) suggest a positive answer.

E5#,460 1.9. – If f is a classical modular eigenform then Symm
2
(ρf ) ⊗ det(ρf )

−1

|GE,S

is of type U(3). When F/Q is Galois and solvable, it is modular by results of Arthur-Clozel
(if F �= Q), Gelbart-Jacquet and Rogawski. By the modularity theorem, this applies in
particular to Symm

2
A[p]

∗
(1) for any elliptic curve A over Q.

1.10. Statement of the theorem

Let ρ̄ be a Galois representation of type U(n) and X(ρ̄) the generic fiber of its universal
deformation ring of type U(n). A point x ∈ X(ρ̄) is called modularif the Galois representa-
tion ρx : GE,S → GLn(k(x)) attached to x is modular. Let

Xmod ⊂ X(ρ̄)

be the (countable) subset of modular points. By definition, ρ̄ is modular if, and only if,
Xmod �= ∅. We can now state the main result of this paper.

T/01(0, 1.11. – Assume that̄ρ is modular of typeU(3), unobstructed, and thatp splits
in E. ThenXmod is Zariski-dense inX(ρ̄).

A subset of points Z of a rigid space Y is called Zariski-denseif the only reduced closed
subspace of Y containing Z is Yred. When Y is quasi-Stein (which is the case of the X(ρ̄)),
it is equivalent to ask that any global function f ∈ O(Y ) vanishing at all points of Z is
locally nilpotent. In the context of the theorem, X(ρ̄) is the open unit ball of dimension
d = [F : Q]

n(n+1)

2
over Qq, so the statement simply means that any power series

f ∈ Cp[[t1, . . . , td]] converging on the whole open ball |ti| < 1 and vanishing on Xmod

is identically 0.

E5#,460 1.12. – Set E = Q(i), p = 5, S = {∞, 2, 5, 17} and let A be the elliptic curve
y
2

+ xy + y = x
3 − x

2 − x over Q, which is isogenous to the Jacobian of X0(17). Then
ρ̄ = Symm

2
(A[5])(−1)|GE

is modular of type U(3) and unobstructed (see the appendix).

C1(166#(" 1.13. – Under the same assumptions, for any objectA of C and any lift
ρA ∈ D(A) of ρ̄, there is a Þnite extensionL of Qq and a setρ1, ρ2, . . . , ρr of modular
Galois representationsGE,S → GL3( OL) of typeU(3) such that theZq[GE,S ]-moduleρA is a
subquotient of⊕r

i=1
ρi.

(7) I do not know any example of such a class that generates an irreducible Galois representation of dimension 3.
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Indeed, this follows from the theorem and the following general fact due to Chevalley: if
A is a complete local noetherian ring, and if {ai, i ∈ I} is a family of proper, cofinite length,
ideals of A such that the intersection of all the ai is zero, then the topology defined by the ai

is the adic topology of the maximal ideal of A.

We will actually prove the following result, of which Theorem 1.11 follows at once by
Prop. 1.4.

T/01(0, 1.14. – Assume thatp splits in E. Then the irreducible components of the
Zariski-closure ofXmod insideX(ρ̄) all have dimension at least6[F : Q].

We are led to the following optimistic conjecture (for any integer n).

C1&70)%+(01.15. – Let ρ̄ be any Galois representation of typeU(n), then Xmod is
Zariski-dense inX(ρ̄).

2. The infinite fern of Galois representations of type U(3)

The main ingredient in the proof of Thm. 1.14 is the so-called infinite fern insideX(ρ̄) and
its study. We use the notations of §1.1 and we assume furthermore that̄ρ is a modular Galois
representation of typeU(3) and that the odd primep splits in E. We denote by Sp the set of
places of F dividing v, S0 = S\(S∞ ∪ Sp), and we fix once and for all, for each v ∈ Sp, a
place ṽ of E above p, so Qp = Fv = Eṽ. Set I = {1, 2, 3}.

2.1. The eigenvariety and the complete infinite fern

Let W and W 0 be the rigid analytic spaces over Qp parameterizing respectively the p-adic
continuous characters of Q∗

p
and Z∗

p
. So W 0 is a finite disjoint union of 1-dimensional open

unit balls over Qp and W � Gm × W 0. Consider the subset

Z ⊂ X(ρ̄)(Qp)× W (Qp)
I×Sp

of pairs (ρΠ, δ) satisfying (i) and (ii) below:

(i) ρΠ is the modular Galois representation of type U(3) associated to Π.

In particular ρΠ,v := (ρΠ)|GEṽ
is crystalline with distinct Hodge-Tate weights for each

v ∈ Sp. We denote by k1,v < k2,v < k3,v these weights by increasing order, with the
convention that the cyclotomic character has Hodge-Tate weight −1.

(ii) δ = (δi,v) where for each (i, v) ∈ I × Sp, the character δi,v : Q∗
p
→ Q∗

p
is the product

of x �→ x
−ki,v and of the character sending Z∗

p
to 1 and p to ϕi,v, where (ϕi,v)i∈I is an

ordering of the eigenvalues of the crystalline Frobenius of Dcrys(ρΠ,v) (recall that Eṽ = Qp).

Each such pair is called a reÞned modular point. There are up to 6
[F :Q] ways to refine a

given modular point, corresponding to the number of ways to choose an ordering of the
eigenvalues of the crystalline Frobenius of Dcrys(ρΠ,v) for each v ∈ Sp.
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D023&3%31&2.2. – The eigenvariety of typeU(3) of ρ̄ is the Zariski-closure

E(ρ̄) ⊂ X(ρ̄)× W I×Sp

of the subsetZ insideX(ρ̄)× W I×Sp . Thecomplete infinite fern of typeU(3) of ρ̄

F (ρ̄) ⊂ X(ρ̄)

is the set theoretic image ofE(ρ̄) via the Þrst projectionpr
1

: X(ρ̄)× W I×Sp → X(ρ̄).

By definition E(ρ̄) is a reduced analytic space. The weight spaceis the space W I×Sp

0
. The

natural map W → W 0 and the second projection induce a natural map

κ : E(ρ̄) → W I×Sp

0
.

This map turns out to refine the Hodge-Tate-Sen map. Indeed, recall that the work of Sen
defines, for each v ∈ Sp, a monic polynomial

PSen,v(t) ∈ O(X(ρ̄))[t]

of degree 3 whose evaluation at any x ∈ X(ρ̄) is the usual Sen polynomial of ρx,v (the
roots of which are the generalized Hodge-Tate weights of ρx,v). The coe- cients of this
collection of polynomials give rise to a natural map κHT : X(ρ̄) → AI×Sp . The morphism
β : W I×Sp

0
→ AI×Sp given by the formula β((δi,v))v =

�
i
(t+

Ä
∂δi,v

∂x

ä
|x=1

) is the composite

of a finite covering of AI×Sp of degree 6
[F :Q], étale over the locus parametrizing polynomials

with nonzero discriminant, with an étale morphism of infinite degree (essentially a p-adic
logarithm). By definition, we have κHT o pr

1
= β o κ on E(ρ̄).

T/01(0, 2.3. – E(ρ̄) is equidimensional of dimension3[F : Q]. The mapκ is locally
Þnite: E(ρ̄) is admissibly covered by the open a!noidsU such thatκ(U) ⊂ W I×Sp

0
is open

a!noid and κ|U : U → κ(U) is Þnite.

This follows from the main theorem of the theory of p-adic families of automorphic
forms for the definite unitary group U(3) (see [10],[12]), and from the base change results of
Rogawski [35]. This point of view on eigenvarieties is a generalization of the one of Coleman
and Mazur in [18]. Concretely, the equations defining E(ρ̄) inside X(ρ̄) × W I×Sp are given
by characteristic power series of certain compact Hecke operators acting on the flat family
of Banach spaces of p-adic automorphic forms for the definite unitary group U(3). Let us
explain now how to deduce this statement from other ones in the literature. Our method is
actually a bit di. erent from the one in [18].

Proof. – First, consider the unitary group U/F in three variables attached to the positive
definite hermitian norm (z1, z2, z3) �→

�
3

i=1
NormE/F (zi) on E

3. This group is necessarily
quasi-split at all finite places of F , as we are in odd dimension. The work of Rogawski defines
by base change a bijection between automorphic representations π of GL3(AE) satisfying
(P1) and (P2) and stable tempered L-packets Π of U , which is compatible with a local base
change (that Rogawski also defines) at all places ([35, §13]). The following lemma follows for
instance from Rogawski’s classification [35, p. 174, §13.1].
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L0,,# 2.4. – For any Þnite union of Bernstein componentB� of GL3(AE,S0), there is a
Þnite unionB of Bernstein components ofU(AF,S0) such that for each irreducibleπ� in B� and
any irreducibleπ of U(AF,S0) whose base-change isπ�, we haveπ ∈ B.

As X(ρ̄) has finitely many irreducible components, and by [1, Lemma 7.8.17], there is a
finite union of Bernstein components B� of GL3(AE,S0) such that for each Π with ρΠ ∈ X(ρ̄)

we have ΠS0 ∈ B�. Choose an associated B as in the above lemma. Up to enlarging B if
necessary, we may find a compact open subgroup K ⊂ U(AF,S0) cutting exactly the union
of components B, in the sense that an irreducible representation τ of U(AF,S0) belongs to B
if, and only if, τ

K �= 0.
Let X/Qq be the p-adic eigenvariety of U associated to (ιp, ι∞), to the tame level K

(spherical outside S), to the set of all places Sp above p, and with respect to the spherical
Hecke algebra H outside S (see [12, Thm. 1.6]). By Rogawski’s results and [1, Cor. 7.5.4] (or
[10, Cor. 7.7.1]), this eigenvariety carries a continuous pseudocharacter T : GE,S −→ O(X)

such that for each refined classical point x associated to some Π satisfying (P1)–(P3) the
evaluation of T at x is trace(ρΠ). In turn, for each x ∈ X we have a natural associated
semi-simple Galois representation ρx : GE,S → GL3(k(x)), whose residual semi-simple
representation will be denoted by ρ̄x : GE,S → GL3(kx), where kx is the residue field
of k(x) (a Fq-algebra, as k(x) is a Qq-algebra). The locus X(ρ̄) ⊂ X of x such that ρ̄x � ρ̄

is an admissible closed and open subspace of X (this follows for instance from the Brauer-
Nesbitt theorem and [13, Lemma 3.9]). By definition of B and the properties of X(ρ̄), there
is a natural injection j : Z → X(ρ̄)(Qp), and j( Z) is a Zariski-dense subset of X(ρ̄).
The universal property of X(ρ̄) defines a canonical analytic map φ : X(ρ̄) → X(ρ̄). The
eigenvariety X is also equipped with a finite analytic map ν : X → W I×Sp . By definition we
have (φ× ν) o j = id Z and property (i) of [12, Thm 1.6] ensures that

φ× ν : X(ρ̄) → X(ρ̄)× W I×Sp

is a closed immersion (it is finite because ν is finite). As a consequence, φ × ν induces an
isomorphism X(ρ̄)

∼→ E(ρ̄), and the last statement follows from the properties of X(ρ̄).

R0,#(8 2.5. – The proof above is pseudo-character theoretic, hence extends verbatim
to the case of any semi-simple ρ̄. Moreover, this theorem would also hold for any odd n

by the same argument, if we appeal instead of Rogawski’s work to the recent works of
Moeglin (definition of the tempered L-packets for quasi-split unitary groups) and Labesse
(base change to GL(n)) instead of the work of Rogawski, as long as [F : Q] ≥ 2 (assumption
occurring in Labesse’s base-change at the moment).

An important property of the eigenvariety is the so-called classicity criterion. Say that
(δi,v) ∈ W 0 is algebraicif for each (i, v) ∈ I × Sp there exists an integer ki,v such that δi,v

is the character u �→ u
−ki,v . Say that (x, δ) ∈ E(ρ̄) is of algebraic weightif κ(x) is algebraic.

In this case, we denote by ki,v(x) the ki,v above and set ϕi,v(x) := p
ki,v(x)

δi,v(p). The next
proposition is [12, Thm. 1.6.(vi)].

P(141'3%31&2.6. – Let x ∈ E(ρ̄) be of algebraic weight. Assume that∀v ∈ Sp:
(i) k1,v(x) < k2,v(x) < k3,v(x),
(ii) v(ϕ1,v(x)) < k2,v(x) < v(ϕ3,v(x)),
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(iii) ∀i, j ∈ I, ϕi,v(x)ϕj,v(x)
−1 �= p.

Thenx ∈ Z .
In particular, Z is an accumulation subset ofE(ρ̄). More precisely, ifU ⊂ E(ρ̄) is an open

a!noid as in the statement of Thm.2.3, then Z is Zariski-dense inU if and only if each
connected component ofκ(U) contains an algebraic weight.

Recall that if A and B are two subsets (of points) of a rigid analytic space, we say that A

accumulates atB if for each b ∈ B and for each a- noid neighborhood U of b, there exists an
a- noid neighborhood V ⊂ U of b such that A ∩ V is Zariski-dense in V . An accumulation
subsetis a subset accumulating at itself. For instance the positive integer N is an accumulation
subset of the closed unit disc over Qp, and the algebraic weights form an accumulation subset
of W I×Sp

0
.

2.7. The local leaves and the infinite fern

Let x = ρΠ ∈ X(ρ̄) be a modular point, and choose δ so that (x, δ) ∈ Z . By Theo-
rem 2.3 and Prop. 2.6, we may find a basis of a- noid neighborhoods Ux,δ ⊂ E(ρ̄) of (x, δ)

such that Z is Zariski-dense in Ux,δ, such that κ(Ux,δ) is an open a- noid, and such that
κ : Ux,δ → κ(Ux,δ) is finite (necessarily surjective when restricted to any irreducible com-
ponents of Ux,δ). As β is étale at κ(x) we may even choose Ux,δ small enough so that the pre-
vious assertion holds with β o κ = κHT o pr

1
instead of κ. In particular, if V = β(κ(Ux,δ))

then the induced map pr
1

: Ux,δ → κ
−1

HT
(V ) is a finite map, thus pr

1
(Ux,δ) is a locally closed

subset ofX(ρ̄), and even a closed subset of the admissible open κ
−1

HT
(V ) ⊂ X(ρ̄).

We have constructed this way up to 6
|Sp| locally closed subspaces of X(ρ̄), inside F (ρ̄)

and containing x, namely the pr
1
(Ux,δ), that we will call the leaves of the fernat x. Each of

these leaves has equidimension 3[F : Q]; with this definition, only its germ at x is canonical.
By construction, each of these leaves also contains a Zariski-dense subset of modular points,
a Zariski-dense subset of which even has the extra property that the eigenvalues of its crys-
talline Frobenius at p are distinct (see e.g. the proof below of Lemma 2.9), so that each of
them will admit exactly 6

|Sp| associated refined modular points and so on... The inÞnite fern
is the union of all the leaves constructed this way, from any modular point, namely

�

(x,δ)∈ Z

pr
1
(Ux,δ) ⊂ X(ρ̄),

a picture of which has been given in the introduction. Our main aim from now one will be
to bound below the dimension of the Zariski-closure of the infinite fern. As explained in
the introduction, the idea of our proof is to study the relative positions of the local leaves
pr

1
(Ux,δ), when δ varies, at a given modular point x ∈ X(ρ̄).

2.8. First reduction toward Theorem A

Let
Xmod� ⊂ Xmod

be the subset of modular points x such that for all v ∈ Sp, ρΠ,v is irreducible and the
eigenvalues of its crystalline Frobenius are distinct and in k(x)

∗. We claim first that Xmod� is
dense in Xmod:
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L0,,# 2.9. – For any x ∈ Xmod and any a!noid neighborhoodU of x in X(ρ̄), we have
Xmod� ∩ U �= ∅. In particular, Xmod� �= ∅.

Proof. – We use an argument similar to [1, §7.7]: starting from any modular point we
show that by moving in at most two leaves of the fern we may find such a modular point
by an argument of Newton polygon. So let x ∈ Xmod be any modular point and U as in
the statement. Choose any refinement δ of x and consider an a- noid neighborhood Ux,δ

of (x, δ) in E(ρ̄) as in §2.7, and such that pr
1
(Ux,δ) ⊂ U . Over this a- noid, the maps

y �→ |v(δi,v(p)(y))| are bounded by some integer M by the maximum modulus principle.
We may choose a point y ∈ Ux,δ of algebraic weight such that k2,v(y) − k1,v(y) and
k3,v(y)− k2,v(y) are both bigger than M + 1 for each v, and such that

∀(i, v) ∈ Sp, v(δi,v(p)(y)) = v(δi,v(p)(x)) = v(ϕi,v(x))− ki,v(x).

In particular, such a y is modular by Prop. 2.6. Moreover, for each (i, v) ∈ Sp we have
v(ϕi,v(y)) �= ki+1,v(y) where the index i is taken mod 3. In particular, up to replacing x

by y if necessary, we may assume that the point x we started from has this property as well,
and also that we had chosen a refinement δ with the property that

∀(i, v) ∈ I × Sp, v(δi,v(p)(x)) �= 0.

But then, a modular point y as above has the property that for any (i, j, v) ∈ I × I × Sp,
v(ϕi,v(y)) �= kj,v(y), so ρy,v is absolutely irreducible by weak admissibility of its Dcrys.
Its crystalline Frobenius eigenvalues have distinct valuations, so they are distinct and
in k(y).

R0,#(8 2.10. – In the examples given in the appendix, the natural modular lift
Symm

2
(Vp(A))(−1)|GE,S

never belongs to Xmod�.

If Y is a rigid analytic space and y ∈ Y a point we denote by Ty(Y ) the tangent space
of Y at y (a k(y)-vector space).

T/01(0, 2.11. – For anyx ∈ Xmod�, the image of the natural mapdpr
1

:

�

y=(x,δ)∈ E(ρ̄)

Ty( E(ρ̄)) −→ Tx(X(ρ̄))

has dimension at least6[F : Q].

(Note that for any x ∈ Xmod�, the residue field of any (x, δ) ∈ E(ρ̄) is k(x) by definition.)

Let us first show that Thm 2.11 implies Thm 1.14. Let W be the Zariski-closure of Xmod

inX(ρ̄), equipped with its reduced structure. Let C be an irreducible component of W . Recall
that a- noid algebras are excellent and Jacobson, so the regular locus of any reduced rigid
analytic space is a Zariski-open and Zariski-dense subspace (see e.g. [20, §1]). Thus we may
choose some modular point x0 ∈ C ∩ Xmod such that x0 is a smooth point of W (hence
of C). Choose U ⊂ X(ρ̄) an a- noid neighborhood of x0, which is small enough so that
U ∩W is regular, and equal to U ∩ C. By Lemma 2.9, we may find a modular point x in U

that furthermore belongs to Xmod�, by construction x ∈ U ∩ W = U ∩ C. We are going
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to apply Theorem 2.11 to this point x. Note that for each associated refined modular point
(x, δ) ∈ E(ρ̄),

(2.1) Im
�

dpr
1

: T(x,δ)( E(ρ̄)) −→ Tx(X(ρ̄))
�
⊂ Tx(C).

Indeed, let Ux,δ ⊂ E(ρ̄) be an a- noid neighborhood of (x, δ) in E(ρ̄) as in §2.7. As Z is
Zariski-dense in Ux,δ we have pr

1
(Ux,δ) ⊂ W . Thus if Ux,δ is chosen small enough, then

pr
1
(Ux,δ) ⊂ U ∩ W = U ∩ C, and (2.1) follows. As a consequence, Theorem 2.11 implies

that dim Tx(C) ≥ 6[F : Q]. As x is a smooth point of C, it follows that C itself has dimension
at least 6[F : Q], and we are done.

The end of the paper will be devoted to the proof of Theorem 2.11. As explained in the
introduction, there are two important ingredients, treated in the next two chapters. The first
one is a purely local result on the deformation space of a crystalline representation, and
the other one a geometric property of eigenvarieties at non-critical classical points. As a
motivation, the reader may already have a look to the end of the proof in §5.1.

3. The linear span of trianguline deformations

3.1. The setting

Let L be a finite extension of Qp, GQp = Gal(Qp/Qp), n ≥ 1 an integer and let V be a
continuous L-linear representation of GQp of dimension n. If m ∈ Z, we set V (m) = V ⊗χ

m

where χ : GQp → Z∗
p

is the cyclotomic character.
Denote by C the category whose objects are the finite dimensional local Qp-algebras A

equipped with an isomorphism π : A/mA

∼→ L (so A has a unique structure of L-algebra
such that π is L-linear), and whose morphisms are the local L-algebra homomorphisms. Let

XV : C → Sets

be the deformation functor of V to C . Recall that for an object A of C , XV (A) is the set
of isomorphism classes of pairs (VA, π) where VA is a free A-module of rank n equipped
with a continuous A-linear representation of GQp and π : VA ⊗A L

∼→ V is an L[GQp ]-iso-
morphism. Assume that EndGQp

(V ) = L and that HomGQp
(V, V (−1)) = 0, so that

H
i
(GQp ,EndL(V )) = 0 if i ≥ 2 and dimL H

1
(GQp ,EndL(V )) = n

2
+ 1 by Tate’s

results on Galois cohomology of local fields. By standard results of Mazur [32], XV is
pro-representable, formally smooth over L, of dimension n

2
+ 1:

P(141'3%31&3.2. – XV � Spf(L[[X0, · · · , Xn2 ]]).

Our main aim in this section will be the study and comparison of a collection of subfunc-
tors of XV when V is crystalline in the sense of Fontaine. Two of them are the subfunctors
of crystalline and Hodge-Tate deformations, but we shall actually mostly be interested in an
additional collection of subfunctors introduced in [1, Chap. 2] under the name of trianguline
deformation functors. They are some sorts of analogues of the ordinary deformation functors
of an ordinary representation defined by Mazur but that apply to any crystalline represen-
tation; they depend on the datum of a reÞnementof the crystalline representation. In rank 2

they are close to the h-deformation functors previously defined by Kisin in [29]. They belong
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to an even more general collection of paraboline deformation functorsthat we define and study
below using the theory of (ϕ,Γ)-modules over the Robba ring.

3.3. Paraboline deformation functors of (ϕ,Γ)-modules over the Robba ring

Let A be a finite dimensional Qp-algebra, equipped with the topology given by any norm
of Qp-vector space on A. Recall that the Robba ring with coe- cients in A is the A-algebra RA

of power series
f =

�

n∈Z
an(z − 1)

n
, an ∈ A,

converging on some annulus of Cp of the form r(f) ≤ |z − 1| < 1. It is a topological
A-algebra, namely an inductive limit of projective limits of a- noid algebras. It is equipped
with A-linear commuting actions of ϕ and Γ := Z∗

p
given by the formulae ϕ(f)(z) = f(z

p
)

and γ(f)(z) = f(z
γ
), the action of Γ being continuous. We set R = RQp , so RA = R⊗Qp A.

A (ϕ,Γ)-module over RA is a finite free RA-module D equipped with commuting semi-
linear actions of ϕ and Γ, such that Rϕ(D) = D (“non degeneracy of ϕ”) and such that
the action of Γ on D is continuous.(8) We refer to [1, §2.2] for a summary of the basic facts
concerning the theory of (ϕ,Γ)-modules over the Robba ring. If V is a Qp-representation
of GQp , denote by Drig(V ) its associated (ϕ, Γ)-module over R. Recall that the functor
V �→ Drig(V ) is a tensor equivalence between the category of Qp-representations of GQp and
étale (ϕ,Γ)-modules over R (Fontaine, Colmez-Cherbonnier, Kedlaya). In this equivalence,
if V is a Qp-representation of GQp equipped with a Qp[GQp ]-linear action of A, then V is free
as A-module if and only if Drig(V ) is a (ϕ,Γ)-module over RA by [1] Lemma 2.2.7.

Let D be a (ϕ,Γ)-module over RL and let P = (Fili(D))i∈Z be an increasing filtration
of D by (ϕ,Γ)-submodules of D, each Fili(D) being a direct summand as RL-submodule. As
a convention, we shall always assume that such filtrations are normalized so that Fili(D) = 0

if i ≤ 0 and, for i ≥ 1, if Fili(D) = Fili−1(D) then Fili(D) = D. Let us define the paraboline
deformation functorof D associated to P

XD, P : C → Sets

as follows. For an object A of C define XD, P(A) as the set of isomorphism classes of triples
(DA,Fili(DA), π) where DA is a (ϕ,Γ)-module over RA, Fili(DA) is an increasing filtration
of DA by (ϕ, Γ)-submodules over RA of D, each Fili(DA) being a direct summand as
RA-submodule, and where π : DA ⊗A L

∼→ D is a (ϕ,Γ)-module L-isomorphism such that
for each i ≥ 0 we have π(Fili(DA)) = Fili(D). To be explicit, by an isomorphism between
two such triples we mean a RA-linear isomorphism ψ : DA → D

�
A

commuting with ϕ and
Γ, mapping Fili onto Fili, and such that π = π

� · ψ.
When Fil1(D) = D then XD, P is simply the deformation functor of D, and we

shall simply denote it by XD. When Fili is a complete flag in D, i.e. rkRL
(Fili(D)) = i

for i = 1, . . . , rkRL
(D), XD, P has been studied in [1, §2.3] under the name of trianguline or

(8) It means the following. Fix an R-basis of D and for γ ∈ Γ let Mγ be the matrix of γ. Then the coe- cients of
all the Mγ , γ ∈ Γ, have to converge on some fixed annulus r < |z − 1| < 1, and for any r < r� < 1 in pQ the
map γ �→ Mγ , Γ → Mn( O[r, r�]) is continuous, where O[r, r�] is the a- noid algebra of analytic functions on the
annulus r ≤ |z − 1| ≤ r� for the sup. norm.
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triangular deformation functor of D. In the case D = Drig(V ) is étale, then − �→ Drig(−)

induces an equivalence XV

∼→ XD by [1, Prop. 2.3.13], and we shall set as well

XV, P := XV ×XD XD, P

( ∼→ XD, P ). When furthermore each Fili(D) is étale, hence is the Drig of a unique Galois sta-
ble filtration Fili(V ), then XV, P(A) coincides with the isomorphism classes of deformations
of V to A equipped with some Galois stable filtrations over A lifting Fili(V ); however, there
is no such description for a general P.

By a well-known result of Mazur [32, Prop. 1],XD is pro-representable if End(ϕ,Γ)(D) = L

and D is étale. Let End(ϕ,Γ), P(D) be the L-vector space of (ϕ,Γ)-module endomorphisms
of D preserving Fili(D) for each i.

P(141'3%31&3.4. – XD, P admits a versal pro-deformation. IfEnd(ϕ,Γ), P(D) = L, then
it is pro-representable.

Proof. – Set F = XD, P . We obviously have |F (L)| = 1. Let A
� → A and A

�� → A be two
morphisms in C . By Schlessinger’s criterion [36] we need to check that the natural map

(3.2) F (A
� ×A A

��
) → F (A

�
)×F (A) F (A

�
)

is bijective whenever A
�� → A is surjective.

Let E : C → Ens be the following functor: for an object A of C , let E(A) be the set
of (ϕ,Γ)-module structures over RA on the RA-module D ⊗L A that preserve the constant
Þltration Fili(D) ⊗L A and that induce the (ϕ,Γ)-module structure of D via the given map
A → L. For all A, A

� and A
��, we claim that (3.2) is bijective when F is replaced by E. Indeed,

RA�×AA�� = R�
A
×RA

RA�� , and if R(A) denotes the “parabolic” RA-algebra of RA-module
endomorphisms of D ⊗L A preserving Fili(D) ⊗L A, then R commutes with finite fiber
products in C as well. Moreover, if we fix some basis (ei)

n

i=1
of D adapted to the filtration

Fili(D), then it is equivalent to give an element of E(A) and a collection of matrices M∗,
for ∗ = ϕ or in Γ, lifting the matrices in Mn(RL) defined by the (ϕ,Γ)-module structure
of D, and satisfying y(Mx)My = x(My)Mx for all x, y ∈ {ϕ, γ ∈ Γ}. Indeed, the non
degeneracy of ϕ and the continuity of Γ follow automatically from these properties for D.

Set R
1
(A) = Ker(R(A)

∗ → R(L)
∗
), the group R

1
(A) acts by conjugacy on E(A)

and we have F (A) = R
1
(A)\E(A) by definition. If A

�� → A is any surjection in C , then
R

1
(A

��
) → R

1
(A) is surjective as well, as parabolic subgroups of GLn are smooth over Qp.

Moreover, R
1 obviously commutes with finite fiber products in C . It follows at once that

(3.2) is surjective whenever f : A
�� → A is. It is even bijective if for all x ∈ E(A

��
), the group

homomorphism induced on stabilizers

(3.3) R
1
(A

��
)x → R

1
(A)E(f)(x)

is surjective (these observations really are Mazur’s, see [32, p. 390]). This is clearly satisfied
if A = L as the latter stabilizer is trivial. As a consequence, conditions (H1) and (H2) of
Schlessinger hold. In particular F (L[ε]) is an L-vector space and we shall see in Prop. 3.6
below that it is always finite dimensional (contrary to E(L[ε]) in this (ϕ,Γ)-module context),
hence (H3) and the first part of the statement follow. When End(ϕ,Γ), P(D) = L, then
R

1
(A)x = A

∗ for any A and x ∈ E(A) by Remark 3.5 below, hence (3.3) is surjective, and
(H4) holds.
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R0,#(8 3.5. – If End(ϕ,Γ), P(D) = L, then a simple induction on the length of A

shows that for each element (DA,Fili, π) of XD, P(A), we have End(ϕ,Γ),(Fili)
(DA) = A. In

particular,XD, P(A) is in canonical bijection with the isomorphism classes of pairs (DA,Fili)

lifting D with its filtration (forgetting the π).

If D1 and D2 are two (ϕ,Γ)-modules over RL, then HomRL
(D1, D2) has a natural

structure of (ϕ,Γ)-module as follows: for any u ∈ HomRL
(D1, D2), set γ(u)(x) :=

γ(u(γ
−1

(x))) and ϕ(u)(ϕ(x)) := ϕ(u(x)). This last formula defines a unique element
ϕ(u) ∈ HomRL

(D1, D2) as D1 admits an RL-basis in ϕ(D1) by definition. In particular,
EndRL

(D) is a (ϕ,Γ)-module of rank n
2 over RL and we check at once with the formulas

above that the RL-submodule

End P(D) := {u ∈ EndRL
(D), u(Fili(D)) ⊂ Fili(D) ∀i ∈ N}

is a (ϕ,Γ)-submodule of EndRL
(D) (which is actually a direct summand as RL-submodule).

For i ∈ Z we set gr
i
(−) := Fili(−)/Fili−1(−). If ni = rkRL

(gr
i
(D)), we obviously have

(3.4) rkRL
(End P(D)) =

�

i≤j

ninj .

We refer to [19, §2] and [31] for the main properties of the cohomology of (ϕ,Γ)-modules
over R, that we shall denote by H

i

(ϕ,Γ)
(−). In particular, H0

(ϕ,Γ)
(End P(D)) = End(ϕ,Γ), P(D)

and H
2

(ϕ,Γ)
(End P(D)) is dual to the L-vector space of (ϕ,Γ)-morphisms D → D(−1)

preserving P.

P(141'3%31&3.6. – (i) If Hom(ϕ,Γ)(gr
i
(D), D/Fili(D)) = 0 for eachi, thenXD, P is

a subfunctor ofXD.
(ii) There is a natural isomorphismXD, P(L[ε])

∼→ H
1

(ϕ,Γ)
(End P(D)) and

dimL XD, P(L[ε]) = dimL H
0

(ϕ,Γ)
(End P(D)) + dimL H

2

(ϕ,Γ)
(End P(D)) +

�

i≤j

ninj .

(iii) If H
2

(ϕ,Γ)
(End P(D)) = 0 thenXD, P is formally smooth overL.

Proof. – Part (i) follows as in [1, Lemma 2.3.7]. The second part of (ii) follows from the
first one, (3.4) and the Euler characteristic formula of Liu [31]. Let us check the first part of
(ii). It is a semi-linear analogue of a well-known fact in the context of group representations.
Using the notations of the proof of Prop. 3.4, for all A we have a natural identification
XD, P(A) = R

1
(A)\E(A).

Consider the RL[ε]-module D0 := D ⊗L L[ε] = D ⊕ εD equipped with its constant
filtration as in the proof of Prop. 3.4. Any element of E(L[ε]) is given by unique elements
c∗ ∈ EndR(D), where ∗ = ϕ or γ ∈ Γ, satisfying the formulas

�γ(x) := γ(x) + cγ(γ(x))ε, �ϕ(x) := ϕ(x) + cϕ(ϕ(x))ε, ∀x ∈ D ⊂ D ⊕ εD.

Note that the map cϕ (resp. cγ) is well-defined as D admits an RL-basis in ϕ(D) (resp. as γ

is bijective on D). A straightforward computation shows that the commutation of �ϕ and �γ
is equivalent to the relation (ϕ − 1)cγ = (γ − 1)cϕ in EndR(D), for the (ϕ,Γ)-module
structure recalled above on EndR(D). The continuity of the action of Γ is automatic, as
well as the non degeneracy of �ϕ. Moreover, ∗ preserves each FiliD ⊗L L[ε] if, and only if,
c∗ ∈ End P(D). In other words, c∗ is a 1-cocycle in End P(D) and E(L[ε]) coincides with
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this space of cocycles. Another straightforward computation shows that two such lifts are
isomorphic in XD, P(L[ε]) = E(L[ε])/R

1
(L[ε]) if and only if the associated 1-cocycles c∗

and c
�
∗ di. er by (∗ − 1)u for some u ∈ End P(D) independent of ∗, hence a coboundary,

which concludes the proof of (ii) (the L-linearity part of the statement is immediate).
For part (iii), let A be an object of C , m its maximal ideal, and I an ideal of A such

that mI = 0. Fix an element of E(A/I), hence a RA/I -linear (ϕ,Γ)-module structure
on D⊗LA/I preserving Fili(D)⊗LA/I, and consider the problem of lifting this structure to
an element of E(A). First, we may certainly lift the actions of ϕ and of Γ to D⊗L A in such
a way that they preserve Fili(D)⊗L A. If �ϕ and �γ denote such a lift, consider the RL-linear
map ��ϕ, �γ� ∈ End P(D)⊗L I defined by the formula

∀x ∈ D ⊗L A, (�ϕ�γ − �γ �ϕ)(x) = ��ϕ, �γ�(ϕγ(x)),

where x is the image of x in D. This map ��ϕ, �γ� is well-defined as γ is bijective on D and as
D admits an R-basis in ϕ(D). The elements �ϕ and �γ are uniquely defined up to adding any
elements u(ϕ(·)) and v(γ(·)) where u, v ∈ End P(D)⊗L I, and

��ϕ + u(ϕ(̄·)), �γ + v(γ(̄·))� = ��ϕ, �γ�+ (ϕ− 1)v − (γ − 1)u.

This concludes the proof as H
2

(ϕ,Γ)
(End P(D)) = End P(D)/(ϕ − 1, γ − 1)End P(D). Note

that as in the classical case, it is straightforward to check that the set of lifts is either empty
or an a- ne space under H

1

(ϕ,Γ)
(End P(D))⊗L I.

Let I ⊂ N be the (finite) subset of jumps of the filtration Fili, i.e. the integers i such that
gr

i
(D) �= 0. There is a natural functor morphism XD, P →

�
i∈I
Xgri(D) sending an object

(DA,Fili, π) to (gr
i
(DA), gr

i
(π))i∈I .

P(141'3%31&3.7. – If H
2

(ϕ,Γ)
(HomR(D/Fili(D), gr

i
(D))) = 0 for each i, then

XD, P →
�

i∈I
Xgri(D) is formally smooth. In particular, it is surjective on points.

Proof. – The proposition is obvious when |I| ≤ 1 so assume that |I| > 1. Considering
the filtration Fil

� on D such that Fil
�
1(D) = Filj(D) for j the biggest integer such that

Filj(D) �= D, Fil
�
2
(D) = D, and arguing by induction on |I|, we may assume that I = {1, 2}.

So D is an extension of D1 := D/Fil1(D) by D2 := Fil1(D), which defines a unique class
c ∈ H

1

(ϕ,Γ)
(HomR(D1, D2)). Let A be an objet of C , m its maximal ideal, and I an ideal

of A such that mI = 0. Fix (U,Fili(U), π) ∈ X P,D(A/I), it defines as above an element
cA/I ∈ H

1

(ϕ,Γ)
(HomR(U/Fil1(U),Fil1(U))) that maps to c modulo m. For i = 1, 2, choose

(D
�
i
, πi) ∈ XDi(A) lifting respectively U/Fil1(U) and Fil1(U). We have to show that the

natural map

H
1

(ϕ,Γ)
(HomR(D

�
1
, D

�
2
)) −→ H

1

(ϕ,Γ)
(HomR(U/Fil1(U),Fil1(U)))

is surjective. But its cokernel injects into H
2

(ϕ,Γ)
(HomR(D1, D2)).

E5#,460 3.8 (The rank 1 case). – Let A be an object of C and let δ : Q∗
p
→ A

∗ be a
continuous character. We denote by RA(δ) the (ϕ,Γ)-module of rank 1 over RA having a
basis e such that ϕ(e) = δ(p)e and γ(e) = δ(γ)e for all γ ∈ Γ. By [1, Prop. 2.3.1], each
(ϕ,Γ)-module of rank 1 over RA has the form RA(δ) for a unique character δ as above. In
particular, if D is a (ϕ,Γ)-module of rank 1 over RL, then XD � Spf(L[[X,Y ]]).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



986 G. CHENEVIER

3.9. Crystalline (ϕ,Γ)-modules

If D is any (ϕ,Γ)-module over R, we set Dcrys(D) = (D[1/t])
Γ, where t = log(z) ∈ R.

As R is a domain and Frac(R)
Γ

= Qp, a standard argument shows that

(3.5) Dcrys(D)⊗L RL[1/t] → D[1/t]

is injective for any D, so we have dimQp Dcrys(D) ≤ rkRD. Mimicking Fontaine, we
say that D is crystalline if the equality holds. By left exactness of − �→ Dcrys(−), any
(ϕ,Γ)-module subquotient of a crystalline D is also crystalline. Note that Dcrys(D) has a
Qp-linear invertible action of ϕ.

L0,,# 3.10. – Let D be a(ϕ,Γ)-module overRL. The map

D
� �→ Dcrys(D

�
)

induces a bijection between the set of crystalline(ϕ,Γ)-submodules ofD which are direct
summand asRL-module, and the set ofϕ-stable subspaces ofDcrys(D). The inverse bijection
is W �→ (R[1/t] · W ) ∩D.

Indeed, a (ϕ,Γ)-submodule D
� ⊂ D is a direct summand as RL-module if, and only if

D
�
= D

�
[1/t] ∩D by [1, Prop. 2.2.2], so the lemma follows from (3.5). In particular, there is

always a biggest crystalline (ϕ,Γ)-submodule of D, namely (R[1/t] ·D[1/t]
Γ
)∩D. Further-

more, when D is crystalline then Lemma 3.10 induces a rank preserving bijection between
the set of filtrations of D as in §3.3 and the set of increasing filtrations (Fili)i∈Z of Dcrys(D)

by ϕ-stable Qp-vector space (normalized with the same conventions as before), we shall often
identify such filtrations below. In particular, the paraboline deformation functors of D can
(and will) be viewed as attached to such filtrations.

Consider the following properties of a crystalline (ϕ,Γ)-module of rank n over RL:

(i) ϕ has n distinct eigenvalues in L
∗ on Dcrys(D).

(ii) For any two such eigenvalues φ, φ
�, we have φ

�
φ
−1 �= p.

(iii) End(ϕ,Γ)(D) = L.

C1(166#(" 3.11. – Let D be a crystalline(ϕ,Γ)-module overRL satisfying(i), (ii) and
(iii). Then each paraboline deformation functorXD, P of D is a pro-representable subfunctor
of XD, formally smooth overL of dimensionrkRL

(End P(D)) + 1.

Proof. – The pro-representability follows from Prop. 3.4 and (iii). As D is crystalline,
remark that Hom(ϕ,Γ),L(D,D

�
) ⊂ HomL[ϕ](Dcrys(D), Dcrys(D

�
)) for any (ϕ,Γ)-module D

�

over RL. By Prop. 3.6, the subfunctor property follows from (i) and the formal smoothness
from (ii).

For any D, Berger defines as well a decreasing, exhaustive, filtration on Dcrys(D) called
the Hodge-Þltration, that we shall denote with upper indices Fil

i for i ∈ Z (see [3], [4],
as well as [1, §2.2.7]). A first important result of Berger is that when D = Drig(V ), the
filtered ϕ-module Dcrys(D) is canonically isomorphic to the classical Dcrys(V ) defined by
Fontaine. In particular, V is crystalline if, and only if, D is. Another beautiful result of
Berger [4] is that D �→ Dcrys(D) induces an exact ⊗-equivalence of category between the
category of crystalline (ϕ,Γ)-modules over R and the category of filtered ϕ-vector space,
étale corresponding to weakly admissible.
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Let D be a crystalline (ϕ,Γ)-module over RL. Define XD,crys ⊂ XD as the subfunctor
of deformations (DA, π) such that DA is crystalline, viewed as (ϕ,Γ)-module over R. As
the crystalline (ϕ,Γ)-modules are stable by direct sums, subquotients, and tensor products,
XD,crys → XD is relatively representable (Ramakrishnan’s criterion).

P(141'3%31&3.12. – Let D be a crystalline(ϕ,Γ)-module overRL.

(a) If D is equipped with an action of an objectA of C , thenD is free asRA-module if and
only if Fil

i
(Dcrys(D)) is free asA-module for eachi ∈ Z.

(b) The functor− �→ Dcrys(−) induces a canonical bijection betweenXD,crys(A) and the
set of isomorphism classes of pairs(EA, π) whereEA is a ÞlteredA[ϕ]-module such that
Fil

i
EA is free and direct summand asA-module andπ : EA ⊗A L

∼→ Dcrys(D) is an
A-linear isomorphism in the category of Þlteredϕ-modules.

(c) If D satisÞes properties(i) and (iii) above, thenXD,crys is formally smooth overL of
dimension

1 +

�

i<j

ninj ,

whereni = dimL Fil
i
(Dcrys(D))/Fil

i+1
(Dcrys(D)) for all i ∈ Z.

Proof. – Part (a) holds by the same proof as [1, Lemma 2.2.7]. Part (b) follows from (a)
and Berger’s equivalence. Using (b), part (c) is a simple exercise on deformations of filtered
ϕ-modules using (i) and (iii) that is left to the reader.

Let D be a crystalline (ϕ,Γ)-module over RL and let W ⊂ Dcrys(D) be an L-subvec-
torspace. We say that W is non-critical (in Dcrys(D)) if there exists an integer j ∈ Z such that
Dcrys(D) = W ⊕ Fil

j
(Dcrys(D)). If P = (Fili) is a ϕ-stable filtration of Dcrys(D) as above,

we say that P is non-critical if Fili is non-critical for all i ≥ 0.

P(141'3%31&3.13. – Let D be a crystalline(ϕ,Γ)-module overRL satisfying (i) and
(iii). For any non-critical Þltration P, we haveXD,crys ⊂ XD, P .

Proof. – By (i), XD, P is a subfunctor of XD. Fix (DA, π) ∈ XD,cris(A) and let
W ⊂ Dcrys(D) be an element of P. By (i) again, there is a unique ϕ-stable A-submod-
ule WA ⊂ Dcrys(DA) which is free over A and such that π(WA) = W . Note that if W ⊂ W

�

then WA ⊂ W
�
A

. Set TA = (R[1/t]WA) ∩ D, we will show that it is free over RA and lifts
(R[1/t]W ) ∩D.

By Prop. 3.12 (a) and Berger’s equivalence, it is equivalent to check that if we equip
WA with the induced Hodge-filtration of Dcrys(DA), then Fil

i
(WA) is free over A for

each i and lifts Fil
i
(W ). But if j is such that Fil

j
(Dcrys(D)) ⊕ W = Dcrys(D), then

Fil
j
(Dcrys(DA))⊕WA = Dcrys(DA) by Nakayama’s lemma, and the result follows.

Let D be a crystalline (ϕ,Γ)-module over RL. For the applications of this paper, the
most important paraboline deformation functors of D will be the ones associated to the
L[ϕ]-stable filtrations P = (Fili) of Dcrys(D) which are complete ßags, i.e. dimL Fili = i

for 0 ≤ i ≤ rkRL
(D). Such a filtration is called a reÞnementof D, and we shall usually denote

them by the letter F . Via Lemma 3.10, refinements of D correspond to triangulations of D

in the sense of Colmez [19]. Note that D admits a refinement (or a triangulation) if and only
if the characteristic polynomial of ϕ on Dcrys(D) splits in L. Before stating the main result
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about the trianguline deformation functors of D, we need some preliminary remarks about
the extension of Sen’s theory to (ϕ,Γ)-modules.

For any (ϕ,Γ)-module D over R, it makes sense to consider its evaluation at a p
n-th root

of unity for any su- ciently big n, which defines a semi-linear Γ-module DSen(D) of rank
rkRD over Qp(µp∞) by extending the scalars (see e.g. [1, §2.2.7]). The characteristic polyno-
mial of the Sen operator of DSen(D) will be denoted by PSen(D), its eigenvalues are called the
(generalized) Hodge-Tate weights of D. As in the classical case, let us say that D is Hodge-
Tate if its Sen operator is semi-simple with integral eigenvalues. If D is crystalline, it is Hodge-
Tate and its Hodge-Tate weights are the jumps (with multiplicity) of its Hodge-filtration.
When D is a (ϕ,Γ)-module over RA, then DSen(D) is a free A⊗Qp Qp(µp∞)-module, hence
we may also consider the relative characteristic polynomial PSen/A(D) of the Sen operator
viewed as an A-linear endomorphism.

Let D be a Hodge-Tate (ϕ,Γ)-module over RL. There is a relatively representable sub-
functor XD,Sen ⊂ XD parameterizing deformations DA which are Hodge-Tate, viewed as
(ϕ,Γ)-module over R. For any D, the relative Sen polynomial induces a natural functor
PSen : XD → (“Ga)

d, this latter space being identified with the completion at PSen(D)

of the (a- ne) space of monic polynomial of degree d. The following lemma is easy
([1, Lemma 2.2.11, Prop. 2.3.3]).

L0,,# 3.14. – (a) If 0 → D → D
� → D

�� → 0 is an exact sequence of(ϕ,Γ)-modules
over RA, thenPSen/A(D

�
) = PSen/A(D)PSen/A(D

��
).

(b) If δ : Q∗
p
→ A

∗ is a continuous character,PSen/A(RA(δ)) = T +

Ä
∂δ

δγ

ä
|γ=1

. In particular,

if D has rank1 over RL thenPSen : XD → “Ga is formally smooth.

Consider the following property:

(iv) PSen/L(D) has rkRL
distinct roots in Z.

Under (iv), XD,Sen is simply the locus of XD defined by PSen = PSen(D). When D is
crystalline, XD,crys ⊂ XD,Sen.

P(141'3%31&3.15. – Let D be a crystalline(ϕ,Γ) module of rankn over RL satisfying
(i), (ii), (iii) and(iv) above. LetF be a non-critical reÞnement ofD.

ThenXD,crys andXD, F are pro-representable subfunctors ofXD, and they are formally
smooth overL of respective dimensionn(n−1)

2
+ 1 and n(n+1)

2
+ 1. The morphismPSen is

formally smooth andXD,crys = XD,Sen ×XD XD, F . In particular, we have an exact sequence
on tangent spaces:

0 → XD,crys(L[ε]) → XD, F (L[ε])
PSen→ L

n → 0.

Proof. – This is [1, Thm. 2.5.1, Thm. 2.5.10]. Here is a slightly di. erent proof. The first
assertion follows from Cor. 3.11, Prop. 3.12 (c) and Prop. 3.13, as well as the inclusion

XD,crys ⊂ X� := XD,Sen ×XD XD, F .

The formal smoothness of PSen follows from Lemma 3.14 and Prop. 3.7. It implies the
surjectivity of PSen in the sequence of the statement, as well as the exactness of the whole
sequence for dimensions reasons. It also implies that X� is formally smooth over L, hence
that XD,crys = X� as they have the same dimension.
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The other kind of paraboline deformation functor that will play a role in the sequel is
the “miraboline” case. Assume that D is a crystalline (ϕ,Γ)-module over RL satisfying (i)
and let φ ∈ L

∗ be an eigenvalue of ϕ on Dcrys(D). By Lemma 3.10, there is a unique
(ϕ,Γ)-submodule Dφ of rank 1, as well as a unique (ϕ,Γ)-module D

φ of rank n − 1, both
direct summands as RL-modules, such that

Dcrys(Dφ)
ϕ=φ �= 0 and Dcrys(D/D

φ
)
ϕ=φ �= 0.

Consider the filtration Pφ (resp. Pφ) of D whose unique proper subspace is Fil1 = Dφ

(resp. Fil1 = D
φ). It will be convenient to modify a little bit those functors by fixing some

Hodge-Tate weight. Assume that (iv) holds and let k1 < k2 < · · · < kn be the Hodge-Tate
weights of D. We defineXD,φ↓ (resp.XD,φ↑) as the subfunctor ofXD, Pφ

(resp.X
D, Pφ) defined

by PSen(k1) = 0 (resp. PSen(kn) = 0).

P(141'3%31&3.16. – Assume thatD is a crystalline(ϕ,Γ)-module of rankn over RL

satisfying (i), (ii), (iii) and (iv) and letφ be an eigenvalue ofϕ on Dcrys(D). ThenXD,φ↓ is a
pro-representable subfunctor ofXD, formally smooth overL of dimensionn2 − n + 1.

Assume thatDcrys(D)
ϕ=φ is non-critical in Dcrys(D). ThenXD,crys ⊂ XD,φ↓. Furthermore,

for any objectA in C , XD,φ↓(A) is the subset of(DA, π) ∈ XD(A) such that there exists
�φ ∈ A

∗ lifting φ and such thatDcrys(DA)
ϕ=�φ is free of rank1 overA.

Proof. – By Lemma 3.11 (i), XD, Pφ
is a subfunctor of XD, formally smooth over L of

dimension n
2− n + 2. The assertion on XD,φ↓ follows from this, property (ii), Prop. 3.7 and

Lemma 3.14. The inclusion XD,crys ⊂ XD,φ↓ follows from Prop. 3.13.
Before checking the last assertion, remark that for an element (DA,Fili, π) ∈ XD, Pφ

(A),
and �φ ∈ A

∗ lifting φ, the natural inclusion induces a bijection

(3.6) Dcrys(Fil1(DA))
ϕ=�φ

= Dcrys(DA)
ϕ=�φ

.

Indeed, − �→ Dcrys(−)
ϕ=�φ is left exact over the category of (ϕ,Γ)-modules over RA and

Dcrys(DA/Fil1)
ϕ=�φ vanishes by a dévissage as Dcrys(D/Fil1(D))

ϕ=φ
= 0.

Let us check the last assertion. Define X�(A) as the subset of (DA, π) ∈ XD(A) having
the property given in the statement. Assume first that (DA,Fili, π) ∈ XD,φ↓(A). Write
Fil1 � RA(δ) for some character δ : Q∗

p
→ A

∗. As Dcrys(Dφ) is non-critical
PSen/L(Dφ) = T − k1, so the reduction δ : Q∗

p
→ L

∗ of δ modulo mA is the algebraic
character x �→ x

−k1 over Z∗
p

(Lemma 3.14 (b)). As k1 is a simple root of PSenL(D) by (iv),
the assumption PSen/A(DA)(k1) = 0 and Lemma 3.14 ensure that

PSen/A(Fil1(DA)) = PSen/A(RA(δ)) = T − k1.

This implies that δ(x) = x
−k1 for any x ∈ Z∗

p
, so Fil1(DA) is crystalline, hence a crystalline

deformation of Dφ. By (3.6), this implies that (DA, π) ∈ X�(A) (even with �φ = δ(p)p
−k1).

We now check the other inclusion X�(A) ⊂ XD,φ↓(A). Fix (DA, π) ∈ X�(A) and let
�φ ∈ A

∗ be as in the statement. We claim first that

Fil
i
(Dcrys(DA)

ϕ=�φ
) = 0 for all i > k1.

Indeed, let us argue by induction on dimL A. It holds when dimL A = 1 as Dφ is non-critical.
When dimL A > 1 we may find an ideal I ⊂ A of L-dimension 1, and as DA is free over RA

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



990 G. CHENEVIER

we may consider the exact sequence 0 → IDA = D → DA → DA/I → 0 of (ϕ,Γ)-modules

over RL (and of RA-modules). Applying Dcrys(−)
ϕ=�φ we obtain for any i an exact sequence

0 → Fil
i Dcrys(D)

ϕ=φ → Fil
i Dcrys(DA)

ϕ=�φ → Fil
i Dcrys(DA/I)

ϕ=�φ from which we get
the claim by induction. As a consequence, the crystalline (ϕ,Γ)-submodule D

�
A
⊂ DA

corresponding to the filtered submodule Dcrys(DA)
ϕ=�φ is free over RA by Lemma 3.12. The

natural map π : D
�
A
→ D surjects onto Dφ as it is so after applying Dcrys(−), and we are

done. (For an alternative argument, see [1, Lemma 2.5.2].)

R0,#(8 3.17. – The duality E �→ E
∨

= HomRA
(E, RA) on (ϕ,Γ)-modules E

over RA induces an isomorphism ι : XD

∼→ XD∨ . Note that D
∨ satisfies (i), (ii), (iii), or (iv) if

D does. If P is a filtration on D, then there is a natural dual filtration P∨ on D
∨. When D is

crystalline, P is non-critical if and only if P∨ is. The isomorphism ι induces an isomorphism
XD, P

∼→ XD∨, P∨ , as well as an isomorphism XD,φ↑
∼→ XD∨,φ−1↓ (when it makes sense). In

particular, the proposition above has an obvious analogue for XD,φ↑ whose statement is left
as an exercise to the reader.

3.18. The main theorem

Let D be a crystalline (ϕ,Γ)-module of rank n ≥ 1 over RL. We say that D is generic
if it satisfies (i), (ii) of § 3.9, and if all of its n! reÞnements are non-critical. As we shall see
below, such a D necessarily satisfies (iii) and (iv) as well. In the algebraic variety of all filtered
ϕ-modules of dimension n over L whose filtration admits n jumps, the generic condition is
Zariski-open and Zariski-dense.

Let us denote by t the tangent space XD(L[ε]), and for ∗ ∈ { F , φ↓, crys . . .} let t∗ denote
the tangent space XD,∗(L[ε]). By Lemma 3.11, t contains the L-subvector-space t F for any
of the n! refinements F of D.

T/01(0, 3.19. – If D is generic thent =
�

F t F .

In other words, any Þrst order deformation of a generic crystalline representation is a linear
combination of trianguline deformations.

We will actually prove a more general statement, whose formulation requires some more
definitions. Let I ⊂ {1, . . . , n} be a non-empty subset and denote by i1 < · · · < ir its
elements. An element σ inSn will be called an ordered cycleon I if either σ = (i1, i2, . . . , ir)

or σ = (ir, ir−1, . . . , i1). By a nestedsequence of intervals in {1, . . . , n}we mean a decreasing
sequence of subsets

I0 = {1, . . . , n} ⊃ I1 ⊃ · · · ⊃ In−1

such that for each 1 ≤ i ≤ n− 1, Ii = Ii−1\{yi} where yi ∈ {Min(Ii−1), Max(Ii−1)}. Such
a sequence is uniquely determined by the sequence (yi) entering in its definition. For each
1 ≤ i ≤ n− 1 we define as well an element y

∗
i
∈ {1, . . . , n} by {yi, y

∗
i
} = {Min(Ii−1),Max(Ii−1)}.

We will say that a sequence of n permutations σ0, σ1, . . . , σn−1 ∈ Sn is nestedif σ0 = id

and if there exists a nested sequence of intervals (Ii) of {1, . . . , n} such that

∀i ∈ {1, . . . , n−1}, σi = ciσi−1,
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where ci is the ordered cycle on Ii−1 such that ci(y
∗
i
) = yi (the yi and y

∗
i

being associated
to Ii as above). For n > 1 there are exactly 2

n−2 nested sequences in Sn. For instance, id,
(1, 2, 3), (2, 3)(1, 2, 3) and id, (3, 2, 1), (1, 2)(3, 2, 1) are the two nested sequences in S3.

We will say that a sequence of 2n− 1 permutations

σ0, σ1, σ
∗
1
, σ2, σ

∗
2
, . . . , σn−1, σ

∗
n−1

∈ Sn

is weakly nestedif σ0 = id and if there exists a nested sequence of intervals (Ii) of {1, . . . , n}
such that

∀i ∈ {1, . . . , n− 1}, σi = τiσi−1 and σ
∗
i

= ciσi−1,

where ci is the ordered cycle on Ii−1 such that ci(y
∗
i
) = yi, and where τi ∈ Sn is any element

such that τi(y
∗
i
) = yi and such that τi(j) = j for all j ∈ {1, . . . , n}\Ii−1. For example,

the nested sequence of intervals defined by yi = i for each i, and the elements τi = (i, n)

for 1 ≤ i ≤ n− 1, define a unique weakly nested sequence in Sn.
Of course, a nested sequence defines a weakly nested sequence if we set σ

∗
i

= σi, but there
are far more weakly nested sequences in general. When τi(yi) �= y

∗
i

for 1 ≤ i < n − 1 (so
for most weakly nested sequences, but not for the one in the example above), note that the
elements σi determine uniquely the nested sequence of intervals entering in their definition,
hence the σ

∗
i

as well.

Let D be a crystalline (ϕ,Γ)-module of rank n over RL satisfying (i). Any refinement
F of D determines an ordering (ϕ1, . . . , ϕn) of the eigenvalues of ϕ on Dcrys(D) defined
by det(ϕ|Fili( Dcrys(D))) =

�
i

j=1
ϕj , which of course determines F , so we shall also write F =

(ϕ1, . . . , ϕn). In particular Sn acts on the set of refinements of D, via σ((ϕi)) = (ϕσ−1(i)),
this action being simply transitive. We say that a sequence of refinements F 0, . . . , F n−1 is
nestedif there exists a nested sequence of permutations σi ofSn such that F i = σi( F 0) for
each i. We say that a sequence of refinements F 0, F 1, F ∗

1
, . . . , F n−1, F ∗

n−1
is weakly nested

if there exists a weakly nested sequence of permutations σi, σ
∗
i

ofSn such that F i = σi( F 0)

and F ∗
i

= σ
∗
i
( F 0) for each i = 1, . . . , n− 1.

T/01(0, 3.20. – Let D be a crystalline(ϕ,Γ)-module of rankn overRL satisfying(i) and
(ii). If F 0, F 1, F ∗

1
, . . . , F n−1, F ∗

n−1
is a weakly nested sequence of non-critical reÞnements

of D, thent =
�

n−1

i=0
t F i

.
In particular, if F 0, . . . , F n−1 is a nested sequence of non-critical reÞnements ofD, then

t =
�

n−1

i=0
t F i

.

Note that this result implies Theorem 3.19. Let us settle first the underlying representabil-
ity questions (property (iii)).

L0,,# 3.21. – Let D be a crystalline(ϕ,Γ)-module satisfying(i). If D admits a weakly
nested sequence of non-critical reÞnements, then(iii) and(iv) hold. Any subquotient of a generic
(ϕ,Γ)-module is generic.

Proof. – If D admits a non critical refinement, then (iv) is easily checked. By (i),
End(ϕ,Γ)(D) ⊂ EndL[ϕ](Dcrys(D)) � L

n (a diagonal L-algebra), so (iii) for D is equivalent
to the fact that D is not the direct sum of two (ϕ,Γ)-modules over RL.

Assume that D = D1 ⊕ D2 and let k1 < k2 < · · · < kn be the Hodge-Tate weights
of D. This defines a partition {1, 2, . . . , n} = A

�
B by i ∈ A if, and only if, ki is a
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Hodge-Tate weight of D1. Let (ϕ1, . . . , ϕn) be a non-critical refinement of D. Observe that
for all i, ϕi is an eigenvalue of ϕ on Dcrys(D1) if and only if i ∈ A: indeed, if (Fili(D)) is
the triangulation of D associated to F , then for all j the jump of the Hodge filtration on the
line Dcrys(D/Filj−1(D))

ϕ=ϕj is exactly kj as F is non-critical, and we are done by induction
on j. As a consequence, if F and σ( F ) are both non-critical, then σ(A) ⊂ A. If σ is a cycle,
A = ∅ or A = {1, . . . , n}, which concludes the proof of the first part. The second part
follows at once.

The remainder of this section is devoted to the proof of Theorem 3.20. Recall that for each
non critical refinement F we have an inclusion

tcrys ⊂ t F ⊂ t,

with respective dimensions n(n−1)

2
+ 1, n(n+1)

2
+ 1 and n

2
+ 1. So t F /tcrys is a subspace

of dimension n inside t/tcrys, which has dimension n(n+1)

2
. The idea of the proof is to show

that such an F being given, the tangent space of a suitable paraboline deformation functor of
type (n−1, 1) or (1, n−1) is in direct sum with t F modulo tcrys, and then argue by induction
on rkRL

(D) in the (n− 1)× (n− 1) square. Note that even if we start from an étale D, we
will lose this property in the induction process, which justifies the generality adopted in §3.9.

In the following lemma, D is a crystalline (ϕ,Γ)-module over RL satsfying (i), (ii), (iii)
and (iv). Fix F a refinement of D and set c = (1, 2, . . . , n) ∈ Sn.

L0,,# 3.22. – If F andc( F ) are non critical, and ifφ is the last element ofF ,

t = t F + tφ↓ and t F ∩ tφ↓ = tcrys.

Similarly, if F andc
−1

( F ) are non critical, and ifφ is the Þrst element ofF , thent = t F +tφ↑
andt F ∩ tφ↑ = tcrys.

Proof. – The second part follows from the first one by duality by Remark 3.17, so we
focus on the first part. First of all, by Prop. 3.15 and 3.16, tcrys ⊂ t F ∩ tφ↓ and

(3.7) dim(t F /tcrys) + dim(tφ↓/tcrys) =
n(n + 1)

2
= dim(t/tcrys).

(Prop. 3.15 applies as Dcrys(D)
ϕ=φ is non-critical, since φ is the first eigenvalue of the non

critical refinement c( F ).) Thus it only remains to show that t F ∩ tφ↓ ⊂ tcrys. As F is non-
critical, it is enough to show that

(3.8) XD, F ∩ XD,φ↓ ⊂ XD,Sen

by Prop. 3.15. Fix an object A of C , let (DA,Fili, π) ∈ XD, F (A), and assume that
(DA, π) ∈ XD,φ(A) as well. By property (iv), we may write

PSen/A(DA) =

n�

i=1

(T − κi) ∈ A[T ],

where κi ∈ A lifts ki. Choose �φ ∈ A
∗ lifting φ such that Dcrys(DA)

ϕ=�φ is free of rank 1

over A and let 0 ≤ j ≤ n − 1. As φ is the last element of F , Dcrys(Filj(D))
ϕ=φ

= 0

and an immediate dévissage shows that Dcrys(Filj(DA))
ϕ=�φ

= 0. Applying the left exact
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functor Dcrys(−)
ϕ=�φ to the exact sequence 0 → Filj(DA) → DA → DA/Filj(DA) → 0

of (ϕ,Γ)-modules over RA, we obtain an A[ϕ]-linear injection

(3.9) Dcrys(DA)
ϕ=�φ

�→ Dcrys(DA/Filj(DA))
ϕ=�φ

.

On the other hand, as φ is an eigenvalue of multiplicity 1 in Dcrys(D), another immediate

dévissage shows that the length of the A-module Dcrys(DA/Filj(DA))
ϕ=�φ is ≤ length(A),

thus (3.9) is an isomorphism. As c( F ) is non critical, the Hodge-Tate weights of D/Filj(D)

are kj+1, . . . , kn and Dcrys(D/Filj(D))
ϕ=φ is non-critical in Dcrys(D/Filj(D)). Thus

Prop. 3.16 applies, and shows that for the obvious π
� we have (DA/Filj(DA), π

�
) ∈

XD/Filj(D),φ↓(A). In particular,

PSen/A(DA/Filj(DA))(kj+1) = 0.

As PSen/A(DA/Filj(DA)) =
�

n

i=j+1
(T−κi) by Lemma 3.14, we conclude that κj+1 = kj+1

for all 0 ≤ j ≤ n− 1: DA is Hodge-Tate, and we are done.

We now prove Theorem 3.20 by induction on n = rkRL
D. When n = 1 the theorem is

obvious as XD, F = XD, so assume n > 1. Let F 0, F 1, F ∗
1
, . . . , F n−1, F ∗

n−1
be a weakly

nested sequence of non-critical refinements of D. Applying the above lemma to F = F 0, we
obtain a fortiori

(3.10) t = t F 0
+ t P

where either P = Pφ and φ is the last element of F 0 (case σ
∗
1

= c), or P = Pφ and φ is
the first element of F 0 (case σ

∗
1

= c
−1). Set D

�
= D/Dφ in the first case and D

�
= D

φ

in the second case. By definition, for i = 1, . . . , n − 1 the refinements F i and F ∗
i

have the
form (φ, F �

i
) and (φ, F �

i

∗
) (resp. ( F �

i
, φ) and ( F �

i

∗
, φ)) in the first case (resp. second case).

Moreover,
F �

1
, F �

2
, F �

2

∗
, . . . , F �

n−1
, F

�∗
n−1

is a weakly nested sequence of refinements of D
�. Each F �

i
(resp. F �

i

∗
) is non-critical for D

�

as F i (resp. F ∗
i
) is non critical for D. As D

� obviously still satisfies (i) and (ii), we obtain by
induction:

(3.11) t
�
=

n−1�

i=1

t
�
F �i

,

where t
�
∗ = XD�,∗(L[ε]). Note that for i = 1, . . . , n− 1 we have XD, F i

⊂ XD, P . By Prop. 3.7
and property (ii), the natural map XD, P → XD� induces isomorphisms

(3.12) XD, F i
= XD, P ×XD� XD�, F �i .

By (3.11) and (3.12) we have t P =
�

n−1

i=1
t F i

, and we are done by (3.10). �
Another consequence of the proof of Lemma 3.22 is the following proposition.

P(141'3%31&3.23 (Transversality of trianguline deformation functors)
Assume thatD satisÞes(i), (ii) and let F and F � be two reÞnements ofD. If F � starts with

the last element ofF , and if F , c( F ) and F � are non-critical,XD, F ∩ XD, F � is exactly the
subfunctor of deformations ofD which are crystalline up to a twist.
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3.24. Some examples

Note that any (ϕ,Γ)-module of rank 2 satisfying (i), (ii), (iii) and (iv) is generic. The
following other example plays some role in the main global result of this paper.

E5#,460 3.25. – Assume thatD = Drig(V ) for some representationV of dimension3
over L satisfying (i), (iii) and (iv). Then D admits a nested sequence of non-critical
reÞnements.

Proof. – Let X be the set of Frobenius eigenvalues of ϕ on Dcrys(V ), and let k1 < k2 < k3

be the Hodge-Tate weights of V . A line L ⊂ Dcrys(V ) (resp. a plane P ) is critical if
L ⊂ Fil

k2
(Dcrys(V )) (resp. P ⊃ Fil

k3
(Dcrys(V ))).

Assume first that there is some φ ∈ X such that the line Lφ := Dcrys(V )
ϕ=φ is critical.

Then we claim that there is a unique such φ in X and that no ϕ-stable plane P ⊂ Dcrys(V ) is
critical. In particular, the critical refinements of D are exactly the two ones starting with φ.
This implies the lemma in this case as each refinement of the nested sequence

(φ
�
, φ, φ

��
), (φ

��
, φ
�
, φ), (φ

��
, φ, φ

�
)

is non-critical. If there is no critical line Lφ as above, then either D is generic or there is a
ϕ-stable critical plane Lφ� ⊕ Lφ�� . It follows from the preceding claim applied to V

∗ that in
the latter case such a plane is unique, hence the critical refinements of D are the ones ending
by φ and

(φ
�
, φ, φ

��
), (φ, φ

��
, φ
�
), (φ

��
, φ, φ

�
)

is a nested sequence of non-critical refinements, and we are done again.
Let us check the claim. As V is indecomposable, Dcrys(V ) is not the direct sum of an

admissible line and of an admissible plane. Write X = {φ, φ
�
, φ
��} and do not assume

anything about φ for the moment. If Lφ ⊕ Lφ� = Fil
k2

(Dcrys(V )), the weak admissibility
property of Dcrys(V ) implies that Lφ�� and Lφ⊕Lφ� are admissible, which is absurd. Similarly,
Lφ �= Fil

k3
(Dcrys(V )) otherwise Lφ and Lφ�⊕Lφ�� would be admissible. Assume now that Lφ

is critical. If P is a ϕ-stable critical plane, then P �= Fil
k2

(Dcrys(V )) and P does not contain
Lφ by what we just proved, so P = Lφ� ⊕ Lφ�� and the jump indices of the Hodge filtration
on P are k1 and k3. But weak admissibility implies that Lφ and P are admissible, and we are
done.

E5#,460 3.26. – Let D be a crystalline(ϕ,Γ)-module of rank2 over RL satisfying
(i), (iii) and such that the ratior between its two Frobenius eigenvalues satisÞesr

i �= 1

for i = 1, . . . , n.

ThenSymm
n

RL
(D) satisÞes(i) and all of its reÞnements are non critical.

Proof. – We leave as an exercise to the reader to check that the statement follows from
the following claim: if I ⊂ {0, . . . , n} has i elements and if we have a polynomial identity
Q(x)(1 + x)

i
=

�
i∈I

aix
i where ai ∈ L and Q ∈ L[x] has degree ≤ n + 1 − i, then

Q = 0. To check the claim, consider the i successive derivatives at −1 of the right hand side.
This is a linear system in the unknown (ai)i∈I whose determinant (in absolute value) is the
Vandermonde determinant over the i elements of I.
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Let us end this paragraph by introducing some regularity conditionsthat will arise for
technical reasons in the subsequent global applications. Let D be a crystalline (ϕ,Γ)-module
over RL satisfying (i). We say that a refinement F = (ϕ1, . . . , ϕn) is regular if for all 1 ≤ j ≤ n,
the element ϕ1ϕ2 · · ·ϕj is a simple root of the polynomial

�
I
(T −

�
i∈I

ϕi), the product
being over the I ⊂ {1, . . . , n} with |I| = j.(9)

D023&3%31&3.27. – We say thatD is weakly generic and regular if it satisÞes(i), (ii), and
if it possesses a weakly nested sequence of non-critical reÞnements{ F i, F ∗

i
} such that F i is

regular for eachi = 0, . . . , n− 1. If D = Drig(V ), we say thatV is regular if D is.

The condition of being weakly generic and regular is Zariski-open and Zariski-dense in
the algebraic variety of all filtered ϕ-modules of dimension n over L (whose filtration admits
n jumps). This is actually still true if we restrict to filtered ϕ-modules satisfying a self-duality
condition (orthogonal or symplectic, possibly with a similitude factor, in which cases the
filtration is fixed by a Lagrangian in L

n). Indeed, set k = [n/2], let (Xi)i=1,...,k be some
indeterminates and consider the sequence s = (X1, . . . ,Xk, X

−1

k
, . . . ,X

−1

1
) if n = 2k, or

s = (X1, . . . ,Xk, 1, X
−1

k
, . . . ,X

−1

1
) if n = 2k + 1. Observe that s is regular (for the obvious

definition), moreover each permutation of s whose first k terms do not contain both some Xi

and its inverse X
−1

i
is regular as well (for instance, there are 2

k
k! such permutations when

n is even). We conclude as we may find a weakly nested sequence of permutations of Sn,
associated to the nested sequence of intervals yi = i, whose σi have the property above: for
instance take τi = (i, n− i, n) for all i ≤ k if n is even.

E5#,460 3.28. – Let D be generic of rank4 over RL and assume that it admits a
reÞnement of the form(µ, µx, µx

2
, µx

3
) for someµ, x ∈ L

∗. If x
j �= 1 for 1 ≤ j ≤ 4, thenD

is weakly generic regular.

Proof. – The refinement F 0 of the statement, F 1 = (µx
3
, µx, µ, µx

2
), F 2 = (µx

3
, µx

2,
µx, µ) and F 3 = (µx

3
, µx

2
, µ, µx) form a weakly nested sequence of regular refinements

of D (associated to yi = i).

4. The eigenvariety at non-critical tempered classical points

Our main goal in this section is to show that the eigenvarieties of U(3) or even U(n) are
étale over the weight space at the (stable, tempered) non-critical classical points.

4.1. An infinitesimal classicity criterion

Let n ≥ 1 be any integer and let U/F be a unitary group in n variables attached
to E/F . We need to recall some definitions of the theory of p-adic automorphic forms
for U . The reader may consult [12, §2] for a detailed discussion and complete proofs of the
statements of this section, as well as [10] and [1, §7.3]. We assume that U(Fv) is compact for
all Archimedean places v and that U(Fv) � GLn(Qp) if v divides p. In particular p splits
in E and for each v in the set Sp of finite places of F dividing p we fix such an isomorphism,
which defines as well a place �v of E above p (so Qp = Fv = E�v).

(9) When n ≤ 3, this condition is a consequence of property (i) of D.
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We need to introduce some group theoretic notations concerning GLn(Qp)
Sp , that we

shall view as an algebraic group over Qp. Let B be its upper triangular Borel subgroup, T

its diagonal torus, X∗
(T ) the algebraic characters of T , I the subgroup of GLn(Zp)

Sp whose
elements are upper triangular modulo p, N0 the subgroup of lower triangular elements of I,
T

0
= T ∩I, T− ⊂ T the submonoid whose elements t satisfy t

−1
N0t ⊂ N0, and M = IT

−
I

(it is a submonoid of GLn(Qp)
Sp).

For each B-dominant weight χ ∈ X
∗
(T ), let Wχ be the irreducible algebraic Qp-repre-

sentation of GLn(Qp)
Sp with highest weight χ. For any χ ∈ X

∗
(T ), let Cχ be the standard

analytic principal series of the Iwahori subgroup I. It may be defined as follows. If J is a finite
set, a function f : ZJ

p
→ Qp is said analytic if f((xj)) belongs to the Tate algebra Qp�(xj)j�.

Let J be the set of triples (i, j, v) with 1 ≤ i < j ≤ n and v ∈ Sp. Identifying ZJ

p
with N0 via

the bijection (x(i,j,v)) �→ (pxi,j)v, we obtain a notion of analytic function on N0 and set:

Cχ =

�
f : IB −→ Qp, f(xb) = χ(b)f(x) ∀ x ∈ IB, b ∈ B,

f|N0
is analytic.

�
.

The product in GLn(Qp)
Sp induces an isomorphism N0 × B

∼→ I B. Moreover, as
t
−1

N0t ⊂ N0 for t ∈ T
−, we have M

−1
IB ⊂ IB, thus left translations (m.f)(x) :=

f(m
−1

x) define a representation of M on Cχ. When χ is dominant, and if v is a highest
weight vector in Wχ, the map ϕ �→ (g �→ ϕ(g(v))) defines a Qp[M ]-equivariant embedding
W
∨
χ
→ Cχ, whose image is the subspace of polynomial elements in Cχ.

The spaces of p-adic automorphic forms for U are built from these representations Cχ.
Let K be any compact open subgroup of U(AF,f ) of the form K = I × K

Sp . For any
Qp[M ]-module W , consider the Qp-vector space

F (W ) :=

�
f : U(F )\U(AF,f ) −→ W,

f(gk) = (
�

v|p kv)
−1

f(g), ∀g ∈ U(AF,f ), ∀ k ∈ K.

�
.

This defines an exact functor from Qp[M ]-modules to Qp-vector spaces. Moreover, F (W ) is
in a natural way a module over the Atkin-Lehner algebra A− which is the Q-subalgebra of
the Iwahori Hecke-algebra of GLn(Qp)

Sp relative to I, consisting of functions with support
in M . Recall that the map T

−
/T

0 → A−, t �→ 1ItI , is a multiplicative homomorphism
inducing an isomorphism

Q[T
−

/T
0
]
∼→ A−

(in particularA− is commutative). Using this latter isomorphism we will view elements of T
−

as elements of A−. Last but not least, F (W ) also admits a natural structure of module
over the Hecke Q-algebra of (U(ASp

F,f
), K

Sp) that commutes with A−. We fix a commutative
subring H of this latter Hecke-algebra that contains the spherical Hecke-algebra for almost
all finite primes v of F .

Let χ ∈ X
∗
(T ). The space of p-adic analytic automorphic forms of U of weight χ and

level K is the space F ( Cχ). It is a Qp-Banach space in a natural way, on which the Hecke-
operators A−⊗ H act continuously. Moreover, if T

−− ⊂ T
− denotes the submonoid whose

elements t are such that t
−1

N0t vanishes mod p, then any t ∈ T
−− acts compactly on F ( Cχ).

When χ is dominant, F ( Cχ) contains as A− ⊗ H -submodule the subspace F (W
∨
χ

) of
automorphic forms of weight χ and level K, often called the subspace of classicalp-adic
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automorphic forms. If we fix a ι = (ιp, ι∞) as in §1.7, this subspace is a canonical Qp-struc-
ture of the complex Q[U(AF,f )//K]-module

(4.13)
�

π

m(π)π
K

f
,

where π varies in the set of irreducible automorphic representations of U(AF ) such that
π∞ � Wχ, and with finite multiplicity m(π) in L

2
(U(F )\U(AF )).

We shall also need to use the global base-change from U/F to GLn/E. It is currently
known in the following cases:

– n ≤ 3 (Rogawski) or,
– there is a finite place v such that U(Fv) is the group of invertible elements of a central

division algebra over Fv (Clozel-Labesse, Harris-Labesse) or,
– [F : Q] ≥ 2 (Labesse),

and we definitely assume that we are in one of these three cases. Thanks to [38] and [15, 24],
it follows that for any automorphic representation π of U there is a semi-simple continuous
Galois representation

ρπ : GE −→ GLn(Qp),

which is unramified above any finite place v /∈ Sp of F such that πv and U/Fv are unramified,
and which is characterized by the following property: for any such v which splits(10) in E the
characteristic polynomial of Frobṽ coincides (via ι) with the characteristic polynomial of the
Langlands conjugacy class of πv| · |

1−n
2 . It has the following extra properties:

– ρ
∨,c

π
� ρπ(n− 1) (note that n is not necessarily odd in this paragraph).

– For each finite place v /∈ Sp of F such that U(Fv)
∼→ṽ GLn(Fv) the Frobenius semi-

simplification of ρπ,ṽ corresponds to ιpι
−1

∞ πv|.|
1−n

2 via the local Langlands correspon-
dence ([38],[15, 24],[9]).

– If v ∈ Sp and πv is unramified, then ρπ is crystalline at ṽ. Its Hodge-Tate weights
are related to Π∞ via ι and the usual recipe, and the characteristic polynomial of its
crystalline Frobenius is the characteristic polynomial of the Langlands conjugacy class
of πv| · |

1−n
2 (of course via ι, see [14]).

Before stating the inÞnitesimal classicity criterionwe need to recall the relation between
refinements and eigenvectors of A−. Let f �= 0 ∈ F (W

∨
χ

)⊗Qp Qp be a common eigenvector
for all the elements ofA−⊗ H . Let π be any automorphic representation of U with π∞ � Wχ

and which occurs as a summand of the representation generated by ι∞ι
−1

p
f ; the Galois

representation ρf := ρπ does not depend on the choice of π by Cebotarev’s theorem.
According to the recipe described in [1, §6.4], the action of A− on f determines for each
v ∈ Sp a canonical ordering (ϕi,v)

n

i=1
of the eigenvalues of the Langlands conjugacy class

associated to the representation πv| · |
1−n

2 (which has Iwahori invariants by construction).
When ϕi,vϕ

−1

j,v
�= p for all i �= j then πv is unramified, so ρ

f,�v is crystalline. If furthermore
ϕi,vϕ

−1

j,v
�= 1 for all i �= j, then (ϕi,v)

n

i=1
defines a refinement of ρ

f,�v in the sense of §3.9 (see
the discussion preceding Thm 3.20).

(10) So U(Fv) � GLn(Fv) and the choice of such an isomorphism defines a unique place ṽ of E above v.
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P(141'3%31&4.2. – Let f ∈ F (W
∨
χ

) ⊗Qp Qp be an eigenvector for all the elements
of A− ⊗ H . Assume that for eachv ∈ Sp, the sequence(ϕi,v)

n

i=1
deÞned above satisÞes

ϕi,vϕ
−1

j,v
�= 1, p for any i �= j, and deÞnes a non-critical, regular, reÞnement ofρ

f,�v.

Then the generalizedA− ⊗ H -eigenspace off inside F ( Cχ) ⊗Qp Qp is included
in F (W

∨
χ

)⊗Qp Qp.

When (ϕi,v)
n

i=1
is numerically non-critical, this result follows from the standard classicity

criterion (compare [1, Rem. 2.4.6] with [12, Thm. 1.6 (vi)]). However, this simple case is not
enough for our purpose in this paper, and the general case is much deeper. It is the analogue
of the classical fact that an ordinary modular eigenform which is in the image of the theta
map is split at p (Mazur-Wiles).

The first ingredient of the proof is the following result of Jones, which is a (locally) analytic
version of the Bernstein-Gelfand-Gelfand resolution, and plays the role of the theta map in
the context of p-adic modular forms.

L0,,# 4.3 ([26, Thm. 29]). – Assume thatχ ∈ X
∗
(T ) is dominant. There exists an exact

sequence ofQp[M ]-modules:

0 −→ W
∨
χ
−→ Cχ −→

�

l(σ)=1

Cσ(χ+ρ)−ρ.

In this statement, σ is an element in the Weyl group S = S
Sp
n of T , ρ is the half-sum of

the positive roots (this is not quite an element of X
∗
(T ), but σ(χ + ρ) − ρ is anyway). By

exactness of the functor F we obtain an exact sequence of A−⊗ H -modules 0 → F (W
∨
χ

) →
F ( Cχ) →

�
l(σ)=1

F ( Cσ(χ+ρ)−ρ). Let ψ : A−⊗ H → Qp be the Q-algebra homomorphism
defined by f : a(f) = ψ(a)f for all a ∈ A−⊗ H . If E is any Qp⊗A−⊗ H -module we denote
by E[ψ] the generalized eigenspace associated to ψ:

E[ψ] = {e ∈ E ⊗Qp Qp, ∃n ∈ N, ∀a ∈ A− ⊗ H , (a− ψ(a)id)
n
e = 0}.

As f is classical, ψ(T
−

) ⊂ Q∗
p
, and by compactness of any t ∈ T

−− we obtain an exact
sequence of finite dimensional Qp-vector spaces:

0 −→ F (W
∨
χ

)[ψ] −→ F ( Cχ)[ψ] −→
�

l(σ)=1

F ( Cσ(χ+ρ)−ρ)[ψ].

We claim that for each simple reflection σ = (i, i + 1)v, we have F ( Cσ(χ+ρ)−ρ)[ψ] = 0.
Indeed, it is enough to show that there is no g �= 0 ∈ F ( Cσ(χ+ρ)−ρ)[ψ] that is an eigenvector
for A− ⊗ H . Assume for a contradiction that there are such i, v ∈ Sp and g.

As g and f share the same system of Hecke-eigenvalues under A− ⊗ H , the form g is of
finite slope and its associated p-adic Galois representation ρg : GE → GLn(Qp) coincides
with ρf . However, the form f has weight χ whereas its “companion form” g has weight
σ(χ + ρ)− ρ. Let us denote by

k1,v < k2,v < · · · < kn,v

the Hodge-Tate weights of ρ
f,�v. They are related to the weight χ of f by the usual recipe,

namely an identification X
∗
(T ) � (Zn

)
Sp making the dominant elements of X

∗
(T ) corre-

spond to increasing sequences as above. According to the same recipe, the ordering of the
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Hodge-Tate numbers of ρ
g,�v corresponding to σ(χ + ρ)− ρ is the same one except that ki,v

and ki+1,v are interchanged. As the actions of A− on g and f coincide, Kisin’s result [29, §5]
on the continuity of crystalline periods in refined families ensures that ρg has the following
property(11):

(4.14) Fil
k1,v+k2,v+···+ki−1,v+ki+1,v

(Dcrys(Λ
i
ρ

g,�v)
ϕ=ϕ1,vϕ2,v···ϕi,v ) �= 0.

As (ϕi,v)
n

i=1
is regular, if Fi = ⊕i

j=1
Dcrys(ρg,�v)

ϕ=ϕj,v ⊂ Dcrys(ρg,�v) we have

Dcrys(Λ
i
ρ

g,�v)
ϕ=ϕ1,vϕ2,v···ϕi,v = Λ

i
(Fi) ⊂ Λ

i
Dcrys(ρg,�v).

On the other hand, (ϕi,v)
n

i=1
is non critical so the jumps of the filtration on Fi induced by

the Hodge filtration on Dcrys(ρg,�v) are k1,v, k2,v, . . . , ki,v, which contradicts (4.14). �

4.4. Non critical classical points are étale over the weight space

The preceding result, combined with some properties of automorphic forms, allows to
show that eigenvarieties are étale over the weight space at non critical classical points.

Let � �= p be a prime and E� a finite extension of Q�. We denote by WE� the Weil-group
of E� and IE� ⊂ WE� its inertia subgroup. If ρ : WE� → GLn(Qp) is continuous, it admits an
associated Frobenius semi-simple Weil–Deligne representations (r, N). Recall that we have
fixed some embeddings ιp, ι∞. We say that ρ is defined over Q if r is. In this case, the local
Langlands correspondence associates to (r, N) (and ιp, ι∞) a canonical irreducible smooth
complex representation of GLn(E�). For two continuous representations ρ, ρ

�
: WE� −→

GLn(Qp), with associated Weil–Deligne representations (r, N) and (r
�
, N

�
), we write ρ ≺I ρ

�

if r|IE�
� r

�
|IE�

and if ρ has less monodromy thanρ� in the following sense: for each irreducible

Qp-representation τ of IE� , the nilpotent conjugacy class of the monodromy operator is
greater on the τ -isotypic component of r

� than on the τ -isotypic component of r (for the
dominance ordering, the conjugacy class of 0 being by convention the smallest one). Recall
that if r =

�
s

i=1
ri and r

�
=

�
s
�

j=1
r
�
j

are irreducible decompositions of r and r
�, then

r|IE�
� r

�
|IE�

if and only if s = s
� and, up to renumbering the ri, r

�
i

is an unramified twist
of ri for each i ∈ {1, . . . , s} (see, e.g., [12, Lemme 3.14 (i)]).

L0,,# 4.5. – Let X be an irreducible a!noid overQp, Z ⊂ X(Qp) a Zariski-dense
subset, and letρ : WE� −→ GLn( O(X)) be a continuous representation.

(i) There is a Zariski-dense subsetZ
� ⊂ Z such thatρx ≺I ρz andρz |IE�

� ρz� |IE�
for all

z, z
� ∈ Z

� andx ∈ X.

(11) To deduce this result from the literature, we may refer as follows to [1]. First, choose by Lemma 7.8.11 an a- noid
neighborhood Ω of the point x corresponding to g in the eigenvariety of U of level K. There is a surjective alteration
Ω� → Ω and a locally free OΩ-module M with a continuous OΩ� -linear action of GE which is generically semi-
simple and whose trace is the pull-back of the natural family of pseudo-characters on Ω. Apply Theorem 3.3.3
to Λi

OΩ�
(M) and any point x� ∈ Ω� above x, its assumptions are satisfied by Prop. 7.5.13 and §4.2.4. We obtain

(4.14) with Mx� instead of ρ
g,�v . But ρ

g,�v is the semi-simplification of Mx� ⊗ Qp, so (4.14) follows from the left-

exactness of the functor Filk(Dcrys(−)ϕ=φ).
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(ii) For eachz ∈ Z assume thatρz is deÞned overQ and that its Langlands correspondent
πz is tempered. Then for anyz, z

� ∈ Z, we have

ρz |IE�
� ρz� |IE�

and πz |GLn( OE�
) � πz� |GLn( OE�

).

Proof. – Part (i) is [1, Prop. 7.8.19] (in the notations there, apply it to the tautological
pseudo-character T : GLn( O(X)) → O(X) and to the morphism WE� → GLn( O(X)) of
the statement). Let us check part (ii).

Let π and π
� be two irreducible temperedrepresentations of GLn(E�), with associated

Weil–Deligne representations (r, N) and (r
�
, N

�
). If (r|I , N) and (r

�
|I , N

�
) are isomorphic,

then π and π
� are fully induced from discrete series ∆ and ∆

� of a same Levi subgroup
of GLn(E�), and ∆ and ∆

� only di. er by a unitary unramified twist (Langlands, Zelevinski).
In particular, π and π

� are isomorphic restricted to GLn( OE�). As a consequence, the second
assertion in part (ii) follows from the first one, that we check now. We may assume z

� ∈ Z
�.

Moreover, by the inequality in part (i) it is enough to check that ρz |IE�
� ρz� |IE�

holds after
a finite base change. As base change preserves temperedness, we may assume that for each z

in Z, if (rz, Nz) is the Weil–Deligne representation associated to ρz, then rz is trivial over IE� .
Let ϕ ∈ WE� be a lift of a geometric Frobenius and let P ∈ O(X)[T ] be the characteristic

polynomial of ρ(F ). Up to replacing X by a finite covering and Z by its inverse image, we
may assume that P splits in O(X)[T ]; let F1, . . . , Fn ∈ O(X) be its roots. By part (i) the
conjugacy class of Nz does not depend on z ∈ Z

�, let us call it N ; it is determined by a
partition n1 + n2 + · · · + ns = n. For each z ∈ Z

�, there is a renumbering F
�
i

of the Fi

such that whenever 1 ≤ j < n1 or n1 +n2 + · · ·+nr +1 ≤ j < n1 +n2 + · · ·+nr+1 we have
F
�
j
(z) = qF

�
j+1

(z), where q is the cardinal of the residue field of E�. For z in a Zariski-dense
subset Z

�� ⊂ Z
�, this numbering will be the same, hence up to renumbering the Fi once and

for all we may assume that if 1 ≤ j < n1 or if n1+n2+· · ·+nr+1 ≤ j < n1+n2+· · ·+nr+1,

(4.15) Fj(z) = qFj+1(z) ∀z ∈ Z
��
.

Thus Fj+1 = qFj in O(X) (we may assume X is reduced) for any j as above, hence (4.15)
holds as well for any z ∈ Z. But the temperedness of πz and the inequality Nz ≺ N imply in
turn that Nz is conjugate to N . (Note the funny interplay between the complex and p-adic
sides in this proof.)

Assume now that E� is a quadratic extension of F� (� is still prime to p) and let U(F�) be
the quasi-split unitary group in n variables attached to E�/F�. For n ≤ 3, the standard base-
change between U(F�) and GLn(E�), conjectured by Langlands and proved by Rogaswki
in [35, Prop. 11.4.1, Thm. 13.2.1], is an injection from the set of L-packets of U(F�) to the
irreducible smooth representations π of GLn(E�) such that π

∨,w � π (w ∈ WF�\WE� ) and
whose central character is trivial over F

∗
�

if n is odd.

L0,,# 4.6. – We keep the assumptions of Lemma4.5and assume thatn ≤ 3.
For eachz ∈ Z assume thatρz is deÞned overQ and that there is a temperedL-packet

Πz of U(F�) whose base-change toGL3(E�) corresponds toρz. Then for any compact open
subgroupKv of U(F�) and anyz, z

� ∈ Z, we have

(

�

π∈Πz

π)|Kv
� (

�

π∈Πz�

π)|Kv
.
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If χ is a character of E
∗
�

, we shall denote by χ
⊥ the character x �→ χ(c(x))

−1 where
c generates Gal(E�/F�).

Proof. – Assume n = 3. The lemma is obvious when the isomorphism class of ρz is
constant when z varies in Z, as then Πz does not depend on z. We claim that this occurs
in particular when there is some z ∈ Z such that ρz ⊗ Qp is either irreducible, of the form
r⊕χ with r irreducible of dimension 2, or of the form χ1⊕χ2⊕χ3 where the χi are distinct
characters such that χ

⊥
i

= χi for each i (the associated L-packet of U(F�) is discrete and has
respectively 1, 2 or 4 elements by [35, §13]).

Indeed, in the first case part (i) shows that for any x ∈ X(Qp) there is an unramified
character χx such that ρx⊗Qp = (ρz⊗Qp)⊗χx, and the self-duality like condition forces χx

to vary in a finite set when x varies. This implies that for all g ∈ WE� , trace(ρ(g)) is constant,
i.e. belongs to the biggest finite extension of Qp in the domain O(X), hence the statement.
The second case is similar. In the last case, part (i) implies that trace(ρ) factors through a
pseudo-character of W

ab

E�
= E

∗
�

. We may find a normal a- noid Y , a finite map Y → X, as
well as continuous characters χ̃i : WE� → O(Y )

∗ such that

(4.16) trace(ρ) =

3�

i=1

χ̃i,

thus up to replacing X by Y and Z by its inverse image in Y we may assume that X = Y .
The self-duality like condition and the assumption that the evaluation of the χ̃i at z are all
self-⊥ and distinct imply that χ̃i

⊥
= χ̃i for each i. As they are constant on IE� by part (i),

we see again that there is only a finite number of possibilities for the ρx ⊗ Qp with x ∈ X,
and we conclude as before.

In the non-constant case, then for any z in Z we have

ρ
ss

z
⊗Qp = χz ⊕ νz ⊕ ν

⊥
z

for some characters χz, νz : E
∗
�
→ Q∗

p
, with χ

⊥
z

= χz. This implies that χz is trivial over F
∗
�

(as χzνzν
⊥
z

is), hence is the base change to E
∗
�

of a unique character χ̃z of U(1). This case is
more subtle as there are in general four possible kinds of L-packets for Πz, labelled as (1), (2),
(6) and (8) in [35, p. 174] and to which we shall refer several times. We shall argue according
to the generic monodromy of ρ:

(a) If the monodromy of ρz has nilpotent index 3, then from that list we see that Πz is some
twist of the Steinberg representation (case (8)). If this occurs for some z ∈ Z

�, Lemma 4.5 (i)
implies that this also occurs for all z ∈ Z

�, so that Πz is independent of z ∈ Z
� in this case

(the twist alluded to above does not depend on z by an argument similar to the ones above).
Assume it is so and fix x ∈ Z. This implies

(4.17) {νx, ν
⊥
x
} = {χx|.|, χx|.|−1}.

We claim that Rogawski’s list shows that Πx is the twist of the Steinberg representation by χ̃x,
so Πx = Πz for any z ∈ Z

�. This would conclude the proof in case (a). To check the claim note
that property (4.17) of νx excludes the packets of type (1) (irreducible principal series), as well
as those of type (6) (l.d.s. L-packets), so it only remains to exclude the type (2) (endoscopic
transfer of a twist of the Steinberg representation ofU(2)×U(1), an L-packet with 2 elements).
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But the Weil–Deligne representation (r, N), r : WE� → GL3(C), of the base-change of an
L-packet of type (2) has a non trivial N and r is the sum of three characters

(4.18) χ⊕ ν|.|−1/2 ⊕ ν|.|1/2

where χ = χ
⊥, ν = ν

⊥, χ|F∗
�

= 1 and ν|F∗
�
�= 1. These conditions contradict (4.17).

(b) If the monodromy of ρz has nilpotent index 2, the unique possibility from the list is
that the L-packet Πz is of type (2). If this occurs for some z ∈ Z

�, an argument similar to the
one in case (a) shows again that Πz is independent of z ∈ Z.

(c) In the remaining case, ρz has no monodromy for all z ∈ Z, so we see from Rogawski’s
description that Πz is the set of irreducible constituents of the parabolic induced representa-
tion Ind(ηz) of the character ηz = νzχ

−1

z
×χ̃z of the diagonal torus E

∗
�
×U(1) of U(F�) (this

covers the two possibilities (1) and (6)). Arguing as for (4.16), we may assume that χz and νz

have been chosen so that they vary analytically when z ∈ Z ⊂ X. But then ηz | O∗E�
×U(1)

does
not depend on z ∈ Z by part (i), so we check at once that Ind(ηx)|Kv

= Ind(ηz)|Kv
for all

x, z ∈ Z.
This concludes the case n = 3. The case n = 2 is similiar and only easier (use the

description of L-packets given in [35, Chap. 11]) and n = 1 is trivial.

L0,,# 4.7. – Lemmas4.5and4.6still hold if ρ is replaced by the restriction toWE� of a
continuous pseudo-characterT : Gal(E/E) → O(X) of dimensionn.

In this setting, if x ∈ X(Qp) we mean by ρx the restriction to WE� of the (unique) semi-
simple representation Gal(E/E) → GLn(Qp) whose trace is the evaluation of T at x.

Proof. – Indeed, Lemmas 4.5 (ii) and 4.6 only relied on the existence of a ρ such that
trace(ρ) = T via its Corollary Lemma 4.5 (i). But part (i) in this more general setting follows
again from [1, Prop. 7.8.19].

We now prove the main results of this section. Recall that p splits in E and that U is
a unitary group in n variables attached to E/F as in §4.1. Recall also that we have fixed
a compact open subgroup K ⊂ U(AF,f ) that we assume now of the form

�
v
Kv. Let S

be a finite set of finite primes of F containing the primes ramified in E and such that Kv

is maximal hyperspecial for each v /∈ S. Let E be the p-adic eigenvariety of U of level K

associated to the set Sp of all places above p and to the global Hecke-algebra H unramified
outside S.

T/01(0, 4.8. – ( n ≤ 3) Let π be an automorphic representation ofU which is unramiÞed
abovep and such thatπK �= 0. We assume that the base-change ofπ to GLn(AE) is cuspidal
and that for eachv ∈ Sp the crystalline Frobenius hasn distinct eigenvalues onDcrys(ρπ,�v).

Let { F v} be a collection of reÞnements of theρ
π,�v for v ∈ Sp and letx ∈ E be the point

associated to(π, { F v}). If F v is non-critical for eachv ∈ Sp, then E is Žtale atx over weight
space.

This solves conjecture (CRIT) of [1] §7.6, for n ≤ 3, to which we refer for a more complete
discussion and motivations. The non-criticalassumption is very important in this statement.
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Proof. – For each point y ∈ E (resp. y ∈ E(Qp)) we denote by k(y) its residue field and
by ψy : A−⊗ H → k(y) (resp. ψy : A−⊗ H → Qp) the evaluation at y of the structural ring
homomorphism A− ⊗ H → O( E) at y.

By construction of the eigenvariety, we may find a connected a- noid neighborhood B of
the weight χ0 of x (as defined in the statement) in the weight space and a finite locally free
O(B)-module M equipped with an O(B)-linear action of A− ⊗ H such that:

(a) The a- noid spectrum V of Im
�
O(B)⊗ A− ⊗ H → End O(B)(M)

�
is an a- noid

neighborhood of x in E. Denote by κ : V → B the natural map (so κ(x) = χ0).
(b) For each algebraic weight χ ∈ B, there is an isomorphism of Qp ⊗ A− ⊗ H -modules

M ⊗ O(B) k(y) =

�

y∈κ−1(χ)

F ( Cχ)[ψy],

up to some normalizing twist depending on χ for the action of A−.
(c) κ

−1
(κ(x))

red
= {x} (in particular, V is connected) and the natural surjection

O(V ) → k(x) has a section.

The classicity criterion implies that for χ ∈ B algebraic, dominant and su- ciently far
from the walls of its Weyl chamber, M ⊗ O(B) k(χ) ⊂ F (W

∨
χ

), so for z ∈ κ
−1

(χ) we have

(4.19) F (W
∨
χ

)[ψz] = F ( Cχ)[ψz].

Let Z0 ⊂ B be a Zariski-dense subset of such weights, and let Z ⊂ V be the union of {x} and
κ
−1

(Z0), this a Zariski-dense subset of classical points of V . Up to reducing Z0 if necessary,
we may assume that the refinements associated to any z ∈ Z and any v ∈ Sp are regular, and
that κ is étale at each point in Z\{x}.

The first important fact is that

(4.20) M ⊗ O(B) k(χ0) = F (W
∨
χ0

)[ψx] = F ( Cχ0)[ψx].

Indeed, by (b) and (c) above it is enough to check that F ( Cχ0)[ψx] ⊂ F (W
∨
χ0

) but this
is Proposition 4.2 as the F v are regular and non-critical (note that ϕi,vϕ

−1

j,v
�= p as πv is

tempered and unramified).
For each z ∈ Z(Qp), let �Πz be the (unique) global discrete A-packet of representa-

tions of U(AF ) containing the representations π which are unramified outside S\Sp, with

π∞ � Wκ(z), and whose system ofA−⊗H -eigenvalues on π
KS\Sp

S\Sp
is ι∞ι

−1

p
(ψz). Let �Πz ⊂ Πz

be the (finite) subset of representations having these last three properties. We deduce from
(4.13) that for each z ∈ Z(Qp), if we set δ(z) := dimQp

F ( Cκ(z))[ψz], then

(4.21) δ(z) =

�

π∈Πz

m(π) dimC(π
KS\Sp

S\Sp
),

where m(π) denotes the multiplicity of π in the discrete spectrum of U . To obtain the formula
above, we have used that π

Kv
v

has dimension 1 for v /∈ S and that for v ∈ Sp the generalized
eigenspace of ψz |A− on π

Kv
v

is also one-dimensional as the ϕi,v are distinct for each v ∈ Sp

by assumption.
By (4.19) and (4.20), we have F (W

∨
χ

)[ψz] = F ( Cχ)[ψz] for each z ∈ Z. Note that the
action of A− ⊗ H on each F (W

∨
χ

)[ψz] for z ∈ Z is actually scalar. As a consequence, if we
can show that ∀χ ∈ Z0, κ−1

(χ) has a single element, and that the residue field of this element
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is k(x), then (a), (b) and (c) above, as well as the local freeness of M over O(B), ensure that
O(V ) = O(B) ⊗Qp k(x) and we are done. By the local freeness of M again, it is enough to
show that δ(z) does not depend on z ∈ Z(Qp), or at least that δ(z) ≥ δ(x) for any z in Z(Qp).
We shall use for this the natural n-dimensional pseudo-character TY : Gal(E/E) → O(Y )

for each irreducible component Y of V ; these components all meet at x by (c).

We have not used so far that π has a cuspidal base change to GLn(AE). This implies
that ρπ = ρx is absolutely irreducible (by Ribet, Blasius and Rogawski). As the absolutely
irreducible locus is Zariski open in V , up to reducing Z0 if necessary we may assume that
for all z ∈ Z(Qp) the packet �Πz has a cuspidal base change as well. In this case, Πz is
tempered (hence a "tensor product" of local tempered L-packets) and each element π ∈ Πz

is automorphic and has multiplicity m(π) = 1 by [35, Thm. 13.3.3 (c), Thm. 14.6.1] (when
n = 2 this is due to Labesse-Langlands). By Lemmas 4.5, 4.6 and 4.7, as well as For-
mula (4.21), we obtain that δ(z) is independent of z ∈ Z(Qp), which concludes the proof.
These lemmas apply as for each π

� with cuspidal base-change Π
�, π

� is tempered and
Π
� �→ ρπ� is compatible with the Frobenius semi-simplified local Langlands correspondence

at all primes prime to p (that follows from Rogawski’s strong base change).

Note that strictly, we have not considered the case of a split place v ∈ S such that U(Fv)

is the group of units of a central simple algebra over Fv. But in this case the statement of
Lemma 4.6 still makes sense and holds: it follows from Lemma 4.5 (ii) and the fact that if π1

and π2 are two represesentations of U(Fv) whose Weil–Deligne representations are inertially
equivalent, then π1 and π2 di. er by an unramified twist, hence coincide over the maximal
compact subgroups of U(Fv).

R0,#(8 4.9. – A similar statement is probably true in many other cases (all?) when π is
only assumed to be tempered, but this would have forced us to look at Rogawski’s multiplicity
formula in unpleasant detail. This is however simple enough if S\Sp does not contain any
non split prime. Indeed, in this case the multiplicity formula [35, Thm. 14.6.5] implies that if
Π is a discrete tempered (possibly endoscopic) packet of U , then all the elements π ∈ Π which
are unramified at p and such that π

K �= 0 have multiplicity one, so the argument above still
applies.

We end this paragraph with a result valid for any n. Assume that E/F is unramified
everywhere and that U is quasi-split at each finite place of F (so [F : Q] is even if n is even, by
Hasse’s principle for unitary groups). Assume that S only contains primes which split in E.
Let again E be the p-adic eigenvariety of U of level K associated to the set Sp of all places
above p and to the global Hecke-algebra H unramified outside S.

T/01(0, 4.10. – Assume thatU , E/F and K are as above. Letπ be a tempered
automorphic representation ofU which is unramiÞed abovep and such thatπK �= 0. We
assume thatπ has multiplicity 1 in the discrete spectrum ofU and that for eachv ∈ Sp the
crystalline Frobenius hasn distinct eigenvalues onDcrys(ρπ,�v).

Let { F v} be a collection of reÞnements of theρ
π,�v for v ∈ Sp and letx ∈ E be the point

associated to(π, { F v}). If F v is non-critical and regular for eachv ∈ Sp, then E is Žtale atx
over weight space.
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By a result of Labesse [30, Thm. 5.4], such a π has multiplicity 1 if its base-change
to GLn(AE) is cuspidal, in which case it is necessarily tempered. It follows from Langlands’
conjectures that any π as in the statement should have multiplicity one.

Proof. – We start with an observation. Let π and π
� be any two automorphic represen-

tations of U . Assume that π and π
� are unramified at each finite place v of F which is inert

in E, and that πv � π
�
v

if v is Archimedean and for almost all finite places v of F . We claim
that π � π

�. Indeed, let Π and Π
� be their respective base change to GLn(AE). By Labesse [30,

Cor. 5.3], Π and Π
� are induced from discrete automorphic representations of a Levi sub-

group of GLn(AE), and Πv � Π
�
v

for almost all the finite places v of E. By Moeglin–
Waldspurger classification of the discrete spectrum of GLm and by Jacquet–Shalika [25,
Thm. 4.4], this implies that Π � Π

� (at all places). By Labesse’s theorem above again, this
implies that π � π

�. Indeed, the global base change is compatible with the obvious local base
change at all the finite places. At the split places it is the identity and at the inert places it is
the spherical base change, so in both cases it is injective, and we are done. As a consequence,
if ψ is a system of eigenvalues of H ⊗ A− on F (W

∨
χ

), then there is a unique automorphic
representation π(ψ) of U of weight χ such that H acts on π(ψ)

S

f
as ψ.

We now go back to the proof of the theorem. The arguments of the proof of Thm. 4.8
apply verbatim until “We have not used so far that π has a cuspidal base-change” if for any
z ∈ Z(Qp) we set Πz = {π(ψz)}. If x and π are as in the statement then π(ψx) � π. As
m(π(ψx)) = 1 by assumption, we have

δ(x) := dimQp
F ( Cχ0)[ψx] = dimC(π

KS\Sp

S\Sp
).

By Lemma 4.7 applied to each irreducible component of V , we obtain that for each
z ∈ Z(Qp) we have δ(z) = m(π(ψz))δ(x) ≥ δ(x), which concludes the proof. This lemma
applies as π(χz) is tempered for each z ∈ Z(Qp): at x it is the assumption, and at z �= x it
follows from [30, Cor. 5.3] and [9, Thm. 1.2] as κ(z) is not in a Weyl wall of X

∗
(T ).

5. End of the proof of Theorem A and other global applications

5.1. Proof of Theorem 2.11

Fix x ∈ X(ρ̄) a modular point. For each place v above p, set Vv := ρx|Gṽ
. Assume that

for each v, EndGṽ(Vv) = L, and that the eigenvalues of the crystalline Frobenius of Dcris(Vv)

are distinct and in k(x).

Let y ∈ E(ρ̄) be a refined modular point above x. Those y are in natural bijection with
the set of collections of refinements F v of Vv, v ∈ Sp, in the sense of § 3.9. Indeed, they have
the form y = (x, δ) and this bijection is

δ �→ ( F v)v∈Sp = (δ1,v(p)p
k1,v , δ2,v(p)p

k2,v , δ3,v(p)p
k3,v )v∈Sp ,

where k1,v < k2,v < k3,v are the Hodge-Tate weights of Vv. For this reason we shall also
denote those y above x by (x, { F v}). We use the notations of §3.9.
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P(141'3%31&5.2. – Let (x, { F v}) ∈ E(ρ̄) be a reÞned modular point such thatF v is
non-critical for eachv ∈ Sp. For any Artinian thickeningSpec(A) �→ E(ρ̄) at x, the associated
Galois representationρA : GE → GL3(A) satisÞes

ρA|Gṽ
∈ XVv, F v

(A).

Note that this statement makes sense as EndGṽ(Vv) = L by Remark 3.5.

Proof. – This is [1, Thm. 4.4.1].

Let us set tv,∗ := XVv,∗(L[ε]). Fix y = (x, { F v}) a refined modular point and consider
the natural map on tangent spaces:

(5.22) Ty( E(ρ̄)) −→ Tx(X(ρ̄))
(resev)v∈Sp−→

�

v∈Sp

tv.

By the proposition above, we know that if F v is non critical for each v then the image of
this map falls inside

�
v∈Sp

tv, F v
. However, this information is still too weak to localize this

image: the space on the left, which is of global nature, tends to have dimension 3·|Sp|, whereas�
v∈Sp

tv, F v
, which is purely locally defined, has dimension 7 · |Sp|. A key idea is to neglect

the crystalline deformations in the range of (5.22), as they should be conjecturally transversal
to the global ones by the Bloch-Kato conjecture (see [1, Conj. 7.6.5]). This is confirmed by
the following proposition.

P(141'3%31&5.3. – Assume again thatF v is non-critical for eachv, then the linear map
(5.22) induces an isomorphism

T(x,{ F v})( E(ρ̄))
∼→

�

v∈Sp

tv, F v
/tv,crys.

Proof. – By Theorem 4.8 and Prop. 5.2, the composite of the natural maps

T(x,{ F v})( E(ρ̄)) −→
�

v∈Sp

tv, F v
/tv,crys

PSen−→
�

v∈Sp

L
3

is an isomorphism. But by Prop 3.15 the second map is an isomorphism, hence so is the first
one.

C1(166#(" 5.4. – The image of
�

y=(x,{ F v}) Ty( E(ρ̄)) −→ Tx(X(ρ̄)) hask(x)-dimen-
sion at least6[F : Q].

Proof. – Consider the natural map
�

y=(x,{ F v})

Ty( E(ρ̄)) −→ Tx(X(ρ̄)) −→
�

v∈Sp

tv/tv,crys

where we restrict in the sum on the left to those { F v} such that F v is non-critical for all v.
By Theorem 3.20, Example 3.25 and Prop. 5.3, the composite of the two maps above is
surjective. The result follows as the space on the right has dimension n(n+1)

2
· |Sp| = 6 · |Sp|

by Prop. 3.15.
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5.5. Generalizations and other settings

Assume now that n is any odd (say) integer, and keep the notations of §1.1. Assume again
that ρ̄ is modular. We expect that the strategy employed when n = 3 will lead to a proof of
the natural variant of Thm.1.14 for any n (with 3 and 6 replaced by n and n(n+1)

2
). It would

actually follow by the same proof if we could prove the following conjecture on the genericity
of global Galois representations that we believe in:

C1&70)%+(05.6 (Genericity conjecture). – For any modular pointx ∈ X(ρ̄) and any
a!noid neighborhood U of x in X(ρ̄), there exists a modular pointy ∈ U such thatρ

y,�v is
generic for eachv ∈ Sp.

Of course, we expect to find such a point y by starting from x and moving in the piece of
the infinite fern inside U . It would even be enough for our purpose to have a similar statement
with “is generic” replaced by “has a nested sequence of non-critical refinements”. When
n = 3, Lemma 2.9 and Example 3.25 give a positive answer to this weak version, but even
in this case the above conjecture is still open as far as we see. Note that it would not be too
di- cult to show that we may find an y in U such that the Zariski-closure of the image of ρ

y,�v
is the whole of GLn(k(x)) (extending Lemma 2.9 for any n). However, this does not seem
to imply that ρ

y,�v is generic enough. In particular, there does not seem to be any variant of
Example 3.25 when n > 3. We hope to come back to this conjecture in the future. Here is
another natural question.

Q+0'%31&5.7. – How non-generic can geometric Galois representations be? Are there
some (even conjectural) global conditions implying the genericity at each place abovep?

The example we have in mind is the classical conjecture that if a p-adic Galois represen-
tation ρf : GQ −→ GL2(Qp) attached to a classical modular eigenform f is split at p (hence
non-generic), then the form f is CM.

In another direction, our infinitesimal approach also shed some lights back to the stan-
dard case studied by Gouvêa and Mazur. The following result is a simple consequence of our
method and of Prop. 3.23.

P(141'3%31&5.8. – Let ρf : GQ,S → GL2(Qp) be a p-adic Galois representation
attached to a modular eigenformf of weightk > 1 and level prime top. Assume thatρf |GQp

is indecomposable and that the two eigenvalues of its crystalline Frobenius are distinct. Then
the two leaves of the inÞnite fern of Gouv•a-Mazur cross transversally atρf .

Let us end this paper by considering the Hilbert modular analogue of Thm 1.14, to which
the arguments of Gouvêa-Mazur do not extend as well when [F : Q] > 1 (as far as we know).

Here F is a totally real field which is totally split at the odd prime p, S a finite set of
places of F containing the places above p and ∞, and ρ̄ : GF,S → GL2(Fq) is absolutely
irreducible and totally odd. In this context, we say that ρ is modular if it is isomorphic to
the p-adic Galois representation ρΠ attached to a cuspidal automorphic Galois representa-
tion Π of GL2(AF ) which is cohomological, unramified above p and outside S (hence to a
Hilbert modular eigenform), and we say that ρ̄ is modular if it is isomorphic to the residual
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representation of a modular ρ. Let X(ρ̄) be the generic fiber of the universal GF,S-deforma-
tion of ρ̄, as defined by Mazur. In the unobstructed case H

2
(GF,S , ad(ρ̄)) = 0, then X(ρ̄) is

the open unit ball over Qq in 1 + 2[F : Q] variables. This unobstructedness assumption also
implies that H

2
(GF,S , Fp) = 0, thus Leopoldt’s defect d of F at p vanishes. To avoid assum-

ing Leopoldt’s conjecture in general it is convenient to work with the notion of an essentially
modularρ, which we define as the twistρ = ρΠ ⊗ χ of a modularρΠ by a continuous charac-
ter χ : GF,S → Q∗

p
. We obtain this way notions of modular and essentially modular points

in X(ρ̄). For simplicity we assume moreover that [F : Q] is even (see Rem. 5.10).

T/01(0, 5.9. – Assume that̄ρ is modular. Then the irreducible components of the Zariski-
closure of the essentially modular points inX(ρ̄) all have dimension at least1 + d+ 2[F : Q].

If H
2
(GF,S , ad(ρ̄)) = 0 then the modular points are Zariski-dense inX(ρ̄).

Of course, an important ingredient in the proof is the Hilbert modular eigenvarieties.
These eigenvarieties have been studied by several authors: Hida, Kassaei, Buzzard, Kisin–
Lai, Emerton, and Yamagami. We shall mostly rely on Buzzard’s results.

Define Xemod ⊂ X(ρ̄) as the subset of essentially modular points. If x ∈ Xemod and
ρx = ρΠ ⊗ χ, then Π is well defined up to a twist by an algebraic Hecke character of F

unramified above p and we shall denote it by Πx. Let Xgen ⊂ Xemod be the subset of x

such that for each v|p, ρΠx,v is absolutely irreducible and with distinct crystalline Frobenius
eigenvalues in k(x) (in particular it is generic).

There is a finite index subgroup Γ ⊂ O∗
F

of the totally positive units such that the universal
character G

ab

F,S
→ R(ρ̄)

∗ is trivial over Γ via the reciprocity map. Let T and W be the
rigid analytic spaces over Qp parameterizing respectively the continuous p-adic characters
of (F

∗
p
)
2 and of ( O∗

Fp
)
2 which are trivial on Γ diagonally embedded. The space W is called

the weight space. It has equidimension dim(W ) = 1 + d + [F : Q]. The ρ̄-Hilbert modular
eigenvariety

E(ρ̄) ⊂ X(ρ̄)× T
is the Zariski closure of the pairs (x, F ) of refined essentially modular points (using a
translation similar as in §5.1 between refinements of an essentially modular ρ and elements
of T ).

E(ρ̄) has been studied by Buzzard in [8, §III], by switching to a totally definite quaternion
algebra D over F which is split at all the finite places of F and using the Jacquet-Langlands
correspondence. Such a D exists as [F : Q] is even. The important properties of E(ρ̄) are the
following:

(i) E(ρ̄) is equidimensional of dimensiondim(W ). The natural map to the weight space
κ : E(ρ̄) → T → W is locally Þnite. The set of(x, F ) with x ∈ Xemod is a Zariski-dense
accumulation subset ofE(ρ̄). The same holds for the(x, F ) with x modular if (and only if)
d = 0.

These properties are not stated this way, loc. cit., but they follow simply from the construc-
tion there and an argument similar to the one of Thm. 2.3. There is a classicality criterion
in this case as well. Arguing as in Thm. 4.10 (note that the strong multiplicity one property
holds for D

∗), we obtain that:
(ii) If x ∈ Xemod is such thatρΠx,v has distinct crystalline Frobenius eigenvalues at each

v|p, and if F v is a non-critical reÞnement ofρx,v for eachv|p, thenκ is Žtale at(x, { F v}).

4 e SÉRIE – TOME 44 – 2011 – No 6



ON THE INFINITE FERN OF GALOIS REPRESENTATIONS OF UNITARY TYPE 1009

Moreover, the following (easier) variant of Lemma 2.9 holds:
(iii) Let x ∈ Xemod and assume that a collectionF = ( F v)v∈Sp of reÞnements of theρx,v

has the property that for eachv|p such thatρx,v is ordinary, then the Þrst Frobenius eigenvalue
of F v is the one with the greatestp-adic valuation. Then the(y, F �) with y ∈ Xgen accumulate
at (x, F ) in E(ρ̄).

Proof of Thm. 5.9. – The proof is only easier than in the U(3) case, so we shall be rather
sketchy.

Consider some x ∈ Xgen. Let (x, F ) ∈ E(ρ̄) be an associated refined point and consider
the composite of the natural maps

(5.23) T(x, F )( E(ρ̄)) −→ Tx(X(ρ̄)) →
�

v∈Sp

tv/tv,crys

as in (5.22). Using the étaleness of E(ρ̄) → W at (x, F ), Prop. 3.15, and arguing as in §5.1, we
see that the image of (5.23) is exactly the subspace t F ∩ t

0 where t F =
�

v∈Sp
tv, F v

/tv,crys

and t
0 ⊂

�
v∈Sp

tv/tv,crys is the subspace parameterizing the deformations of (ρx,v)v∈Sp

whose determinant, viewed as a morphism F
∗
p
→ k(x)

∗, factors through Γ. Remark that

dimk(x) t
0

= 3[F : Q]− ([F : Q]− 1− d) = 1 + d+ 2[F : Q].

Moreover
�

F t F ∩ t
0

= t
0 by Thm.3.19 (remark that ∩ F t F → (

�
v∈Sp

tv)/t
0 is surjective

as “families of twists are F -trianguline for each F ”). It follows that the image of the natural
map �

F

T(x, F )( E(ρ̄)) → Tx(X(ρ̄))

has k(x)-dimension at least 1+d+2[F : Q]. The first statement follows by the same argument
as in §2.8. The second statement (unobstructed case) follows as well by property (i) of E(ρ̄)

and by the local-global numerical coincidence

dimX(ρ̄) = dim t
0
.

R0,#(8 5.10. – When [F : Q] is odd, the same result holds, with the same proof, if we
restrict to essentially modular points ρΠ ⊗ χ such that Πw is essentially square integrable
at some finite place w ∈ S\Sp, as we may switch to a suitable definite quaternion algebra
in this case as well. However there may sometimes be no such modular point (e.g. when
S = Sp ∪ S∞). We could actually still conclude in most cases in general using some well
chosen quadratic base-change and results of Kisin–Lai, but this would lead us too far away
from our purposes here.

6. An application to adjoint Selmer groups

6.1. Bloch-Kato Selmer groups

Let p be a prime, L a finite extension of Qp. In what follows, an L-representation of a
topological group G will always mean a continuous, finite-dimensional, L-linear representa-
tion. Let � be a prime, M a finite extension extension of Q�, and let V be an L-representation
of GM . Recall that Bloch and Kato defined in [5, §3] a subspace H

1

f
(M,V ) ⊂ H

1
(M, V ).

Set H
1

s
(M,V ) = H

1
(M, V )/H

1

f
(M,V ). Let F be a number field, let S be a finite set of finite
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places of F containing the set Sp of places dividing p, the set S∞ of Archimedean places, and
let V be an L-representation of GF unramified outside S. Let H

1

f �(F, V ) be the kernel of the
natural map H

1
(GF,S , V ) →

�
v∈S\Sp

H
1

s
(Fv, V ), it does not depend on S as above. In what

follows, we shall be mostly interested in the surjectivity of the natural map:

(6.24) H
1

f �(F, V ) →
�

v|p

H
1

s
(Fv, V ).

The kernel of this map is usually denoted by H
1

f
(F, V ). We may like viewing the sur-

jectivity of (6.24) as some splitting of the Poitou-Tate exact sequence. By the global
duality theorem, the image of (6.24) is Tate’s orthogonal complement of the image
of H

1

f
(F, V

∨
(1)) →

�
v|p H

1

f
(Fv, V

∨
(1)). In particular, (6.24) is surjective if and only

if the natural map H
1

f
(F, V

∨
(1)) →

�
v|p H

1
(Fv, V

∨
(1)) is the zero map.

R0,#(8 6.2. – We shall be mainly concerned with cases where V is geometric (say in the
strongest sense) of pure weight 0. In this case, the conjectures of Bloch-Kato ([23, §3.4],[5])
assert that H

1

f
(F, V ) = 0, so (6.24) is expected to be injective. Assume furthermore that F

is totally real, let cv denote a complex conjugation at the Archimedean place v, and denote
by h

(0,0)

v the dimension of the (0, 0)-part of the Fv-Hodge structure associated to V . If

trace(cv |V ) = −h
(0,0)

v

for each real place v, then those conjectures predict as well that H
1

f
(F, V

∨
(1)) = 0 (compare

them with [37, §3]). In particular, (6.24) should be an isomorphism in this case! As far as we
know, very little is known about this conjecture, possibly nothing when dim(V ) ≥ 3 before
the results of this paper.

6.3. The adjoint� Selmer group of a Galois representation of type U(n)

Assume now that F is a totally real field. Let E be a totally imaginary quadratic extension
of F and assume that p is totally split in E (hence in F ). For each v|p fix some place �v of E

above v, so Fv = E�v = Qp. Let c ∈ GF be a complex conjugation.
Let Π be a cuspidal automorphic representation of GLn(AE) such that Π

∨ � Π
c and such

that Πv is algebraic regular at each Archimedean place v of E. Let ρΠ be the p-adic Galois
representation of GE associated to Π and ι, say with coe- cients in L and normalized so that
ρ
∨
Π
� ρΠ(n− 1).We make the following assumption.

A''+,4%31& (A). – For each v|p, Πv is unramified, its Langlands class has n distinct
eigenvalues, and EndG�v (ρΠ|G�v

) = L.

Note that it implies that ρΠ is absolutely irreducible. We shall assume furthermore that L

is big enough so as to contain (via ι) the eigenvalues alluded to above, which is harmless.
We are going to define below an L-representation Ad

�
(ρΠ) of GF of dimension n

2 that
extends the standard representation ad(ρΠ) of GE . From the self-duality like condition, there
is a P ∈ GLn(L), unique up to L

∗, such that
t
ρΠ(cgc

−1
)
−1

= PρΠ(g)P
−1

χ(g)
n−1

,∀g ∈ GE
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(χ : GF → Q∗
p

is the cyclotomic character). It follows that t
P = ±P , and the main

theorem of [2] ensures that P is a symmetricmatrix. Following [16, §2], let us consider the
linear algebraic Q-group

G
n

:= (GLn ×GL1) � Gal(E/F ),

where c acts on GLn × GL1 by (g, λ) �→ (
t
g
−1

λ, λ). We check at once that there exists a
unique morphism �ρΠ : GF → G

n
(L) such that �ρΠ(g) = (ρΠ(g), χ(g)

1−n
) for g ∈ GE and

�ρΠ(c) = (
t
P
−1

, 1)c. We denote by
Ad

�
(ρΠ)

the representation of GF defined by the adjoint representation of �ρΠ on

Mn(L) = Lie(GLn × {1})⊗ L ⊂ Lie( G
n
)⊗ L.

The GF -equivalence class of Ad
�
(ρΠ) only depends on the GE-equivalence class of ρΠ.

The map (X,Y ) �→ trace(XY ) defines a G
n
(L)-equivariant pairing Mn(L)⊗Mn(L) → L,

thus Ad
�
(ρΠ) is selfdual. Note that the complex conjugation c acts on Mn(L) = Ad

�
(ρΠ) as

X �→ −P
t
XP

−1. In particular, Ad
�
(ρΠ)

GF = 0, and the homotheties induce an embedding
εE/F → Ad

�
(ρΠ), where εE/F is the character of order 2 of GF associated to E/F .

In what follows we shall be mainly interested in the Selmer group

H
1

f �(F,Ad
�
(ρΠ)).

The purity of ρΠ (see [9] for the most general case) ensures that H
0
(Fv,Ad

�
(ρΠ)

∨
(1))

vanishes, hence so do H
2
(Fv,Ad

�
(ρΠ)) and H

1

s
(Fv,Ad

�
(ρΠ)), for each finite place v. In

particular, for each finite set S containing Sp, S∞ and the ramification of Ad
�
(ρΠ), we have

(6.25) H
1
(GF,S ,Ad

�
(ρΠ)) = H

1

f �(F,Ad
�
(ρΠ)).

C1&70)%+(06.4. – If V = Ad
�
(ρΠ), then (6.24) is an isomorphism, andH1

f
(F, V ) =

H
1

f
(F, V

∨
(1)) = 0.

Indeed, we are in the case of Remark 6.2. Note that for each real place v, h
(0,0)

v = n by
the description of the Hodge-Tate numbers of ρΠ, and trace(cv |V ) = −n by the result of [2]
recalled above.

The adjoint� Selmer group of ρΠ has a natural description as the tangent space of a suitable
deformation functor. Fix an S as above and let C be the category defined in §3.1. For an
object A of C let XρΠ(A) be the set of A-isomorphism classes of continuous representations
ρA : GE,S → GLn(A) such that ρA ⊗A L � ρΠ and such that trace(ρ

∨
A
) = trace(ρ

c

A
)χ

n−1.
This defines a functor XρΠ : C → Sets, equipped with a natural morphism

XρΠ →
�

v∈Sp

Xρ
Π,�v =: Xp,

where we have set ρ
Π,�v := ρΠ|G�v

. This allows to define a collection of subfunctors of the left-

hand side by pulling back the subfunctors of the right-hand side studied in §3. Let F = { F v}
be a collection of refinements of the ρΠ�v for v ∈ Sp. We set

XρΠ, F = XρΠ ×Xp

�

v|p

XρΠ�v , F v
and XρΠ,f = XρΠ ×Xp

�

v|p

XρΠ�v ,crys.
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Note that conditions (i), (ii), (iii) and (iv) of §3.9 on ρ
Π,�v are satisfied by conditions (i) and

(ii) above (and by the known description of its Hodge-Tate weights for (iv)). Similar functors
were previously introduced in [1, §7.6].

P(141'3%31&6.5. – XρΠ : C → Sets is pro-representable and its tangent space is
canonically isomorphic toH1

f �(F,Ad
�
(ρΠ)).

Moreover, for ∗ ∈ {f, F }, XρΠ,∗ is a pro-representable subfunctor ofXρΠ . The tangent
space ofXρΠ,f coincides withH1

f
(F,Ad

�
(ρΠ)). When F v is non-critical for eachv ∈ Sp, then

XρΠ,f ⊂ XρΠ, F .

Proof. – The functor XρΠ is pro-representable by Mazur as ρΠ is absolutely irreducible
(the condition trace(ρ

∨
∗ ) = trace(ρ

c

∗)χ
n−1 being obviously relatively representable). The

identification of its tangent space with H
1
(GF,S ,Ad

�
(ρΠ)) is similar to Lemma 1.5 (using

the G
n

here) and is checked in [16, §2]. The other assertions follow from Prop. 3.15.

D023&3%31&6.6. – For each collection of reÞnementsF = { F v} for v ∈ Sp, deÞne
H

1

F (F,Ad
�
(ρΠ)) (resp. H1

F v
(Fv,Ad

�
(Π)) as the tangent space ofXρΠ, F (resp.Xρ

Π,�v, F v
).

6.7. The main results

Fix Π as in §6.3. The following statement (in some special cases) was conjectured
in [1, §7.6].

T/01(0, 6.8. – Assume thatF v is non-critical and regular for eachv ∈ Sp. Then the
natural map

H
1

F (F,Ad
�
(ρΠ)) −→

�

v|p

H
1

F v
(Fv,Ad

�
(ρΠ))/H

1

f
(Fv,Ad

�
(ρΠ))

is surjective. In particular,dimL H
1

F (F,Ad
�
(ρΠ)) = dimL H

1

f
(F,Ad

�
(ρΠ)) + n[F : Q].

Proof. – Let us choose F
�
/F a totally real quadratic extension of F . Assume that F

�
/F

is split above p, that F
�
v

= Ev for each finite place v of F which is either ramified in E or
which is inert and such that Πv is ramified. Let Π

� be Arthur-Clozel’s quadratic base-change
of Π to E ·F �, it is cuspidal by (i). As the f and F conditions can be checked after any finite
base-change which is split above p, the inflation-restriction sequence induces isomorphisms

H
1

∗ (F, V ) = H
1

∗ (F
�
, V|GF �

)
Gal(F

�
/F )

for ∗ ∈ {f �, f, F }. As a consequence, it is enough to show the surjectivity of the map of the
statement when F,E and Π are replaced by F

�
, E · F � and Π

�. In particular, we may assume
that [F : Q] is even, that E/F is unramified everywhere, and that the places w of E such
that Πw is ramified are split over F . (This kind of trick has been used in another context by
Blasius-Rogawski and Harris-Taylor.)

As [F : Q] is even, there exists a unitary group U/F as in §4.1 which is furthermore
quasi-split at all finite places. By Labesse [30, Thm. 5.4], Π admits a strong descent to an
automorphic representation π of U which has furthermore multiplicity 1. Let S be a finite
set of places of F which split in E, containing Sp, and such that πf is unramified outside S.
Let K =

�
v
Kv be a compact open subgroup of U(AF,f ) as in §4.1 such that Kv is

hyperspecial for each v /∈ S and small enough so that π
K

f
�= 0. Let X be the eigenvariety
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of U of level K associated to ι and the spherical Hecke algebra outside S. Let { F v}v∈Sp be
as in the statement and let x ∈ X be the point associated to (π, { F v}). Up to extending the
scalars in X, me may assume that X is defined over the field L of §6.3. The natural pseudo-
character GE,S → O(X) (see e.g. [1, Prop. 7.5.4]) and the absolute irreducibility of ρΠ define
a canonical L-linear map on tangent spaces

(6.26) Tx(X) −→ XρΠ(L[ε]) = H
1
(GF,S ,Ad

�
(ρ̄)(ρΠ)) = H

1

f �(F,Ad
�
(ρΠ)).

By [1, Thm. 4.4.1] (using that F v is non-critical and regular for each v), the image of (6.26)
falls inside H

1

F (F,Ad
�
(ρΠ)). Consider now the induced map:

(6.27) Tx(X) −→
�

v|p

H
1

F v
(Fv,Ad

�
(ρ̄)(ρΠ))/H

1

f
(Fv,Ad

�
(ρ̄)(ρΠ)).

We claim that this map is an isomorphism, which will conclude the proof. Note that the
subspace Tx(X) ⊂ H

1

F (F,Ad
�
(ρΠ)) even furnishes a canonical section of the map of the

statement. Consider the natural map
�

v|p

H
1

F v
(Fv,Ad

�
(ρ̄)(ρΠ))/H

1

f
(Fv,Ad

�
(ρ̄)(ρΠ))

(PSen)v−→ (L
n
)
Sp .

By Prop. 3.15 this is an isomorphism, so it is enough to check that the composite of (6.27)
with this map is an isomorphism. But this composite is the derivative of the map from X to
the weight-space at x, which is an isomorphism by Thm. 4.10, and we are done.

T/01(0, 6.9. – Assume that∀ v|p, ρ
Π,�v is weakly generic and regular (¤3.24). Then

H
1

f �(F,Ad
�
(ρΠ)) =

�

F

H
1

F (F,Ad
�
(ρΠ))

and the natural map

H
1

f �(F,Ad
�
(ρΠ)) −→

�

v|p

H
1

s
(Fv,Ad

�
(ρΠ))

is surjective.

For each v|p, let F i,v be a weakly nested sequence of non-critical regular refinements
of ρ

Π,�v. The equality H
1

f �(F,Ad
�
(ρΠ)) =

�
F H

1

F (F,Ad
�
(ρΠ)) even holds if we restrict the

sum to the n
[F :Q] refinements F such that F v is one of the F i,v for each v.

Proof. – It is an immediate consequence of Thm. 3.20 and Thm. 6.8.

C1(166#(" 6.10. – Under the assumptions of Theorem6.9, and for eachS as in(6.25),

dimL H
1

f
(F,Ad

�
(ρΠ)) = dimL H

2
(GF,S ,Ad

�
(ρΠ)).

In particular, if H
2
(GF,S ,Ad

�
(ρΠ)) = 0 for some residualFp-representationAd

�
(ρΠ)

associated toAd
�
(ρΠ), thenH

1

f
(F,Ad

�
(ρΠ)) = 0.
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Proof. – By Thm. 6.9 and Prop. 3.15, we have

(6.28) dimL H
1

f �(F,Ad
�
(ρΠ))− dimL H

1

f
(F,Ad

�
(ρΠ)) =

n(n + 1)

2
[F : Q].

As we already saw, H
0
(GF,S ,Ad

�
(ρΠ)) = 0 and Ad

�
(ρΠ)(c)(X) = −P

−1t
XP for some

symmetric invertible matrix P by [2], so

dimL Ad
�
(ρΠ)

c=−1
=

n(n + 1)

2
.

This numerical coincidence with the right-hand side of (6.28), as well as (6.25) and the global
Euler characteristic formula conclude the proof.

Theorem 6.9 is very general as a lot of Selmer groups are direct summands of adjoint�

Selmer groups. Here is an important special case.
Let F be a totally real field in which p is totally split and let Π be a regular algebraic

cuspidal automorphic representation of GLn(AF ) such that Π
∨ ∼→ Πη for some Hecke

character η of F such that the sign η∞(−1) := ηv(−1) is independent(12) of the archimedean
place v of F . Denote by q ∈ Z the integer such that η|.|−q is an Artin character of F .
Let ρΠ : GF → GLn(L) be the p-adic Galois representation associated to Π and ι ([14]),
and denote by ηι : GF → L

∗ the character associated to η and ι. Recall that ρ
∨
Π
� ρΠηιχ

n−1

and that ρΠ is symplectic if n is even and η∞(−1)(−1)
q

= 1, and orthogonal otherwise by [2,
Cor. 1.3]. Assume that for each place v of F dividing p, Πv is unramified and its Langlands
class has n distinct eigenvalues. Let E be any totally imaginary quadratic extension of F in
which p is totally split.

T/01(0, 6.11. – Let Π be as above and assume that for eachv|p, ρΠ|GFv
is weakly

generic regular.
(Symplectic case) If n is even andη∞(−1)(−1)

q
= 1, then (6.24) is surjective

for V = Λ
2
ρΠ ⊗ ηιεE/F χ

n−1 andV = Sym
2
ρΠ ⊗ ηιχ

n−1.
(Orthogonal case) Otherwise, (6.24) is surjective for V = Λ

2
ρΠ ⊗ ηιχ

n−1 and
V = Sym

2
ρΠ ⊗ ηιεE/F χ

n−1.

Proof. – Indeed, let Π
� be Arthur-Clozel’s base change Π

� of Π to E, it is cuspidal as
ρΠ|GFv

is indecomposable by assumption. By [16, Lemma 4.1.4], there is an algebraic Hecke
character ν of E which is unramified at p and such that Π

� ⊗ ν is conjugate self-dual. This
latter representation clearly satisfies assumption (A) of §6.3 by the corresponding assumption
on Π. A simple computation left to the reader shows that

Ad
�
(ρΠ�⊗ν) = Λ

2
ρΠ ⊗ ηιεE/F χ

n−1 ⊕ Sym
2
ρΠ ⊗ ηιχ

n−1

in the first case, and

Ad
�
(ρΠ�⊗ν) = Λ

2
ρΠ ⊗ ηιχ

n−1 ⊕ Sym
2
ρΠ ⊗ ηιεE/F χ

n−1

in the second.

Let f be a classical modular eigenform of weight k > 1 and let ρf : GQ,S → GL2(Qp)

be the p-adic Galois representation associated to f and ι. Assume that the level of f is prime
to p and let E be a quadratic imaginary field split at p.

(12) Actually, Langlands’ conjectures imply that this last condition should follow from the others.
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T/01(0, 6.12. – Assume thatρf |GQp
is absolutely indecomposable and that the ratio of

its two crystalline Frobenius eigenvalues is not a root of unity. Then(6.24) is an isomorphism
for:

(i) V = Sym
n
(ρf )⊗ det(ρf )

−n/2 if n = 2, 6.
(ii) V = Sym

n
(ρf )⊗ det(ρf )

−n/2
εE/Q if n = 0, 4.

Moreover, for each suchV we haveH1

f
(Q, V ) = H

2
(GQ,S , V ).

Proof. – Let Π0 be the cuspidal automorphic representation of GL2(AQ) associated to ρf

and let η be its central character. We normalize Π0 so that η = |.|2−k times a Dirichlet
character, so ρf = ρΠ0 . As is well known, we have η∞(−1)(−1)

k−2
= 1.

By Kim-Shahidi [28] the representation Π := Sym
3
Π0 of GL4(AQ) defined at all

places by the local Langlands correspondence is automorphic and cuspidal (note that
f is not CM by the assumption at p). We have Π

∨ � Πη
−3. Moreover Π is symplectic as

(η∞(−1)(−1)
(k−2)

)
3

= 1. The first part of the theorem is then a consequence of Thm. 6.11
applied to Π. Its assumptions are satisfied by Examples 3.26 and 3.28. The last sentence
follows from the global Euler characteristic formula as in the proof of Cor. 6.10.

Appendix: Some unobstructed Galois representations of type U(3)

Let A be an elliptic curve over Q. Let p ≥ 5 be a prime of good reduction of A and assume
that the representation

GQ → AutA[p] � GL2(Fp)

is surjective. Let E be a quadratic imaginary field and S the set of places containing ∞,
p and the primes dividing disc(E)cond(A). Assume to simplify that p splits in E and that
gcd(disc(E), cond(A)) = 1. By Example 1.9, the representation

ρ̄ = Symm
2
A[p](−1)|GE,S

is modular of type U(3). Let Ad
�
(ρ̄) be the GQ,S-module associated to ρ̄ as in §1.1.

L0,,# 6.13. – There is an isomorphism ofFp[GQ,S ]-modules:

Ad
�
(ρ̄) � ρ̄⊕ �E/Q ⊕ (Symm

4
A[p])(−2)⊗ �E/Q,

where�E/Q is the non-trivial character ofGal(E/Q).

We are looking for a set of conditions ensuring that H
2
(GQ,S ,Ad

�
(ρ̄)) = 0. Let K be

the field of definition of some Fp-line in A[p] (so [K : Q] = p + 1), χ : GK → F∗
p

the
natural character on the quotient of A[p] by this line, and K

� the extension of K cut out by
the character χ

4
�E/Q(−1). If � is a prime of good reduction of A, we set a� = �+1−|A(F�)|.

P(141'3%31&6.14. – If the following conditions are satisÞed, then̄ρ is unobstructed.
(i) ∀� ∈ S, H

0
(Q�,Ad

�
(ρ̄)(1)) = 0.

(ii) p does not divide the degree of a modular parameterization ofA,
(iii) The class numbers ofE andK

� are prime top.
Moreover,H0

(Q�,Ad
�
(ρ̄)(1)) = 0 if:

(a) � = p, unlessA is ordinary atp, A[p]|GQp
is split, andap = ±1 mod p.

(b) � |disc(E), � �= 1 mod p anda� �= ±(� + 1) mod p.
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(c) � | cond(A), A is semistable at�, A[p]|GQ�
is non-split,�2 and�

3
�E/Q(�) �= 1 mod p.

Proof. – As O∗
E
⊗ Fp = Cl(E) ⊗ Fp = 0 we have X1

S
(GQ,S , �E/Q(1)) = 0, thus

assumption (i) ensures first that H
2
(GQ,S , �E/Q) = 0. By (i) again, H

0
(Q�,Symm

2
A[p]) = 0

for each � ∈ S, thus assumption (ii) implies the vanishing of H
2
(GQ,S , ρ̄) by a result of

Flach [22, §3]. We now deal with the last term U := Symm
4
A[p](−2) ⊗ �E/Q = U

∗. Note
that H

0
(GQ,S , U

∗
(1)) = 0 by assumption (i), so Tate’s global duality theorem shows that

H
2
(GQ,S , U) = 0 if and only if X1

S
(GQ,S , U(1)) = 0.

Let V = F2

p
be the standard representation of G = GL2(Fp), let B ⊂ G denote the

upper triangular subgroup and χ : B → F∗
p

the unique quotient of V|B . We have an
Fp[G]-equivariant injection Symm

4
V → Ind

G

B
(χ

4
) and the quotient Q is well known to be

irreducible of dimension p− 4, isomorphic to det(V )
2 when p = 5. In particular, in all cases

H
0
(GQ,S , Q(−1)⊗ �E/Q) = 0 and we have natural injections

H
1
(GQ,S , U(1)) −→ H

1
(GK,S , χ

4
(−1)�E/Q) −→ H

1
(GK�,S , Fp).

Via this injection, X1

S
(GQ,S , U(1)) is mapped into Cl(K

�
)⊗ Fp, hence (iii).

The second part of the statement is an immediate computation and is left to the reader.

We use the notations of Cremona’s tables of elliptic curves [21].

P(141'3%31&6.15 (Under GRH). – Let p = 5, E = Q(i) and assume thatA belongs to
one of the isogeny classes

17A, 21A, 37B, 39A, 51A, 53A, 69A, 73A, 83A, and 91B.

ThenH
2
(GQ,S ,Ad

�
(ρ̄)) = 0.

These curves are exactly the elliptic curves A of odd, square-free, conductor N < 100 such
that each prime divisor of N is congruent to ±2 mod 5, and such that a2(A) �= ±2 (this rules
out the classes 37A, 43A, 67A and 91A). These last two conditions are the ones in (b) and
part of (c) above, and are actually necessary local conditions for the unobstruction of the
deformation functor of A[5] itself.

The third row of the following table gives the degrees of the prime isogenies in a class, note
that there is no isogeny of degree 5. The sixth row gives the j invariant of a certain element in
the class, namely of: 17A4, 21A4, 37B3, 39A4, 51A1, 53A1, 69A1, 73A2, 83A1, and 91B1.
Their valuation at any � dividing cond(A) is < 5, so A[p]|GQ�

is not split for any such �. This
also shows that GQ → Aut(A[5]) is surjective for each A. Using the table below, we see that
the criteria (a), (b) and (c) of the proposition apply, hence (i) holds.

The seventh row gives the modular degree of the strong Weil curve in each class, (ii) follows
(recall that there is no 5-isogeny within a class).
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For each class we computed the field K and found K = Q(x) with:

x
6

+ 4x
5

+ 17x− 17 = 0,

x
6 − 2x

5
+ 9x

4 − 12x
3

+ 21x
2 − 15x + 3 = 0,

x
6 − 2x

5 − 5x
4

+ 10x
3 − 15x

2
+ 8x− 36 = 0,

x
6 − 2x

5 − 5x
4

+ 20x
3 − 25x

2 − 25x + 75 = 0,

x
6 − 2x

5 − 5x
4 − 10x

3
+ 5x

2 − 4x + 48 = 0,

x
6 − x

5 − 5x
4

+ 20x
3 − 15x

2 − 46x + 101 = 0,

x
6 − x

5 − 5x
4 − 80x

3
+ 35x

2
+ 184x + 1521 = 0,

x
6 − 2x

5 − 5x
4

+ 20x
3 − 25x

2 − 59x + 143 = 0,

x
6 − 3x

5 − 5x
4 − 10x

3
+ 10x

2
+ 75x + 245 = 0,

and x
6 − 2x

5 − 5x
4

+ 30x
3 − 35x

2
+ 20x + 80 = 0.

The last row below gives the computation by Pari [17] of the class number of
K
�

= K(cos(π/10)), which concludes the proof. This last computation (and only this
one) depends on GRH; it would be interesting to make it unconditional!

class 17A 21A 37B 39A 51A 53A 69A 73A 83A 91B

cardinal 4 6 3 4 2 1 2 2 1 3

isogenies 2 2 3 2 3 2 2 3

a2 −1 −1 0 1 0 −1 1 1 −1 0

a5 −2 −2 0 2 3 0 0 2 −2 −3

j 33113

17
473

3.7
21553

37
233

3.13
215

3317
3553

53
−56

3223
33193

73
473

83
−215113

7.13

degree 1 1 2 2 2 2 2 3 2 4

hK� 2 2 8 2 8 2 2 32 2 2
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