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THEORY OF GRAVITATION. THE PROBLEM OF STATIONARY

STATES, AND THE APPARATUS OF THE ECHO PHENOMENON

IN RADIOGRAPHIC TRANSMISSION

by OLIVER E. GLENN (Lansdowne, Pennsylvania).

I. - Introduction.

A central orbit is said to be stable if the potential constrains the rotating
body to traverse it continuously. If such an orbit is perturbed by a small
amount it has a gyroscopic power to right itself. From this hypothesis the
author has derived the following as the general form of the central force when
the orbit is stable:

where p (r) =arn-I + brn-2 + .... + k ; 7p 1, a,...., k are constants and r is the dis-

tance from the center of force to the rotating body. The expanded form of T(r) is,

where Ai’, L’, M’, U’, V’ are rational, integral polynomials in b~a,...., kla,
and n&#x3E;2. In the case n=6, sufficiently general for the problems of practical
astronomy, we find

It is known that, in (2), a. b  c and that these three numbers are small. In
the problem of the planets they may be taken as zero, (n=6). It is often useful
to regard the respective cases n = 5, n = 4, n =-- 3, as emanating from P(r), n = 6,
by means of the particularizations (approximative), 
a=b=c=0, d=0

If n &#x3E; 3 and r is sufficiently large, the force P(r), being negative, is repellent ;
which suggests that it may be practically impossible for an « outside star » to

enter the Solar System unless by projection.

II. - The force P(r) as a function of both distance r and mass m.

Any system Q of contiguous curves of fairly uniform general direction and
of assigned length, may be called a field. Let the numerical coordinates of n
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chosen points on a representative segment a’b’ be (ri, (i=1,...., n). Then, by
known processes, we can determine the equation of a’b’ in the polynomial form,.

If q curves of Q are thus consi-
dered, we obtain q equations,

These, however, may all be comprised
in one equation which involves a parameter m. For, consider the n coefficients v......
a in (3) to be functions of m,

such that wy, (j = 1,...., q), are the values of v(m) for n8=n8i ,...., mq, respectively ;
and likewise, ’ ,~.-,~l~.l

This is possible since we then have q determinations of each function, necessary
and sufficient to give each as a polynomial of order q -1 in m. Thus,

and at once this gives, to the polynomial (3), the following form:

Now (6) reduces to (4) when n8=7ni,...., mq, and if m is varied continuously
over the interval from the smallest to the largest number mj, a’b’ sweeps over
the whole area preempted by the field, undergoing, at the same time, the defor-
mations required by the equation (6).

A field Q of orbits is given by the integral curves of the differential equation
of plane orbital motion for an arbitrary central force F (i),

The integral curves may be written,

where m is the mass of the planet N and c one of the constants of integration.
The dependent set s, v, fl, arises from convenient initial conditions : s is the

(1) 0. E. GLENN: The mechanics of the stability of a central orbit. Annali della R. Scuola
Normale Superiore di Pisa, ser. 2, vol. 2 (1933, XI). Cf. also vol. 4 (1935, XIII), p. 241.
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distance from an initial position I of N to the center of force 0 (origin), v is

the initial velocity and P the angle between 01 and the vector v. In (8), if we
fix all constants but m and allow m to vary over a set 7~,...., mq, we obtain

again the forms (3), (4), m being now a mass. Here the curves Q are concurrent,
and have a common tangent, at L If both n and q are large enough, the system
obtained by allowing m to vary continuously from m1 to mq in (6), is, within Q,
the two-parameter system of integral curves (orbits). Then, by substituting (6)
in (7) we obtain the force F(r) in rational form.

A necessary and sufficient condition that Q, thus interpreted, be a field of
stable orbits, is that the rational ~’ should have the functional form of P(r).

An assumption that there are local perturbations, that the masses rotating
in a stable Q perturb each other’s paths, is interchangable with the process of
adding a perturbing function of small value to P(r), sufficient to warp Q into
the actual perturbed field Q’. Assuming Q’ to be also stable, this can always
be done so as to preserve P(r) in the functional form corresponding to stable
orbits. Moreover the explicit new force can be derived from Q’. We have only
to regard the latter as a Q, reconstruct (6) and calculate F from (7). The total
effect of altering Q to Q’ consists of small changes in the Vki.

Another form additional to (6), for the equation of a typical orbit of the
stable Q, is known, viz.,

I

When (92) is made identical with the differential of (6), we get,

With m constant and r variable (10) is equivalent to 2(n-1) linear equations
in a,...., k, determining the latter; also n - 2 rational relations in the func-

tions v(m),...., e(m), to be satisfied within the approximations. The latter are the
conditions that F be a function P(r). The equations are,
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This system may be solved readily if we begin with the last equation and

proceed upward. Thus we obtain,

For illustration we give, also, the n-2=2 rational relations which hold when n==4 :

From the result of substituting in equation (1) according to (12) we obtain,
therefore, the following.

THEOREM. - The coefficients Ai, L,...., V, (Ai=a2 A/,...., V a2 V’), of the
force function P(r) of stable central orbits, are numerical bi-rational

fractions in m. The denominators of these fractions are all powers of

one and the same polynomial, viz.,

This expression for P(r) in terms of both mass and distance is the gener-
alization of the newtonian formula P=km’m/r2.

III. - Properties of the function p(r).

In (6), considered as the equation of stable orbits in Q, which proceed from
a point I according to identical initial conditions, if we fix 6 as by OC in figure 1,
the distances from 0 to the paths of the respective masses may be written ri,..., rq.
We can then calculate m as a function of r in Q, by use of the determina-
tions (ri, mi), (i =1,...., q), viz.,

If we use this as a case of m=p(r), as in P(r), (n =q), it is necessary to note

that the variation of r in (15), transverse to the curves of Q, is equivalent to
the variation of the radius vector of a’b’ (fig. 1) as it’s extremity traces the
dotted segment of a’b’. Then m varies, as this segment is described, throughout
the interval between the extreme numbers of the set mi,...., mq.

We note parenthetically that the equation of the orbit in Q is then,
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The maximum number of positives in the total set of roots ~1,...., of

is q-2. For, suppose this many, viz., #2,.,..., f3q-i are positive. Since the coefficient
of r 2 in E(r) is zero, we have "’2: f3i"" ~_3==0. Hence Pi is negative and is given 

..

in terms of symmetric functions by

Lemma 1. - The roots fli (i=2,...., q-1), assumed to be positive, sepa-
rate the roots of p(r) =0, and, in fact, if the latter are ai, (i=1,...., q-1),
with we have,

In proof, since

then,

Hence,

and consequently, y

where (J = ( -1 )q. This proves the lemma.

IV. - The reality described by the force function G=P(r).

1. Niels Bohr’s law. - It follows from (14) that the real, positive roots
, of ~)(7~)==0, and only these numbers, are singular values of the planetary mass
for which the force becomes infinite and the motion therefore unstable. This

conclusion is a mathematical prediction, though lacking in some measure experi-
mental and numerical verification, of BOHR’S celebrated law of stationary states.
This results from the following considerations.

According to Sir J. J. THOMPSON’S concept of the atom of an element, an
atom consists of a central, positively charged nucleus around which negatively
charged electrons rotate, the general model being like an astronomical solar system.
The resultant of the forces which give rise to the potential, causes the electron to
behave as a material particle of mass m, which enjoys stable motion. Hence the
central force within the atom, in it’s effect upon electrons, has the functional
form P(r).

It has been previously noted that, when influences introduced from without
Annali della Scuola Sup. - Pisa. 3
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affect the force and cause perturbations of the orbits of the electrons, many
modifications of material can result. Let us assume that such influences are

introduced systematically, as when a HITTORF tube is attached to an induction
coil. As the exciting force is increased the electron’s motion is disturbed beyond
mere perturbation. Clearly, however, we must assume that the orbital motion of
the electron keeps, or quickly regains the property of stability. Hence, in any
emergency, the central force keeps the functional form P(r). Thus the total

mathematical effect of the excitation is to alter the values of the arithmetical

parameters Vki, A (cf. (2), (12)).
As v1~1,...·, are thus altered e(m) may become such that m is a root.

At this juncture, therefore, the electron’s motion becomes unstable. It catastroph-
ically recedes to an orbit farther from the nucleus (2). The new orbit will also
be of a field Q but it’s position is such that the corresponding v,~_1,...., ’Pqn-i
(cf. (6)) do not make m a root of e(m). The motion at the new level is therefore
stable. If the exciting force is further increased this new orbit may become unstable
as a result of the same mathematical process.

When, suddenly, the exciting force is released, the electron may fall all the

way to the home orbit or it may be detained at a higher level which is also

consistent with the original central force of the atom (3).
2. The motions of the large planets. - Other types of reality will be described

by P(r) according as we make different possible choices of the quantities a,...., k, A.
When P(r) is the relativistic approximation to NEWTON’S formula of inverse

squares, P(r) describes the motions of the large planets, as is well known.

3. Saturn’s rings. - If 1/al ( . 0) is small, while r is of a magnitude comparable
to the distance from the center of Saturn to it’s rings, P(r) describes the rings.

4. The comets. - Inaccuracies in the computed periods of comets, such as the
three day error in the perihelion passage of HALLEY’S comet, in COWELL and
CROMMELIN’S Preisschrift, Essay on the return of Halley’s comet (1910), as
well as other imperfect data on the motions of these bodies, suggest that it may
be necessary to study anew the motions of comets, from the standpoint of a force
function P(r) more general than that of NEWTON.

5. Masses in motion in spiral nebulae. - The author has previously shown
that, with n=4, formula (15) may be employed to reduce P(r) to the form,

where mo is the mean of the values of the mass in the motion over the dotted

segment in figure 1. If the second term to be the significant term so
that the motion is in an elementary spiral, mo is small, and it will be small below

(2) If, during the change of levels, m also changes, the theory remains consistent.
(3) For an arithmetical example of a singular mass cf. GLENN, loco cit., first paper, p. 308.
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a definite limit, as is evidently proved with some obvious restrictions when we
prove the following:

Lemma 2. - If P(r) vanishes for v=2n-3 real positive values of r,
there is an upper limit but no lower limit to the values of the positive
numbers l-2.

Independently of the hypothesis of the lemma, 7~’), of (1), vanishes for a
large positive, and a large negative value of r, by the principle of continuity.

When n = 3 the discriminant of can be expressed in the form (cf. (2) et seq.),

The condition for three real roots is d &#x3E; o. Therefore,

This proves the lemma for n=3 and shows that the discriminant of is

positive in this case.
With n literal, if we bring A-2 arbitrarily near to zero, the roots of T(r) =0

are brought arbitrarily near to the respective roots of the E(r) =o.
By hypothesis all of these roots are real. Hence without proof it is evident that
no lower limit can be assigned to A-2. Passing to the question of an upper limit,
we write (w=2n - 2), introducing homogeneous variables and
coefficients. The discriminant A is the dialytic eliminant of and ar/ay and
from this determinant it is clear, first, all terms of L1 contain either U or V as

a factor. Second, if we set Y=0 in A, all remaining terms contain the factor Uz.
LAPLACE’s expansion method shows that w is the highest exponent of NI in A.
If sin,...., sw are the roots of f(y)=0.

Hence a term of A of degree w in M is,

v being 2k2. The sign of W is negative or positive according as n in odd or
even. It’s significance is in the fact that M is the only coefficient of r(r) which
contains 2-2 . Any other term t of A, involving Mw would contain another factor
of degree w - 2 and weight w, but such a term could not contain Y without

coinciding with W, on account of the weight. Hence it would contain U and

therefore U2. Since the weight of U2 is 2w - 2 &#x3E; w, it follows that t does not

exist in A, W being thus the only term which involves Mw.
A necessary condition for the postulated reality of all roots of r(r) =0 is L1 &#x3E; 0.

Writing A =-- b(z), 6 being an integral polynomial in z= ~,-2, we note that 6 is of

order w in z, and when n is odd, the term in zw has the negative sign. At z ~ 0,
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d is positive. Hence, in the case n odd, the graph of 4=6(z) shows readily that
the greatest real positive root of 3(z)=0 is an upper limit to l-2, (A &#x3E; 0).

Theoretically we can always choose n odd and remain within acceptable limits
of error in astronomical practice. However when n is even the graph of d = 8 (z)
shows that, if 6(z) = 0 possesses any real positive roots, there will be upper limits
to 1-2 upon properly chosen intervals (zs,...., Z2), (4 &#x3E; 0).

6. The Heaviside layer. - We shall prove with the aid of the form (2) of r(r)
that, not only is there an accumulation (the saturnian rings), of small particles
near to a large planet, but at least two concentric spherical walls constituted
of such particles will form outside of the region of the rings. These walls, the
HEAVISIDE Layers (4), are probably composed of a mixture of gases and particles
because the mass m in certain ones of our formulas may approach zero;

(Cf. G, § IV (5)).

V. - The Heaviside layers and the - Gegenschein:- optical phenomenon.

The problem of the rest of this paper is to account for these walls, which
. are the sources of the echo phenomenon of long-wave radio signals, by means

of the force function P(r).
We choose lJa1 as follows. Let

Assume with a-~ ’-_0. If we employ ~(a, ~) as p(a), then 
assumed to vanish, becomes

Solving (18) for 1/a2).,2, the result is positive and of the same order of magnitude
as a-~. Abbreviating this result as -,q (a, ~) /a , 2 the value substituted

for in F(r) brings the 2n-2 roots of the latter arbitrarily near to fli, at
fJ2, a2,...., respectively (cf. (16)). The actual roots differ from those of

the above set by increments s which conform in value to the variation of a single
parameter a. We use primes in representing a root plus the corresponding E ;

We next revert to the case n= 6 in which T(r) =0 is an equation of degree 10.
The vicinity will be that of Saturn’s gravitational field. Five of the nine positive

(4) Their existence was first inferred by 0. HEAVISIDE (1850-1925). Cf. G. VANNI : Osser-
vazioni sulle teorie della propagazione delle onde hertziane etc., Atti del Congresso Inter-
naz. dei Matematici, tomo 6, Bologna, 1928 (VI). The latter author prefers the nomenclature
KENNELLY-HEAVISIDE layer.
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roots of ]"(r)~O are respectively the radii of the outer bounding circles of the
three parts of Saturn’s ring. From astronomical measurements, approximations
to the radii are a2 = 8.1, a3 = 8.6, and two determined from the latter
by a calculation based upon the case n = 4 of I’(r). These two are ,82=7.4664,
~3=$.3671. The change from n=4 to n=6 (in I) alters at, #2 ...... a3 by small
amounts bi. (The unit of distance is 10000 miles).

The curve G=P(r), (n = 6), intersects (r) at at’, a2’, a3’, ~3’, the width
of CASSIN1’s division being and that of ENCKE’s division 

THEOREM. - If a planet has a saturnian ring in which there are actually
two divisions, it is surrounded by a Heaviside layer.

We include in the hypothesis the requirement that the graph of (15) shall

be a fairly smooth curve. In proof, the roots of jT(7*)=0 are all real if those

of p(r)=0 are all real and distinct. The converse is true, assuming that 1/aA
is sufficiently small. With n=5 the conditions for reality of the roots of the

quartic are T2 &#x3E; 0, T3 &#x3E; 0, in which (cf. (2)),

Now R is the discriminant of

A necessary and sufficient condition that all three roots of q(r) =0 be real is R &#x3E; 0.
If all are positive the planet will have a ring with two divisions. When R &#x3E; 0
then S&#x3E; 0. Hence, when the divided ring exists, Ti &#x3E;0, T2 &#x3E; o, T3 &#x3E; 0 provided

- I "-’ 

Fig. 2. 
’

only that b is small enough: But, assuming the graph of (15) to be smooth,
the smallness of b is at our choice. Hence the roots of the chosen p(r) are

all real. When this result is combined with the separation. lemma 1, it is clear
that G=P(r), (n=5), intersects (r) in two points additional to the five corres-
ponding to the rings. Since b is small the additional pair is considerably distant
from the original five, (shown as y, z, in fig. 2).

In the interval y - a3’ the force repels particles, while f rom y to z it is an
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attraction. Hence particles accumulate at y and this is true at all points of the
distance of y from the center 0 of the planet. Hence the existence of a HEAVISIDE
layer has been proved.

We can generalize by proving also that the succession of possible HEAVISIDE
layers beyond z will not be interrupted by the occurrence of any imaginary roots
in P(r) =0.

Let the conditions for reality of all roots of

(which conditions always consist of inequalities, without equalities), be satisfied
in the form,

where qi is a rational, integral polynomial, and write the corresponding conditions,
that all roots be real, for the equation,

as,

Necessarily the set tj (0, b,...., k) is only a redundant form of the set,

Hence, assuming (20),
(Ai, vi positive integers).

will be satisfied provided only that a is small enough. Since an induction begins
with n = 5, the curve G = P(r), with n literal, therefore intersects (r) in 2n-8

real points beyond (including) y, which was to be proved.
The force P(r) (n=6) is, for small masses, a repulsion within five intervals

on (r) and an attraction within five. Partly for local reasons, such as the fact
that a projectile fired eastward in the northern hemisphere is deflected toward
the equator, the configuration of particles corresponding to the inner group of
positive intersections is a ring. The spherical form of the HEAVISIDE layer
evidently would not be affected much by influences local to the planet, due to
the greater distance.

Note that ai’,...., a5’ are the radii of the points at which, with r increasing,
the force changes from attraction to repulsion. Hence the radii of the central

spheres about which the two consecutive walls (n=6) accumulate are ~~’, 
the first and third of the outer abscissas.

From as’, a,,’, a-3’, ~3’, the outer dimensions a4’, a5’, /?/, are determined

to close approximations. For, we can use as if in the 

instead of
IAI ·
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and leave all results within small limits of error, since r~ r. 0 as a - ~ ~ 0. Hence
we divide x - ai’, (i=l, 2, 3), out of

obtaining three vanishing remainders which are linear non-homogeneous equa-
tions in the five unknowns bla,...., fla. Two additional equations are obtained
by dividing from

The five linear equations determine E(r) and therefore five additional
roots which approximate to a4’, 03B24’, 03B25’, together with 03B21’ which is negative
and without physical interpretation.

In arithmetical practice this method is indeterminate, requiring us to assign
five numerical increments ~(a) to the set of numbers cui, a2, a3, ~2, ~3, respectively,
such that the increments conform to the single parameter variation of the set.

If the numbers 3i are not properly chosen, the above linear system in b/a,...., fl a
will be inconsistent. The method is thus one of trial and error and, furthermore,
small changes in the increments e result in large alterations of the four outer

abscissas. 
’

A method of trial and error in which the values of only two, instead of five
parameters, need to be manipulated in order to reach accuracy, is the following
which solves our practical problem within limits of error which are good in view
of the degree of exactness thus far attained in actual measurements of Saturn’s
rings. We regard ai(==a/)=7.1, a2~8.1, as=8.6 as correct dimensions. We then
assign (by trial) the numbers a4, a5. This determines the coefficients of 
and therefore the roots (including ~33 approximately) of E(r)=0. We manip-
ulate a4, as until we obtain by this process flz=7.4664, ~g== 8.3671, to a close
approximation. With 04 =====34, us=46 we find, in fact, 7.4606, ~3’.- 8.3$51.
We then regard

as acceptable dimensions (radii) of the boundaries within the ring, and complete
the solution of the equation E(r) = 0 which they, with a4 = 34, a5 = 46, determine. The
three additional solutions (one negative) include approximately the distances /3/, 
the dimensions sought.

A summary of the computation is as follows: Determining from it’s

roots 7.1, 8.1, 8.6, 34, 46, we get,


