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ANALYTIC FUNCTIONS IN GENERAL ANALYSIS

by ANGUS E. TAYLOR (California - U. S. A.).

1. - Introduction. - Since the publication of FRPCHET’S thesis in 1906 the
functional calculus, or abstract theory of functions, has made substantial progress
in the abstraction of various portions of classical analysis. FRECHET seems to
have been one of the first to develop the theory of polynomials from an abstract

point of view, and GATEAUX combined the notiom of differential and the notion
of functional polynomial to generalize the CAUCHY-WEIERSTRASS theory of analytic
functions. HILDEBRANDT and GRAVES have contributed to the generalization of
TAYLOR’S theorem and theorems on implicit functions and differential equations (1).

In this paper I propose to develop the theory of analytic functions along the
lines indicated by GATEAUX (2) ; That his work is susceptible to thorough ab-
straction was pointed out by L. M. GRAVES (3). I have, however, some further
results on generalizations of the CAUCHY-RIEMANN equations, and on the singu-
larities of abstract analytic functions. RIEMANN’S theorem concerning removable
singularities may be generalized, and in certain cases functions may be characte-
rized in terms of their poles by MITTAG-LEFFLER’S theorem. Some interesting
departures from classical theory are displayed by examples.

2. - Postulates and Definitions. - We shall use E, E’,...., to denote vector spaces
as defined by BANACH (4), and the norm of an element x of such a space will
be written E(R) denotes a real vector space, that is, one for which the
multiplier domain is the real number system, and E( C) denotes a complex space.

(i) See the survey paper of L. M. GRAVES, Bulletin of the American Mathematical Society,
vol. 41 (1935), pp. 641-662. Further references are given in this paper.

(2) R. GATEAUX, Bulletin de la Societe Math. de France, vol. 47 (1919), pp. 70-97, and
vol. 50 (1922), pp. 1-21.

(3) GRAVES, loc. cit., pp. 651-653. My own work on this subject was done independently.
starting from a quite different point of view which will be mentioned in a later paragraph,
Valuable suggestions about connecting my work to that of GATEAUX were made to me by
Professor A. D. MICHAL. 

’

(4) S. BANACH, Fundamenta Mathematicae, vol. 3 (1922), pp. 133-181.
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From a real space a complex space may be constructed as follows: E( C) shall

consist of where z and y are in E(R). We define

and with these definitions it is clear that E( C) is a complex vector space.

= x, 0} + i . y, 0}, and since the correspondence x ~ {x 0} sets up
a one to one isomorphism between E(R) and a subclass of E(C), we may for
convenience write, as we do with complex numbers, 
is complete if and only if E(R) is complete, and a variable quantity in E( C)
will approach a limit if and only if its « real » and « imaginary &#x3E;&#x3E; parts do likewise.
We call E(C) the couple-space associated with E(R).

It is convenient to adopt the following standard definitions. Domain (5). -
An open point set in E. 

°

, 

A domain plus some, all, or none of its boundary points. ,

Sphere (Open or closed). - A set of points defined by ~ 
xo is called the center of the sphere and r its radius.

Compact Set. - A set of points in E such that every infinite subset gives
rise to at least one limit point in E.

3. - Preliminary Theorems. - We shall recall briefly some of the fundamental
propositions pertaining to the FRÉCHET and GATEAUX concepts of differential.
In this paragraph we shall also discuss a few properties of compact sets which
we shall require further on in the paper.

Definition. - Let f(x) be a function on E to E’, defined in the neighborhood
of a point xo. If for each y in E the difference quotient

approaches a limit as the number z tends to zero in any manner whatsoever,
the limit is called the GATEAUX differential, with increment y, of f(x) at zo, and
we denote it by 8f(xo ; y).

It is assumed that the reader is familiar with the notion of a FRECHET diffe-

_ 

rential (6). The following important propositions are noted without proof.

(5) It is sometimes convenient to use domain to mean an open, connected point set, par-
ticularly when we are interested in analytic continuation of a function. However, it is

unnecessary at this point to introduce the definition of connectedness.
(6) M. FRÉCHET, Annales de l’Acole Normale Superieure, vol. 42 (1925) pp. 293-323. For

a compact resume of the FRECHET differential and its properties see pp. 649 (conditions D~
and D4), of the paper by GRAVES referred to above.
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THEOREM 1. - If f(x) on E to E’ is defined in the neighborhood of xo
and has a Fréchet differential at xo, then f(x) is continuous there.

THEOREM 2. - If is a function of the numerical variable a, to the

space E, such that has a deriv.ative at ao, and if f(x) on E to E’ admits
a Fréchet differential at Xo, where then f(cp(a)) has a derivative
at aû, and

where df(xo; y) is the Fréchet differential.

THEOREM 3. - If f(x) admits a Fréchet differential at xo it admits a

Gateaux differential there and the two are equal. Gyonsequently the Fréchet
differential of a given function is unique.

THEOREM 4. - Let f(x) be defined and continuous in a closed set H

of E, with values in E’. Then f(x) is bounded and uniformly continuous
in every compact set G extracted from H.

Theorem 4 was enunciated by GATEAUX in the second memoir cited above.
His proof is readily adapted to the abstract spaces with which we are concerned.
Gateaux also makes use of the following theorem.

THEOREM 5. - Let be a sequence of functions defined and con-

tinuous in a domain D of E, with values in E’. Let f(x) on D to E’ be
a function such that lim f~(x) =f(x), the convergence being uniform in every

n-oo

compact subset of D. Then f(x) is continuous in D.

Finally, to avoid repetitions of similar arguments,-we demonstrate the pro-
position : 

’

THEOREM 6. - Let f(x, y) be a function with values in a space E3, de-
fined for x in a domain D of a space E,, and y in a closed set F of a
space E2. Then if xo is in D and G is. a compact set in F, f(x, y) is con-

tinuous at Xo, uniformly with respect to y in G.
Proof: Suppose the theorem false. Then there will exist a number E&#x3E;0,

elements Xn in D, and elements Yn in G such that the inequalities

are valid when n =1, 2,.... Since G is compact and contained in the closed.

set F we may suppose that the points yn converge to a point yo in F. Then
the inequality

holds for n=1, 2,... But by the continuity of f(x, y) the right member tends to
zero with 1 In, and we are led to a contradiction.
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4. - Analytic Functions of a Complex Variable. - A substantial portion of
the theory of functions of a complex variable remains valid when the function
values are not necessarily numerical, but are assumed to lie in a complex, com-
plete vector space.

A function t’(a) of the complex variable a, with values in a complex, complete
space E is said to be analytic in a domain fi of the complex plane if it has a

derivative at each point of T. It is analytic at a point ao if it has a derivative

at each point of some neighborhood of ao. This is the usual definition; it must

be born in mind that the derivative f’(a) is calculated according to the defini-
tion of limit in the space E. 

’

The fundamental tool for working with analytic functions is the complex line-

integral, and it may be defined in the ordinary fashion. WIENER first pointed
out that when this is done Cauchy’s integral theorem remains valid (’). The
essential point is that the space E is complete, so that a continuous function is
integrable. From this basic theorem there is no difficulty in establishing a whole
sequence of theorems pertaining to analytic functions, as they are developed, for
instance, in the seventh chapter of OsGOOn’s : Lehrbuch der Funktionentheorie,
vol. I. Most important are the theorems regarding CAUCHY’S integral formula, repre-
sentation of analytic functions by infinite series and line-integrals, and the CAUCHY-
TAYLOR series. The theorems of LIOUVILLE, MORERA, and LAURENT remain valid,
as do the theorems regarding power series with coefficients in the space E. These
proofs are given in my thesis, California Institute of Technology, 1936.

The first divergences from classical theory begin to appear when one examines
the zeros and singular points of analytic functions. A point ao in the neighborhood
of which f(a) is analytic, without actually being analytic at the point, is called

an isolated singularity of f(a). If it is possible to re-define so that f(a) is
analytic at ao, the singularity is removable. If f(a) ~ becomes infinite as a ap-
proaches ao, the singularity is called a pole. All other singularities will be lumped
together under the name « essential.

As in classical theory, RIEMANN’S theorem for removable singularities is true (8)._
The behavior of functions near poles or essential singularities is not exactly as
simpje as before, however, as the following examples will show. Let E be the space
whose elements are complex-valued functions of a complex variable, defined and

° 

continuous on the unit circle. If g(z) is such a function we define its norm to be

(7) N. WIENER, Fundamenta Mathematicae, vol. 4 (1923), pp. 136-143. WIENER’S observa-
tions are based on the treatment of CAUCHY’S theorem in the Cambridge Tract n.o 15 (1914),
by G. N. WATSON. 

th
(8) The proof given in OsGOOD: Lehrbuch der Funktionentheorie, vol. I, 5th ed., pp. 325,

requires no modification.
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Suppose that y(a) is a numerically-valued function of a, analytic at a point ao.
Then the function on the a -plane to E

is analytic at ao, with derivative

The singularities of f(a) will be precisely the singularities of y(a). Now .

where R(y)=real part of y(a),
I( 1p) = imaginary part of y(a)
If 1p(a) =F 0 we may choose x= , and thus see that

an inequality which remains true when ~(a) = o.
From this we see that a= ao is a pole of f(a) if and only if it is a pole of y(a).

If y(a) has an essential singularity at ao, so does f(a), but f(a) never takes on
values within the unit sphere in E. Thus the theorems of Weierstmz -and Ificard-
are seen to be invalid in this case.

Other differences in behavior worthy of note are dispayed by the functions eaz
1

and eaz. in the above special instance. The first of them is an entire function of a,
with a pole at infinity; it is nevertheless not a p6lynomial, contrary to the situa-

1
-z

tion in classical theory. Also, ea has a pole at a =;=0, but the « principal part »
of this pole is a non--terminating series, given in the LAURENT expansion:

Thus there are poles and zeros of infinite, as well as of finite order.
The notion of a rational function, as the quotient of two polynomials with

abstract values, is denied us, since we have not postulated division in the space E.
Of course a function such as

where P(a) is an abstract polynomial, and is a numerical polynomial, is a
sort of rational function. Its only singularities are .poles of finite .order, occurr~i~ng
at the roots of and at a =00 in case n &#x3E; m. It admits a representation by
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rational fractions, as we may prove in the usual may, by subtracting the prin-
cipal parts of the function at the poles, and utilizing LIOUVILLE’S theorem.

The problem of determining the nature of a function whose only singularities
in the finite part of the plane are poles of finite order, is solved by the use of
the theorem of MITTAG-LEFFLER.

THEOREM 7. - If f(a) is an analytic function which has in the finite plane
no other singularities than poles of finite order, then it has the form

where gn 1 is the principal part of f(a) at the pole an, yn(a) is a sui-a-an
table abstract polynomial, and G(a) is an entire function. In particular
if the number of poles is finite, then

where is a « rational function » of the type discussed above.p(03B1)
MITTAG-LEFFLER’S theorem, of which this is a corollary, may be proved as

in OsGOOD, loc. cit., vol. I, pp. 565-566.

5. - Analytic Functions on a Vector Space. - Having seen in § 4 that we
have at our disposal the methods and results of classical theory for functions
of a complex variable, the extension to general analysis is achieved naturally through
the medium of the GATEAUX differential.

Let E, E’ be two complex vector spaces, and let E’ be complete. A function f(x)
on a domain D of the space E, to the space E’, is said to be analytic in D if
it is continuous and has a GATEAUX differential at each point of D. A function
is said to be analytic at a point xo if it is analytic in some neighborhood of the
point. The fundamental theorem may be stated as follows:

THEOREM 8. - If f(x) on D to E’ is continuous in D, a necessary and
sufficient condition that it be analytic in D is that for each n &#x3E; 0,

.... + anxn) be an analytic function of (ai ,...., an), in the sense of § 4,
for all a’s and x’s such that + .... + anxn is- in D.

The proof is a simple matter of observing that when alxl + .... + is in D,
.... -~- anxn is also in D for where ri is suitably small, and also

that the partial derivatives of as a function of al ...... an, are

merely GATEAUX differentials of f at points of D. ,

As in the theory of functions of several complex variables we infer that the
’ 

successive partial derivatives of + .... + anxn) are continuous functions of
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the a’s, and that the order of differentiation is immaterial (9). Therefore we have
the following theorem.

THEOREM 9. - If f(x) is analytic in D it has Gateaux differentials of all
orders there, and the nth differential is a completely symmetric function
of the n increments.

Two important questions present themselves regarding the differential 6f(z ; y):
is it an analytic function of x, for fixed y, and is it linear y 2 The answer to
both these questions is affirmative, as we now show.

Suppose that xo is a point of D, and let y be an arbitrary, fixed point of E.
We may choose positive numbers r, r’ such that x ~- z · y is in D when 
and lr I -- r. With these restrictions is an analytic function of z, and

C being a circle of radius r about the origin. Then

From this it follows that bf(x; y) is continuous at xo, provided that we can, for
a given E&#x3E;0, choose a - 6 such that implies the inequality

for all T on C. That we can actually do this is a consequence of Theorem ,6,
since C is a compact, closed set.

To show that 6f(z; y) is linear in y we first prove that it is additive and 
°

homogeneous of the first degree. We shall then prove that it is continuous at y == 0.
Let xo be a point of D, and let a, Y2 be given arbitrarily. Then

let and consider which is an analytic function of z

at z=0. Accordingly it has the expansion 
’

However, if we is an analytic function
of $, q in the neighborhood of $=q=0. If in the expansion of this function we
pick out the terms of first degree in z, and equate them to the corresponding
term in the above series, we obtain the relation

(9) OsGOOD, loc. cit., vol. II, 1 2nd ed. (1929), p. 21. The desired formula is
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This is precisely the result . 

’

Let be chosen so that when C is a circle of radius r about 

for sufficiently small I I y 11. This may be written

whence, since f(x) is continuous at xo, we easily conclude that y) is con-

tinuous at y=0.
THEOREM 10. - If f(x) is analytic in D, then for each n the differential

y ~ ...... Yn) is an analytic function of x in D, when yi,...., yn are fixed.

It is continuous in the set (x, yi, .... ) yn) at every point where it is defined
if the space E is complete. Therefore it is, for each x, a symmetric multi-
linear function of yi ...... yn. In particular, bnf(X; y,...., y) is a continuous

function of x and y, homogeneous of degree n in y.
From the preceding discussion we know that bnf(x; yl,...., yn) is analytic in x

and linear in each yi. Therefore, by a theorem of KERNER (’0), it is continuous

in the set (x, yi ...... yn). The rest of the assertions are clearly true. We write

The generalization of the CAUCHY. TAYLOR expansion theorem is now readily
proved.

THEOREM 11... If f(x) is analytic in the region defined by ~~ x-xo ~~ 
it may be ezpanded in the form

This series converges uniformly in every compact set G extracted from the
sphere ~~ where 9, 0  o  1, is arbitrary. Moreover, the series

converges uniformly in G.
Proof: Let x be an arbitrarily chosen point such that || x-xo and

(10) M. KERNER, Studia Mathematica, vol. 3 (1931), p. 159, and Annals of Mathematics,
vol. 34 (1933), p. 548. The application of these theorems requires that E be complete.
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choose gi &#x3E;0 so that Then choose r so that The

function

is analytic inside a circle of radius r with center at and so, by TAYLOR’S
theorem for functions of a numerical variable,

or

To complete the proof we shall, for simplicity, assume zo = 0. For an arbitrary 0,
choose r so that 1  r  1 /0. Then

where C is a circle of radius r about z= 0, Let G be a compact
set subject to this latter restriction. Then II 11 is bounded when x is in G

and z is on C, as follows from Theorem 4 as soon as we establish the fact that
the aggregate of such points zx is a compact set. Since both G and C are compact
this is not difficult. If lVf is the bound in question

when x is in G. Since the member on the right is the general term of a
convergent series of constants, and the series converges « absolutely » and uni-

formly in G.
It is interesting and somewhat surprising to observe that the GATEAUX dif-

ferentials with which we have been dealing are in fact FRÉCHET differentials.

The truth of this relation depends essentially on the use of complex variables

and the completeness of the space E’.
THEOREM 12. - If f(x) is analytic at a point xo it admits Fréchel dif-

ferentials of all orders in the neighborhood of the point.
Proof : Let f(x) be analytic when and for definiteness choose a

number el, so i let

us agree that for an arbitrary we shall choose r so that Then

where C is a circle of radius r with center at z= 0. But, y being fixed, I
is a continuous function of 7: on C, and so has a maximum there:
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This gives

But

so that

where G is a constant. Thus we have, recalling that r 11 y 11

Applying this inequality to the series in Theorem 11 when we obtain

and from this inequality it is evident that bf(xo ; y) is the FRECHET differential
at xo. The reasoning applies to any point at which f(x) is analytic, and so, in
particular, to all points of a certain neighborhood of xo.

6. - Abstract Power Series. - Theorem 11 suggests the natural "alternative
of developing a theory of analytic functions from a Weierstrassian point of view.
There is a generalization of the theorem of WEIERSTRASS pertaining to functions
defined by infinite series.

THEOREM 13. - Let the terms of the series

be analytic in a domain D, with values in E’, and let the series converge
uniformly in every compact set extracted from an arbitrary closed sphere
lying in D. Then the series converges and defines a functions analytic
in D,,- The differentials of f(x) may be obtained by termwise differentiation
of the series. ,

Proof: The series converges and defines a continuous function f(x) in D,
by Theorem 5. If xo is -any point of D and y is arbitrary, but fixed, the

function f(xo+ay) is analytic at a=0 (ii), for the series converges uniformly
in a in a closed neighborhood of a=o. This is enough to complete the proof.

(Ii) This is a consequence of the special dase of Theorem 13 when the variable is a

complex number. This theorem is proved as in classical theory. See OSGOOD, loco cit., vol. I,
p. 319.
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We are interested in « power series », i. e. series of the form

where hn(x) is a homogeneous polynomial of degree n (12) . By the radius of

convergence e of such a series we mean the largest positive number such that
series converges uniformly in every compact set extracted from the sphere 
where 001. Since a homogeneous polynomial is an analytic function, a power
series defines an analytic function within its sphere convergence. It is readily
established that if a power series vanishes for all values of its argument in an

arbitrarily small neighborhood of x=0, then the individual terms vanish iden-
tically. Hence the power series expansion of an analytic function is unique, and
in the above series

1

THEOREM 14. - Let

be a power with radius of convergence e, and let it converge for the

value Then

when the complex number À. approaches unity along a included be-

twe.en two chords of the unit circle which pass through À.= 1.
The proof of this theorem may be carried through by the same general argu-

ment that is used in establishing the generalization of ABEL’S .theorem (13).

7. - Singularities. - In order to prove that RiEMANN’S theorem on removable

singularities may be generalized we must first establish a proposition about functions
defined by integrals.

(12) A function on E to E’ is called a polynomial if it is defined and continuous

for each x in E, and if there exists an integer n such that for every x, y in E

p(x + ay):=po(x, y) + y) +.... -f - allp.(x, y~~ 
I

The least integer n satisfying this condition is the degree of p(x). The polynomial is homo-

geneous of degree n if p(ax) = anp(x).
Corresponding to a homogeneous polynomial h(x) of degree n there is a unique sym-

metric multilinear function h’(x~,...., xn) of n variables over E, to E’, such that h’ (x,...., xn) ~h(x).
Then h(x) is analytic and 8h(x; y)=nh’(x,....,x, y). This resum6 is based on the thesis of R.
S. MARTIN, California Institute of Technology, 1932. For a recent, somenwhat different

treatment see MAZUR and ORLICZ, Studia Matematica, vol. V (1935).
(13) See TITCHMARSH : Theory of Functions (1932), p. 229. Details are given in my thesis.
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THEOREM 15. - Let f(x, a), with values in E’, be defined for all values
of x in a domain D of the space E, and a on a rectifiable Jordan curve C
in the complex plane. Let it be analytic in D for each a on C, and con-
tinuous in both variables together. Then the integral .

defines a function analytic in D, with the differential

Proof: By Theorem 6 f(x, a) is continuous in x, uniformly in a on the

curve. Hence F(x) is continuous in D. If xo is any point D,

is, for a fixed, arbitrary y, an analytic function of r at ~=0, by the correspondent
of Thorem 15 in the numerical case (14). The result then follows.

RIEMANN’S theorem is the following: .
THEOREM 16. - If f(x) is analytic and bounded in this

range, then lim f(x) exists, and if we define
/p 118,...

the function is analytic at xo also.

We have already observed in § 4 that this theorem is true when E is the space
of complex numbers. For the abstract treatment the following modification is made.

For convenience denote by D the domain Choose a fixed y
in E, with !~ y ~,=1, and consider the function where x is a fixed

element in D for which is analytic for all values of r
. 2

such that x+zy is in D, that is and 

On the I y(z) can have at most one singularity, which may
occur when But since we know that the theorem in question is true
for we have

where C is a circle of radius - about z=0. This representation is valid when
But in the range 0~ the integral

(1~) TITCHMARSH Ioc. cit., p. 99.
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defines a function analytic without exception (15). Since F(z) =f(z) when 
we conclude that lim f(x) = F(zo) and the theorem is proved.

,

It is difficult to say much about other types of singularities. If E’ is the

complex number space, however, the usual theorem that near an isolated essential
singularity a function comes arbitrarily near all values, remains true, in contrast
to the case of abstract functions of a complex variable. The proof depends on
Theorem 16 and on the fact that when f(x) is a numerically-valued function

which is analytic in a domain D and doesn’t vanish there, 1 is also analytie
For details see OsGooD, &#x3E; loc. cit., &#x3E; vol. I, p. . 328. 

f(x)

8. - The Cauchy-Riemann Equations. - In § 2 we defined the complex couple-
space associated with a real vector space. If E(C) and .E’( C) are two such couple-
spaces, associated with the real vector spaces E(R) and E’(R), respectively, a
function f(z) on E(C) to E’(C) has the form

where f1(x, y) and f2(x, y) are functions of two variables over E(R), with values
in E’ (~). ’ 

’

Let us now suppose that E’(R) is complete, and that f(z) is defined in a

domain D of E( C). Then we can discuss the analyticity of f(z) in terms of the
properties of the functions fi and f2. The fundamental proposition, a generalization
of the classical theorem pertaining to the CAUCHY-RIEMANN equations, is as follows :

THEOREM 17. - In order that f(z) be analytic in D it is necessary and
sufficient that the functions f1(x, y), f2(x, y) be continuous and admit con-
tinuous first partial Gateaux differentials at all points of D, and that
the equations

be satisfied in D for an arbitrary ~ in E(R).
Proof: If f(z) is analytic in D it is continuous there, and the differential

bf(z; Az) is linear in Az, and continuous in the pair z, Az. But

Hence in particular, taking where t is real,

I (n) It is easily seen that is an analytic function of x when T is on C and

02013-. We then use Theorem 15. ,

2
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This limit will exist, however, only if the separate parts have limits. Therefore

Similarly we obtain

Since the left member of these equations is continuous, we see that the four terms
on the right must be continuous in when is in D and dx is

arbitrary in E(R). On equating corresponding parts we obtain the generalized
CAUCHY-RIEMANN equations given in the theorem. The continuity of f, and f2
is a consequence of the continuity of f(z).

To prove the sufficiency of the conditions suppose that dz= dz + i 4y is an
arbitrary element of E( C), and consider the expression

where z is in D and is a sufficiently small complex number. Next,
consider the function

of four real variables, with values in E’(R). This function is continuous and

admits continuous first partial derivatives near (o, o, 0,.0). It is then not difficult
to show that it admits a total differential (16) at (0,0,0,0), that is

(16) We demonstrate the theorem, for simplicity, using only two variables; the general
case is proved in a similar manner. Writing

we have -

and from this the result follows without difficulty -as - a -result of the continuity
of ft(s, t).
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where

Therefore, when expressed in terms of GATEAUX differentials, we have

There is a similar relation involving the function f2(x, y) and an infinitesimal
s). On making use of the CAUCHY-RIEMANN equations we find that

From this we conclude that

and hence that f(z) has the differential

Since Ii and- f2 are continuous, so is f(z), and f(z) is analytic. This proves the
theorem.

The known properties of bf(z; Az), as the differential of an analytic function,
enable us to draw conclusions about the properties of the functions fi, f2, and
their differentials. The various GATEAUX differentials are in fact partial FRECHET
differentials; their linearity is evident. Furthermore, ’1(z, y) and f2(x, y) admit
total FRÉCHET differentials. That is,

with a similar formula for f2(x, y).

9. - Conclusion. - LIOUVILLE’S theorem holds for the general theory under
consideration. Knowing that it holds for functions of a complex variable, we make
the extension very easily as follows: Consider f(xo + a(xi - xo» where xo and xi are
any two points in E, and f(x) is assumed to be analytic everywhere, and is
bounded. Then the foregoing function of a satisfies the hypothesis of LIOUVILLE’S
theorem, and so has the same value when a=0 and a=1.

On the basis of Theorems 2, 8, and 12 we can lay down the following alter-
native definition of an analytic function : A function f(x) on E to E’ will be called
analytic in a domain D of E if
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1~) it is continuous in D, ,

2o) whenever is an analytic function on C to E, and T is a domain
of the plane such that g(a) is analytic in T and g(a) lies in D when a lies in T,
then is analytic in T.. .

This definition is suggested by the work of F ANTAPPIÉ on analytic functionals
of analytic functions (1’), and it formed the original starting point for my

investigations of the subject.
A power series definition of analyticity similar to the one embodied in

Theorem 11 was used by R. S. MARTIN in his thesis (see footnote (12), and has been
used subsequently by Professor A. D. MICHAL and others (18). It is essentially
equivalent to ours locally, i. e. it gives a series uniformly convergent in a

sufficiently small neighborhood of every point, but the region of analyticity of
the function as a whole may not be the same as in our theory. It should be
remarked that the concept of radius of analyticity is not as important here as
in the classical theory, for the region of convergence of an abstract power series
is not necessarily that defined by an inequality ||x||  g.

(17) L. FANTAPPIE, Memorie dei Lincei, vol. 3, fasc. 11 (1930).
(18) A. D. MICHAL and A. H. CLIFFORD, Comptes Rendus, vol. 197 (1933), pp. 735-737.

A. D. MICHAL and R. S. MARTIN, Journal de Mathematiques Pures et Appliqu6es, vol. 13
(1934), pp. 69-91.


