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STABLE DISTRIBUTIONS
AND LAPLACE TRANSFORMS

AUREL WINTNER (Baltimore)

1. A classical result of P. LEVY enumerates the FouRIER transforms

of all densities of probability

which belong to stable distributions, as follows : After a normalization of

the unit of length on the x-axis, the functions (1) depend on two real pa-
rameters, say a and f1, which vary on the range

(with the understanding that the second of the inequalities (2) must be

replaced by ) fl || tan 1/2 od I if a ‘ 1 ) and, , if ( a ) n is any point of this
2

parameter range, the correspondiug density (1) has a FOURIER transform
the inversion of which is

Cf., e. 9.1 [2], pp. 257-263 and [3], pp. 356-359.
The representation (3) holds for - oo  x  oo~ - f (- x) is not

true (except when fl = 0). But it is sufficient to consider (3) on the half-line

(and at the point x - 0 , which can however be included by continuity).
For, on the one hand, the range (2) goes over into itself if (a , fl) is repla-
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ced by (a, - fl) and, on the other hand, (3) shows that the half-line
- 00  x  0 can be reduced to the half-line (4) if fl is replaced by - fl .

2. In the limiting case a = 2 , 1 it follows from (2) that fl = 0, y hence
(3) becomes the symmetric normal density. If 1 ~ and if the x in (3) is

replaced by the complex variable z, then the resulting integral f (z) is unifor-

mly convergent on every fixed circle z ~  const. and is, therefore, an en-
tire function. This is no longer true in the limiting case a == 1 ~ y since (3)
reduces for a = 1 to Cauchy’s rational xo) ==:(!-}- X2)-l ,
where xo corresponds to the parameter fl (and is, therefore, arbitrary). In

what follows only the remaining case, a  1 ~ 1 will be considered ; so that

(2) reduces to

and

where y = y (a) is an abbreviation for

The abbreviation v = v (a) for

will also be used. 
°

It will first be showii that, under the assuinption (5), the stable density
(3) can be represented as an absolutely convergent Laplace integral

and that the Uraterfunlction of (9) is ,

where A --7A (a , fl) and (a, fl) are abbreviations for
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In the particular case of symmetry, f1 = 0 , this Laplacean represen-

tation of f (x) was obtained in [6], , pp. 86-88 (even in the multidimensional
case of radial symmetry). It will turn out that in the general case, where

only (6) is assumed, the proof follows by an application of the same rota-
tion of the complex plane as it did, loc. in the particular case fl = 0 .

3. If the integration variable t is replaced by tl/a in (3) and if the

cos ( ... ) is written as Re exp i ( ... ), then (8) shows that (3) appears
in the form 

’

where

(v &#x3E; 0) . Let t be thought of as a complex variable and let the half-line

arg t __-_ 0 , which is the path of integration in (13), be rotated iato the

position of the half-line In order to see that2

under the assumptions (4) and (5), this deformation of the path of inte-

gration is legitimate, it is sufficient to apply Cauchy’s theorem to the inte-
grand of (13) and to the positively oriented contour which consists of two

segments and of two circular arcs, t = ~~ , and 

and to let A -~ 0 and
1 /

B - oo . The result is that the definition (13) uf h (X) is equivalent to

cf. (8) and (7) (the factor i in (14) results from exp (i yloc) = exp (i n/2) - i) .
Put u = 1-1/a in (14), where 0  r  00, hence 0  it  ~, and insert

the resulting representation of h (x) into (12). In view of the definitions (12),
(11) and (10), this leads to (9) after a trivial calculation.

4. In order to illustrate (9)-(11), consider first the upper limiting case,
f3 ’ tan r, r allowed by (6). In this case, ~u = 0 ~ by (11). Hence (10) shows
that (9) vanishes at every point x of the half-line (4) and, therefore (by
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continuity) art x - 0 as well ; so that

This fact was observed already by LEVY [2], pp. 261-262.
In order to obtain f (x) for - 00  x  0 in the case fl ‘ tan y of (15),

it is sufficient to know f (x) on the half-line (4) in the case f1 = - tan y
(simply because (3) is valid for - oo  x  oo) . But if fl - - tan y , y then

(11) reduces 
’

. 1
Hence f (- x) is given on (4) by the case (17) of (9)-(10) if 03B2 - tan 2 n a,2

as in (15).
The mid-point of the range (6), that is, fl _-_ 0 , belongs, by (3), to the

symmetric case, f (x) - f (- x~ . In this case, (11) reduces to

6. Another particular case, a ̂  1 turns out to lead to an elemen-’ 2

tary density function f (x) for every choice of fl on the range (6). This seems

to be known only in the limiting cases, fl - ± a and - 0, 7 men-n 2

tioned before ; cf. LEVY [5], p. 294. But owing to (9)-(11), what is actually
involved for any is hardly different from a calculation of DOETSCH [1],
pp. 622-623, to which LÉVY [5], p. 284, refers. In fact, the situation is as

follows :

It follows from (8) and (11) that v -1 and

But (9) and (10) show that, if 03B2 is arbitrary an a == 2013 y then
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and so a partial integration shows that

Since (6) and (7) show that -1  03B2  1 if a = 1 it follows froin (18) and 
*

 03B2  1 if 03B1 = 2 )

(4) that, by a substitution u -&#x3E; ou (where c = c (fl; x) is positive), the inte-
gral occurring in (19) can be reduced to

is complex). This proves the assertion, since, according ’
to LAPLACE, the function (20) of ~ is elementary. 

,

6. In what follows, the analytic continuation, say f(z), where z =x + i y,
of the function (3), .where 0  x ~ oo ~ will be investigated for arbitrary
parameter values (a, ~) . As mentioned at the beginning of Section 2, the
situation is trivial in this regard if a &#x3E; 1. Hence (3) will be assumed. In

the symmetric case, ~= 0 , the singularities of f (z) have been determined

in [7]. In what follows, the entire range, (5)-(7), of (a, p) will be considered.
First, from (9) and (10),

if z = x ~ 0. Since both numbers (11) are real, (21) is absolutely, hence
uniformly, convergent for Re z, &#x3E; const. &#x3E; 0. Consequently, the function

f (z) is regular in the half-plane Re z &#x3E; 0 . A by-product of the following
considerations will be that f (z) admits of a direct analytic (regular) conti-
nuation across’ every point z # 0 of the line But the point z= 0
is singular. This can be seen as follows : .

Since a &#x3E; 0, 7 it is clear from (3), by uniform convergence, that DUf(x),
where exists for and rc =1, 2.,. (which, in view

of (15), implies that D’l f (0) = 0 holds for every n &#x3E; 0 if = tan - nor.;2

so that, since the point z - 0 is surely a singularity if 2 /
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It is also seen from (3) that

But the integral (22) can readily be dealt witly and au application of

Stirling’s formula shows that MacLaurill’s series f (0) + ... + + ...
has, the radius of convergence cxJ , 1 or 0 according as a &#x3E; 1 , a =1 or a  i .

Since (5) is assumed, this proves thut z =.0 is a singularity of f (z) .

7.-It turns out that the determination of the function-theoretical cha-

racter of f (z) in the large (that is, beyond the half-plane Re z &#x3E; 0) can be
based on (22) if use is made of a device applied in [7] to the particular
case fl = 0 of symmetry. The device consists in first replacing f by the
function e which, on the half-line (4), is defined by

and then defining e (z), where z = x + i y , by means of (21) and (23). ~
The result will be that e (ll2) is (i transcendental entire function of z (it is

understood that, when x (&#x3E;°) in (23) is replaced by the unrestricted coinplex
variable z, then that initial determination zi’a is meant which is positive
for z = x &#x3E; 0) . In view of (23) and (5), the italicized assertion concerning

, 

the function implies that, for a fixed a on the interval (5) an for

every ~ compatible with (5) and (6), the I(z) ==faj3 (z) is a single-
valued regular function o~c Roo or on some Rk , where k _-_ 1, 2 , ... , and
k = k (a) , according’ as a is irratonial or rational. Here Roo denotes the
Riemann surface of log z (where z =t= 0), and Rk, where k =1, 2 , 3 , ... , is

the surface which results if the point z = 0 is excluded from the Riemann

surface of z11 k .
In all three cases, the transcendental nature of the singularity of f (z) at

z = 0 is not described by (23) (where e (llz) is entire in z) but is revealed

by the fact proved at the end of Section 7, along with the fact that f (x~)
has derivatives of arbitrarily high order for (hence, whether
g - + 0 or x -. - 0) ; cf. (22).

If x (&#x3E; 0) is replaced by in (23), then what results will

be the relation into which (23) as it stands now, goes over if the letters

e, f are interchanged in it and, at «lie same time, a is replaced by 1/a; so
that, 1&#x3E;y virtue of the replacement 1  a~  oo ~ where
a* = lla , the connection between the two functions f (z), e (z) is involutory.
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For the symmetric case, fl = 0 , this reciprocity between f (z) and e (z) was

emphasized in [7], p. 681, where the connection of these trauscendents

with those of Mittag-Lefder was also indicated.

8. The proof of the assertion italicized after (23) proceeds as follows :

Suppose first that x is on the half-line (4) and replace z by 0

in (21). Then, if u is replaced by t - Ulla 9 it is seen that

Hence, if t is replaced by xt (when x &#x3E; 0 is fixed), it follows that

where the index v = v (a) &#x3E; 0 and the function 99 are defined by (8) and

If x is replaced by 1Jx in (24), the definition (23) shows that

if z = s &#x3E; 0. But let z now be complex and let R be any positive num-
ber. Then, if z is in the circle z I [ R, it is clear from (25) that the in-

tegral (26) is majorized by

-~- ~ Since the convergence of the integral (27) is

assured by (5) for every P ] 0 ~ it follows that the integral (26) is uni-

formly convergent on every circle z ~  R. Conseqnently, (26) represents
an entire function of z .

Finally, it is clear from (25) that the function (26) vanishes as z = 0

and remains therefore entire if it is divided by z. This completes the proof
of the assertion italicized after (23).
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9. It may finally be mentioned that (9), with (10) and (11), can be
used in order to obtain a representation for the angular stable density, y say
fo (x) , which, in terms of the linear stable density f (x) ~ is defined by

(so that fo (x) is periodic, of period 1). For the symmetric case, f3 = 0, of
fo (x) , cf. [8] and [9]. (*)
The Johns Hopking University

REFERENCES

[1] G. DOETSCH, Thetarelationen als Konsequenzen des Huygensschen und Eulerschen Prinzips
in der Theorie der Wärmeleitung, Mathematische Zeitschrift, vol. 40 (1935), pp.
613-628.

[2] P. LÉVY, Calcul des probabilités, Paris, 1925.

[3] 2014 Sur les intégrales dont les éléments sont des variables aléatoires indépendantes, Annali
della R. Scuola Normale Superiore di Pisa, serie 2, vol. 3 (1934), pp. 337-366.

[4] 2014 Propriétés asymptotiques des sommes de variables aléatoires independantes ou enchainées,
Journal de Mathématiques, ser. 9, vol. 14 (1935), pp. 342-402.

[5] 2014 Sur certains processus stochastiques homogènes, Compositio Mathematica, vol. 7 (1939),
pp. 283-339.

[6] A. WÍNTNER, On a class of Fourier transforms, American Journal of Mathematios, vol.

58, (1936), pp. 45-90.

[7] 2014 The singularities of Caucby’s distributions, Duke Mathematical Journal, vol. 8 (1941),
pp. 678-681.

[8] 2014 On the shape of the angular case of Cauchy’s distribution curves, Annals of Mathe-

matical Statistics, vol. 18 (1947), pp. 589-593.

[9] 2014 On a decomposition into singularities of theta-functions of fractional index, American
Journal of Mathematics, vol. 71 (1949), pp. 105-108.

(’) Formula (6) of [9] contains an error (m + 1 + Â instead of (m + 1) Â + 1), having
been copied incorrectly from the (correct) formulae (3), (7) of [7]. Correspondingly, the
function which multiplies cm in forniula (18) of [9] must be oorrectedto

where

This correction was kindly communicated to me by Professor S. C. van Veen soon after
the appearance of [9].


