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THE Lp APPROACH TO THE DIRICHLET PROBLEM(*)

PART I

REGULARITY THEOREMS

by SHMUEL AGMON

1. Introduction.

In this paper we present a .Lp approach to the Dirichlet problem and 
’

to related regularity problems for higher order elliptic equations. Although
this approach is not as simple as the well known Hilbert space approach

o

developed by Vishik [32] Garding (14]~ Browder [6 ; 7], Friedrichs [12], Mor-

rey [22], Nirenberg [23], Lions [18] and others, it has the advantage of a
greater generality. Thus, for example, we shall be able to treat the non-ho-
mogeneous Dirichlet problem in a much more general situation not restricted
to solutions having a finite Dirichlet integral (in this connection see Ma-
genes-Stampacchia [19, § 9] and the recent paper of Miranda [20]). The me-
thod is also applicable to elliptic operators which are not necessarily strongly
elliptic. We remark further that the same method could be used to solve

a general class of boundary value problems. This will be done in a subse-

quent paper where we shall also derive Lp integral inequalities for a system
of differential operators acting on functions satisfying general boundary
conditions, simular to the « coercive &#x3E;&#x3E; L2 inequalities derived by Aronszajn
[4] Agmon [2] and Schechter [25].

Recently Schechter [26 ; 27] presented a Hilbert space approach to ge-
neral boundary value problems including the Dirichlet problem for non-stron-
gly elliptic equations. His method is based on the L2 estimates of Agmon-

(*) Presented in part (for p = 2) at the international conference on partial differen-
tial equations organized by the C. I. M. E. in Pisa, September 1-10, 1958. Sponsored in
part by the Office of Scientific Research of the A. R. D. C., U. S. Air Force, through its
European Office, under Contract No. AF 61 (052)-187.
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Douglis-Nirenberg [3] (see also [2; 25]) and on known .L2 regularity theorems.
Our ~Lp method which utilizes new regularity theorems is quite different
and the results we obtain are stronger in various respects (I). Other existence
results utilizing the continuity method were given by Agmon-Douglis-Ni-
renberg [3].

The .L~ approach to the Dirichlet problem is based on a Lp regularity
theory for very weak solutions of the Dirichlet problem. To obtain such a

regularity theory we use some of the ideas of a method originally devised
by Nirenberg.[23] with the following essential modification : instead of using

.

Garding’s inequality we use the explicit solution of the Dirichlet problem
for elliptic operators with constant coefficients in a half-space, and the Lp
estimates for such solutions derived in [3]. 

’

The paper is divided into two parts. In Part I we give the basic re-

gularity theory, y both in the interior and at the boundary. This part has
an independent interest and entails most of the work. We remark that when
we consider the simpler problem of interior regularity we consider also weak
solutions of overdetermined elliptic systems and derive .Lp estimates for

such solutions. In Part II we shall combine the regularity theory with some
general results on Banach spaces (using in particular a result of Fichera
[10]) to develop the Lp existence theory for the Dirichlet problem.

2. Notations and definitions.

Throughout the paper w e denote by G a bounded domain in n dimen-
sional space with boundary 8G and closure G. We denote by ’ 

1 
.

the generic point in the space and put === (X2 -f - ... + xn) 2 . We say that
G is of class Ci if with every point xO = (XO E G one can associate
a sphere S having its center in XO such that a G n admits a represen-
tation of the form :

for a suitable k ; g being a function defined in some neighborhood U of

(XO 7X0 xO) possessing there continuous derivatives up to the
order i 

(1) For instance, Schechter’x method is applicable only to such problems for which
the solution of the adjoint problem is unique, whereas we get the alternative in the ge- 

B

neral case without any uniqueness assumption. 
’
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Similarly, G is said to be of classe if around each of its points
the boundary a G admits a local representation of the form (2.1) with a fun-
ction g satisfying a Lipschitz Condition in the neighborhood U .

Finally, G is said to possess the cone property if every point in G is

a vertex of a closed right spherical cone of fixed opening and height which
belongs to G. It is readily seen that if G is of classe then it also has

the cone property.
We shall denote by Ck (G) (resp. ek ( G)) the class of complex valued

functions possessing continuous derivatives up to ther order k (0  k C oo)
in G (resp. G). The class of infinitely differntiable functions with compact
support in G will be denoted by Co ( G).

Let, now, j be a non-negative integer and p a real number h 1. For ’
a function u (x) belonging to Cj (G) define the norm: -

where here and in the following a stands for the multi-index ((Xt , ... , (Xn) ,
I a I = ... + (X11,’ and ~a is the partial derivative : ,

We also put:

The linear space is clearly not complete under the norm (2.2).
Completing it we obtain a Banach space which we denote by (G). We
retain the notation 11 for the norm in (G). The space HO,LP (G)
is simply the space .Lp (G) and we shall usually write 11 IlLp(G) for the norm
in this space. 

’~

The classes of functions ( G) were investigated by many authors

(Sobolev [30], Morrey [21], Friedrichs [11], Stampacchia [311, Deny and

Lions [9], Gagliardo [13] and others). Some of the properties of these clas-
ses will be described in the next section. Here we limit ourselves to some
remarks.

By the identification mapping we can consider (G) as a linear sub-
set of Lp (G). A function u E will possess generalized derivatives

up to the order j which we term strong L~ derivatives. To define these let
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be a sequence of functions in, Ci (G) such that

Then, there exist functions such that

The functions no, are by definition the strong .Lp derivatives Dau of u in G.
They are uniquely defined.

We shall say that a function u belong locally to in G - writing

U E H;/2§ ( G) - if for every x E G there exists a sphere S C G with center

at x such that u E (S). It is readily seen (using a partition of unity)
that if u E H)?§ (G) then u E lIj,Lp for every domain G1 such that ~ C G .

In connection with the Dirichlet problem we shall have to consider

the subclass of functions in Hj,Lp which together with some of their deri-

vatives, vanish at the boundary in a generalized sense. To make this more
precise suppose that G is of class 0°,1. Let u E Hl,Lp (G). Then, as it is well
known, one can define for such u its trace y (u) on the boundary. For in-

stance, one can use the following procedure. For y (u) is simply
the restriction of u on a G. In this case it is easily established that

with a constant which is independent of u. (u) is a bounded
linear transformation from Oi (0) (considered as a subset in H1,Lp (G)) into

Since Ci ( G) is dense in one can extend the transformation
in a unique manner by continuity to the whole of H1,Lp (G). This defines
the trace on the boundary of a function u E H1,Lp ( G) as an element 

Let, now, m ,,j be positive integers such that m ,j. We denote by
the class of functions (G) which satisfy the

boundary conditions

where (2.4) is taken in the sense that
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We observe that (G; a closed subspace (G),
and that a function u belonging to ( G ~ satisfies

the boundary conditions (2.4) pointwise in the ordinary sense.

3. Calculus and properties of the classes 

We have remarked already that a function belonging to Hj,Lp (G) possets-
ses strong .L~ derivates up to the order j in G. Considering such a function
u as a distribution in G (Schwartz [28]), it is readily seen that the strong
Lp derivatives are also the distribution derivatives of u which are thus

functions belonging to L. (G). It is very convenient that under general con-
ditions on the domain G one can reverse this statement. We have:

THEOREM 3.1. that G is of class 
assume that the distribution derivatives of u of order j are functions belon-
ging to Lp (G). I. e., assume that there exist f unctions ua (x) E .Lp (G), 0 
(weak derivatives in the terminology of Friedrichs) such that

for all 9’ E 0’ (G). Then, u E Hj,Lp (G) and its distribution derivatives ua coincide
with its strong .L~ derivatives DáU (I ex  j).

The weaker conclusion that (G) is well known and was esta-
blished by various authors (Friedrichs [11], Sobolev [30], Deny-Lions [9]). The
theorem as stated is due to Gagliardo (2) [13]. For more regular domains it

was established by Babich [5].
The following remarks are obvious. If u E Hj,L p (G) and a E then

v = au belongs to Hj,L p (G) and the strong derivatives of v are obtained by
the standard Leibniz rule. If, moreover, G is of class then the boundary
values y (Dav) ( ex  j -1 ) are obtained by the same rules. The classes

Hj,Lp are preserved by homeomorphism of class Ci. That is, let x~ -~ x (x*)
be a one to one mapping of G* onto G such that the mapping and its

inverse possess continuous derivatives up to the order j in the corresponding
closed domains. Then the mapping u - u*, u* (x*) = u (a; (x*)), is a homeo-

(2) It should be pointed out that Gaglia-rdo is not using the notion of a weak deri-

vative but a different notion which is, however, equivalent to it. Also, the proof of the
main approximation theorem [13; p. 112] could be repeated word by word for functions

possessing weak derivatives in the sense of (3.1).
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morphism between (G) and (G*). Also, to compute the strong
derivatives of u* one applies the usual chain rule. The same remark applies
to the trace at the boundary of derivatives of order  j -1 when G is of
class 

Most of the following, lemmas are the .L~ modified versions of the ca-

lculus Lz lemmas given in Nirenberg [23]. Unless otherwise stated we shall
assume in these lemmas that G is of class 

LEMMA 3.1. Let u E .Lp (G), p ~ 1. Suppose that u is a weak limit in Lp
of a sequence of functions (Uk) which belong to Hj,Lp (G) and possess , uniformly
bounded norms 11 Uk · Then, u E Hj,Lp (G) and its derivatives of order
 j are the weak Lp limits of the corresponding derivatives of the functions uk.

Proo f : From the weak compactess of the unit sphere in it

follows that there there exists a subsequence Uk’ such that DqUk’ converges
weakly in L~ to a function Hence, for every function

Thus, ua is the distribution (weak) derivative Dau. But then, 
it follows from Theorem 3.1 that (G) and that ua coincides with

the strong .Lp derivative Da u. Moreover, from the uniqueness of the deri-
vatives it follows that the whole sequence Da uk converges weakly to Da u
and not only a subsequence.

Using Theorem 3.1 one also obtains readily the following
LEMMA 3.2. Suppose that u belongs to (G) and that its j’ th order

derivatives belong to (G) , then (G).
NOTATION : Let h = (ht , ..., be a real non-vanishing vector. We shall

use the symbol bh to denote the’ difference quotient operator :

LEMMA 3.3..Let u E (G) ( j &#x3E; 0 , p ~&#x3E; 1). Supposc that there exist

a constant C such that for every subdomain G1 C G :
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for all sufficently small vectors h. Then 1t E (G) and

Proof : Consider first the case j --- 0 . From (3.3) and the weak com-

pactness of the unit sphere in .L~ it follows that there exists a sequence of

vectors (h~’~~~=1 in the direction of the x2 axis, 0 , such that the se-

quence 6hm u (m sufficiently large) tends weakly in Lp (Gl) to a function ui;
and this in every fixed subdomain G, C G.  C for all

such subdomains, it follows further that ui E .Lp (G).
Now, from the definition of weak convergence we find that for all fun-

ctions cp E Co ( G) :

This shows that ui is the distribution derivative Di u in G. Since Di u E Lp (G)
(i = 1 ~ ... , n) we conclude from Theorem 3.1 that,u E H1,Lp (G). Clearly, we
also have 

-

Next, assume that j ¿ 1. Let again (hm) be a sequence of vectors in

the direction of Xi tending to zero. It is easily seen that ~h~n u converges to
in Lp (G,). Assuming without loss of generality that °1 is of class 0°,1

and applying Lemma 3.1 to the sequence it follows that Dzu E Hj,Lp (G,)
and that

From this and from Lemma 3.2 we conclude that u E (G,) for any
subdomain Gi of class 0°,1 (and consequently for any subdomain G, , Gi C G).
Since all the distribution derivatives of u of order  j -~-1 are functions
belonging to it follows from Theorem 3.1 that u E (G). That

(3.4) holds is obvious.

By the same argument used to prove Lemma 3.3 for j = 0 one obtains
LEMMA 3.3’. Denote by ZR the he1nisphere I x ~ I  R, Xn &#x3E; O. Let u

be a function belonging to Lp (Z.R) , p &#x3E; 1. Suppose that there exists a con-

stant C such that for every R’  1~ : .
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for all sufficiently small vectors h of the form h = (h , ... , hn-1, 0). Then the
distribution derivatives Di u for i = 1 , 7 n -1 are functions belonging to

The following known lemma will be useful.
LEMMA 3.4. Suppose that G has the cone property. Then, for all functions

u E (G) (j &#x3E; 1) and every 8 &#x3E; 0 the following inequality holds :

where C is a constant depending only on s , j , p and G.
Lemma 3.4 for somewhat more regular domains was established by

Nirenberg [24J (3). The inequality for domains which have the cone property
was proved by Gagliardo [13]. ,

Finally, we conclude this section with the well known integral inequa-
lities of Sobolev [30]. 

° 

,

THEOREM 3.2. Suppose that G has the cone property. Then the functions’ I

u belonging to (G) ( p &#x3E; 1) satisfy the following relations.

with a constant depending only on n , j ~ p and G.

null set) such that

with the same constant dependence as above.
REMARK : If the boundary of the domain is somewhat more regular, e.

g. if G is of class one can assert in case (iii) of the theorem that u
satisfies a Holder condition in G.

4. Some lemmas related to elliptic operators with constant coefficients.

Let A (x , D) be a linear differential operator with complex coefficients

operating on functions u (x) defined in a domain of En. Denote by A’ the

(3) The analogous one dimensional case is due to Halperin and Pitt.
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leading part of A, i. e. the part of highest order terms. A is said to be

elliptic in the domain if for every point x in the domain the characteristic
form A’ (x , ~) # 0 for all real vectors ~ = ($1 , ... , $n) # 0. It is well known

that if n &#x3E; 3 and A is elliptic then its order is even. This is not neces-

sarily true for n = 2.
In this section we shall consider an elliptic operator A of even order

2m with constant coefficients and with no lower order terms:

A being elliptic there exists a constant À &#x3E; I such that

for all real vectors ~. We term A the ellipticity constant of A.
We denote by x’= (x, , ..., the generic point in and whenever

convenient write x in the form (x’, We also put Dz, = (D1 , ... , 
and D = (Dx~ ~ Dn) .

Write the operator (4.1) in the form A (Dx’ , For a fixed real vec-

tor ~’ = (~1, ... , $n-1) =)= 0 consider the roots (in ~n) of the polynomial
A (~’ , $n) . If n &#x3E; 3 the ellipticity of A implies the exactly half the roots
possess a positive imaginary part (see [3]). This is not necessarily true for
rc = 2 if the coefficients are not real. In general we shall say that A sati-
sfies the « roots condition » if for every fixed real vector $’ 0 the poly-
nomial A (’ , n) has exactly m roots with a positive imaginary part.

The following two lemmas are basic for the proof of regularity in Lp
of weak solutions of elliptic equations. The first rather known lemma will

be used to establish interior regularity (and .L~ estimates) of weak solutions
of elliptic equations and overdetermined elliptic systems. The second lemma
will be used to establish regularity at the boundary of weak solutions of

the Dirichlet problem. In both lemmas A will stand for the elliptic operator
(4.1) and p will denote a number &#x3E; 1. In Lemma 4.2 we shall assume in

addition, if rc = 2, y that A satisfies the « roots condition » introduced above.

We shall denote by S-R the sphere x ~  R and by ~R the half sphere

LEMMA 4.1. there 

such that
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and

where 0 is some constant depending only on n, m, p , Rand A (but not on
f or v). 

-

LEMMA 4.2. Given a functiorc f E there exists a function v E 

such that

and

where 0 is some constant depindig only on n, m , p , R and À.

To establish Lemma 4.1 we simply define

where F (x - y) is a suitable chosen fundamental solution of A with pole
at x = y. It is well known (e. g. F. John [16]) that there exists a funda-
mental solution having the form :

where P (x) is a polynomial of degree 2m - ~ if n is even, 2m &#x3E; n, and
P (x) is zero otherwise ; y (y) is an analytic function defined ion y === 1.
From (4.5) it follows that

for (i) &#x3E; 0, in case rc is odd or n is even and greater than 2m ; (ii)
I a I &#x3E; 2m - n if n is even and not greater than 2m. If n is even and

then

Inspection of the explicit formulas for the fundamental solution (in [16])
shows that the constants in (4.6) and (4.6)’ depend only on m , n , I and



415

I (X 1. Furthermore, it is easily established that Da F (x) for I = 2m is a
homogeneous function of degree - n with a zero mean on the sphere

I x 1= 1. 
’

Choosing a proper normalization of F, the function v defined by (4.4)
is infinitely differentiable and satisfies (4.2). Furthermore, from the proper-
ties of the fundamental solution mentioned above and from the well known

theorem of Calderon and Zygmund [8] on convolution transforms with sin-

gular kernels, it follows readily that

where C is a constant dependig only n , m, .p , Rand À. Hence, the function
v defined by (4.4) answers all the requirements of Lemma 4.1.

The proof Lemma 4.2 is more involved and depends on the solution
of the Dirichlet problem for A in a half space and related Lp estimates.

We shall denote by Et the half space 0. In its simplest form
the Dirichlet problem for A in Ej is the following

PROBLEM : Given functions (p, (x’) , (x’), infinite ly difleTentiable and
of compact support in En-, , find an infinitely differentiable function u (x’, xn)
in Et such that

This problem (a special case among a whole class of boundary value

problems) was solved in [3] (4), where it was shown that there exist kernels

(j = 1, ... , m), defined and infinitely differentiable in Ef except
for the origin, I such that a solution of (4.7) is given by the formula :

We mention the following properties of the kernels g~ also established
[3]. Let q be a non-negative integer having the same parity as n - 1. The
kernel Kj admits a representation of the form

(4) For n = 2 and A real the solution was given in [1].
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n-1
where 4z, is the Laplacean I Dfl, and are certain kernels which are infinitely

_ 

i=1

differentiable in Dn except for the origin which, moreover, satisfy the fol-

lowing inequalities in 

for + q, where the constants in (4.10) and (4.10)’ depend only on
n, m, q, I a I and the ellipticity constant £ .

Let, now, w (x’, be an infinitely differentiable function with compact
support in By the preceding a solution ’ u E 000 of the Dirichlet

problem

is given by the formula

Moreover, we have
LEMMA 4.3. The solution u satisfies the following inequality in Lp,p &#x3E; 1:

where co is a constant depending only on m, n, p and A. If, in addition, the

support of w is contained in the then

where Co ’is a constant depending only on n, m, p, 2 and R.
Lemma 4.3. was proved (essentially) in [3] (compare also Koselev [17]

for the .Lp estimates involved). For the sake of completeness we shall pre-
sent a somewhat simplified version of the proof later on. It is with the aid

of this lemma that we shall now give the
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Proof of Lemma 4.2. Extend the function Co (~R)) as zero ou-
tside ~R . Denote by (R some fixed infinitely differentiable function such

that CR =1 for I x  R ~ ~R = 0 for &#x3E; 2R. Define :

where F is the fundamental solution of A introduced before. Clearly y w is
infinitely differentiable, w « 0 for 2R, and

where Cl is a constant depending only and R. Let, now, u
be the solution of the Dirichlet problem (4.11) given by (4.11)’ with w defi-

ned by (4.13). Put:

Then~ v has all the properties required by Lemma 4.2. Indeed, v E C°° (E,,
By (4.14) and (4.11):

Finally, using the estimate (4.12)’ of Lemma 4.3 and (4.14), we get

where Co , C are constants depending only and R. This esta-

blishes the lemma.

We shall conclude the section with a proof of Lemma 4.3 based on the

properties of the kernels g3 mentioned before. We shall need first the

following
SUBLEMMA : Let G (x) = G (x’, xn) be a kernel, defined and measurable

in the half space Et such that


