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RIESZ GROUPS

by L. FUCHS(*)
Dedicated to my F’ather on his 80th birthday

Several authors have devoted their interest to investigating lattice-or-
dered groups, and recently the theory of lattice-ordered groups has made a

great progress. There is a class of partially ordered groups which lies very
closely to lattice-ordered groups and which however has not been dealt

with systematically, though it deserves great interest because plenty of

examples may be found for such groups in different fields of mathematics.

This class consists of the directed groups G with the following interpolation
property: if at , a2 , bi , b2 E G satisfy

then there exists some c E C-~ such that

In his investigations on linear operators, F. I?IEsz has called attention to
such groups [1:{ J (1), and this is the reason why we shall call them Iliesz 
lie has introduced them by the refinement property : if ..., 7 ... bn
are positive elements of (G and

Pervento alia Redazione il 28 Agosto 1964.
(*) The author was supported by a grant from Conxiglio Nazionale delle Ricerche at

Centro Ricerche Fisica e Matematica in Pisa.

(~ ) Nmnbers iii brackets refer to the bibliography given at the end of this paper.
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then there exist positive elements c;; (i = l, ... , = 1,..., n) such that

for every i and j. Later BIRKHOFF [2] has established some properties of
Riesz groups. For some recent applications we may refer to BAUER [1] and
NAMIOKA [10].

The aim of the present paper is to lay down a systematic treatment
of Riesz groups from the algebraic point of view. A large part of the di-

scussion runs parallel to the theory of lattice-ordered groups. In order to

ensure that certain theorems on Riesz groups contain important results on
lattice-ordered groups as’ special cases, one has to consider Riesz groups
not simply as partially ordered groups with some special type of order, but
rather as partially ordered groups in which for certain pairs of elements
« meet » or « union » operation is defined. Thus Riesz groups are to be re-

garded as algebraic systems with not everyvhere defined operations « meet &#x3E;&#x3E;

and ( union ». This fact causes some difficulties at several places. Another

difficulty stems from the fact that while lattice-ordered groups form an equa-
tionally definable class of algebras, and so do those lattice ordered groups
which are representable as subdirect products of fully ordered groups, the

Riesz groups fail to have this property. Therefore, special care must be
taken when subdirect representations are discussed.

First we lay down the most important terminologies and notations to

be used throughout the paper (§ 1 ). Then we begin with different characte-
rizations of Riesz groups (§ 2). It turns out that this class of partially or-

dered groups admits several equivalent definitions, showing that it is not

only of importance from the point of view of applications, but it is at the

same time a very natural generalization of the concept of lattice-ordered

group. Some of the simplest examples of Riesz groups which are not lattice-
ordered may be found in § 3. The next section (§ 4) is devoted to the

notions of orthogonality and carrier; they are useful in Riesz groups as
well. In § 5, the important concept of o-ideal is discussed. In Riesz groups
the o-ideals play a similar role as the 1-ideals do in lattice-ordered groups.
The property of being a Itiesz group is preserved on passing modulo o-ideals.
The main result on o-ideals states that in lliesz groups they form a distri-
hutive sublattice of the lattice of all normal subgroups.

The next § 6 deals with extensions of commutative Riesz groups ana-

logously to the Schreier extension theory of groups. Among the extensions
of’ a Riesz group by another one, the Riesz groups can be characterized

easily. The results of this section serve as tools for obtaining some theorems
in the subsequent sections.
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Of great importance are the Riesz groups in which two elements may
have an intersection (or union) only if one is greater than or equal to the
other. These Riesz groups, called anti lattices, play the same role in the

theory of Riesz groups as the fully ordered groups do in the lattice-ordered
case. They are introduced in § 7, and in § 9 we get full descriptions of
antilattices in the commutative case. First, it is shown that a commutative

antilattice with isolated order is an extension of a trivially ordered group

by a fully ordered group. The other structure theorem states that they can
l)e obtained as subgroups of cartesian products of fully ordered groups
where an element of this product is to be considered greater than e only
if each of its components is greater tban e. Exceptional elements, called

pseudo-identities and pseudo-positive elements, are discussed in § 8.

In § 10 it is shown that a commutative Riesz group is subdirectly
irreducible if and only if it is an antilattice. By making use of this result
it is proved that to every commutative. Riesz group there exists a meet

and union preserving o-isomorphism with a subdirect product of antilattices.
The next § 11 contains the discussion of the case when the subdirect pro-
duct representations by means of antilattices are irredundant. Like in case
of lattice ordered groups, they are then unique up to o-isomorphisms.

The final § 12 deals with the analogue of the Conrad radical of lattice-
ordered groups. Here the underlying group is supposed to be only directed
and to have isolated order, and even in this rather general case the existence
and some of the main properties of the Conrad radical can be established.
(In general, we do not lay stress on formulating and proving the results
in most general form.)

§ 1. Terminology and notation.

By a partially o)-dered group G we mean a group (whose operation will
1&#x3E;e written as multiplication) which is at the same time a partially ordered
set under a relation , and the monotony law holds : a:!!~~ b implies ca  cb
and ac  bc for all c E G. If G is a lattice under , then it is called a

lattice-ordered group. The set of all x E G with x &#x3E; e, e the group identity,
is the positivity dontain P = G+ of G. The symbol P* will be used for P

with e omitted. G+ completely determines the partial order of G~ since a  b
if and only if ba-1 E G+. G is trivially ordered if G+ = e. Q’+ generates the
group G if and only if G is directed in the sense that to a, b E G there is

always a c E G satisfying a  c, b  c.

The partial order  is called isolated if an &#x3E; e for some positive
It is called dense if given a  b there ahvays exists some
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g E G such that a  c  b. This amounts to requiring the same for a = e,
and hence to P*2 = P*. (Here and in the sequel multiplication of subsets
in G means complex multiplication.)

For at , ... , a" E G, ... , all) and L ... , will denote the set of

all upper and lower bounds of ... , a" in G. The symbols U* ... , a,,)
and Z ~ (ai , ... , a") will be used to denote the sets of elements in G which

are greater than and less than, respectively, each of a1 , ... , a,, (equality ex-
cluded). A subset is an upper (lower) class implies U (a) C S
(L (a) C 8). We say that S is u-directed (1-directed) if a, b E S implies the

existence of an xES such that . ~S is called convex

and a, b E ~S, x E G imply 
Let G and G’ be partially ordered groups and g a mapping from G

into G’. If 99 is a group liomomorpliisni which preserves order relation,
then it is called an An o-homomorphism, which is surjective
and ,under which the preimnge of a positive element always contains a

positive element is an If cp is a group isomorphism preserving
order relation, we say g is ano-morphisim Finally, if cp is a group

isomorphism and if 9’, rp-1 preserve order relation, then rp will be said to be
an 

If A is a convex normal subgroup of G, then the partial order  of G

induces one in G/A : one puts b  c for the cosets b, c mod A if and only
if some b E b and c E c satisfy b  c. Then the canonical map b - bA is an

o-epimorphism of G onto (~/~4. (,onversely, if 99 is an o-epinlorphism of G
onto some G’ and if A is the kernel then A is a convex normal sub-

group of G such that the o-isomorphism G’ holds.

Let 0). be a family of’ partially ordered groups with A ranging over

some index set A. The cartesian product C = Gi of the Gi is made into
a partially ordered group by between two elements of C if

for the components ht of g, h in each The direct product
IIGA is a partially ordered subgroup of C, and so is every snbdirect product of
the If we define g  h in the cartesian product C to mean  hi for
each A, then we call the ariHing partially ordered group the cartesian

products of the G).. Mild subdi’rect products will mean subdirect products with
this definition of order. &#x3E;

For the concepts not mentioned here we refer to [7].

1 § 2. Characterizations of Riesz groups.

Now v-e turn to our main objective, i. e. to Riesz groups.
1B partially ordered group G is called a Riesz group it’ it has the follo-
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wing two properties :
(i) it is directed ;
(ii) it has the interpolation property : to all a2, b2 E G with

ai c = 1, 2 ; j = 1, 2) there exists a c E G such that

Property (ii) may be called the (2~2)-interpolation property, if in general
we mean by the (nt, n)-interpolation property that given ... ~ am and bl 1... 
in G such that

then there exists a c E G satisfying

Since property (i) may be viewed as the (2,0)-interpolation property, it

follows at once by induction :

2.1. A partially ordered group G is a Riesz group if and only
if it e&#x3E;ijoy,q tlze (i)i, for all integers m2, n &#x3E; 0.

Note that if, in addition to directedness, the (2, oo)-interpolation pro-
perty is also assumed (oo means an arbitrary cardinality), then this is

equivalent to tlce hypothesis of’ being lattice-ordered. It is clear that the

(00, oo)-interpolation property amounts to conditional completeness. Thus,
roughly speaking, Riesz groups are in the same ratio to lattice-ordered

groups as these to complete lattice-ordered groups.
While lattice-ordered groups are necessarily Riesz groups, there are a

lot of examples for Riesz groups which fail to be lattice-ordered. See § 3.

The main properties of’ Riesz groups are summarized in the following
theorem.

THEOREM 2.2. For a directed grouln G, tlae following conditions are

equivalent (2) :
(1) G is a group ;

(2) for all ai , ... , a7n E G, the set U ... , am) is 1-directed
(:3) for all ai , ... , am and bi , ... , bn E G we have

--- - -_ --- - - -

(2) Of course, even the duals of (2)-(5) are equivalent with (1). Portions of this theo-
rom have been published in ( 13~, [2J, [lJ; cf. also ( 15~.
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(4) the intervals [e, a] are multiplicative :

(5) if a satisfies

with

then there exist elements a, E G that

where

(1) and (2) are equivalent. Assume (1) and let bi , b2 E IT (at , ... , 
Then for i = 1, ... , m, j = 1, 2 and by the (m, 2)-interpolation pro-
perty some c E C~ satisfies for all i and j. Thus 
and U (at, ..., is 1-directed,, That (2) implies (1) follows on using the
reverse argument.

(1) and (3) are equivalent. First assume (1), and note that in any G

Thus it suffices to show that every x E U (ai bi , ..., belongs to

U (a~ , ..., am) U (b1 , ... , bn).  x, and so a’i  bjt 1 for all

i and j. By the (m, n) interpolation property there is a y E G such that

for all i and j. Now xy E U(a1,...,am) and y E U (b1 , ... , bn),
and thus , indeed. Conversely, suppose (3)
and let for Then I

implies I with some c E U (a, , a2) and This c sa-

tisfies ai  c  b; for all i and j.
(1) implies (4). It is enough to verify for a Riesz group G that if

e  x  ab for some x E G where e  a, e ~ b, then there exist elements
y E [e, a], z E [e, b] such that x = yz. Now any one of xb-1, e is less than

or equal to any one of x, a, hence some y E G can be inserted between

them. If we define z = then e  z  b and (4) follows.

(4) implies (5). Property (4) gives by induction

where bi ? e. If a belongs to the left member, then it belongs to the right
member. This is nothing else than (5).
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i B-/ ,*J. BV/ --- v = "’1 , I - - "’2 , "’" ~ -1 ~ - = -2 .

Then e  bi  b2 (a-1 b,), and (5) implies the existence of a c ~t e, such that
c-1 bi &#x3E; e and c  b2 , 9 c-1 bi  a-’ bt . This c lies between e, d and bi , b2 .

This completes the proof.
In commutative groups we have a further equivalent property :

THEOREM 2.3. A commutative directed group G is a Riesz group if and
only if it satisfies

(6) if for positive ai, ..., am, bj ... , bn in G

then there exist positive Cí such that

and

If G is a Riesz group and the positive elements ai , bi satisfy
a1 ... a’ln = bi ... bit 7 then we have

(5) guarantees that there are elements E G such for

every and Now c2j ’ .. are certainly positive and satisfyevery J ant ((,1 = ell". C1n. o"r 2j = oj clj are cer aUI Y sa IS Y

A simple induction on the number of establishes (6). Conversely, if

a directed group (~ satisfies (6), then (5) follows at once.

Let us mention 

PROPOSITION 2.4. The direct (or the cartesian) product of _partially ordered
is a lliesz group and only af each factoo is a Riesz The 1nild

product ~f dense -Riesz is again a l-licsz 

The proofs of the statements are straightforward and may be left to
the reader.

It is known that every abelian group (B) can be embedded in a minimal
divisible group and divisible groups are easy to liandle, W’e now show that

torsion free abelian Riesz groups can he embedded in divisible Riesz groups:

(:~) For the needed results on gruups we refer e. g. to 16 J.
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PROPOSITION 2.5. Let G be a torsion free abelian Riesz group and D

its divisible hull. The order of G can be extended in a unique way to a minimal
isolated order in D. Then D will again be a Riesz group.

As usual, a E D is defined to be positive if for some natural integer
n, an E G is positive. This makes D into a partially ordered group which is
obviously again directed. If given at , a2, I b2 E D such that ai  bj
(i = 1, 2 ; j = 1, 2), then choosing a positive integer n such that af, bj E G,
we find a c E G satisfying for all i, j. The unique nth root of
c lies between the ai’s and &#x26;/s.

In particular, we see that the order of a torsion free abelian Riesz

group can always be extended to a minimal isolated order under which it

is again a Riesz group.

REMARK. If the definition of Riesz groups is formulated in a much

more general way, a family of intermediate notions between Riesz groups
and lattice-ordered groups arises. Let M and it be infinite cardinal numbers.

By the (M, n)-interpolation property we understand the following 
of a partially ordered group G : if given two subsets A and B of G such
that the cardinality of A is less than flt, that of B is less than n and

a £ b for all a E A and b E B,

then there exists a c E G satisfying

for all a E A and b E B.

In this sense, Riesz groups are characterized by the (Xo , 0)-interpoltion
property, and lattice-ordered groups of power  f11 by the in) intcrpo
lation property. Plenty of our results can at once be extended matiitii

mutandis to the general case.

§ 3. Examples.

Since lattice-ordered groups are necessarily lticsz groups aud we are
furnished with a lot of examples for lattice-ordered groups, in what follows

we are going to exhibit only examples for Riesz groups which fail to have

a lattice-order.

1. Let G be the additive group of complex numbers and let the j&#x3E;nsi-
tivity domain P consist of all x + iy (x, y real) for which either x .--- y 0
01’ z &#x3E; 0, y &#x3E; 0.
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2. The same group G, but P now consists of all x + iy for which

0.

3. The same group G, now let positivity be defined such that P consists
of 0 and of all x -~- iy with x &#x3E; 0 (y is arbitrary).

4. Let G be an arbitrary dense fully ordered group and T an arbitrary
group with no order at all. If’ K3 is a group which contains T as a normal

. subgroup such that (group-isomorphism), then G may be ordered
so that its positivity domain consists of the identity and of all the elements
which belong to strictly positive cosets (ordering as in G (4)).

Thus a Riesz group may contain elements of finite order, and need
not have isolated order.

5. Let G be the additive group of all polynomials (or rational functions)
with real coefficients, and define f &#x3E; 0 if and only if f (x) &#x3E; 0 for each

real number x in the closed interval [0, 1 J.

6. The same gronp G, but let f ) 0 mean that f (x) &#x3E; 0 for every
x E (0, 1].

7. Let G consist of the additive group of all real-valued functions

which are denned and differentiable in the interval (0, 1]. For f E G set
1 f~ I for each x E [0, 1J.

8. The same group, but let f &#x3E; 0 mean that f (x) &#x3E; 0 everywhere
in [0, 1].

9. Iliirmonic functions in a region of the plane form an additive group
in which we 0 if j (x) ? 0 for every x. 

-

10. Let G be a group with a valuation iv, i. e. w is a function defined

on G with real values such that

(i) 10 (ab) (a) + 2c (b) for all a, b E G,
(ii) w (e) = U.

In ad.1ition we assume

(iii) the set of values 1V (a) is an infinite dense subset of the real

numbers.

(4) Here G can be replaced by a dense autil8,ttice.
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Then putting a E P if and only if either a = e or tv (a) &#x3E; 0. G is
made into a Riesz group (5).

If, for instance, G is the free group with the free geiierators ..., an,...
and if we define zv as the valuation induced by

then we get a Riesz group on the countably generated free group. (The
same can be done in the abelian case.)

§ 4. Orthogonality, carriers.

As usual in lattice-ordered groups, we call the elements tt, b of any
partially ordered group G o/rtllogonal if

which means nothing else than L (a, b) = L (e). ()rthogouality may be de
noted as usual hy the symbol a I b.

This definition of ortliogouality is equivalent to the oue introduced by
[9]; he has defined orthogonality hy the relation 1 n I’!m’ = I’.

Orthogonality in the general sense preserves several properties ui’ ort 110-

gonality in lattice-ordered groups. Let m list some of’ them here.

(a) If a A b = e and if c ? e, then

We have clearly

’1’liia is a (’011-

sequence of (a).
are pairicise orthogonal then

exists and

By (b), a, ... is orthogonal to Hence from the identity x (.r A Y) -’ y =

= x v y we infer al ... n,_1 v a, = y ... a,,-, an. A simple induction 
the proof.

(5) Note that Example 10 is a special case of Kxamph 4.
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(d) Orthogonal elements cotiimute. This follows from (c) in the special
case n = 2.

(e) If a Riesz group G is the direct product of its convex normal sub.

groups A and B , G = A &#x3E; B, then the positive elements of A are orthogonal
to the positive elements of B.

Let a E A, b E B be positive elements. Then (a-, b). If g E G + belongs
to L (a, b), then by convexity g E A and g E B whence g = e. If

and if ’g were incomparable with e, then by the dual of (2) in Theorem 2.2,
. 

there would exist an h E L (a, b) such that e C h and g C h which has been
shown to be impossible.

(f) The set X* of elements of G+ orthogonal to every element of 11, sub-
set X of G+ is a convex containing e, of G+.

Evidently, and X * is convex. (b) implies that it is a semigroup,
in fact.

In trying to generalize the notion of orthogonality to non-positive ele-

ments, analoguously to the lattice-ordered case, a serious difficulty arises.
This stems from the fact that in our present case the absolute of an ele-
ment fails to exist in general. Though it can be replaced by a certain

subset of G (see FuoHS (7 J, p; 77), which is adequate for certain purposes,
it does not lead to a very natural concept of generalized orthogonality.
Therefore we do not discuss it here.

On using ortllogonality, the notion of (.filet) can be introduced

in the same way as in lattice-ordered groups (cf. (8]).
The positive elements a, b of G are said to belong to the same 

if a n x = e for some x E G implies b A X = e and viceversa. This subdivides

G+ into pairwise disjoint carriers~; the one containing a is denoted by a".
It follows at once :

(A) The are convex subsemigroups of G+.
In fact, for positive a, b, = e if and only = e and

e.

mean that b A x = e implies cr A x = e, for each x E G. Then

this definition is independent of the representatives a, b of a", b" A and makes
the set C of carriers of G into a partially ordered set. The map a - a" of

G+ onto C is obvionsly isotone.
(B) The union of a,", b" always exists, and satisfies

The inequalities being obvious, let 0^ satisfy
I and let c E c". Then c A x = e implies both a A x = e and

b A x = e. By (b) these imply ab A x == ~ whence  c., a.s we wished to

show.
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(C) If a"  b^ and if a E a", then there is a b E bit such that a  b.

Taking some bl E bl, we have, in view of (1»),
thus b = b, a is an element of the desired type.

(D) (t is distributive in the sense that if b" exists, then so does
(aA v cA) A (b^ v el) for each cA E (: and

= all. A lJA; then obviously dA v c" v c" and d" b" v c".

Assume that .x" exists v c" and which is v r".

Then by (B) there is also one such that d" v c"  x". Let d E dA, and

let x E xl, a E a", b E b’ satisfy which can be achieved

because of (C). Then d’  for equality would imply (dc)" = d" v c" ==
== v c" = x", against hypothesis. But xc-l E L (a, b) implies  a",

"  b", a contradiction to tlce cloice of d".

THEOREM 4.1. If a p(ti-tially ordered group G laas a finite of
carriers, then the partially ordered set (; of its carriers is a Boolean algebra.

By (11), g is a union semi-lattice, therefore the existence of a minimal
element e’ in (¡ and the assumed finiteness of’ d imply that (! is a lattice.
By (D) it is distributive. If are the atoms of C, and if

b" E G satisfies but thenc"

will be the complement of’ b" in C. For,
......

Furthermore u = bc (b E b", c E c") satisfies v c" = ui for every
i whence implies for all i ; thus x" contains no atoms,
x = e and u" is the maximal element of d.

§ 5. o ideals.

The importance of the role played by 1-ideals in lattice ordered groups,

is well-known. In arbitrary partially ordered groups, in particular in Riesz

groups, the o-ideals seem to have corresponding though not so important a

role. We are going to mention the main properties of’ o-ideals.

Recall that a subset A of a partially ordered group G is called an

o ideal if

(i) A is a normal subgroup of G ;
(ii) A is a convex subset of G;

(iii) A is a directed set.
It is evident that an o-ideal of a lattice-ordered group is nothing- else

than an 1-ideal. Note that
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(A) o-ideals contain unions and intersections of their elements whenever

they exist in G.

(B) Neither the union nor the intersection of two o-ideals need be

an o-ideal.

(C) The union of’ an ascending chain of o-ideals is again an o-ideal.

Therefore, if A is an o-ideal of G and x E G does not belong. to A, then

there exists an o-ideal B of G maximal with respect to the properties of

containing A and excluding x.

(D) o-ideals generated by sets of positive elements do have a meaning.
The convex hull of the normal subsen1igronp with e generated by a given
set of positive elements is obviously a convex normal subsemigroup ~S of P

which must be contained in all o-ideals generated by the given set. The rest
follows from

PROPOSITION 5.1. :fhere is a one-to.one betiveen the o-ideals

A of a partially o)-de)-ed groulJ G and all convex S of
(.J+ containing e. The are given by (6)

are int’e’fse to each othet..

It is clear that if A is an o-ideal, then G+ f1 A is a convex normal

subsemigroup with e. Also, because A is directed; thus (1)
gy is the identity. Now if 8 is as formulated, then (8’ ) = A is plainly a

normal subgroup which is directed. To see convexity let x E G satisfy
(a, b, c, d E S). Then on right multiplication by bd we get

xbd bd where ad E 8 and c (d-1 bd ) E ~. So - in view of the

convexity have y = xbd E S. Thus x = y ~S ) . Finally,
G+ n ~~~’ ~ = 8, for if a, b E ~S~ satisfy ab-1 E G+ , then e  ab-l  a implies
ab-I E S. So is again the identity map.

Note that the o ideal corresponding to G+ coincides with G if and only
if G is directed. Also, the o-ideal generated by a family of o-ideals does have
a meaning.

(E) 1’hue canonical i)tap of’ a partially ordered group G onto its factor
group GIA ivith respect to an o-ideal A of G preserves unions a,nd intersections.
I f; for ~~ y E G, exists in G, then for the corresponding cosets

lllOd A one has evidently z  x and z  y. If the coset u satisfies u  x

------- -- -

(6) IS! denotes the subgroup generated by the subset S.
(7) In :t product of Dlappings the left factor is followed by the right one.


