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AN EIGENFUNCTION EXPANSION METHOD

FOR PROBLEMS WITH OVERSPECIFIED DATA (*)

KEITH MILLER

1. Introduction. We consider problems such as those arising in partial
differential equations where separation of variables is possible, an eigen-
function expansion of solutions exists, and each solution may be represented
by its sequence of generalized Fourier coefficients. Likewise, data given on
one or more data surfaces may be expanded in terms of the eigenfunctions
and each data set may also be represented by its sequence of Fourier coef-
ficients. In this paper we consider problems with approximate and over-

specified data.
In Section 2 such problems are considered in an abstract setting, the

analysis here already having been reduced to consideration of sequences of
Fourier coefficients. It turns out that certain of the Fourier coefficients of
the solution should be obtained from one data set and certain should be

obtained from another, depending upon the degree and measure of accuracy
claimed for each data set. The interesting result here is that for this parti-
cular approximate solution the error bound is simultaneously « almost best

possible » with respect to every possible norm used to measure the error.
In Section 3 we apply these results to some problems of analytic con-

tinuation on a disc or annulus. Analytic continuation provides a particu-
larly good illustration because of the extremely simple nature of the eigen-
function expansion (Taylor or Laurent series). Also, these results are inte-

resting in their own right, one of them being a close analogue of Hada-

mard’s three circle theorem.

Pervenuto alla, Redazione il 4 bTarzo 1965.

(*) This work was supported by the Air Force Office of Scientific Resea,rch and the
National Academy of Sciences through a Postdoctoral Research Fellowship for 1964-1965
at the University of Genova. 
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The present method is particularly useful in the study of problems in

partial differential equations which are not well posed in the sense of Ha-

damard. For large classes of such problems continuous dependence on data
can be restored by restricting attention to the class of solutions satisfying
a prescribed bound. See Pucci [3] and John [1] ] for two of the early papers
in this line. The prescribed bound then induces a problem with overspeci-
fication of data. The methods of the present paper, in less abstract and

general a form, were introduced in [2] where they were applied to three of

the classical improperly posed problems, harmonic continuat50n, backward

solution of the heat equation, and the Cauchy problem for Laplace’s equa-
tion. Certain of the present analytic continuation results were also alluded

to there.

2. The abstract inethod. Consider the linear space of real (complex)
sequences X = j.r~) ? ~ ~ 0, for which the I quadratic norms

are all finite, where n :;? 0, are given real (complex) seqhëHces, t===l,....
Let be any other norm (non-negative, sub-additive real function would
be sufficient) defined on this space.

We consider first the problem of maximizing 11 with respect to the

quadratic constraints

The following method reduces (except for a f’actor of I ) the maximization

with respect to I constraints to I selarate maximizations with respect to

one constraint. Decompose sequences X in the following fashion :

where the sequence X’ has its nth term xi, given by

when

otherwise.
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Notice that with this decomposition, if an Xi satisfies the single constraint

II ~’~ Ili then it also satisfies the other constraints, II Xi Ilk ~ mk ,
k = 1, ..., I. Notice also that the sum of one or more of the X~ has no larger
a 11 norm than X itself.

1. Let N denote the supre))iiii)t of 11 X 11 icith respect to the I

constraints (2.2). Let Mi denote the stipreiiiit))t of II Xi II u,izlt ’respect to the

single constraint II Xi Ili c mi. · Then

PROOF : W’e have pointed out tliat the set of Xi satisfying the single
constraint 11 Xi’li ~ ~ni is a subset of the set of X satisfying all Z constraints;
thus,  31. Suppose now that satisfies all I constraints. By the subad-
ditivity we . thus,
11 which completes the proof.

We next consider the problem of determining an approximation to an

unknown sequence when several diiterent approximate data sequences, with

varying estimates of accuracy, are specified. Suppose there exists at least

one sequence X satisfying

where the data sequences G1 , ... , are given. We wish to find a sequence
I

approximating. every X satisfying (2.6). Letting I be our approximation,
i=l

we have the following error bound.

LEMMA 2. If X satisfies (2.6), then

PROOF.

13tit, since we 

which completes the proof.
We point out that the error hound 411 + ... + M1 appearing in (2.5) is

« best possible to within a factor of I » in the following sense; for every
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X (and every 8 &#x3E; 0) there exist Y such = 1, ... ,1,
and yet X - (Ml + ... -~- MI)/I. In other words,
iI

the approximation E is « almost best possible &#x3E;&#x3E;, independently of the
t==i

particular norm [[ [[ used to measure the error.
Clearly the constraints mi cannot be arbitrarily small for given data

sequences In fact, the must satisfy the following a posteriori com-
I

patibility conditions with respect to the approximation Z 
i=1

LEMMA 3. Suppose X satisfying (2.6) exists. Then

PROOF.

But,

Also, since (X - Gi)i satisfies the single constraint

it also This completes the proof.

This lemma implies that if there exist X satisfying (2.6), then the approxi.
I

mation E ((7,)’ itself must almost satisfy (2.6).
Z~1

The hypotheses may be relaxed and the method extended somewhat.

It was pointed out that the 11 need only be a non-negative,
sub-additive real function. Also, the « need only be semi-norms,
with some of the terms being zero; this in fact is quite useful in ap-
plications. The weighted l2 norms may be replaced by NNeighted 1. norms,
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and the results remain unchanged. Rather than sequences I x. I we can
consider functions x (t) of the real variable t; such an extension is useful

when considering Fourier integrals rather than Fourier series; see Section

11 of [2] for example.

3. Analytic continuation on ~,n annulus. Let M, N be integers, not
necessarily positive, - oo  00. For functions f (z) analytic and
single-valued on an annulus we divide the Laurent expansion into low,
medium, and high order parts;

Likewise, for .L2 complex functions 9 (0) defined only on a single circle,
(I z = a) say, we make the corresponding orthogonal decomposition of the
Fourier expansion ; .

Moreover, we extend g formally as a function of z by means of its Laurent
expansion ; 

--

This perhaps converges nowhere outside the original circle; however, (z)
converges for I z (z) converges everywhere, and g- 1 (x) converges
for 0  I z C a. Denote tlie uniform norm and the L2 norm on the circle
of radius i- as follows:

Let [a] denote the integer sHeil that [a] ~ a.
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Corresponding to Lemma 1 we have the following result, similar to
Hadamard’s three circle theorem. This result provides a stability bound
for the problem of analytic continuation on an annulus when approximate
data is given on the inner and outer circle, or when appoximate data is
given only on the inner circle and a prescribed bound is imposed on the
outer circle.

THEOREM 1. Suppose f (z) is analytic and in ( a  C 1)
and

Then

this bound being best possible to a factor of simplifi-
cation yields

PROOF. We wisii to maximize with respect to the quadratic
constraints

Clearly f, an If Ir, all, aU, () f 111, 17 1 here correqpond to X, II 
mt II X 1n2 of Lemma 1. Then the decomposition f =
here corresponds to the decomposition ~’ _ X, -~- h.’2 there.

The supremum of with respect to (3.8), the supremum of Ir with

respect to (3.8 a), and the supremum of with respect to U;.8 1»
then correspond to M, respectively.

Fortunately, the maximization of Ir with respec·.t to (3.8 a) may
be carried out exactly. The constraints (3.8) are invariant witli respect to

rotations ; hence, it is sufficient to maximize I at 1 he single point i-
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on the real axis. The Schwarz inequality then gives the exact maximum ;

We likewise obtain the exact maximum for Ir with respect to (3.8b);

Therefore (3.6), including ,the fact that the bound is best possible to
within a factor of two, follows from Lemma 1. Finally, (3.7) follows from

(3.6) and the proof is completed.
Corresponding to Lemma 2 we have the following result.

THEORE:BI 2. Suppose f (z) is analytic and single-valued in (a  I z [ 1)
and

the L2 data functions g (0) ancl h (0) a1’e given on the circles ~ ~ z I = al
and {|z|=1 ’respectively. Then; f - -f- Ir satisfies the bound sa-

by If 1, in (3.6) and (3.7).
The problem of analytic continuation with a prescribed bound imposed

on the outer circle is of course taken care of’ by setting 7z = 0. We mention,
without writing them down, that there exist a posteriori compatibility con-
ditions corresponding to Lemma 3.

Instead of functions analytic on an annulus we may consider functions
analytic on the whole unit disc. Then, dividing the Taylor series into a
low and a high order part yields the following result.

THEORE11 3. Suppose f (z) is analytic and single-vatzied on {| z | [ 1 j and
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Then

this bouitd being best possible to ’within a factor of two. Moreover, simpli,fica-
tion yields

THEOREM 4. Suppose f (z) is analytic artd single-valued on I I z C 1 j and

(where tlce L2 data functions g (0) and h (0) are given on tlae circles [ z j = a)
and z | I = 1 } respectively. Then ( f - + Ir satisfies tlae bound

satisfied by j in (3.11) and (3.1 ~).
To further illustrate the method we consider the problem of’ analytic

continuation on the annulus from approximate data on an intermediate

circle (I z I = b), 0  a  b  1, with prescribed bounds imposed on the

inner and outer circles. Or, we may consider approximate data given on
all three circles. The following bound is obtained bY dividing the Laiii-eiit

series into low, medium, and high order parts.

THEOREM 5. Suppose j’ (z) is aacclytie and in the 

and

Let p and 7 be defined by m/1 = and that y  fl.
Then

for a  r  1, this bound being be.3t posqible to a factor of 
We make no attempt to simplif’y the bound (3.15) above. Also, if’ it

turns out that we merely dispense with the information Oll the in-

termediate circle and apply Theoreiii 1.
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THEOREM 6. Suppose f (z) is analytic and single-valued in the annulus
and

where the L2 data functions e (0), g (9), and h (0) are given on the circles of
radius a, b, and 1 respectively. Then f - + Ir satisjies
the bound satisfied by f Ir in (3.1 ~).

Again, the problem with prescribed bounds imposed on the inner and
outer circles is taken care of by setting e = h = 0. In this case, evaluation
of the approximation function (z) requires the evaluation of only a
finite number of Fourier coefficient.

We point out that the uniform norm If Ir could be replaced by the
uniform norm of a derivative of f or combinations thereof. Likewise, II f Ilr
could be replaced by the L2 norm of a derivative or integral off ; see
theorems 3 and 4 of [2] for example. The method and results would be

completely analogous; the bounds obtained would only be somewhat more
complicated, 

’
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