MARTIN SCHECHTER

Nonlocal elliptic boundary value problems

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3e série, tome 20, n° 2 (1966), p. 421-441

<http://www.numdam.org/item?id=ASNSP_1966_3_20_2_421_0>

© Scuola Normale Superiore, Pisa, 1966, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
NONLOCAL ELLIPTIC BOUNDARY
VALUE PROBLEMS (*)

MARTIN SCHECHTER

1. Introduction.

In [13, 14] Beals considers boundary value problems of the form

\begin{align}
Au &= f \quad \text{in } \Omega \\
B_j u &= \sum_{k=1}^{r} M_{jk} C_k u \quad \text{on } \partial\Omega, \quad 1 \leq j \leq r,
\end{align}

where A is an elliptic operator of order $m = 2r$ in a domain $\Omega \subset \mathbb{R}^n$, $\{B_j\}_{j=1}^{r}$, $\{C_j\}_{j=1}^{r}$ are sets of differential boundary operators and the M_{jk} are arbitrary linear operators bounded in a certain sense. He considers the problem for those $u \in L^2(\Omega)$ for which $Au \in L^2(\Omega)$ and all derivatives $< m$ are in $L^2(\partial\Omega)$ and such that (1.2) holds. Under suitable hypotheses he proves that the operator $A(M)$ thus defined is closed (and a Fredholm operator for Ω bounded) and that its adjoint is of the form

\begin{align}
A' v &= g \quad \text{in } \Omega, \\
B'_j v &= \sum_{k=1}^{r} M'_{kj} C'_k v \quad \text{on } \partial\Omega, \quad 1 \leq j \leq r,
\end{align}

where A' is the formal adjoint of A and the B'_j, C'_k, M'_{kj} are related to the B_j, C_k, M_{jk} by integration by parts. Such problems are called « nonlocal », since the M_{jk} need not be differential operators.

Pervenuto alla Redazione il 22 Nov. 1965.

(*) Supported by the U.S. Army Research Office, Durham.

For second order, self-adjoint operators, previous work along these lines was done by Calkin [15], Bade and Freeman [16] and Freeman [17]. When the M_{jk} are singular integral operators, problem (1,1,2) was studied by Dynin [18] and Agronovich and Dynin [19]. Abstract boundary value problems were considered by Visik [20], Hörmander [21], Browder [22-25], Peetre [26], Phillips [27], and Schechter [2,28].

In this paper we extend some of the results of Beals (but restrict ourselves to bounded domains). We consider the problem (1.1,2) in a slightly more general framework, namely the $H^{t,p}(\Omega)$ spaces for t real and $1 < p < \infty$. The boundary values of the functions and their derivatives of order $< m$ are taken in the $W^{s,p}(\partial\Omega)$ spaces, with $t \leq s + 1/p \leq t + m$. This allows a bit more latitude in applications. It also allows one to relax the assumptions on the M_{jk}.

We also consider the more general type of problem where (1.2) is replaced by

$$B_j u = \sum_{k=1}^{m} L_{jk} \frac{\partial^{k-1} u}{\partial n^{k-1}} \quad \text{on} \quad \partial\Omega, \quad 1 \leq j \leq r,$$

where $\partial^j u/\partial n^j$ denotes the normal derivative of order l on $\partial\Omega$. We investigate the regularity of solutions of (1.1) (1.5) under varying assumptions on the L_{jk} and obtain a priori estimates. Our methods make use of L^p estimates of [1, 4, 6].

As an example, let A be a second order operator. Consider the closure in $L^p(\Omega)$ of A acting on those $u \in C^\infty(\Omega)$ satisfying boundary conditions of the form

$$\frac{\partial u}{\partial n} = R_1 u + R_2 \frac{\partial u}{\partial n} \quad \text{on} \quad \partial\Omega,$$

where the R_i are arbitrary linear operators. Sufficient conditions are given for the operator $A(R)$ thus defined to be Fredholm (and therefore closed) and for the solutions of $A(R) u = 0$ to be smooth. When $R_2 = 0$, we give sufficient conditions for the adjoint of $A(R)$ to be the closure in $L^{p'}(\Omega)$, $p' = p/(1 - p)$, of the formal adjoint A' of A restricted to those $v \in C^\infty(\overline{\Omega})$ such that

$$\frac{\partial v}{\partial n} = R_1^* v$$

where R_1^* is the adjoint of R_1 and $\partial v/\partial n$ is a first order derivative obtained by integration by parts. Similar results hold if (1.6) is replaced by

$$u = S_1 u + S_2 \frac{\partial u}{\partial n} \quad \text{on} \quad \partial\Omega.$$
2. Main results.

Let \(\Omega \) be a bounded domain in Euclidean \(n \)-dimensional space \(E^n \) with boundary \(\partial \Omega \) of class \(C^\infty \). Throughout the paper we shall assume that \(A \) is a properly elliptic operator of order \(m = 2r \) with coefficients in \(C^\infty (\bar{\Omega}) \), where \(\bar{\Omega} \) denotes the closure of \(\Omega \) (for definitions for all terms we refer to [1]). \(\{B_j\}_{j=1}^r \) will denote a normal set of differential operators of orders \(< m \) with coefficients in \(C^\infty (\partial \Omega) \). This means that the orders of the \(B_j \) are distinct and that \(\partial \Omega \) is nowhere characteristic for any of them. We shall also assume that \(\{B_j\}_{j=1}^r \) covers \(A \).

It is convenient to discuss boundary value problems for \(A \) within the framework of the \(H^{s,p} (\Omega) \) spaces, \(s, p \) real, \(1 < p < \infty \). We give brief definitions here; for further details we refer to [2]. The space \(H^{s,p} (E^n) \) is the completion of \(C_0^\infty (E^n) \) with respect to the norm given by

\[
\| u \|_{E^n} = \left[\int | \mathcal{F}^{-1} (1 + | \xi |^2)^{s/2} \mathcal{F} u |^p \ dx \right]^{1/p}
\]

where \(\mathcal{F} \) denotes the Fourier transform and \(C_0^\infty (E^n) \) is the set of infinitely differentiable functions on \(E^n \) with compact supports. For \(s \geq 0 \) we let \(H^{s,p} (\Omega) \) denote the restrictions to \(\Omega \) of functions in \(H^{s,p} (E^n) \) with the norm

\[
\| u \|_{s,p} = \| gL u \| \| v \|_{s,p}, \quad v = u \text{ on } \Omega.
\]

For \(s < 0 \), \(u \in C^\infty (\bar{\Omega}) \) we set

\[
\| u \|_{s,p} = \int_{\Omega} \frac{|(u,v)|}{\| v \|_{s,p}},
\]

where \((u,v) \) is the scalar product in \(L^2 (\Omega) \) and \(p' = p/(p - 1) \). We then complete \(C^\infty (\bar{\Omega}) \) with respect to this norm to obtain \(H^{s,p} (\Omega) \).
For \(s > 0 \) we let \(W^{s,p}(\partial \Omega) \) denote the restrictions to \(\partial \Omega \) of functions in \(H^{s+1/p, p}(\Omega) \) with norm
\[
\langle g \rangle_{s,p} = g|b|_v \| v \|_{s+1/p, p}, \quad v = g \text{ on } \partial \Omega.
\]

It follows from the results of [3] that they are Banach spaces (cf. [2,4]). Moreover for \(g \in C^\infty(\partial \Omega) \) we set
\[
\langle g \rangle_{0,p} = \lim_{0 < s \to 0} \langle g \rangle_{s,p}.
\]

This limit exists and gives a norm (cf. [4]). For \(s < 0 \) we set
\[
\langle g \rangle_{s,p} = \inf_{h \in C^\infty(\partial \Omega)} \frac{\langle g, h \rangle}{\langle h \rangle_{s-1, p}},
\]
where \(\langle g, h \rangle \) denotes the \(L^2(\partial \Omega) \) scalar product. For \(s \leq 0 \) we let \(W^{s,p}(\partial \Omega) \) denote the completions of \(C^\infty(\partial \Omega) \) with respect to these norms.

For \(u \in C^\infty(\overline{\Omega}) \) and \(s \) real we introduce the norm
\[
\| u \|_{s,p} = \| u \|_{s,p} + \| Au \|_{s-m, p}
\]
and denote the completion of \(C^\infty(\overline{\Omega}) \) with respect to this norm by \(H^{s,p}_A(\Omega) \).

Let \(\gamma_l \) denote the normal derivative of order \(l \) on \(\partial \Omega \). We shall show that for \(l < m \), \(\gamma_l \) can be defined for elements of \(H^{s,p}_A(\Omega) \).

Lemma 2.1. For each \(s \) there is a constant \(K \) such that
\[
\sum_{l=0}^{m-1} \langle \gamma_l u \rangle_{s-1, p} \leq K \| u \|_{s,p}
\]
for all \(u \in C^\infty(\overline{\Omega}) \).

From the lemma we see that the mapping \(\gamma = \{\gamma_0, \ldots, \gamma_{m-1}\} \) can be extended by continuity to a bounded mapping from \(H^{s,p}_A(\Omega) \) to the space
\[
E_{s, p} = \bigoplus_{l=0}^{m-1} W^{s-1, p}(\partial \Omega).
\]
Similarly the mapping \(B = \{B_1, \ldots, B_r\} \) can be extended to a bounded mapping from \(H^{s,p}_A(\Omega) \) to
\[
F_{s, p} = \bigoplus_{j=1}^{l} W^{s-m, p}(\partial \Omega),
\]
where m_j is the order of B_j. We also extend A to be a mapping from $H^s_{A_p}(\Omega)$ to $H^{s-m}_{A_p}(\Omega)$.

Suppose we are given an rxm matrix $L = (L_{ij})$ of operators such that L_{ij} is a linear operator from $W^{s-i,j}_{1,q}(\partial \Omega)$ to $W^{s-j}_{1,q}(\partial \Omega)$. Then the (matrix) operator L is a linear map from $E_{s,p}$ to $F_{s,p}$. Let t be a number satisfying $s - m \leq t \leq s$. We define the operator $A_{s,p}(L)$ as the restriction of A to those $u \in H^s_{A_p}(\Omega)$ such that $Au \in H^{t}_{A_p}(\Omega)$ and

$$Bu = L \gamma u.$$

We consider $A_{s,p}(L)$ as an operator in $H^1(\Omega)$.

Let T be a linear operator on a Banach space X. It is called a semi-Fredholm operator if

1) the domain $D(T)$ of T is dense in X
2) T is closed
3) the null space $N(T)$ of T has finite dimension
4) the range $R(T)$ of T is closed in X.

It is called a Fredholm operator if, in addition,
5) the codimension of $R(T)$ in X is finite.

Theorem 2.1. If there are constants $c < 1$, c, such that

$$\|L \gamma u\|_{E_{s,p}} \leq \epsilon \|Bu\|_{E_{s,p}} + c \|Au\|_{s,p} + \|u\|_{s-m,p},$$

holds for all $u \in C^\infty(\overline{\Omega})$, then $A_{s,p}(L)$ is a semi-Fredholm operator.

The proof of Theorem 2.1 can be made to depend on

Theorem 2.2. If (2.2) holds, then

$$\|u\|_{s,p} \leq C \|Au\|_{s,p} + \|u\|_{s-m,p} + \|(B - L \gamma) u\|_{E_{s,p}}$$

for all $u \in C^\infty(\overline{\Omega})$.

Another criterion is given by

Theorem 2.3. If L is a compact operator from $E_{s,p}$ to $F_{s,p}$, then (2.3) holds and hence $A_{s,p}(L)$ is a semi-Fredholm operator. In particular, this is true if L maps $E_{s-r,p}$ boundedly into $F_{s,p}$ or $E_{s,p}$ boundedly into $F_{s+r,p}$ for some $\epsilon > 0$.

Theorem 2.4. Assume that L maps $E_{s,p}$ into $F_{s,q}$, $1 < q < \infty$. If $u \in H^s_{A_p}(\Omega)$, $Au \in H^{s-m,q}(\Omega)$ and $Bu = L \gamma u$ then $u \in H^{s,q}_{A_p}(\Omega)$.
THEOREM 2.5. If there is an \(\varepsilon > 0 \) such that \(L \) maps \(E_{\sigma, p} \) into \(F_{\nu+\varepsilon, p} \) for \(\sigma \leq \varepsilon \leq t+m-\varepsilon \), then \(A_{\sigma, p}(L) = A_{t+m, p}(L) \).

The dual space of \(F_{\nu, p} \) is

\[
F_{\nu, p}^* = \prod_{j=1}^{r} W^{m_{j-1}+1/p', p'} (\partial \Omega)
\]

(cf. [4,6]). A similar formula gives \(E_{\nu, p}^* \).

THEOREM 2.6. Suppose \(\sigma > \nu \) and that for some \(\varepsilon > 0 \) \(L \) maps \(E_{\nu, p} \) boundedly into \(F_{\sigma+\varepsilon, p} \) for \(\sigma \leq \nu \leq \sigma - \varepsilon \). Assume further that \(f \in H^{m-\nu, p'}(\Omega), \ G = g_1, \ldots, g_r \in F_{\sigma, p}^* \) and

\[
(2.4) \quad |(f, Au) + \langle G, Bu - L \gamma u \rangle| \leq c_0 \|u\|_{s, p}
\]

for all \(u \in C^\infty(\overline{\Omega}) \), where \(\langle \cdot, \cdot \rangle \) denotes duality between \(F_{\nu, p} \) and \(F_{\sigma, p}^* \). Then \(f \in H^{m-\nu, p'}(\Omega), G \in F_{\sigma, p}^* \) and

\[
(2.5) \quad \|f\|_{m-\nu, p'} + \|G\|_{F_{\sigma, p}^*} \leq \text{const.} (c_0 + \|f\|_{m-\nu, p'} + \|G\|_{F_{\sigma, p}^*})
\]

COROLLARY 2.1. If \(L \) maps \(E_{\sigma, p} \) boundedly into \(F_{\sigma+\varepsilon, p} \) for some \(\varepsilon > 0 \) and each real \(\sigma \) and

\[
(2.6) \quad (f, Au) + \langle G, Bu - L \gamma u \rangle = 0
\]

for all \(u \in C^\infty(\overline{\Omega}) \), then \(f \in C^\infty(\overline{\Omega}) \) and each \(g_j \in C^\infty(\partial \Omega), 1 \leq j \leq r \). Moreover the set of all such \(f, G \) is finite dimensional.

For Theorems 2.7-2.10 we assume that there is an \(\varepsilon > 0 \) such that \(L \) is a bounded mapping from \(E_{\sigma, p} \) to \(F_{\sigma+\varepsilon, p} \) for each real \(\sigma \).

Let \(V(L) \) denote the set of those \(u \in C^\infty(\overline{\Omega}) \) satisfying (2.1) and \(V(L)' \) the set of those \(v \in C^\infty(\overline{\Omega}) \) satisfying

\[
(Au, v) = (u, A' v)
\]

for all \(u \in V(L) \), where \(A' \) is the formal adjoint of \(A \). By \(N(A(L)) \) [resp. \(N(A'(L)) \)] we shall denote the set of those \(u \in V(L) \) [resp. \(v \in V(L)' \)] which satisfy \(Au = 0 \) [resp. \(A' v = 0 \)]. We have

THEOREM 2.7. For each real \(\sigma \)

\[
N(A_{\sigma, p}(L)) = N(A(L)).
\]
Let \tilde{N} denote the set of those $h \in C^\infty(\Omega)$ for which there is a $G \in C^\infty(\partial\Omega)$ such that
\begin{equation}
(h, Au) + \langle G, Bu - Lyu \rangle = 0
\end{equation}
for all $u \in C^\infty(\tilde{\Omega})$. By Corollary 2.1, \tilde{N} is finite dimensional. Clearly $\tilde{N} \subseteq N(A(L'))$. We shall prove

Theorem 2.8. $\tilde{N} = N(A(L'))$. Hence the latter is finite dimensional.

In proving Theorem 2.8 we shall make use of

Theorem 2.9. $R(A_{s,p}(L))$ consists of those $f \in H^{s,p}(\Omega)$ which are orthogonal to \tilde{N}, i.e., which satisfy $(f,h) = 0$ for all $h \in \tilde{N}$.

Theorem 2.10. If $v \in H^{s,p}(\Omega)$ for some σ and
\begin{equation}
(v, Au) = 0
\end{equation}
for all $u \in V(L)$, then $v \in \tilde{N}$.

Corollary 2.2. If and
\begin{equation}
(\psi, Au) = (f, u)
\end{equation}
for all $u \in V(L)$, then $v \in H^{s,m,p}(\Omega)$.

Corollary 2.3. $A_{s,p}(L)$ is a Fredholm operator.

Let v_1, \ldots, v_r be the complementary set of the m_1 among the integers $0, \ldots, m - 1$. Let $\{C_k\}_{k=1}^r$ be any normal set of differential boundary operators with coefficients in $C^\infty(\partial\Omega)$ and such that the order of C_k is ν_k. Then there are normal sets $\{B^r_{ij}\}_{i,j=1}^r$ and $\{C_k\}_{k=1}^r$ such that
\begin{equation}
(Au, v) - (u, A' v) + \sum_{j=1}^r \langle B_{ij} u, C_{ij} v \rangle - \sum_{k=1}^r \langle C_k u, B^r_{kj} v \rangle = 0
\end{equation}
holds for $u, v \in C^\infty(\partial\Omega)$ (cf. [5,1]). The order of B^r_{ij} in $m - \nu_j - 1$, while that of C_{ij} is $m - m_j - 1$. We set $B' = \{B'_{1}, \ldots, B'_{r}\}$, $C = \{C_1, \ldots, C_r\}$, $C' = \{C'_{1}, \ldots, C'_{r}\}$.

Let $M = (M_{jk})$ be an $r \times r$ matrix of linear operators such that M_{jk} maps $W^{s-k-1/p, p}(\partial\Omega)$ into $W^{s-m_j-1/p, p}(\partial\Omega)$.

Thus M maps $J_{s,p}$ into $F_{s,p}$, where

$$J_{s,p} = \prod_{k=1}^{r} W^{s-k-1/p',p}(\partial \Omega).$$

By expressing each C_i in terms of normal and tangential derivatives on $\partial \Omega$, we obtain a unique operator L_1 from $E_{s,p}$ to $F_{s,p}$ such that

$$L_1 \gamma = MC.$$

We have

Proposition 2.1. If $s = t + m$ and (2.3) holds, then $A_{s,p}(L_1)$ is the closure of A in $H^{s,p}(\Omega)$ defined for those $u \in C^\infty(\Omega)$ satisfying $(B - MC) u \equiv 0$ on $\partial \Omega$.

Remark. By Theorem 2.3, the inequality (2.3) holds when M is a compact operator from $J_{s,p}$ to $F_{s,p}$.

We now assume that there is a number τ such that $t \leq \tau \leq s$ and such that M is a bounded operator from $J_{s,p}$ to $F_{s,p}$. If $\tau < s$, it follows that M is compact from $J_{s,p}$ to $F_{s,p}$. If $\tau = s$, we assume this. We set

$$L_1' = M^* C',$$

where M^* is the adjoint of M. It follows that L_1' is a bounded operator from $E_{s,p}$ to $F_{s,p}$ while L_1' is bounded from $F_{s,p}$ to $E_{s,p}$. For $-t \leq \sigma \leq \leq m - t$, $1 < q < \infty$, we let $A_{\sigma,q}'(L_1)$ denote the restriction of A' to those $v \in H^{\sigma,q}_s(\Omega)$ for which $A' v \in H^{-t,q}(\Omega)$ and

(2.11) $$B' v = M^* C' v.$$

We have

Theorem. 2.11. Under the above hypotheses,

(2.12) $$(A_{s,p}(L_1))^* = A'_{m-t,p'}(L_1')$$

and

(2.13) $$(A'_{m-t,p'}(L_1))^* = A_{s,p}(L_1).$$

The case considered by Beals [13, 14] is $t = 0$, $p = 2$, $s = m - 1/p'$, $\tau = 1/p$ (we have been able to avoid the consideration of the operator S of his papers). By known interpolation theorems (cf. [11, 6]) the assumption that L maps $E_{s,p}$ boundedly into $F_{s+p',p}$ for all σ need only be verified for sequences $o_k \to \infty$, $o_k'' \to -\infty$.
3. Background Material.

We now list those known results which will be used in our proofs.

THEOREM 3.1. For each number q there is a constant C such that

$$
\| u \|_{q,p} \leq C \left(\| Au \|_{q-m,p} + \| u \|_{q-m,p} + \| Bu \|_{p,p} \right)
$$

for all $u \in C^\infty(\overline{\Omega})$.

Inequality (3.1) is a weaker form of Theorem 2.1 of [6].

THEOREM 3.2. For $\sigma > q$, the unit sphere in $H^{q,p}(\Omega)$ is conditionally compact in $H^{\sigma,p}(\Omega)$. The same is true for the spaces $W^{\sigma,p}(\Omega)$.

For $q = 0$ and σ positive and large, Theorem 3.2 follows easily from Sobolev's Lemma. For the other cases one applies an abstract interpolation result of Lions Peetre [7, Theorem 2.3, p. 38].

THEOREM 3.3. If $f \in H^{m-q,p'}(\Omega)$, $G \in F^*_p(p)$ and

$$
\langle f, Au \rangle + \langle G, Bu \rangle \leq c_1 \| u \|_{q,p}
$$

for all $u \in C^\infty(\overline{\Omega})$, then $f \in H^{m-q,p'}(\Omega)$, $G \in F^*_p(p)$ and

$$
\| f \|_{m-q,p'} + \| G \|_{F^*_p(p)} \leq \text{const.} \left(c_1 + \| f \|_{m-q,p} \right)
$$

Theorem 3.3. follows from Theorem 2.1 of [4]. (The term $\| Au \|_{q-m,p}$ was missing from the right hand side of the inequality corresponding to (3.2). However, one checks easily from the proof given there that it could have been included.)

THEOREM 3.4. For each set $\Phi = \{ \Phi_1, \ldots, \Phi_r \}$ of functions in $C^\infty(\partial \Omega)$ there is a $u \in C^\infty(\overline{\Omega})$ such that

$$
Bu = \Phi
$$

and for each real q

$$
K^{-1} \| Au \|_{q+m,p} \leq \| u \|_{q,p} \leq K \| \Phi \|_{F^*_p(p)},
$$

where the constant K does not depend on Φ or u.
Proof. Consider the boundary problem

\[(3.6) \quad (A' A + 1) u = 0; \]

\[(3.7) \quad B u = \Phi, \quad B' A u = 0.\]

By (2.10)

\[(3.8) \quad \langle A w, A v \rangle - \langle v, A' A v \rangle = \langle B w, C' A v \rangle - \langle C w, B' A v \rangle\]

for all \(w, v \in C^\infty (\overline{\Omega})\). From this one easily checks that the problem (3.6, 7) is self-adjoint. Moreover, it is a well posed elliptic boundary value problem. (Here we make use of the fact that \(B'\) covers \(A'\) [8, 1]). In addition, when \(\Phi = 0\) we have by (3.8).

\[
\| A u \|^2 + \| u \|^2 = (u, (A' A + 1) u) = 0,
\]

showing that \(u = 0\). Applying the theory of such problems, we see that for each \(\Phi \in C^\infty (\partial \Omega)\) there is a unique solution \(u \in C^\infty (\overline{\Omega})\) of (3.6, 7) (cf. [1]). We can also apply Theorem 3.1 to this problem, taking into consideration the fact that the term \(\| u \|_{l - m, p}\) may be dropped in (3.1) when there is uniqueness. Thus we have for each \(\varphi\)

\[
\| u \|_{\varphi, p} \leq K \| \Phi \|_{\varphi, p},
\]

where the constant \(K\) does not depend on \(\Phi\) or \(u\). We now note that \(A u\) is a solution of

\[
A' w = -u, \quad B' w = 0.
\]

Applying Theorem 3.1 to this problem we obtain

\[(3.9) \quad \| A u \|_{m+\varphi, p} \leq C (\| u \|_{\varphi, p} + \| A u \|_{\varphi, p})\]

for each \(\varphi\). We claim that this implies

\[(3.10) \quad \| A u \|_{m+\varphi, p} \leq K \| u \|_{\varphi, p}.\]

For otherwise there would be a sequence \([u_k]\) of functions \(u_k \in C^\infty (\overline{\Omega})\) satisfying \((A' A + 1) u_k = 0, B' A u_k = 0\) such that

\[
\| A u_k \|_{m+\varphi, p} = 1, \quad \| u_k \|_{\varphi, p} \to 0.
\]
By Theorem 3.2 there is a subsequence (also denoted by \([u_k]\)) for which
\(Au_k\) converges in \(H^{\sigma,p}(\Omega)\). By (3.9) \(Au_k\) converges in \(H^{m+\sigma,p}(\Omega)\). On one hand the limit must be zero, since for \(w \in C^\infty_0(\Omega)\)
\[
(Au_k, w) = (u_k, A'w) \to 0
\]
while on the other, the limit must have norm 1. This gives a contradiction and (3.10) holds. This completes the proof.

Theorem 3.5. For each real \(\sigma\)
\[
\|u\|_{C^\infty(\Omega)} \leq C \left(\|Au\|_{C^{m-\sigma,p}} + \|u\|_{C^{m-\sigma,p}} + \|Bu\|_{L^p(\omega)} \right)
\]
holds for all \(u \in C^\infty(\Omega)\).

This is just Theorem 2.3 of [6].

Theorem 3.6. If \(f \in H^{\sigma,p}(\Omega)\) and
\[
(f, A' \psi) \leq C \|\psi\|_{C^{m-\sigma,p}}
\]
for all \(\psi \in C^\infty_0(\Omega)\) (the set of infinitely differentiable functions with compact supports in \(\Omega\)), then \(f \in H^{\sigma,p}_r(\Omega)\).

Proof. We follow the reasoning of [10, p. 14]. We consider \(A\) as an operator in \(H^{\sigma,p}(\Omega)\) with domain \(H^{\sigma,p}_r(\Omega)\). Let \(A_w\) be the extension of \(A\) to those \(f \in H^{\sigma,p}(\Omega)\) satisfying (3.11). For such an \(f\) there is an \(h \in H^{\sigma-m,p}\) such that
\[
(f, A' \psi) = (h, \psi)
\]
for all \(\psi \in C^\infty_0(\Omega)\). We then define \(A_w f = h\). Clearly \(A \subseteq A_w\). We now show that \(A^* \subseteq A_w^*\). This will mean that \(A = A_w\) and the theorem will follow.

Suppose \(v \in D(A^*)\). Then
\[
(v, Au) = (w, u)
\]
for some \(w \in H^{-\sigma,p}(\Omega)\) and all \(u \in C^\infty(\Omega)\). In particular, this holds for all \(u\) satisfying zero Dirichlet or Neumann data on \(\partial\Omega\). From this it follows that \(v \in H^{\sigma,m-\sigma,p}(\Omega)\), the closure of \(C^\infty(\Omega)\) in \((H^{m-\sigma,p}(\Omega))\) (cf., e.g., [2]). Hence there is a sequence \([v_k]\) \(C^\infty_0(\Omega)\) converging to \(v\) in \(H^{m-\sigma,p}(\Omega)\). If \(f \in D(A_w)\), then
\[
(f, A' v_k) = (A_w f, v_k).
\]
But
\[\| A'(v_k - v_0) \|_{m, p'} \leq C \| v_k - v_0 \|_{m, p'} \]
and hence \(A' v_k \to g \in H^{-v, p'} (\Omega) \). Thus
\[(f, g) = (A_w f, v) \]
for all \(f \in D(A_w) \). Thus \(v \in D(A_{w}^*) \). This completes the proof.

COROLLARY 3.1. If \(f \in H^{m-v, p'} (\Omega), g \in F^*_{e, p} \) and
\[
(\mathbf{3.12}) \quad | (f, Au) + \langle G, Bu \rangle | \leq c_2 (\| u \|_{r, p} + \| Cu \|_{r, p})
\]
for all \(u \in C^\infty(\overline{\Omega}) \), then \(f \in H^{m-v, p'} (\Omega), G = C' f \in F^*_{e, p} \) and
\[
\| f \|_{m-v, p'} \leq C (c_2 + \| f \|_{m-v, p})
\]

PROOF. The only thing which does not follow immediately from Theorems 3.3 and 3.6 is the fact that \(G = C' f \). By (3.12) there are \(h \in H^{-v, p'} (\Omega) \) and \(\Phi \in J^*_{e, p} \) such that
\[
(f, Au) + \langle G, Bu \rangle = (h, u) + \langle \Phi, Cu \rangle
\]
for all \(u \in C^\infty(\overline{\Omega}) \). By (2.10) this becomes
\[
(A' f - h, u) + \langle G - C' f, Bu \rangle + \langle B' f - \Phi, Cu \rangle = 0.
\]
Since this is true for all \(u \in C^\infty(\overline{\Omega}) \), it follows that \(G = C' f \). This completes the proof.

THEOREM 3.7. Let \(\{Q_j\}_{j=1}^k, k \leq m \), be a normal set of boundary operators of orders \(\mu_j \leq m \). Then for each set \(\{\Phi_j\}_{j=1}^k \) of functions in \(C^\infty(\partial \Omega) \) there is \(u \in C^\infty(\overline{\Omega}) \) such that
\[
Q_j u = \Phi_j \text{ on } \partial \Omega, \quad 1 \leq j \leq k,
\]
and for each \(\varrho \)
\[
(\mathbf{3.13}) \quad \| u \|_{\varrho, p} \leq C \sum_{j=1}^k \langle \Phi_j \rangle_{\varrho - \mu_j - 1, p},
\]
where the constant \(C \) does not depend on \(u \) or the \(\Phi_j \).

PROOF. By adding appropriate operators to the \(Q_j \) and taking the corresponding \(\Phi_j \) to be zero, we may assume that \(k = m \). Consider the boun-
Boundary Value Problems

433

dary value problem

\((A - 1)^m u = 0\) in \(\Omega\),

\[Q_j u = \Phi_j \text{ on } \partial\Omega, \quad 1 \leq j \leq m, \]

where \(A\) is the Laplacian. This problem is equivalent to the Dirichlet problem, and hence we know that there always exists a unique solution. Applying (3.1) to this problem, we obtain

\[
\| u \|_{\theta, p} \leq C \sum_{j=1}^{m} \langle \Phi_j \rangle_{\theta \mu - 1/p, p}. \]

For \(\theta \geq m\) we have

\[
\| Au \|_{\theta - m, p} \leq C \| u \|_{\theta, p}. \]

For \(\theta \leq 0\) we have

\[
\| Au \|_{\theta - m, p} = 1. \text{ u. b. } \frac{|(Au, v)|}{\| v \|_{\theta - m, p}} \leq 1. \text{ u. b. } \| v \|_{\theta - m, p}^{-1} |(u, A' v) + \sum Q_j u, Q_{m-j+1} v| \leq C \| u \|_{\theta, p} + \sum Q_j u, \langle \Phi_j \rangle_{\theta \mu - 1/p, p}, \]

where \(Q_{m-j+1}\) is an appropriate boundary operator of order \(m - \mu_j - 1\).

We now apply an abstract interpolation theorem due to Calderón [11, 10.1] to the spaces considered (cf. [6, Theorem 3.1]) to conclude that (3.13) holds for all real \(\theta\).

4. Proofs.

Proof of Lemma 2.1. By (2.10) there is a normal set \(\{N_j\}_{j=1}^{m}\) of boundary operators such that

\[
(Au, v) - (w, A' v) = \sum_{j=0}^{m-1} \gamma_j w, N_{m-j} v \]

for \(w, v \in C^\infty(\overline{\Omega})\), where the order of \(N_j\) is \(j - 1\).

By Theorem 3.7, for each set \(\Phi_1, ..., \Phi_m\) of functions in \(C^\infty(\partial\Omega)\) there is a function \(v \in C^\infty(\overline{\Omega})\) such that

\[
N_j v = \Phi_j \text{ on } \partial\Omega, \quad 1 \leq j \leq m, \]

for \(\theta \geq m\) we have

\[
\| Au \|_{\theta - m, p} \leq C \| u \|_{\theta, p}. \]

For \(\theta \leq 0\) we have

\[
\| Au \|_{\theta - m, p} = 1. \text{ u. b. } \frac{|(Au, v)|}{\| v \|_{\theta - m, p}} \leq 1. \text{ u. b. } \| v \|_{\theta - m, p}^{-1} |(u, A' v) + \sum Q_j u, Q_{m-j+1} v| \leq C \| u \|_{\theta, p} + \sum Q_j u, \langle \Phi_j \rangle_{\theta \mu - 1/p, p}, \]

where \(Q_{m-j+1}\) is an appropriate boundary operator of order \(m - \mu_j - 1\).

We now apply an abstract interpolation theorem due to Calderón [11, 10.1] to the spaces considered (cf. [6, Theorem 3.1]) to conclude that (3.13) holds for all real \(\theta\).
while for each \(q \), \(1 < q < \infty \),

\[
\| v \|_{s, q} + \| A' v \|_{s-m, q} \leq C \sum_{j=1}^{m} \langle \phi_j \rangle_{s-j+1}^{q},
\]

where the constant \(C \) does not depend on \(v \) or the \(\phi_j \). Now

\[
(4.3) \quad \| v \|_{s, q} + \| A' v \|_{s-m, q} \leq C \sum_{j=1}^{m} \langle \phi_j \rangle_{s-j+1}^{q},
\]

Setting \(e = m - s, q = p' \) in (4.3) and applying (4.1) we have

\[
(4.4) \quad |(Au, v)| \leq \| Au \|_{s-m, p} \| v \|_{s, p'},
\]

\[
(4.5) \quad |(u A' v)| \leq \| u \|_{s, p} \| A' v \|_{s, p'}.
\]

Setting \(q = m - s, q = p' \) in (4.3) and applying (4.1) we have

\[
(4.6) \quad \sum \langle \gamma_j u, \phi_{m-j} \rangle \leq C' \| u \|_{s, p} \sum \langle \phi_{m-j} \rangle_{s-j+1}^{p, p'}.
\]

Taking all of the \(\phi_j \) but one to be zero in (4.6), we obtain estimates for each \(\gamma_j u \), namely

\[
(4.7) \quad \sum \langle \gamma_j u \rangle_{s-j+1} \leq C' \| u \|_{s, p}.
\]

This completes the proof.

Proof of Theorem 2.2. By (2.2)

\[
\| Bu \|_{s, p} \leq \| (B - L\gamma) u \|_{s, p} + \| L\gamma u \|_{s, p} + \| \gamma \|_{s, p} \leq \| (B - L\gamma) u \|_{s, p} + \| Bu \|_{s, p} + C \| u \|_{s, p},
\]

Thus

\[
(4.8) \quad \| Bu \|_{s, p} \leq C \| u \|_{s, p} + \| \gamma \|_{s, p} \leq \| u \|_{s-m, p}.
\]

Combining this with (3.1) we obtain (2.3).

Proof of Theorem 2.1. Since smooth functions with compact support in \(\Omega \) are in \(D(A_{s, p}(L)) \) and they are dense in \(H^s(L) \), 1 holds. By completion, (2.3) holds for functions in \(H^s(L) \). This gives immediately that \(A_{s, p} \) is closed. Moreover

\[
\| u \|_{s, p} \leq C \| u \|_{s-m, p}
\]

holds for all \(u \in N(A_{s, p}(L)) \). A standard argument using Theorem 3.2 shows that this set must be finite dimensional. Another application of Theorem
3.2 shows that
\[\| u \|_{s,p} \leq C \| Au \|_{s,p} \]
holds for all \(u \in D(A_{s,p}(L))/N(A_{s,p}(L)) \).
This gives immediately that the range of \(A_{s,p} \) is closed.

Proof of Theorem 2.3. We show that (2.3) holds. If it did not, there would be a sequence \(\{ u_k \} \) of functions in \(C^\infty(\overline{Q}) \) such that
\[\| u_k \|_{s,p} = 1 \]
while
\[\| Au_k \|_{s,p} + \| u_k \|_{s-m,p} + \| (B - L)u_k \|_{s,p} \rightarrow 0. \]
By Lemma 2.1
\[\| \gamma u_k \|_{s,p} \leq \text{const.} \]
and hence there is a subsequence (also denoted by \(\{ u_k \} \)) for which \(Ly_{u_k} \) converges in \(F_{s,p} \). Thus \(Bu_k \) converges in the same space. If we now make use of (3.1) we see that \(u_k \) converges in \(H^{s,p}_A(\Omega) \). Since it converges in \(H^{s-m,p}(\Omega) \) to zero, it must converge to the same limit in \(H^{s,p}_A(\Omega) \). But this is impossible, since the \(H^{s,p}_A(\Omega) \) norm of the limit must be unity. The last part of the theorem follows from Theorem 3.2.

Proof of Theorem 2.4. Since \(\gamma u \in E_{s,p}, Ly \in F_{q,q} \). By Theorem 3.7 there is a \(\nu \in H^{s,q}_A(\Omega) \) such that \(Bv = Ly u \). Set \(w = u - \nu \). Then \(Bw = 0 \) while \(Aw \in F_{q,s-m} \). Thus by (2.10)
\[\langle (w, A'g) + \langle Cw, B'g \rangle \rangle = \langle (Aw, g) \rangle \leq C \| g \|_{s-m,q} \]
for all \(g \in C^\infty(\overline{Q}) \). Thus \(\nu \in H^{s,q}_A(\Omega) \) by Corollary 3.1 (applied to \(A', B' \), where we use the fact [8,1] that \(B' \) covers \(A' \)). Thus \(\nu = w + \nu \in H^{s,q}_A(\Omega) \).

Proof of Theorem 2.5. By Theorem 2.4 \(u \in H^{s,q}_A(\Omega) \), where \(q = \min(t + s + e) \). If \(q = t + m \), the theorem is proved. Otherwise we replace \(s \) by \(s - m \) and repeat the process as many times as needed to reach \(t + m \).

Proof of Theorem 2.6. If (2.4) holds
\[\langle (f, Au) + G, Bu \rangle \leq c_0 \| u \|_{s,p} + C \| G \|_{s,p} \| u \|_{s-m,p} \]
\[\leq (c_0 + C \| G \|_{s,p}) \| u \|_{s,p} \]
where \(\tau = \max (s, q - \varepsilon) \). Thus \(f \in H^{m-r, p}(\Omega) \), \(G \in F^q_{r,p} \) and

\[
\| f \|_{m-r, p'} + \| G \|_{F^q_{r,p}} \leq C \left(c_0 + \| G \|_{F^q_{r,p}} + \| f \|_{m-q, p'} \right).
\]

If \(\tau = s \), we are finished. Otherwise we continue the process until we obtain the desired result.

Proof of Corollary 2.1. Taking \(c_0 = 0 \) in (2.4), we have by Theorem 2.6 that \(f \in H^{m-s, p'}(\Omega) \) and \(G \in F^q_{r,p} \) for each real \(s \). By Sobolev's lemma \(f \in C^\infty(\Omega) \) and each \(g_j \in C^\infty(\partial \Omega) \). Moreover for any \(s, q \), we have by (2.5)

\[
\| f \|_{m-s, p'} + \| G \|_{F^q_{r,p}} \leq C \left(\| f \|_{m-q, p'} + \| G \|_{F^q_{r,p}} \right)
\]

where the constant \(C \) does not depend on \(f, G \). An application of Theorem 3.2 shows that the set of such \(f, G \) is finite dimensional.

Theorem 2.7 follows immediately from Theorem 2.5 and Sobolev's Lemma.

Proof of Theorem 2.9. By Theorem 2.5 we may assume that \(s = t + m \). Suppose \(f \in H^{t, p}(\Omega) \) is orthogonal to \(\tilde{N} \). Then \(\langle f, h \rangle + \langle 0, G \rangle = 0 \) for all \(h \in \tilde{N} \), where \(G \) is any vector corresponding to \(h \). This shows that there is a sequence \(\{ u_k \} \) of functions in \(C^\infty(\Omega) \) such that \(Au_k \to f \) in \(H^{t, p}(\Omega) \) and \(\langle B - L \gamma \rangle u_k \to 0 \) in \(E_{s,p} \). Moreover, we may take the \(u_k \) to be orthogonal to \(N(A(L)) \). Thus by Theorem 2.2, \(u_k \) converges in \(H^{t, p}(\Omega) \) to some element \(u \). Thus \(Au = f \) and \(Bu = L \gamma u \). Hence \(f \in R(A_{s,p}(L)) \). Conversely, if \(f \in R(A_{s,p}(L)) \), such a sequence exists. If \(h \in \tilde{N} \) and \(G \) is any corresponding vector, then

\[
\langle h, Au_k \rangle + \langle G, Bu_k - L \gamma u_k \rangle = 0
\]

for each \(k \). Taking the limit, we have

\[
\langle h, f \rangle = 0.
\]

Since \(h \) was any element of \(\tilde{N} \), \(f \) is orthogonal to \(\tilde{N} \).
PROOF OF THEOREM 2.10. Write \(v = v' + v'' \), where \(v'' \in \tilde{N} \) and \(v' \) is orthogonal to \(\tilde{N} \) (cf. [9]). Let \(w \) be any function in \(C^\infty(\overline{\Omega}) \) and write \(w = w' + w'' \), where \(w'' \in \tilde{N} \) while \(w' \) is orthogonal to it. By Theorem 2.9 there is a \(u \in V(L) \) such that \(Au = w' \). Now \((v', w'') = 0 \), while \((v', w') = (v', Au) = (v, Au) - (v'', Au) = 0 \).

Hence \((v', w) = 0 \). Since this is true for all \(w \in C^\infty(\overline{\Omega}) \), \(v' = 0 \). Thus \(v = v'' \in \tilde{N} \).

PROOF OF COROLLARY 2.2. If \(u \in V(L) \) is orthogonal to \(N(A(L)) \), then by Theorem 2.2

\[
| (f, u) | \leqslant \| f \|_{m \to p} \| u \|_{m \to s, p} \leqslant C \| Au \|_{s, p}.
\]

Hence there is a \(v_0 \in H^{s, p'}(\Omega) \) orthogonal to \(N(A(L)) \) and such that

\[
(4.10) \quad (f, u) = (v_0, Au)
\]

for all \(u \in V(L) \) orthogonal to \(N(A(L)) \). By (2.9) we see that \(f \) itself is orthogonal to \(N(A(L)) \).

Thus (4.10) holds for all \(u \in V(L) \). Subtracting (2.9) from (4.10), we have

\[
(v - v_0, Au) = 0
\]

for all \(u \in V(L) \). Thus \(v - v_0 \in \tilde{N} \subseteq C^\infty(\overline{\Omega}) \). Hence \(v \in H^{s, p'}(\Omega) \).

PROOF OF THEOREM 2.8. Clearly \(\tilde{N} \subseteq N(A(L)') \).

Conversely, if \(v \in N(A(L)') \), then \((v, Au) = (A' v, u) = 0 \) for all \(u \in V(L) \).

But then by Theorem 2.10, we have \(v \in \tilde{N} \).

COROLLARY 2.3 follows from Theorems 2.3 and 2.9 and Corollary 2.1.

PROOF OF PROPOSITION 2.1. If \(u \) is in the domain of the closure of \(A \) as described, then there is a sequence \(\{u_k\} \) of functions in \(C^\infty(\overline{\Omega}) \) such that \(u_k \to u \), \(Au_k \to Au \) in \(H^{s, p}(\Omega) \) while \((B - MC) u_k = 0 \). By (2.3) we see that \(u \in H^{s, p}_A(\Omega) \) and \((B - MC) u = 0 \).

Conversely if \(u \in D(A_{s, p}(L_1)) \), there is a sequence \(\{u_k\} \) of functions in \(C^\infty(\overline{\Omega}) \) such that \(u_k \to u \) in \(H^{s, p}_A(\Omega) \) while \((B - MC) u_k \to 0 \) in \(F_{s, p} \). By

Theorem 3.7 there is a linear mapping \(W \) from \(F_{s, p} \) to \(H_{A}^{s, p}(\Omega) \) such that
\[
(4.11) \quad BW \Phi = \Phi, \quad CW \Phi = 0,
\]
\[
(4.12) \quad \| W \Phi \|_{s, p} \leq C \| \Phi \|_{s, p},
\]
for all \(\Phi \in F_{s, p} \). Set \(v_k = W (B - MC) u_k, w_k = u_k - v_k \).
Then \((B - MC) w_k = 0 \) while by (4.12)
\[
\| w_k - u \|_{s, p} \leq \| u_k - u \|_{s, p} + \| (B - MC) u_k \|_{s, p} \to 0.
\]
Hence \(u \) is in the domain of the closure of \(A \) as described.

Proof of Theorem 2.11. If \(u \in D(A_{m, p} (L_i)) \) and \(v \in D(A_{m-r, p'} (L_i)) \), then by (2.10)
\[
(u, A' v) - (Au, v) = \langle Bu, C' v \rangle - \langle Cu, B' v \rangle
\]
\[
- \langle MCu, C' v \rangle - \langle Cu, M^* C' v \rangle = 0.
\]
Thus \(A_{m-r, p'} (L_i) \subseteq (A_{s, p} (L_i))^* \). Next suppose \(v, f \in H^{-l, p'}(\Omega) \) satisfy
\[
(4.13) \quad (u, f) = (Au, v)
\]
for all \(u \in D(A_{s, p} (L_i)) \). By Theorem 3.4 there is a mapping \(U \) from \(F_{s, p} \) to \(H_{A}^{s, p}(\Omega) \) such that
\[
BU \Phi = \Phi, \quad AU \Phi \in H^{s, p}(\Omega)
\]
\[
(4.14) \quad \| U \Phi \|_{s, p} \leq \| AU \Phi \|_{s, p} \leq K \| \Phi \|_{s, p},
\]
for all \(\Phi \in F_{s, p} \). Consider the operator \((B - MC) U = I - MCU \) or \(F_{s, p} \).
Since \(MCU \) is compact, this operator is Fredholm. It thus has a bounded inverse from its range \(K_{s, p} \) onto a complement of its null space. Let \(L_{s, p} \)
be some finite dimensional complement of \(K_{s, p} \). The set \(S \) of those \(\Phi \in L_{s, p} \)
for which there is a \(u \in H_{A}^{s, p}(\Omega) \) such that
\[
Au \in H^{s, p}(\Omega), \quad (B - MC) u = \Phi
\]
is thus finite dimensional. Thus there is a mapping \(U_1 \) from \(S \) to \(H^{s,p}(\Omega) \) such that

\[
AU_1 \Phi \in H^{s,p}(\Omega), \quad (B - MC) U_1 \Phi = \Phi
\]

(4.15)

\[
\| U_1 \Phi \|_{s,p} + \| AU_1 \Phi \|_{s,p} \leq K \| \Phi \|_{r,p}
\]

for all \(\Phi \in S \). Now let \(u \) be any function in \(C^\infty(\Omega) \) and set \(\Phi = (B - MC) u \).

We decompose \(\Phi \) in the form \(\Phi = \Phi' + \Phi'' \), where \(\Phi' \in K_{s,p} \) and \(\Phi'' \in S \). Set \(u_0 = u' + u'' \), where

\[
u' = U(I - MCU)^{-1} \Phi', \quad u'' = U_1 \Phi''.\]

Then \((B - MC) u_0 = \Phi \) and hence \(u - u_0 \) is in \(D(A_{s,p}(L_1)) \). Thus

(4.16)

\[
(u, f) - (Au, v) = (u_0, f) - (Au_0, v),
\]

showing that the expression on the right depends only on \(\Phi \). Denoting it by \(F \Phi \) we see by (4.14) and (4.15) that it is a bounded linear functional defined on a subspace of \(F_{s,p} \) (actually, this subspace is the whole of \(F_{s,p} \), but we need not know this fact here). Thus, by the Hahn-Banach theorem, there is a \(G \in F^{*,p} \) such that

\[
F \Phi = \langle \Phi, G \rangle
\]

for all \(\Phi \) in the domain of definition of \(F \). Thus

(4.17)

\[
(u, f) - (Au, v) = \langle (B - MC) u, G \rangle
\]

for all \(u \in C^\infty(\Omega) \). In particular,

\[
| \langle Au, v \rangle + \langle Bu, G \rangle | \leq c (\| u \|_{r,p} + \| Cu \|_{r,p})
\]

for all such \(u \). This allows us to apply Corollary 3.1 to obtain that \(v \in H^{m-r,p'}(\Omega) \) and \(G = C' v \in F^{*,p'} \). From (4.13) it is clear that \(f = A' \).

Thus \((A_{s,p}(L_1))^* \subseteq A_m^{*-r,p'}(L_1) \), and (2.12) is proved. Since \(L_1 \) is compact from \(E_{s,p} \) to \(F_{s,p} \), it follows from Theorem 2.3 that \(A_{s,p}(L_1) \) is closed. Since \(H^{r,p}(\Omega) \) is reflexive, (2.13) follows from the fact that

\[
(A_{s,p}(L_1))^{**} = A_{s,p}(L_1).
\]

After this paper was completed, R. S. Freeman sent us a copy of his work \[29\] which treats similar problems. He considers the \(L^2 \) theory for bounded or unbounded domains. Although not explicitly stated in his paper, his methods also apply to boundary conditions of the form (1.2) as considered here.
BIBLIOGRAPHY

