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BEHAVIOR OF THE ERROR OF THE APPROXIMATE

SOLUTIONS OF BOUNDARY VALUE PROBLEMS

FOR LINEAR ELLIPTIC OPERATORS BY

GALERKIN’S AND FINITE DIFFERENCE METHODS
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§ 1. Introduction.

Let S be a sufficiently smooth open subset of Rn with boundary -V, and
let us consider a Neumann problem for an elliptic operator of order 2m

under suitable assumptions (cf. § 2) the operator A is an isomorphism bet-
ween the Sobolev and its (anti-)dual V’.

Pervenuto alla Redazione il 5 Giugno 1967. 
’

(*) Visiting at University of Wisconsin, Madison. This lectures were given in Decem-
ber 1966.
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Our goal is to construct approximate problems. For this, we associate
with a parameter h

a finite dimensional space D~~

an isomorphism Ah mapping Vh onto Vh

an element fh of Vh

and we consider the problem :
Find Ith in ~h such that

We will first give a~ suitable definition of « convergence &#x3E;&#x3E;, and then we

will give a process for constructing Ah and fh if ~~ is given. This will be
done by constritctiitg an operator Ph Vh into V, and then we will say
that converges to u » if

We can give here the simplest process for the construction of Ah and f~ .
Let i-* denote the transposed operator of ph , so that

We then obtain the following scheme

and we can take

Then if P~ and V) are given, formula (1.5) permits us to
construct approximate problems for any choice of operators A and elements
f of V’.

For a given class of operators A (for example, linear coercive opera-

tors) we have to look for suitable assumptions about the spaces Vh and the
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operators p~ to obtain the following results :

there exists a solution Uh of (1.3)

uh converges to u

and to study the behavior of the error

An example of the operators Ph is well known. Let be a «basis»

for the (real separable) Hilbert space V. If h -= 1 we take
&#x3E;1

Then the process of construction (1.5) is called Galerkin’s Method. (See § 4).
We now return to our original problem. The space V is then a Sobolev

space. We shall construct a class of operators ~h such that the approximate
operators associated with A are « fl nite- difference &#x3E;&#x3E; operators. We will meet
during this construction all the « technical aspects &#x3E;&#x3E; of numerical analysis:
but, this being done once and for all, we will be able to use these opera-
tors for the construction of « finite-difference » schemes for other classes of
differential operators defined on Sobolev spaces.

We will associate with S a parameter h = ... a suitable mesh

of multi-integers a = ... , an), and the space Vh of sequences
Uh = (uk) defined on Rh (S~). We consider a function a (x) which is an 
fold convolution of the characteristic functions of the cube [- 1, and

we then define

The operators Ph will have the form
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We shall construct operators rh from V into Vh so that we have

We will be able to deduce from this inequality a similar inequality for
the so that if the solution 2c of (1.1) belongs to Hq (Q)
we have

§ 2. Coercive Boundary Value Problems. 
’

We summarize here some known results concerning variational methods
in the study of boundary value problems.

Let S2 be a sufficiently smooth bounded open subset of Rn with boun-

dary 11 We denote by Hm (S~) the Sobolev space of functions u in Z2 (S~)
that have all derivatives (in the sense of distributions) of order I k 
also in L2 (S~), This is a Hilbert space with the norm

where

and

We will consider a Neumann problem for the differential operator

Introduce the sesquilinear form

If we assume that the coefficients a,pq (x) belong to L°° (S~), then this
form is continuous on Hm (-Q).
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Assume that Q and the coefficients apq satisfy conditions suffleient
to obtain the coercivness inequality

Write the formal Green’s formula in the form

where yj v is the trace operator of order j on r, do is the surface measure

on F, and Si u is a differential operator of order 2m - j - 1. Then we can
prove that the following two problems are equivalent :

PROBLEM P. Let f be a given function in E2 (Q). Find a function u in
H- (Q) that satisfies

(in a suitable sense).

PROBLEM P’. Let f be a given function in L2 (S2). Find a fuqiction u in
Hm (S2) satisfyirtg tlze variational equation

The problem P’ is a particular example of the following abstract si-

tuation : Denote by Y the Hilbert space ~’~ ~S~), and by H the Hilbert
space L2 (SQ). On H we use the scalar product

and we identify .g with its (anti-)dual ~’. Then we have :

(2.9) V is a dense subspace of H, and I it ( C )c ~ zc 11.

Thus the space H is identified as a dense subspace of the (anti-) dual
V’ of V, and a Hilbert space with the dual norm
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We then have the following situation :

each space is dense in the one that contains it

If we are given the continuous sesquilinear form a (it, v), define a con-
tinuous linear operator A from V into Tv ’ by the variational equality

However, this also defines an unbounded linear operator A on the Hilbert

space H.

Denote by D (A) the space (possibly null)
such that there exists ku with

Then if u E D (A) the map Au : u - a (u, v) is continuous on the space
V with the H-norm. Thus by an extension argument this map belongs to
H’ = .8. The subspace D (A) is a pre-Hilbert space for the graph norm

and A is a continuous linear operator from D (A) onto H. Define a* (1£, v) =
a (v, u) and (A’~ it, v) = a* (u, v), so that we have the following :

THEOREM 2.1. Assume that the form a (u, v) is coercive, so that

Then D (A) is a -Hilbert space the graph norm, D (A) is dense in V
and H, and A is an isomorphisiii

from D (A) onto H

from V onto V’

from H onto D (A*)’.

Since has the same properties as A, we see immediately that D (A~)
is dense in V, and that dense in D (A*)’. But since IT is dense in

~ the transpose A*’ of A~ maps H into D (A~‘)’ and is an extension of A.
This is the reason for putting A*’ = A in (2.15 iii).
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We conclude from this theorem that there exist unique solutions to
the problems P and P’.

For the study of Sobolev spaces and boundary value problems, we can
refer to lectures of J. L. Lions at the University of Montreal ( Problemes
aux limites pour les equations aux derivees partielles H. Editions de Funi-
versite de Montreal (2nd edition, 1965)) where supplementary bibliographical
notes can be obtained. We can find more precise results in a book of

J. L. Lions and H. Magenes (to appear).
We now look for suitable approximations for solutions to the problem P.

§ 3. Abstract theorems about approximation.

We want to prove here some  abstract results &#x3E;&#x3E; which are due to

J. Cea, J. L. Lions, and J. P. Aubin.

3.1 Approxi&#x3E;iation by restriction schenaes.

Let V be a Hilbert space, and let a (u, v) be a continuous coercive

sesquilinear form on V. We then look for approximations to the solution
1t of the

PROBLEM P. Let f be an of v’ . Find an element u of V such that

Let lz be a «parameter », which will eventually converge to 0. Asso-

ciate with h the following :

a finite dimensional space Vh

an injective linear operator Ph

from Vh into V.

Let rh be the map from V onto T7h such that ph rh is the orthogonal
projection onto ph Vh (l)-

(1) Since is a Hilbert space, this map exists and satisfies

If A is the canonical isomorphism between V and VI defined by

In other words, Ph 1’h u is the best approximation of u by elements of 
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Assume that we have

We will construct such operators when V = .g"~ (S~~ in § 7. We then

define a norm on Vh by

Now consider the following approximate problem :

PROBLEM Ph . Let f be an element of V". Find element ~ch in Vh that

satisfies

THEOREM 3.1. The SOlUtiOlIS Uh of’ (3.5) converge to the solution u of (3.1)
in the sense that

More precisely, the errors u - ~a~ zch satisfy the inequality

and the asymptotic behavior of II u - Ph uh II is the same as the best approxi-
mation to the solution u by elements of -Ph If we define

then the errors u - Ph Uh satisfy the inequality in H :

Since a v) = ( f, v) and a Ith ph Vh) = (f,Ph Vh) we can set v = Ph Vh
to obtain the equation a (u - ph Uh, ph vh) = 0. Putting vh = rh zr, we deduce:

and this implies that
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Notice that this inequality is independent of the choice of the operator
rh from V onto V’h . In particular, y we can take for rh the orthogonal pro-
jection in V of u onto the Hilbert space Ph Vh . Now define Eh 
and zh = 1 --Ph rh so that we have

Denote by zf the transposed operator of 7:h, so that equation (3.10) is equi-
valent to

But z~ is an operator from D (A~) into V with norm y (h), so that Th
is an operator from ~’ into D (A*)’ with the same norm y (h). Then we have,
by Theorem 2.], the scheme

and this implies that

NOTE 3.1.

In the following examples we will compute the function y (h). If the

injection from V into H is compact, then the injection from D (A*) into V
is also compact. Since

then the function y (h) converges to 0 with h by the Banach-Steinhaus Theorem.

NOTE 3.2.

Suppose that A is a continuous operator from V into a Banach space
E with the property that (2)

there exists a continuous linear operator .L from

V into V’ such that

Re (Au, Lit) ~ for c &#x3E; 0 and all u E V.

(2) This class of operators, called « L-positive definite &#x3E;&#x3E; operators, was first introduced

by Martynink (See [9], [10]).
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Denote by L’ the transpose of L. Then if A is an isomorphism the equations

and

are equivalent. We can approximate the solution it to (3.15) by the solu-
tions Ith to

for all

Then if ei is the norm of L and If the norm of A, we can prove in the
same way that

For example, if E is a Hilbert space and A is an isomorphism we may
take L = A. If E = V’ and A is coercive, we may I.

NOTE 3.3. (regularised restriction schemes).

Let W be a Hilbert space contained in the space V, and assume that
the solution it to Au = f belongs to the subspace If we do not make

suitable assumptions about the operators Ph and rh, y then we cannot deduce
the convergence of approximate solutions Uh to U in IV. Nevertheless, we
can construct a perturbed scheme which gives approximations in the space W.

Let b (u, v) be a coercive sesquilinear continuous from on W (for example,
take b (u, v) to be the scalar product of W). Let 8 (h) be a positive nume-
rical function, and define y (h) by

where 111.111 is the norm of W. Assume also that Ph Vh is contained in W.

We then propose the following approximate problem :

PROBLEM Ph . Find an element Uh in Vh that satisfies

for all ’l’h E Vh .

THEOREM 3.2. Assu?&#x3E;ie that
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and that there exists a constant mi such that

where

Then if Uh is a solution to Ph we have

Ph Uh converges uealcly to u in W.

If zae assume in addition that

and

then we have

Let in (3.1 ) and put to obtain

Thus we have

But we also have

and

Use these equations to obtain the inequality
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This inequality implies (3.23 i), and :

Then converges vTeakly in ~’ to an element which is necessarily equal
to ’l1J (since ph 2cj2 converges to u in V).

We then have

and so b ~~h , ~h) converges to 0, because from (3.26) we have

and the right hand side converges to 0. In addition, Ph rhU converges

strongly to 2c in W, and bh converges weakly to 0 in W.
Under the same hypotheses of Theorem 3.2 we can also approximate

the transposed problems and obtain, in this fashion, approximations of non-
homogeneous problems for elliptic boundary value problems. See a paper
of J. L. Lions and J. P. Aubin (to appear).

3.2. Approxi1nation by partial restriction schemes.

We now consider a particular case of the problem. Assume that V is

a closed subspace of a finite intersection of Hilbert spaces y which are

all subsets of the same space H. We define a norm on Y by

Assume that we also have

and that (u, v) is strongly coercive in the sense that

We shall then construct approximation schemes under these conditions.
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Assume that we have the following:

a finite dimensional space Vh

operators ph from Vh into Vq

an operator rh from H into Vh

and that these satisfy :

If converges weakly to uq in Yq for all q,
then there exists u E ~ such that u = uq for all q.

We can then write an element f E V’ " in the form

for

We consider now the problem :

PROBLEM Ph , Find a solution Uh E Vh of

It is clear from (3.32) that there is a unique solution to the problem Ph-
In face, we can prove the following :

THEOREM 3.3. Asstt1ne that conditions (3.30.34) are satisfied. Then the
solutions Uh of Probleiii Ph3 converge to u in the sense that

If we also assume that there is a mapping Ph from Vh into V that satisfies



612

then we have

We will first prove that

By taking Vh = Uh in (3.36), it follows from (3.22) that

Then, for each q, Ph uh is bounded in and a suitable subsequence of

Ph Uh converges weakly to Thus by (3.34iii) V, and this u is

a solution to the Problem P. To see this, it is sufficient to take vh = rh v
in (3.36) and, by (3.33ii), to take the limit, which converges to 0. We will

now prove that converges strongly to u in Vq. Notice that

and the right hand side of this equation converges to 0.

Methods for obtaining the solution of (3.36) are avalaible in [13].

3.3. General approximation criteria.

We have constructed approximate problems Ph. We shall now consider
an equation

and we will give sufficient conditions to ensure the strong convergence of
the solutions tth-

Let Ah be an operator from V’h into Vh, and define

We also define the functions
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We consider the problem :

PROBLEM Ph . Find a solution Uh E ~h of

If we assume that

then there is a unique solution to (3.41). In fact, we can prove the follo-
wing :

THEOREE 3.4. The solution uh of (3.41) satisfies the inequality

If we also have

then

We compute

From this we conclude that

and converges to 0 if (3.43ii) is satisfied. This then implies
(3.44) by equation (3.43i).

§ 4. Study of the error for a self adjoint Galerkin’s method : optimal
approximation. 

"

Let V and .g be Hilbert spaces, with V dense in H. Assume that

(4.1) the injection from V into .g is compact.
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Let ~1 be the self-adjoint positive operator defined in terms of the scalar

product ((it, v)) by

By (4.1) is compact, and so there exists an orthonormal basis (Ùn for

H such that

We now consider the operators 10 (for 0 &#x3E; 0) and their domains

supplied with the inner product ((it, v))e = A e v), so = ~ 
(We will take Vo = H, and note that V = Vl/2)- Since J~ is an isomorphism
from T~e onto H, by transposition All is an isomorphism from H onto
Y-e = Ve supplied with the norm I = , where A-0 = 

We want to construct approximations which hold for all the spaces Ye ,
and we will call these « self-adjoint Galerkin’s approximations ».

Set It = 1 , and consider
n

The self-adjoint Galerkin’s approximation will be defined by giving the
operators j?~ where

and is the basis consisting of the eigenvectors of A.
Then we obtain the following commutation property :

On the other hand, since the basis (À.;:8 is ortho-
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normal in and

is the continuous orthogonal projection
from Vo onto V*

More precisely, we have:

PROPOSITION 4.1. Assuine that

T Jien :

(so that and

and

We have:

Thus

If we take and

so that
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This proves equation (4.9). To prove (4.10), let so that

Finally, (4.11) follows immediately from (4.8).
Moreover, we will show that the self-adjoint Galerkin’s method is

« optimal ». For that, we will use the notion of n-width of Kolmogorov.
(See [5], [6]).

We now introduce the set ~n of all injective operators from Rn or
on into Vp . Define

(Thus 7P (qn) is the  distance » in the fl.norm between the unit ball of Va

and qn We now let Pn = Ph with jz = 1 and we have the following
n

theorem :

THEOREM 4.1. If qn E Qn and a ~ ~ then

Since n = dim qn R~1  dim Rn+l = n + 1 we have :

were 
°

Choose

and ~1 is the orthogonal subspace of W in Vp.
so then inf because

uo E (qn Vn)I and since
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Thus we have:

We now apply this theorem to the study of the error behavior. From
Theorems 3.1, 3.2, and 4.1 we have the following :

COROLLAP,Y 4.1. Let a (u, v) be a continuous coerciro sesquilinear form on
V X V. Assume that the solution u of

for all v E V

-

actually belongs to D (A a) with a &#x3E; 1/2. Let or On be the solution of

Z’laerc u~, converges to u, and satisfies.

If 0 is a parameter with 0  0 C 1, then the solution Un of

converges to it, and satisfies

Thus un converges to u in Ya strongly if 0  1 and weakly if 0 = 1.
Moreover, we know by Theorem 4.1 that the solutions of (4.16) are

optimal in the following sense : for any qn E Qn the solutions un of

satisfy the inequality


