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tntroduction.

Bishop [2] has stated : « It is thought that a manifold c on has,
in general, the property that holomorphic functions in a neighborhood of
jlf extend to be holomorphic in some fixed open set ».

Historically the problem of extending holomorphic functions from a

neighborhood of’ a submanifold of Cn has been considered by Levi, Hartogs,
and Bochner in the case of a hypersurface. More recently work has been
done by Lewy, Bishop, Weinstock, and Wells. (See [6] for a general intro-
duction and discussion).
--------

Pervenuto alla Redazione 1’ll Dicembre 1967.

H. A1,nalt della Seavia Sup.. Pisa.
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Certain submanifolds of an are geometrically well-placed, and inherit
a C.R structure from Cri (see below). This makes it possible to define a
complex of differential operators on them (the a complex on (0, p) forms) which
has been used by J. J. Kohn [14] as a prototype in a study of sub elliptic
complexes, so these C-R structures are important objects to study in them-
selves. But it turns out that extendibility is closely related to simple in-

variants of the C-B structure.

Essentially this thesis is devoted to a discussion of Bishop’s statement.
Chapter I contains some necessary linear algebra. In II, we define the con-
cept of a C-R manifold, which is a pair (M, H (M)), where H (M) is a sub-

bundle of T (D~) ® C (here and in the following, all tensor products are over

R) so that H (M) n H (M) = 0, and H (M) is involutive. Some examples are
given. A complex manifold M is a C-R manifold when H (M) is taken to be
its holomorphic tangent bundle. If 1V’ is a real submanifold of M, (N,

is a C-R 8ub1nanífold when the fiber dimension of

is constant. When the dimension of that intersection in

minimal (as a function of the dimensions of M and 1V) N is called generic.
~ Most » C-R submanifolds are generic. An important invariant of the C-R
manifold (H, H (M)) is the Levi algebra of M, .C~ (~VI ), the sub-algebra of vec-
tor fields generated by H (M) and H (M). We always assume that f(M) is
constant dimensional, and define the excess dinlension of aL (M), ex dim

~ (.M), to be the codimension of H (M) + H (M) in the bundle whose sections
are 

In III we analyze the concepts of extendibility and holomorphic hull
for generic C-R submanifolds of C" , and in particular we prove a theorem.

suggested by H. Rossi about local triviality for such submanifolds when

ex dim f(M) = 0. Later we give a general example (Reinhardt submani-
folds) of embedded C-R submanifolds of Cn whose hull can be exactly const-
ructed. This leads to examples of in on having the property descri-
bed by Bishop.

Let M be a C-R submanifold of Cn . If ex dim &#x3E; 0, we show in
IV that there is a non-trivial family of analytic discs with boundaries on
M. We use this in V to show that if M is a generic C-B submanifold of

On , and if e = ex dim f (M) &#x3E; 0, then M is extendible (in the sense of

Bishop) to a subset of on containing a manifold 1~T with dim N = dim 
We also show that if 1lf is compact, it is always extendible to a manifold

N with dim N = dim M + 1. The same result is true if M is a submanifold

containing no complex submanifolds.
The following is substantially the text of a doctoral dissertation writ-

ten at Brandeis University under the direction of Professor Hugo Rossi.
I would like to thank Professor Rossi for his help and constant encouragement.
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1. REAL SUBSPAOES OF A COMPLEX VECTOR SPACE 

A. Complex Structure.

Let W be a finite-dimensional complex vector space. There is a real
linear map J : so that J2 = - J is given by multiplication by i.

If V is a real vector space with a linear map J so that J2 = - Ip
the V has the structure of a complex vector space VJ, if for any v E V

(a + bi) is defined to be a,v + bjv. Then dimo Vj = 1 dimR V. J called a
2

coynp lex structure on V.

If TT is a real vector space, then Y ® C is a complex vector space,
called the complexification of V, obtained by defining J on an element

v (&#x26; c of V 0 C as :
J (v ® c) = v (&#x26; ic, and extending J linearly to all of V (~ C. Then

and dim c V. F0 C has an important au-

tomorphism of period two, -, de6ned by requiring that v (&#x26; 0 = v (D c (c
is the complex conjugate of c).

There are maps re: and im : V (&#x26; C -+ V defined by

re (a) a + a (an element of V 10B 1, indentified to V) and by i1n (a) a - ar e (a) = 2 ( an element of V i nden tifie d to F) and (a) 

(again in identified to V).
(Another way of obtaining the complexification of V is to consider the

vector space V X V, and define a J by J (v, w) = (- 2v, v). The complex
vector space so obtained is isomorphic to Y ® C, and the isomorphism
I : is just I (a) = (re (a), iin (a)). The important, - automor-
phism becomes (v, zc) = (v, - 

If V already has a complex structure given by a linear map g with
K2 = - then Y ~ C splits naturally into the sum of two complex snb-
spaces, HK (V) + AK(V) with HK(V) == AK(V)- HK(V) (resp. AK(V)) is
called the of holomorphic vecto’fS (depending on K) (resp. the space
o/’ antiholonlorphic vectors (depending on K)). HK (V) is generated by vectors
of the form v (&#x26; 1 - (.Kv) ~ i (which can be read v - ikv), so con-

sists of vectors of the form v + ikv, v E V. If the linear map g is extended

to V ® C by requiring that K (v ~ e) = (Ktl) (&#x26; c, it is not hard to see that

is the (+ i) eigenspace of K and is the (- i) eigenspace of
i (and these are the only eigenspaces of K).
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On the other hand, if V ® C is written as the direct sum of two complex
subspaces H~ -t- A and H = A, this splitting induces a linear map .K on V
with g2 = - and H (resp. A) is just (resp. AK (1’)). If v (D 1 =
a+h, with aEA 
And Kv is just im (a - h).

VK is naturally isomorphic (as a complex vector space) to (cor-
respond an element V with v - iKv E HK( ( 1~ )).

If RT is a complex vector space, H ( W (resp. A (141)) will denote HK (117")
(resp. AK ( W )) where K in the « complex structure » of lI’.

B. Subspaces and Generic Subspaces.

Let T~’ be a complex vector space of complex dimension it, and V a
real subspace of W of real dimension k.

1. DEFINITION : rrt (V) is the maximal complex subspace of ~V contained
in V.

F0 C is canonically imbedded in Define.

2. THEOREM : H (V) + A (V) = T (&#x26; C for a subspace T o,f V, and T
is a complex subspace of 11T; T is 1n ( Y )

’In ( Y ) and H ( V) ate naturally isomorphic.

3. THFoRFm: t max (0, k - n) dimo (iii (V)) ---k’3 . THEOREM : mag (O, K - n)  dimc (m ( Y )) C 2

so that and

Let GpR(W ) (resp. be the collection of p dimensional real (resp.
complex) vector subspaces of flT. Then (resp. has the

structure of a compact C °° (reap. complex-analytic) manifold (Steenrod [29]~
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4. THEOREM :

these 

then ha8

Proof : A simple argument based on rank. The work of Sommer [28],
§§ 1-3, can be used to show this result. #

(Note that 1n-l (Ga ( tV )) is the complement of a lower dimensional al-

gebraic set in GIL (IV), and ni is, in fact, a fibration).

5. DEFINITION : Elements of (Gb (1V)) are called generic subspaces
of dimension k, and other elements of are called exceptional.

The concept of generic subspace is not really satisfactory categorically,
for the inverse image of a generic subspace V by a complex linear map
is generic if &#x3E; 0 but need not be in other cases, and the image
of a generic subspace by a complex linear map need not be generic. Gene-

ricity is not preserved well by taking products; a proper complex subspace
of a complex vector space is not generic.

C. The C-h’ Vector Space Category.

We define the vector space category by giving its objects and maps.
An object in the category is a pair (V, tiT), where Y is a real vector space,
1V is a subspaces of V, and YT has a complex vector space structure com-

patible with its real structure. (Equivalently we can give a subspace W
and linear map Jw: with Or a subspace H of

can be given so Then fV is obtained by requiring
that C = H + H in YC). A niap of the category is a pair of real
linear maps (V~V)2013~F~~) so that:

is a complex linear map. (()ther conditions equiva

into H’.

l. REMARK: An example of an object in the C.R vector space category
is provided by ( t~, -NN,here V is a real subspace of a complex vector

space. This is, in a sense, the most general example. If (V, W ) is an object,
there is a complex vector space iT and an in.je(-.tion j: F2013~- V so 
is a generic snbspace of F, and ( TT, j~T ) ~ ( j l V ), And any map
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from (V, W ) to W’) can be realized as the restriction of an appropriate

complex linear map from V to V’.

2. DEFINITION: The codi1nension of (V, 1f) is 

An interpretation of this is apparent:

3. THEOREM : If generic snbspace of a complex vector space tY,

Proof. Examine B4 and B5. #

II. C I~ MANIFOLDS AND l’HE LEVI ALGEBRA.

A. Objects and Maps.

C-R manifolds are designed to look « tangentially » like the vector

space category. There are many examples of such manifolds.
If V is a vector bundle, let be the collection of C- sections of V.

1. DEFINITION : A C-B manifold is a pair (Jf, H (:’tT )) where M is a

real differentiable manifold of dimension it + k (n &#x3E; k) and H is a k-

dimensional complex subbundle of’ ( T (1’iT ) Q C ). The following two conditions
are satisfied :

a) If A (M) = H (M), then H (M) n A (,If)= )0( (the zero-section).
b) H is involutive. That is, if a, fl E F (H (M)), so is (a; fl] E r (H (1ll)).

2. THEOREM: If M is a real differentiable 1nanilold of dimension k,
then (a) of 1 is equivalent to either the following: 2

1) There is a (2k)-dimensional subbundle R of T (M) so that R is a

complex vector bundle (that is, there is a real bundle J : 1~ -~ R IV it h

J2 = - IR).
2) There is a reduction of the g’ro1lp to T froin GL (n + k, to

a linear group whose elements are of the form where

a) -)- 1) It is clear that aud J is ob

tained as in 1.
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1) -+ 2) We obtain this reduction by taking a covering of M by
charts which exhibit (R, J) as a complex subbundle. -

2) --~ a) It is clear from I how to obtain H (M) from a knowledge
of R and its complex structure. #

REMARK : There is a reduction of the group of T (M) from GL (n + k, R)
to U (k) X 0 (n - k) (which is a linear group whose elements are of the

form A 0) with A E U (k), B E 0 (it - k)). This is accomplished in the usual0 B
way with a Riemannian metric (Nomizu [22], § 8).

3. THEOREM: If M is a real differentiable manifold of dimension n 
satisfying (a) of 1, then (b) of 1 is equivalent to either of the following :

1) If ti is any differential form annihilating I"(H(M)) then (a, B) = 0
any 0153, fl both in 

and J i8 as in

(the Nijenhuis tensor
,fior C-ll 

Proof’ : b) - 1) and 1) -+ b) are eimple uses of the formula

b) ---~ 2) Suppose
(for some K E 1-’ ( R)). But then.
- i [x, And (2) follows.

2) --~ b) as above. #

REMARKS : If (M, H (J1I)) is a O-R manifold, we shall often say « M is
a C JR manifold ».

Note that Rp) ( p E Tl) is an object in the C-R vector space

category.
(We follow Sweeney [30] in the following presentation). Consider the

exact sequence

Taking duals we yet :
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where (H (M)) + A is the dual of T (M) ~ C/TT (M) + A (ill), and coii -

sists of all linear functionals which are 0 on H (M) + A (Jtf) in l’ (11/) ~ C.
Taking the m-th exterior product we obtain :

where K consists of all linear combination fJ1 A ... Aq. where at least one
-- - .. - - . , -

If we choose a splitting map

the sequence (*), then Am r splits the sequence of 1)1,-th exterior products.
If we define DP, q = H (M )* (&#x26; A q A (M)*, we obtain a 
--&#x3E; by composing the following sequence :

So if is essentially the part of

Proof : If we choose another splittiD g r° : H ( 1’~~ )*‘ + .4 ( J[)* ~ ( Z’ (,,lf ) ~ I’ &#x3E;
of the seqnence (*), then r’ = r + Ic, k: H( 1I)* + A  .1f )* - (H( Vf ) + A 
a : DP, q -+ DP, q+l will be well defined if d 1’) ø - d (:1m (1’ + k)) eft 

then (..;j1n r) ø - (A’n (r + k)) (P consists oi terms of the form L = --~ 1’:1 A...
must occur at least once on a terin of (t or

1:i (since we are taking the difference with r), there are no « pure &#x3E;

Am r terms).
Then d~ has terms like A ... (which clearly has n(i

part in DP, q+l because of the and r~’~ n .. A ... A 

has no part by 2-1). But we must assume also that ~~ =- U (for e to

be well-defined), otherwise dk could have (does in certain examples "re must

include) some (1~I) terms.

5. THEOREM : 1 8 1 - 1)° q+l is a (that 62 = 0) and this
statement can be added to the in theorem 2.
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Proof: The fact that 02 = 0 is equivalent to the Nijenhuis tensor = 0

(in 2-2)) is a routine computation. W’e just must examine the effects of a2
on functions °), then the coefficients of the (0, 2) forms involved consist

exactly of terms like the Nijenhuis tensor

REMARK : The cohomology groups defined by theorem 4 have been

investigated by Kohn 114], in the case of ill compact and C-R codi m = 1,
and are important in themselves.

EXAMPLES: it) S4 has no non-trivial C- R structure. For: S‘~ has no

complex structure (eliminating 2t = 2, k = 2) and also its tangent bundle
has no two dimensional subbundle (eliminating n = 3, k = 1).

b) It is not necessarily true that an object satisfying ( 1-a) can be

expanded to satisfy both requirements of 1. That is, given an satsfy-
, 

m m m

ing (1-a), there need be no with H (1’VI), and H (l’tI) satisfying
all of axiom 1. Take R5, and an H which has global sections

Then and fl] is real (sc any ft containing Hand in-

volntive would have

c) Contact manifolds (studied by Gray [7] and Sasaki and Tanno [27],
etc.) have n = Ii -+- 1. An almost contact manifotd satisfies (1-a) only.

~~1 Let G be a Lie algebra, and (~o its complexification. Let 9f be a
Lie subalgebra of Gc so that 9t n W = 0. If C~ is a Lie group with Lie al-

gebra G, then the collection of left-invariant vector fields generated by at

the identity form a basis at each point of a homogeneous subbundle of

which satisfies 1.

e) Complex manifolds have subbundles satisfying 1, their ILOlomiorphic
tangent (If only 1 a) is true, then the manifold is « almost complex »,
and (I-b), (3-1), (:1-2), 5 are wellknown conditions for the integrability of an

almost complex manifold,.)
f’) At the opposite extreme from (e) is the following situation : consi-

der a partial differential operator on Rn where the aj are C°°
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complex-valued functions. If, at each point of the span of the vectors

at , ... , an of R2 is two dimensional then P determines in the obvious way
a subbundle H of 11 (Rn) C satisfying 1 (with k = 1). (Note that if the

span of the vectors al a-,t of R2 is always one dimensional, the situation
(solutions, etc.) is essentially completely handled by the Frobenius theorem).

g) Certain fibre bundles 7l: M- N used in the study of deformations
of complex structure have fiber a complex manifold (as in Kodaira and Spen-
cer [3]). Then the R of (2-1) is all of the vertical tangent bundle (a sub-

bundle and J is defined by using the complex structure of the

fiber. M is a G’-R manifold equipped with this (R, J). (If 11, the fibering map,
is a global product, we have the important example N x T, a real manifold
product with a complex manifold. This is the  flat » case).

If (M, H (M)) is a C-R manifold, and 1~T is a differentiable submanifold

of lll, then (provided that the dimension of the fiber of (T (N ) ® C) n H (M) ~jv
is constant over A’ ) defining H (N) = (T (N ) ® C) n makes (N, H (N))
into a C-R manifold. This remark applied to example e), complex manifolds,
provides the objects which are the main source of our interest:

ia) (Much of what is said here will be true also for real submanifolds

of Stein manifolds). on is, of course, a C-R manifold. is generated

by tangent vectors of the form

consists of tangent vectors of the form If N is a real submanifold

of Cn, then all linear combination

which are also « tangent » to N. If the fiber dimension is con-

stant, (.,’V, H (N)) is a C.R manifold (and a O-R submanifold of H (Ok))).
Such N are also called embedded C.R manifolds. Not every manifolds

is embeddable. Example : in (~), consider the product N x T, with N any real
monifold and T any compact complex manifold. It is an open question whe-
ther any C-R manifold is locally embeddable. (A real analytic manifold witl
real analytic structure is locally embeddable. See VB).

If M is a real C°° submanifold of C’~, then p E M is a generic point of
M if T (M)p is a generic subspace of T (C’1)p (in the sense of IB5, f’or q’ (M)p

is naturally a real subvectorspace of Z’ (Cn)p , which, by affine translstion of
Cn, has a complex structure). If p is a generic point of Af, then there is an
open neighborhood Np of p in M so that if q E Np, then q is also a generic
point of M (just IB4). Then is a C-R manifold, called a 

ric submanifold oj. Any hypersurface of Cn is a generic submanifold.
If (M, H (M)) is a C.R manifold, let R = re + A (M)), a subbundle of

If p E III, we define the C-R at 1) to be divy ((T 
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(see IC2). If this number is the same for all of M (as when M is connected)
it is called the C-R codimension of M. Using 103 we know : if M is a ge-
neric submanifold of with non-trivial holomorphic tangent bundle, then

C-B codim (M, H (M)) = codi m R of in Cn.

We can give a general example af non trivial generic submanifolds of

en with dimr = n + k. Let 9,,-k be C°° real-valued functions on Cn.

Suppose p E fl (0), and det ( p) A ... A dLo,,-k ( p) =t= 0. Then there is a neigh-
borhood N of p in Cn so that N n 0 gji (0) = M is a C°° submanifold of Cn

&#x3E; 
_ _

of codimension n - k. If, in addition, 8gi ( p) A ... A aen-k ( p) # 0 (the ej are

holomorphically transverse at p) then N can he chosen so that is a gene-

ric submanifold of Cn. (pt = Xl I ig2 = yi in On is a submanifold which is not

generic, for a et A ae2 = 0).

6. DEFINITION: Let (Jf, H(M)), (/B1, H (11’ )) be C-R manifolds. Put R =
= re (H (M) + A (M)) and Q = re (H (N) + A (N». A differentiable map ,~’ :

a C-R mapping if, for any p E ilt, (d~p , Rp) : (T (M)p , Rp)
is a map in the O-R vector space category.

When M and A are complex manifolds, such an 4t’ is a complex analy-
tic map - and the condition in 6 is equivalent to requiring that f satisfy
the Cauchy-Riemann equations.

We can read off from IC equivalent forms of the definition 6.

7. THEOREM : differentiable ntap, the

a’re 

1). f’ is a C.R 
2). dioJR = JQ are tlae contplex structures on of 2-1).
3). tlzis : dt’ (&#x26; 10 (H (M) r- H(11-’ ).
4). the 1nap naturally indueed by f on the exte-

’rior then ./1f= AJ’o ON am, aN are the a maps of 4 on

Jlf aild ~1).

1), 2), 3) are equivalences from IC. That (4) is equivalent is a

usual linear algebra argument
If 2lf is a submanifold of Cn, and M n (1 (0) (as before) we have

J ,

the following further equivalences :

R. THEOREM map onty tchen there are C°° fun-
ctions aj defined on so that aj Bej = 0. If further the ej are holo.

i 
,

transverse (.so J1f is a generic sub1nanifold of on) this is the

souze ((s that efA A = O.
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Trivial. it:

Traditionally J* is said to be « relatively holomorphic » (note that the

restriction to If of any function holomorphic in neighborhood of 1"I is a C-R
map), and the partial differential equations of theorem 8 are the « induced &#x3E;&#x3E;

or «tangential » Caucby-Riemann equations.

B. O-Coinplex Manifolds.

1. 1’HEOREM: Let C-.R V i.s a complex inalti-

,t’old and H its holomorphic tangent bundle only when T = re (H (ilf) +
+ A 

Proof : If ~lI is a complex manifold, then clearly has the desire(I
property. On the other hand, if is we have

exactly the hypotheses of the NcwInnderNirenberg theorem [19] so J1I is a

complex man i fold. r,

If H is a C-R manifold, a submanifold N of nl is a comple.r
submanifold if’ N is a C-.R submanifold of and C- B codim N = 0. Such

an N is, by 1, a complex manifold.
Certain C.R manifolds are very far away from having complex sulma-

nifolds :

2. DEFINI’1’ION : A (non-trivial) O-R manifold (JI, H(.11)) is it’

no open subset of Tl as a complex submnnifold.

Any strictly pseudo-convex hypersurface of C’z is 0-complex.
The intersection in On of transverse, holomorphically transverse strictly
pseudo convex hyper-surfaces provides examples ot’ 0 complex manifolds of

any C-R codimens. (A sphere | z - a = r is the simplest example of a

strictly pseudo convex hypersurface). (See C 12).
(M, H (M)) is 0-complex only ,vhen: it’ is any connected con1plex

manifold, f’ : 8T- M a non-constaut C-R map, then dim N - 0. An alge
braic interpretation is provided by :

3. THEOREM: If (lVl, H (M)) i8 a C-R the folloiving ai-e equi-
valent

1.) There is an open subset U IyI possessitig a complex 
2.) There is an open subset U o f M, a 0./’ U, and

a-.invariant subalgebra ( of h (T (.’tI ) C) .so f’ (H ( 1~ ) ~-~- A (N)).
3.) There is an open subset U of J{, a N n.f U, lutd an

u E I" (H u E T (N) (&#x26; C ) .so that tc, 1(1 v = 0.
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Proof: 1 ~ - 2) If N is a complex submanifold of U, we can select
so that C IN = (H (1fT) + A (N )) (by extending H (N ) as a subbundle of H (Ai)
over M, for example, and taking ~ to be the algebra of sections of the ex.
tended bundle).

2) --~ 1) On N, ~ is a -invariant subalgebra of r(H (N) + A (~)). All
we must show is that there is a complex submanifold in some open set

of N. Let 0 be that open subset of bT where the distribution ~ has maxi.

mal rank. So there ~ = ~~(F)~ for some bundle V. Then (by A =

= r(re V ) is an involutive subalgebra of T (T (~1") 10’). Hence, by the Fro-

benius theorem, y there is a maximal integral submanifold S of C’’, and

is the desired

complex submanifold.

1) --&#x3E; 3) Take a coordinate z on the complex submanifold S of U.

Then extend the element a of .r (8 (S )) to any element u Since
bz

we have
~ 

3) --~ 2) Let ~ be the subalgebra generated by u and u. jf
The following result generalizes an interesting theorem of Bochner and

Martin ([4], Chap. 3,5) on analytic mappings carrying spherical surfaces onto
each other. 

,

4. THEOREM: Let (M, H (M)) be a 0-complex C-.R manifold, (N, H (N))
a manifold, suppose f : (j1f, --~ (N, H (N)) is a surjective C-I~

map. If’ codim M = O-R codi11l dim M = dim N, and a dense

open subset of N is 0 complex.

By Sard’s theorem (Milnor [18], 2) we can find a regular value
q E N of / with f ( p) = q. Then dfp is a surjective linear map from C a X Rb
to where 2a + b = dim M, C-R codim 1V1= b,
and C.R codim N = d. Since ~’ is onto, 2a + b h 2c + d. Since b = d,
2a h 2c. Then f -1 (q) is a submanifold of (since q is a regular value)
and if 2a &#x3E; 2c we see that is a non-trivial complex submanifold
of M. So 2a = 2c. By further use of Sard’s theorem, dip is a C-R isomor-

phism for a dense open subset of Since 0-complexity is local (by 3)
this dense open subset is O-complex.

In particular, 4 states that if a strictly pseudo convex hypersurface H
of Om is mapped onto a hypersurface H’ of Cn by a C-R map, then in = n,
and a dense open subset of H’ is 0-complex (but there may be complex
submanifolds of H’).

REMARK : We can also define q-complex C.R manifolds, and prove a
result similar to 4.


