LEIF ARKERYD

A priori estimates for hypoelliptic differential equations in a half-space

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3e série, tome 22, n° 3 (1968), p. 409-424

<http://www.numdam.org/item?id=ASNSP_1968_3_22_3_409_0>
A PRIORI ESTIMATES FOR HYPOELLIPTIC DIFFERENTIAL EQUATIONS IN A HALF-SPACE

by LEIF ARKERYD

0. Introduction.

Our aim is to show that every distribution solution u of a formally hypoelliptic partial differential equation

$$\mathcal{A}u = f \text{ in } \mathbb{R}^n_+,$$

satisfying Dirichlet's boundary conditions

$$D_{j}^l u = 0, j = 0, \ldots, l \text{ on } \mathbb{R}^{n-1},$$

does belong to C^∞, if f does. In analogy with the elliptic case (cf. Arkeryd [1]), it is natural to try to obtain à priori estimates

$$N_1(u) \leq C N_2(\mathcal{A}u) + N_3(u) \tag{0.1}$$

with suitable norms N_1, N_2, N_3, with in particular N_3 « weaker » than N_1. These estimates are proved in two steps:

1°. The inequality (0.1) is established for operators with constant coefficients.

2°. For operators

$$\mathcal{A} = A + \Sigma a_j Q_j,$$

where A and Q_j have constant coefficients, Q_j is weaker that A and $a_j \in C^\infty$, the inequality (0.1) can be obtained from the constant coefficient case 1° if

$$N_2(\mathcal{A}Q_j u) \leq C \sup |a| N_1(u) + C'N_3(u).$$
In Peetre [8] (see also Schechter [9] and Matsuzawa [7])

\[N_2(u) = \left(\int_{\mathbb{R}^n_+} |u|^2 \, dx \right)^{1/2} \]

is considered, but then (0.1) is not true for all formally hypoelliptic operators; the second step does not always work. Here we use instead

\[N_2(u) = \inf_{\mathbb{R}^n} \left(\int |A_-^{-1} \tilde{u}|^2 \, dx \right)^{1/2}, \]

if \(A = A_+ \cdot A_- \) is the « canonical » decomposition of \(A \), with \(\inf \) taken over all \(\tilde{u} \in \mathcal{S}'(\mathbb{R}^n) \), satisfying \(\tilde{u} = u \) in \(\mathcal{H}^n_+ \). In the same way we take

\[N_4(u) = \inf_{\mathbb{R}^n} \left(\int |A_+ \tilde{u}|^2 \, dx \right)^{1/2}. \]

Then step 1° is immediate (cf. [8], [11]) and the main difficulty is to prove 2°. This can be done by use of a commutator lemma analogous to Friedrich's lemma, which follows from the basic estimate

\[\left| \frac{\partial A_-}{\partial \xi_+} \right| \leq C |A_-| |\xi'|^{-s}, \xi' \in \mathbb{R}^n, |\xi'| \geq M. \]

Let us mention that Hörmander [4] has proved a regularity theorem for operators with constant coefficients and general boundary conditions. He does not, however, use à priori estimates, but explicit formulas for the corresponding Green and Poisson kernels.

The plan of the paper is as follows. Section 1 contains some preliminaries concerning the distribution spaces involved. Section 2 contains the proof of the basic estimate of the Friedrich's type mentioned above. In Section 3 and Section 4 the applications to differential equations are given. Since they are rather routine, we have cut down the exposition to a minimum.

1. Spaces \(H^+_{\mathcal{H}_+}, s \) and \(H^+_{\mathcal{H}_-}, s \).

The Fourier transform of an element \(f \) in one of the Schwartz classes \(\mathcal{S} \) or \(\mathcal{S}' \) (see [10]) is denoted by \(\mathcal{F}f \), the inverse transform by \(\mathcal{F}^{-1} \), \(\mathcal{F} \mathcal{F}f = f \).
We take formally
\[Ff(\xi) = \int_{\mathbb{R}^n} e^{-ix\xi} f(x) \, dx \]
and use the notation
\[P(D) f = \mathcal{F}Pf, \]
where P is a function on \(\mathbb{R}^n \). The following functions will often be used:
\[P(\xi) = A(\xi) = \xi_1 + i \left(1 + \sum_{j=2}^{n} \xi_j^2\right)^{1/2}, \]
\[P'(\xi) = A_1(\xi) = \left(1 + \sum_{j=2}^{n} \xi_j^2\right)^{1/2}. \]
By
\[A = A(D) = A(D_1, D') = \sum \sigma_a D^a, \quad D^a = (i)^{-r} \frac{\partial}{\partial x_{a_1}} \cdots \frac{\partial}{\partial x_{a_r}} \]
we denote a hypoelliptic differential operator with constant coefficients and write
\begin{equation}
A(\xi, \xi') = a \Pi \left(\xi_1 - \sigma^+ (\xi') \right) \Pi \left(\xi_1 - \sigma^- (\xi') \right) = a A_+ A_- \tag{1.1}
\end{equation}
with \(a = a_1 \cdots 1 \). Here \(m_+ \) is the number of roots \(\sigma^+ \) with positive and \(m_- \) the number of roots \(\sigma^- \) with negative imaginary part. We require, that \(A \) satisfies the root condition, i.e., that \(m_+ \) and \(m_- \) are independent of \(\xi' \) for \(|\xi'| \geq M \). It is no restriction to take \(a = 1 \). We set
\begin{equation}
B(\pm) = \begin{cases}
A \pm (\xi) & \text{if } |\xi'| \geq M, \\
(\xi_1 + \mp i)^m \pm & \text{if } |\xi'| < M.
\end{cases} \tag{1.2}
\end{equation}
where the value of \(M \geq M \) will be defined in Section 2. The following norms are used:
\[\| u \| = \left(\int_{\mathbb{R}^n} |u(x)|^2 \, dx \right)^{1/2}, \quad \| u \|_P = \| P(D) u \|, \quad \| u \|^{*} = \inf \| \tilde{u} \|_P, \]
where \(\inf \) is taken over all \(\tilde{u} \in S' \), whose restrictions to
\[\mathbb{R}^n_+ = \{ x : x_1 > 0 \} \]
are equal to \(u \), and such that

\[
P(D)\tilde{u} \in L^2.
\]

The notation \(\tilde{u} \) is used below in this sense. Particular norms of this type are

\[
\| u \|_{H^+_{\pm \cdot \overline{B}_\pm} \equiv \| u \|_{A^+_{\pm \cdot B_\pm}}
\]

\[
\| u \|_{H^{-1}_{\pm \cdot \overline{B}_\pm^{-1}} \equiv \| u \|_{A^{-1}_{\pm \cdot \overline{B}_\pm^{-1}}}
\]

\[
\| u \|_{r \cdot \overline{B}_\pm} \equiv \| u \|_{A^+_{\cdot \cdot \cdot \cdot \overline{B}_\pm}}
\]

The corresponding spaces are denoted by

\[
H^+_{\pm \cdot \overline{B}_\pm}, H^{-1}_{\pm \cdot \cdot \cdot \overline{B}_\pm^{-1}} \text{ and } H_\cdot \cdot \cdot \cdot \cdot \overline{B}_\pm
\]

The space corresponding to \(\| \cdot \|_p \) is denoted by \(H_p \). Paley-Wiener's theorem gives

\[
\| u \|_{\overline{R}_+^{\cdot \cdot \overline{B}_\pm}} \leq \left(\int A^2_{\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \overline{R}_+\cdot (\| F_{\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \overline{B}_\pm^{-1}} (\xi') \|_{\overline{R}_+^{-1}} (\xi')^2 d\xi' \right)^{1/2},
\]

\[
\| u \|_{\overline{R}^{-1}_{\cdot \cdot \cdot \cdot \cdot \overline{B}_\pm^{-1}}} \leq \left(\int A^2_{\cdot \cdot \cdot \cdot \cdot \overline{R}_+\cdot (\| F_{\cdot \cdot \cdot \cdot \cdot \overline{B}_\pm^{-1}} (\xi') \|_{\overline{R}_+}^{-1} (\xi')^2 d\xi' \right)^{1/2}.
\]

The local spaces (cf. 2.5 in [4])

\[
(H^+_{\pm \cdot \cdot \cdot \overline{B}_\pm}, \overline{H}^{-1}_{\pm \cdot \cdot \cdot \overline{B}_\pm^{-1}} \text{ and } (H_\cdot \cdot \cdot \overline{B}_\pm)^{\text{loc}}
\]

correspond to the above spaces. About \(H^+_p \), we need the following fact, which goes back to Hörmander and Lions [6].

Lemma 1.1. Let \(c \in C^\infty_0 (\overline{R}_+^p) \). Then

\[
\| cf \|_{\overline{R}_+}^{\cdot \cdot \cdot \cdot \cdot \overline{B}_\pm} \leq \sup | c | \| v \|_{\overline{R}_+}^{\cdot \cdot \cdot \overline{B}_\cdot \cdot \cdot \cdot \overline{B}_\pm} + K \| v \|_{\overline{R}_+}^{\cdot \cdot \overline{B}_\cdot \cdot \cdot \cdot \overline{B}_\pm}
\]

for all \(v \in H^+_\cdot \cdot \cdot \cdot \overline{B}_\pm \), and with the constant \(K \) independent of \(v \).

Next we state some lemmas in \(H^+_\cdot \cdot \cdot \overline{B}_\pm \).
Lemma 1.2. C^∞_0 is dense in $H^{A_1B_+}$.

Proof: We prove in Section 2, that \((2.4) \)
\[
|B_-(\xi) - B_-(\xi + \eta)| \leq C(1 + |\eta|^{1/2} |B_-(\xi)|),
\]
for all $\xi, \eta \in R^n$. Here and below constants are written C and K, sometimes with index. As the same inequality holds for B_+, it follows that
\[
|B_+(\xi + \eta)| \leq C'(1 + |\eta|^{1/2} |B_+(\xi)|),
\]
and consequently
\[
|A_1^\prime(\xi + \eta) B_+(\xi + \eta)| \leq C'(1 + |\eta|^{1/2 + 1/2} |A_1^\prime(\xi') B_+(\xi)|).
\]

But from this inequality follows that C^∞_0 is dense in $H^{A_1B_+}$. See [5] Remark p. 36 and Theorem 2.2.1).

We now use Lemma 1.2 to approximate elements of $H^{A_1B_+}$ with support in a half-space.

Lemma 1.3. Let $u \in H^{A_1B_+}$, $\text{supp } u \subseteq \overline{R^n_+}$. Then u is the limit in $H^{A_1B_+}$ of a sequence $(u_j)_{j=1}^\infty$ of functions

\[
u_j \in C^\infty_0(R^n), \text{ supp } u_j \subseteq R^n_+.
\]

Proof. Denote by τ_h translation by h along the x_1-axis. Then
\[
\|\tau_h u - u\|_{A_1B_+}^{A_1B_+} = \left(\int |A_1^\prime B_+|^2 |e^{ib_i} - 1|^2 |Fu|^2 d\xi \right)^{1/2} \leq \leq 2 \left(\int_{R^n_+} |B_+ A_1^\prime Fu|^2 d\xi \right)^{1/2} + \sup_{x_1} |e^{ib_i}| 1 \|u\|_{A_1B_+}.
\]

which can be made arbitrarily small by a suitable choice of ξ and h. As the statement of the lemma is already established implicitly for $\tau_h u$ by Lemma 1.2, this ends the proof.

Remark. In Lemma 1.3, B_+ can be replaced by B_-^{-1} and R^n_+ by $\overline{R^n_+} = \{x : x_1 \leq 0\}$.

differential equations in a half-space

413
By definition, that a function \(u \in H^+_{\mu_+} \) has the boundary values \(B^+ \), means, that there is a \(\tilde{u} \in H^+_{\mu_+} \) with

\[
\tilde{u} = 0 \quad \text{for} \quad x_1 < 0, \quad \tilde{u} = u \quad \text{for} \quad x_1 > 0.
\]

Finally we need

Lemma 1.4. A function \(u \) satisfying (1.5) is in \(R \) if and only if it is in \(H^+_{\mu_+} \) and

\[
\frac{u(x_1, x' + h') - u(x_1, x')}{|h'|}
\]

is bounded in \(H^+_{\mu_+} \) independently of \(h' = (h_2, \ldots, h_n) \).

Proof: The proof is immediate if we notice that with

\[
\tilde{u} = u \quad \text{for} \quad x_1 > 0, \quad \tilde{u} = 0 \quad \text{for} \quad x_1 < 0,
\]

there is a characterization of \(B^+_1 \tilde{u} \) in \(H^+_{\mu_1} \) by the same kind of difference quotients.

2. A version of Friedrich's lemma.

The derivation of the à priori inequality mentioned in Section 0, is for \(m_+ > 0 \) based on a commutator lemma analogous to Friedrich's lemma (see e.g. [2]), which is established in this section. The proof depends on a number of lemmas, for which we need the following estimates of hypoelliptic polynomials:

\[
|A^u(\xi)/A(\xi)| \leq C_1 |\xi|^{-e - s} \quad \text{if} \quad |\xi| \geq M,
\]

(2.1) \[
\left| \frac{\partial A(\xi)}{\partial \xi^r} \right| A(\xi) \leq C |\xi|^{-e} \quad \text{if} \quad |\text{Im} \xi_1| \leq C' |\xi'|, \quad \xi' \in R^{n-1}, \quad |\xi'| \geq M,
\]

\[
|\text{Im} \xi'(\xi')| > C' |\xi'| \quad \text{if} \quad |\xi'| \geq M
\]
for some $c > 0$ and with $A^a(\xi) = D^a A(\xi)$ (see Hörmander [5]).

Lemma 2.1. If ξ belongs to the cylinder $|\xi'| \geq M$, then for all ν

$$\left| \frac{\partial A_-(\xi)}{\partial \xi^\nu} A_-(\xi) \right| \leq K |\xi'|^{-b}.$$

Here C is independent of ξ and $c^2 > b > 0$.

Proof. As the coefficients of $A_-(\xi)$ are analytic in $|\xi'| \geq M$ (see [3] p. 289-290), the derivatives $\frac{\partial A_-(\xi)}{\partial \xi^\nu}$ exist. Cauchy’s formula gives

$$\frac{\partial A_-(\xi)}{\partial \xi^\nu} A_-(\xi) = \frac{1}{2\pi i} \int_{-\infty+it}^{\infty+it} \frac{\partial}{\partial \xi^\nu} A(\xi - \tau, \xi') \frac{d\tau}{A(\xi - \tau, \xi') \tau} \min_{1 \leq j \leq m} \text{Im} e^{ij\tau} > \varepsilon > 0.$$

Take q and p such that

$$qc > 1, \quad \frac{1}{q} + \frac{1}{p} = 1.$$

Then by (2.1) and with $\varepsilon = C' |\xi'|^r$ we obtain

$$\left| \frac{\partial A_-(\xi)}{\partial \xi^\nu} A_-(\xi) \right| \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{C d\sigma}{(|\xi_1 - \sigma| + |\xi'|^r)^{\frac{q}{r}}} \left(\int_{-\infty}^{\infty} \frac{d\sigma}{\sigma + iC' |\xi'|^p} \right)^{\frac{1}{p}} \leq$$

$$\leq C \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} \frac{d\sigma}{|\xi_1 - \sigma| + |\xi'|^r} \right)^{\frac{q}{r}} \left(\int_{-\infty}^{\infty} \frac{d\sigma}{\sigma + iC' |\xi'|^p} \right)^{\frac{1}{p}} \leq$$

$$\leq K |\xi'|^{-b}.$$

The next lemma compares $A_-(\xi)$ with $A_-(\xi + \eta)$ for small real η. For technical reasons, we only make that comparison in a cylinder $|\xi'| \geq M_1 \geq 2M$, with M_1 so large that

$$|\xi'| \leq 2 |\xi' + \eta'| \leq 4 |\xi'| \quad \text{if} \quad |\eta| \leq |\xi'|^b.$$

This is the constant M_1 mentioned in formula (1.2).
LEMMA 2.2. Take ξ with $|\xi'| \geq M_1$ and $|\eta| \leq |\xi'|^b$. Then

\begin{equation}
|A_-(\xi + \eta)| \leq K' |A_-(\xi)|, \tag{2.2}
\end{equation}

\begin{equation}
|A_-(\xi + \eta) - A_-(\xi)| \leq C |\eta| |\xi'|^{-b} A_-(\xi), \tag{2.3}
\end{equation}

which K' and C independent of ξ and η.

Proof. We write

$$
\log \frac{A_-(\xi + \eta)}{A_-(\xi)} = \int_0^1 \sum_{j=1}^n \eta_j A_j^{-1}(\xi + t\eta) \frac{\partial}{\partial \xi_j} A_-(\xi + t\eta) dt.
$$

The integrand can be estimated by Lemma 2.1. The restrictions on η and M_1 then give

$$
\left| \int_0^1 \sum_{j=1}^n \eta_j A_j^{-1}(\xi + t\eta) \frac{\partial}{\partial \xi_j} A_-(\xi + t\eta) dt \right| \leq \frac{1}{|\xi'|^b} \int_0^1 |\xi'|^b |\xi' + t\eta'|^b dt \leq K2^b,
$$

and so

$$
|A_-(\xi + \eta)| \leq |A_-(\xi)| e^{K\eta^2} = K' |A_-(\xi)|.
$$

The inequality (2.3) follows from

$$
|A_-(\xi + \eta) - A_-(\xi)| = \left| \int_0^1 \sum_{j=1}^n \eta_j \frac{\partial}{\partial \xi_j} A_-(\xi + t\eta) dt \right| \leq \frac{1}{|\xi'|^b} \int_0^1 |A_-(\xi + t\eta)| |\xi + t\eta|^b dt \leq \frac{1}{|\xi'|^b} \int_0^1 |A_-(\xi)| |\xi'|^b dt = \frac{1}{|\xi'|^b} |A_-(\xi)|.
$$

The estimate that corresponds to (2.3) for $|\eta| > |\xi'|^b$, is much more easily obtained.
LEMMA 2.3. If $|\xi'| \geq M_1$, $|\xi' + \eta'| \geq M_1$ and $|\eta| \geq |\xi'|$, then

$$|A_-(\xi) - A_-(\xi + \eta)| \leq C |\eta|^a |\xi'|^{-\epsilon} |A_-(\xi)|,$$

where d is independent of ξ and η.

PROOF. Under the given restrictions on ξ and η, for some $a > 0$ the following inequalities hold:

$$|\varphi_j(\xi')| \leq |\xi'|^a \leq |\eta|^{a/k},$$

$$|\varphi_j(\xi' + \eta')| \leq |\xi' + \eta'|^a \leq C_a |\eta|^{a/k},$$

$$|\text{Im} \varphi_j(\xi')| \geq C |\xi'|^k.$$

Hence

$$|\varphi_j(\xi') - \varphi_j(\xi' + \eta')| \leq C \frac{(1 + |\eta|)^{a/b}}{|\xi'|^c},$$

which gives the desired estimate, when inserted into

$$A_-(\xi) - A_-(\xi + \eta) = \frac{\Pi (\xi_1 - \varphi_j(\xi')) - \Pi (\xi_1 + \eta_1 - \varphi_j(\xi' + \eta'))}{\Pi (\xi_1 - \varphi_j(\xi'))} =$$

$$= \sum_{j=1}^{m-} \frac{\eta_1 - \varphi_j(\xi' + \eta')}{\xi_1 - \varphi_j(\xi')} \frac{\Pi (\xi_1 + \eta_1 - \varphi_j(\xi' + \eta'))}{\xi_1 - \varphi_j(\xi')} .$$

Recalling from (1.2) that

$$B_-(\xi) = \begin{cases} A_-(\xi), & |\xi'| \geq M_1, \\ (\xi + \eta)^{n-}, & |\xi'| < M_1, \end{cases}$$

and using Lemmas 2.2 and 2.3, the main step in the proof of our commutator lemma easily follows.

LEMMA 2.4. There are constants k and C independent of $\xi, \eta \in \mathbb{R}^n$, such that

$$|B_-(\xi) - B_-(\xi + \eta)| \leq C \frac{(1 + |\eta|^{a/k})}{(1 + |\xi' + \eta'|^{a/b})}. \tag{2.4}$$

PROOF. The points ξ and $\xi + \eta$ can be situated inside or outside the cylinder $|\xi'| = M_1$. This gives four cases, which are treated separately.
1°. By Lemmas 2.2 and 2.3, the inequality (2.4) is fulfilled for \(|\xi'| \geq M_1\) and \(|\xi' + \eta'| \geq M_1\).

2°. For \(|\xi'| \geq M_1\) and \(|\xi' + \eta'| < M_1\), write the left-hand side of (2.4) as in the proof of Lemma 2.3.

\[
\frac{B_-(\xi) - B_-(\xi + \eta)}{B_-(\xi)} = \sum_{j=1}^{m} \frac{-\eta_j - \psi_j(\xi') - \frac{i}{\xi_j - \psi_j(\xi')}}{\xi_j - \psi_j(\xi')}.
\]

Each factor can be estimated by

\[
C' \frac{(1 + |\eta|^3)^k'}{(1 + |\xi' + \eta'|^3)^{k'}}
\]

for some \(k'\) and \(C'\), which obviously implies (2.4).

3°. The case \(|\xi'| < M_1, |\xi' + \eta'| \geq M_1\) is treated analogously.

4°. If \(|\xi'| < M_1\) and \(|\xi' + \eta'| < M_1\), the inequality is well-known.

When \(Q\) is weaker than \(A\), we have

\[
\| B^{-1} A_1^* a Q u \| \leq \left\| B^{-1} A_1^* (aB_- - B_- a) \frac{Q}{B} B_+ u \right\| + \left\| A_1^* a \frac{Q}{B} B_+ u \right\|.
\]

Because \(A\) is hypoelliptic, we have

\[
\left| \frac{Q(\xi)}{B(\xi)} \right| \leq C \text{ for } \xi \in R^u
\]

(see [5] p. 102). Then the first term on the right side can be estimated by Lemma 2.4 as follows;

\[
\left| B^{-1} A_1^* (aB_- - B_- a) \frac{Q}{B} B_+ u \right| =
\]

\[
= \left\| B^{-1}(\xi) A_1(\xi') \int F a(\eta) (B_- (\xi - \eta) - B_-(\xi)) \frac{Q(\xi - \eta)}{B(\xi - \eta)} B_+(\xi - \eta) F u(\xi - \eta) d\eta \right\|
\]

\[
\leq C \left\| A_1(\xi') \int F a(\eta) A^k(\eta) A_1^*(\xi') B_+(\xi - \eta) F u(\xi - \eta) d\eta \right\|
\]

\[
\leq C \left\| \int F a(\eta) A^k(\eta) A_1^1(\xi'-\eta') A_1^{* - b}(\xi' - \eta') B_+(\xi - \eta) F u(\xi - \eta) d\eta \right\|
\]

\[
\leq C \int |F a A^k A_1^1 d\eta| || A_1^{* - b} B_+ u ||.
\]
This estimate, together with the inequality
$$\| u \|_{H^{s}, \tau^{-b}} \leq \varepsilon \| u \|_{H^{s}, \tau^{-1}} + C_{\varepsilon} \| u \|_{H^{s}, \tau^{-1-1}}$$
of Ehrling-Nirenberg type, gives

Theorem 2.1. Let $a \in C^\infty_c (R^n)$, Then for $\varepsilon > 0$,
$$\| (a B_1 - B_1 a) Q B_1^{-1} u \|_{H^{s}, \tau^{-1}} \leq \varepsilon \| u \|_{H^{s}, \tau^{-1}} + C_{\varepsilon} \| u \|_{H^{s}, \tau^{-1-1}},$$
with C_{ε} independent of $u \in H^{s, \tau^{-1}}$.

3. A priori inequalities for hypoelliptic operators.

Theorem 3.1. Let
$$s (x, D) = A (D) + \sum_{j=1}^{m} a_j (x) Q_j (D),$$
where $A (D)$ is hypoelliptic and $Q_1 (D), \ldots, Q_m (D)$ are weaker than $A (D)$. If $a_1 (x), \ldots, a_m (x) \in C^\infty_c (R^n)$ and
$$\sum_j \sup_{x} \| a_j (x) \| < \varepsilon$$
for some sufficiently small $\varepsilon > 0$, then

$$\| u \|_{H^{s}, \tau^{-1}} \leq C (\| s u \|_{H^{s}, \tau^{-1}} + \| u \|_{H^{s}, \tau^{-1-1}})$$

for all $u \in H^{s, \tau^{-1}}$, satisfying the boundary conditions (1.5).

Proof. We prove the theorem for $m_{-} > 0$. The modifications in the simpler case $m_{-} = 0$ are obvious. As Lemma 1.3 shows, it is sufficient to prove the theorem for $u \in C^\infty_c (R^n)$. According to a theorem by Peetre ([8], Lemma 4)

$$\| F_x u (\cdot, \xi^0) \|_{H^{s} (\cdot, \xi^0)} \leq \| A (\cdot, \xi^0) \| F_x u (\cdot, \xi^0) \|_{H^{s} (\cdot, \xi^0)}$$

if $|\xi'| \geq M$ and if $u \in C^\infty_0 (R^n)$. The proof is based on the Paley-Wiener theorem. We multiply (3.2) by A_1^s and integrate in ξ' (cf. (1.3), (1.4)) getting

$$
\| u \|_{B^{+,s}_{1,-1}}^+ \leq \| A u \|_{B^{+,s}_{1,-1}}^+ + \| 1 + M_1^s \| u \|_{B^{+,s-1}_{1,-1}}^+ .
$$

It follows that

$$
(3.3) \quad \| u \|_{B^{+,s}_{1,-1}}^+ \leq \left(\left(A + \sum_1^m a_j Q_j \right) u \right)_{B^{+,s-1}_{1,-1}}^+ + \sum_1^m \| a_j Q_j u \|_{B^{+,s-1}_{1,-1}}^+ + C \| u \|_{B^{+,s-1}_{1,-1}}^+ .
$$

But

$$
\| a_j Q_j u \|_{B^{+,s-1}_{1,-1}}^+ \leq \| B_- a_j Q_j B_-^{-1} u \|_{B^{+,s-1}_{1,-1}}^+ + \| (a_j B_- - B_- a_j) Q_j B_-^{-1} u \|_{B^{+,s-1}_{1,-1}}^+ .
$$

The last term can be estimated by use of Theorem 2.1, and in view of Lemma 1.1, we can estimate the first term in the following way;

$$
\sup a_j \| Q_j B_-^{-1} u \|_{B^{+,s-1}_{1,-1}}^+ + K \| Q_j B_-^{-1} u \|_{B^{+,s-1}_{1,-1}}^+ \leq C_j (\sup a_j \| u \|_{B^{+,s-1}_{1,-1}}^+ + K \| u \|_{B^{+,s-1}_{1,-1}}^+).
$$

Here C_j is independent of u and a_j. We have now proved that

$$
\| a_j Q_j u \|_{B^{+,s-1}_{1,-1}}^+ \leq (C_j \sup_1 a_j | | + \epsilon) \| u \|_{B^{+,s-1}_{1,-1}}^+ + C \| u \|_{B^{+,s-1}_{1,-1}}^+ ,
$$

which together with (3.3) gives the desired estimate (3.1), if we assume for instance, that $\epsilon > \sum_{j=1}^m C_j \sup_1 a_j | | < 1/2$.

4. Regularity.

In this section

$$
\mathcal{A} = A + \sum a_j Q_j
$$

is formally hypoelliptic. Before the main regularity theorem we formulate a result on regularity in the x'-directions.
THEOREM 4.1. Let \(u \in H_{\mathbb{R}^+}^+ \), for some \(r \) and let \(u \) satisfy (1.5). Define \(\mathcal{A}(x,D) \) as in Theorem 3.1. Then

\[
\mathcal{A} \in H_{\mathbb{R}^+}^+.
\]

PROOF. It is always possible to choose \(r \), so that \(r = s - v \) for some integer \(v \). If \(r \leq s - 1 \) then the quotient

\[
\frac{u(x_1, x' + h) - u(x_1, x')}{|h|}
\]

is bounded in \(H_{\mathbb{R}^+}^+ \), by Theorem 3.1. Then by Lemma 1.4, \(u \in H_{\mathbb{R}^+}^+ \). By iteration, this proves the theorem.

THEOREM 4.2. Let \(u \in D'(\mathbb{R}^+_-) \) and satisfy (1.5) Then

\[
u \in (H_{\mathbb{R}^+}^+)_{\text{loc}} \quad \text{if} \quad \mathcal{A}u \in (H_{\mathbb{R}^+}^+)_{\text{loc}}.
\]

PROOF. The theorem means that \(\psi u \in H_{\mathbb{R}^+}^+ \) if \(\psi \in C_0^\infty (\mathbb{R}^+_-) \). It is no restriction to take all \(Q_j \) hypoelliptic and \(\psi \) with « small » support. For each such function \(\psi \), we take another \(\Phi \) of the same type with \(\Phi = 1 \) in a neighbourhood of \(\text{supp} \psi \). We first show that \(\Phi \) is hypoelliptic when \(\text{supp} \Phi \) is small enough for \(\mathcal{A} \) to fulfil the conditions of Theorem 3.1 in some open set \(\omega \supset \text{supp} \Phi \). From the fact that

\[
|B_-| \leq K A_{m_0}^{-m_0} A_{1}^{m_0}
\]

for some \(m_0 \), it follows

\[
\mathcal{A}u \in (H_{\mathbb{R}^+}^+)_{\text{loc}}
\]

if

\[
\mathcal{A}u \in (H_{\mathbb{R}^+}^+)_{\text{loc}}.
\]

As the \(Q_j \)'s are hypoelliptic, there is a \(d > 0 \) such that for large \(\xi' \)

\[
|Q_j/Q_j| \leq |\xi'|^{-d}|a|, \quad |A^a|/A \leq |\xi'|^{-d}|a|.
\]

Take

\[
\Phi_0 \in C_0^\infty (\mathbb{R}^+_-)
\]
with \(\Phi_0 = 1 \) in a neighbourhood of \(\text{supp } \Phi \) and \(\text{supp } \Phi_0 \subset \omega \). As \(u \in D' \), we have

\[
\Phi_0 u \in H^+_{\sigma + 1, \tau}
\]

for some integer \(\sigma \) and real \(\tau \). If \(\sigma < m_+ \), we construct a sequence of \(C_0^\infty (\mathbb{R}^n) \) functions

\[
\Phi_0, \Phi_1, \ldots, \Phi_\mu = \Phi, \mu = m_+ - \sigma
\]

with \(\Phi_{j-1} = 1 \) in a neighbourhood of \(\text{supp } \Phi_j \). Let \(m_j = m_+ + m_- \) be the order of the derivative \(D_1 \) in \(\mathcal{A} \) and \(m' \) the total order. As

\[
(D^\alpha \Phi_1) (A^n + \sum a_j Q_j) \Phi_0 u \in H^+_{\sigma - m_1 + 1, \tau - m'_j + 1} \text{ when } \alpha = 0
\]

and

\[
\Phi_1 (A + \sum a_j Q_j) u \in H^+_{\sigma - m_1, \tau - m_0},
\]

Leibniz' formula shows that

\[
\Phi_1 (A + \sum a_j Q_j) u + \sum \left| a \right| \neq 0 \Phi_1 (A^n + \sum a_j Q_j) \Phi_0 u =
\]

\[
= (A + \sum a_j Q_j) \Phi_1 u \in H^+_{\sigma - m_1 + 1, \min (\tau + 1, \sigma - m_0)}.
\]

Then by partial regularity (see e.g. [5]), for some \(\tau' \)

\[
\Phi_1 u \in H^+_{\sigma + 1, \tau'}
\]

and so, by iteration, for some \(\tau' \)

\[
\Phi u \in H^+_{m_1, \tau'}.
\]

For some \(\tau' \) this will give

\[
(4.1)
\]

\[
\Phi u \in H^+_{m_1, \tau'}. \tag{4.1}
\]

Take \(\tau \) so that with \(q = c/b \)

\[
\nu = \frac{(s - \tau) q}{d}
\]

is an integer. Let \((\psi_j)_\nu \) be a sequence analogous to \((\Phi_j)_\nu \), and with

\[
\psi_0 = \Phi, \psi_\nu = \psi.
\]
The terms in

\[(A + \sum a_j Q_j) \psi_1 u = \psi_1 (A + \sum a_j Q_j) u + \sum_{|a| \neq 0} D^a \psi_1 (A^a + a_j Q_j^a) \psi_0 u\]

can be estimated as in the proof of Theorem 2.1 and Theorem 3.1. With our choice of \(d\) this gives

\[\| a_j D^a \psi_1 Q_j^a \psi_0 u \|_{B^{-1}, r+\frac{d}{q}} \leq K \| \psi_0 u \|_{B^1, r}, \]

and so

\[\| D^a \psi_1 A^a \psi_0 u \|_{B^{-1}, r+\frac{d}{q}} \leq K \| \psi_0 u \|_{B^1, r}, \]

and so

\[(A + \sum a_j Q_j) \psi_1 u \in H^{+}_{B^{-1}, r+\frac{d}{q}}.\]

Then by Theorem 4.1

\[\psi_1 u \in H^{+}_{B^1, r}.\]

Repeating this \(v\) times gives

\[\Phi u \in H^{+}_{B^1, r},\]

and so

\[u \in (H^{+}_{B^1, r})^{\text{loc}}.\]

Corr. 4.1. If \(u \in C^{\infty}(R^n_+)\) and \(u \in D' (R^n_+)\) satisfies (1.5), then \(u \in C^{\infty}(R^n_+).\)

Proof. This follows by partial regularity from Theorem 4.2.
REFERENCES