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SUMMABILITY FACTORS FOR GENERALIZED
ABSOLUTE RIESZ SUMMABILITY I

By Z. U. AHMAD

1.1. Let Z an be a given infinite series, y and let Àn be a sequence of

positive, monotonically increasing numbers, diverging to infinity. We write

and for r &#x3E; 0,

Then R~ (t) « AI is called the Riesz mean of type In and order r,
while A[ (t) is called the Riesz sum of type In and order r. We say that

I an is absolutely summable by this Riesz mean, or summable 

r h 0, if R~ (t) is a function of bounded variation in (h, oo) for some posi-
tive number h ; or if

We say that Z an is summable ~,~,~jp~~l,~~&#x3E;0, rp’ &#x3E; 1, and

1/p + 1/p’ = 1, if
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where h is some positive number as before. Evidently, y for p = 1, 1 R, 1, is

the same as I R, Â, r I.

1.2. Suppose that h is some positive number, and unless or otherwise
stated k is a positive integer. We suppose further that ø (t) and W (t) are
functions with absolutely continuous (lc - 1) th derivatives in every interval

[h, W], and that 0 (t) is non-negative and non-decreasing function of t for
t 2 h, tending to infinity with t.

Without any loss of generality we take 0 (A,) = h = li.
By Bk (t) we mean the Rieszian sum of type A,, and order k of the

and by Ek (t) we mean the Rieszian sum of type 0 (Àn) and
order k of the series I an P (An) q (n).

1.3. Introduction. Concerning I R, Â, lc ( &#x3E; ~ .R, ~ (~,), k ~ - summability
factors, when k is a positive integer, the following theorem is known.

THEOREM A [3]. If there is a function, y (t), defined and positive for t -,- h,
such that, for 

and

and if the series f an is summable R, ~, k , then the an is

summable I -R, 0 (1), k [ .
This is a generalization of a number of previously known results (See [3],

[1], [2]). In particular, in the special cases in which (i) =1, y (t) = t,
(ii) ø (t) = et, ~Y (t) = t-k, y (t) = 1, it reduces respectively to the following
theorems.

THEOREM B [4]. If the an is summable R, ~1, k I and

for t ;:&#x3E; Â1, 1 then the serieg f an is summable I B, 0 (A), k 1.

THEOREM C [12]. If k ~ 0, and the series I an is summable R, A, k I,
then the series I an A1- k is summable  R, l, lc I, , where In = 
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Recently Mazhar has extended these theorems (Theorems B and C) for
generalized absolute Riesz summability (defined in 1.1) in the form of

THEOREM D [8]. If, f or p ~ 1, and t ~ I

then any infinite series Z an which is summable |R At 7e, Ip, is also summable

T) (1), k lp.

THEOREM E [9]. 1, an is stimmable, R, À, kip, then

I a. A. -k+ P’ I is summable |R,l,k|p, where ln=eln and llp+llp’=l.E a, n, 
p r is R, l where In = eAn and 1/p 1 ’ =1.

The object of the present paper is to generalize Theorem A for gene-
ralized absolute Riesz summability so as to include Theorems D and E.

2.1. We establish the following theorem.

THEOREM. If there is a function, 7 (t), defined and positive for t ~ h,
such that, for t ~ h,

and if the serieg ~ an is summable I R, 2, kip, then the series 2 ~’ an is

summable I B, 0 (2) , lp.

2.2. The following lemmas will be required for the proof of our theorem.

LEMMA 1 [6]. For k &#x3E; 0,

LEMMA 2 [5]. If k is a positive integer, then
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LEMMA 3 ([13], p. 89). If n is a positive integer and 0, then the
nth derivative of is a sum of constant multiples of a finite number

of terms of the form :

where 1 ~ r  n and a’ 8 are zeros or positive integers such that

If m is a positive integer, 1  r c min (m, n).

2.3. PROOF OF THE THEOREM I

Under the hypothesis of the theorem we have by Lemma 1, for p &#x3E; 1 (*),

and we have to establish that

By writing w = 4S (t) in the above integral we find that the required
inequality can be written in the form of

Now, we have

(*) For the case p =1, the theorem is known (Theorem A).
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Applying Lemma 2 and integrating (k -1)-times we get
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Thus, by virtue of Minkowski’s inequality, y it is sufficient to prove that

and

PROOF OF (2.3.4). We have

by hypotheses.

PROOF OF (2.3.5).

Since, by Leibnitz’s formula and Lemma 3,

(*) Throughout K’ 8 denote absolute constants, not necessarily the same at each

occurrence.
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where a’s are zeros or positive integers, such that

we have

where
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are bounded functions in (~1, oo), by hypotheses.
Therefore, in order to establish (2.3.5), by virtue of MinkowskFs ine-

quality we only need to show that, for 0  k,

and, for 

Now, applying Holders inequality, we observe that, for 0 ~ r --- j  k,



685

by hypotheses.
Again, applying Holder’s inequality, y we find that for 1  s ~ r  j ~ lc

and 
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by hypotheses. This completes the proof of (2.3.5.).
Thus the proof of our theorem is completed.
In fine I would like to express my sincerest thanks to Professor T.

Pati, for his encouragement and advice. I am also thankful to University
Grants Commission for their financial support under which this work

was carried out at the Department of Post-Graudate Studies and Research
in Mathematics, University of Jablapur, Jabalpur.
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