Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

Z.U. Ahmad

Summability factors for generalized absolute Riesz summability I

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, tome 24, nº 4 (1970), p. 677-687

<http://www.numdam.org/item?id=ASNSP_1970_3_24_4_677_0>

© Scuola Normale Superiore, Pisa, 1970, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SUMMABILITY FACTORS FOR GENERALIZED ABSOLUTE RIESZ SUMMABILITY I

By Z. U. AHMAD

1.1. Let $\sum a_n$ be a given infinite series, and let λ_n be a sequence of positive, monotonically increasing numbers, diverging to infinity. We write

$$A_{\lambda}(t) = A_{\lambda}^{0}(t) = \sum_{\lambda_{n} \leq t} a_{n},$$

$$A_{\lambda}(t) = 0$$
, for $t \leq \lambda_1$;

and for r > 0,

$$A_{\lambda}^{r}(t) = \sum_{\lambda_{n} < t} (t - \lambda_{n})^{r} a_{n} = r \int_{\lambda_{1}}^{t} (t - \tau)^{r-1} A_{\lambda}(\tau) d\tau = \int_{\lambda_{1}}^{t} (t - \tau)^{r} dA_{\lambda}(\tau).$$

Then $R_{\lambda}^{r}(t) \equiv A_{\lambda}^{r}(t)/t^{r}$ is called the *Riesz mean of type* λ_{n} and order r, while $A_{\lambda}^{r}(t)$ is called the Riesz sum of type λ_{n} and order r. We say that Σ a_{n} is absolutely summable by this Riesz mean, or summable $|R, \lambda, r|$, $r \geq 0$, if $R_{\lambda}^{r}(t)$ is a function of bounded variation in (h, ∞) for some positive number h; or if

$$\int_{h}^{\infty} \left| \frac{d}{dt} \left\{ R_{\lambda}^{r}(t) \right\} \right| dt < \infty ([10], [11]).$$

We say that Σ a_n is summable $|R, \lambda, r|_p, p \ge 1, r > 0, rp' > 1$, and 1/p + 1/p' = 1, if

$$\int_{h}^{\infty} t^{p-1} \left| \frac{d}{dt} \left\{ R_{\lambda}^{r}(t) \right\} \right|^{p} dt < \infty, [7],$$

Pervenuto alla Redazione il 26 Febbraio 1970.

where h is some positive number as before. Evidently, for p = 1, $|R, \lambda, r|_p$ is the same as $|R, \lambda, r|$.

1.2. Suppose that h is some positive number, and unless or otherwise stated k is a positive integer. We suppose further that $\Phi(t)$ and $\Psi(t)$ are functions with absolutely continuous (k-1) th derivatives in every interval [h, W], and that $\Phi(t)$ is non-negative and non-decreasing function of t for $t \ge h$, tending to infinity with t.

Without any loss of generality we take $\Phi(\lambda_i) = h = \lambda_i$.

By $B_k(t)$ we mean the Rieszian sum of type λ_n and order k of the series $\sum a_n \lambda_n$, and by $E_k(t)$ we mean the Rieszian sum of type $\Phi(\lambda_n)$ and order k of the series $\sum a_n \Psi(\lambda_n) \Phi(\lambda_n)$.

1.3. Introduction. Concerning $|R, \lambda, k| \Longrightarrow |R, \Phi(\lambda), k|$ -summability factors, when k is a positive integer, the following theorem is known.

THEOREM A [3]. If there is a function, γ (t), defined and positive for $t \ge h$, such that, for $t \ge h$,

(i) $\gamma(t) = O(t)$,

(ii)
$$t^n \Psi^{(n)}(t) = O\left[\left\{\frac{\gamma(t)}{t}\right\}^{k-n}\right], \text{ for } n = 0, 1, 2, ..., k;$$

and

(iii) $\{\gamma(t)\}^n \Phi^{(n)}(t) = O\{\Phi(t)\}, \text{ for } n = 1, 2, ..., k;$

and if the series $\sum a_n$ is summable $|R, \lambda, k|$, then the series $\sum \Psi(\lambda_n) a_n$ is summable $|R, \Phi(\lambda), k|$.

This is a generalization of a number of previously known results (See [3], [1], [2]). In particular, in the special cases in which (i) $\Psi(t) = 1, \gamma(t) = t$, (ii) $\Phi(t) = e^t, \Psi(t) = t^{-k}, \gamma(t) = 1$, it reduces respectively to the following theorems.

THEOREM B [4]. If the series $\sum a_n$ is summable $|R, \lambda, k|$ and

$$t^{k} \Phi^{(k)}(t) = O \{ \Phi(t) \},\$$

for $t \geq \lambda_1$, then the series $\sum a_n$ is summable $|R, \Phi(\lambda), k|$.

THEOREM C [12]. If $k \ge 0$, and the series Σa_n is summable $|R, \lambda, k|$, then the series $\Sigma a_n \lambda_n^{-k}$ is summable |R, l, k|, where $l_n = e^{\lambda_n}$.

Recently Mazhar has extended these theorems (Theorems B and C) for generalized absolute Riesz summability (defined in 1.1) in the form of

THEOREM D [8]. If, for $p \ge 1$, and $t \ge \lambda_1$,

(i)
$$t^k \Phi^{(k)}(t) = O \{ \Phi(t) \},\$$

(ii)
$$\{ \Phi(t)/t \ \Phi^{(1)}(t) \}^{p-1} = O(1),$$

then any infinite series Σa_n which is summable $|R, \lambda, k|_p$, is also summable $|R, \Phi(\lambda), k|_p$.

THEOREM E [9]. If $p \ge 1$, and $\sum a_n$ is summable $|R, \lambda, k|_p$, then $\sum a_n \lambda_n^{-k+\frac{1}{p'}}$ is summable $|R, l, k|_p$, where $l_n = e^{\lambda_n}$ and 1/p + 1/p' = 1.

The object of the present paper is to generalize Theorem A for generalized absolute Riesz summability so as to include Theorems D and E.

2.1. We establish the following theorem.

THEOREM. If there is a function, $\gamma(t)$, defined and positive for $t \ge h$, such that, for $t \ge h$,

(i) $\gamma(t) = O(t);$ (ii) $t^n \Psi^{(n)}(t) = O\left[\left\{\frac{\gamma(t)}{t}\right\}^{k-n}\right], \text{ for } n = 0, 1, 2, ..., k;$ (iii) $\{\gamma(t)\}^n \Phi^{(n)}(t) = O\left\{\Phi(t)\right\}, \text{ for } n = 1, 2, ..., k;$ (iv) $\{\Phi(t)/\gamma(t) \Phi^{(1)}(t)\}^{p-1} = O(1),$

and if the series $\sum a_n$ is summable $|R, \lambda, k|_p$, then the series $\sum \Psi(\lambda_n) a_n$ is summable $|R, \Phi(\lambda), k|_p$.

2.2. The following lemmas will be required for the proof of our theorem.

LEMMA 1 [6]. For
$$k > 0$$
,
$$w^{k+1} \frac{d}{dw} \{ R_{\lambda}^{k}(w) \} = k B_{k-1}(w) = \frac{d}{dw} \{ B_{k}(w) \}$$

LEMMA 2 [5]. If k is a positive integer, then

$$A_{\lambda}(t) = \frac{1}{k!} \left(\frac{d}{dt}\right)^{k} A_{\lambda}^{k}(t).$$

LEMMA 3 ([13], p. 89). If n is a positive integer and $m \neq 0$, then the nth derivative of $\{f(x)\}^m$ is a sum of constant multiples of a finite number of terms of the form:

$${f(x)}^{m-r}\prod_{s=1}^{n} {f(s)(x)}^{a_s}$$
,

where $1 \le r \le n$ and α 's are zeros or positive integers such that

$$\sum_{s=1}^{n} \alpha_{s} = r \text{ and } \sum_{s=1}^{n} s \alpha_{s} = n.$$

If m is a positive integer, $1 \le r \le \min(m, n)$.

2.3. PROOF OF THE THEOREM:

Under the hypothesis of the theorem we have by Lemma 1, for p > 1 (*),

(2.3.1)
$$\int_{\lambda_1}^{\infty} t^{-(kp+1)} |B_{k-1}(t)|^p dt < \infty,$$

and we have to establish that

(2.3.2)
$$\int_{\varphi(\lambda_1)}^{\infty} w^{-(k_p+1)} |E_{k-1}(w)|^p dw < \infty.$$

By writing $w = \Phi(t)$ in the above integral we find that the required inequality can be written in the form of

(2.3.3)
$$\int_{\lambda_1}^{\infty} \frac{\Phi^{(1)}(t)}{\{\Phi(t)\}^{k_p+1}} | E_{k-1}(\Phi(t))|^p dt < \infty.$$

Now, we have

$$E_{k-1}\left(\Phi\left(t\right)\right) = \int_{\Phi\left(\lambda_{1}\right)}^{\Phi\left(t\right)} \left(\Phi\left(t\right) - u\right)^{k-1} dE\left(u\right)$$

^(*) For the case p = 1, the theorem is known (Theorem A).

$$\begin{split} &= \int_{\lambda_{1}}^{t} (\varPhi(t) - \varPhi(u))^{k-1} \, dE \, (\varPhi(u)) \\ &= \int_{\lambda_{1}}^{t} (\varPhi(t) - \varPhi(u))^{k-1} \, \frac{\Psi(u) \, \varPhi(u)}{u} \, dB \, (u) \\ &= \left[(\varPhi(t) - \varPhi(u))^{k-1} \, \frac{\Psi(u) \, \varPhi(u)}{u} \, B \, (u) \right]_{\lambda_{1}}^{t} - \\ &- \int_{\lambda_{1}}^{t} B \, (u) \frac{d}{du} \Big\{ (\varPhi(t) - \varPhi(u))^{k-1} \, \frac{\Psi(u) \, \varPhi(u)}{u} \Big\} \, du \\ &= - \int_{\lambda_{1}}^{t} B \, (u) \frac{d}{du} \Big\{ (\varPhi(t) - \varPhi(u))^{k-1} \, \frac{\Psi(u) \, \varPhi(u)}{u} \Big\} \, du. \end{split}$$

Applying Lemma 2 and integrating (k-1)-times we get

$$\begin{split} E_{k-1}\left(\Phi\left(t\right)\right) &= \frac{(1)^{k-1}}{(k-1)!} \left[B_{k-1}\left(u\right) \left(\frac{d}{du}\right)^{k-1} \left\{ \left(\Phi\left(t\right) - \Phi\left(u\right)\right)^{k-1} \frac{\Psi\left(u\right) \Phi\left(u\right)}{u} \right]_{\lambda_{1}}^{t} + \\ &+ \frac{(-1)^{k}}{(k-1)!} \int_{\lambda_{1}}^{t} B_{k-1}\left(u\right) \left(\frac{d}{du}\right)^{k} \left\{ \left(\Phi\left(t\right) - \Phi\left(u\right)\right)^{k-1} \frac{\Psi\left(u\right) \Phi\left(u\right)}{u} \right\} du \\ &= \frac{(-1)^{k-1}}{(k-1)!} B_{k-1}\left(t\right) \frac{\Psi\left(t\right) \Phi\left(t\right)}{t} \left\{ \Phi^{(1)}\left(t\right) \right\}^{k-1} + \\ &+ \frac{(-1)^{k}}{(k-1)!} \int_{\lambda_{1}}^{t} B_{k-1}\left(u\right) \left(\frac{d}{du}\right)^{k} \left\{ \left(\Phi\left(t\right) - \Phi\left(u\right)\right)^{k-1} \frac{\Psi\left(u\right) \Phi\left(u\right)}{u} \right\} du \\ &= \frac{(-1)^{k-1}}{(k-1)!} (\epsilon_{1}\left(t\right) - \epsilon_{2}\left(t\right)). \end{split}$$

7. Annali della Scuola Norm. Sup. - Pisa.

Thus, by virtue of Minkowski's inequality, it is sufficient to prove that

(2.3.4)
$$\int_{\lambda_1}^{\infty} \frac{\Phi^{(1)}(t)}{(\Phi(t))^{kp+1}} |\varepsilon_1(t)|^p dt < \infty,$$

and

(2.3.5)
$$\int_{\lambda_1}^{\infty} \frac{\Phi^{(1)}(t)}{(\Phi(t))^{kp+1}} \left| \varepsilon_2(t) \right|^p dt < \infty.$$

PROOF OF (2.3.4). We have

$$\begin{split} \int_{\lambda_{1}}^{\infty} \frac{\Phi^{(1)}(t)}{(\Phi(t))^{k_{p}+1}} \left| \mathbf{e}_{1}(t) \right|^{p} dt \\ &= \int_{\lambda_{1}}^{\infty} \frac{\Phi^{(1)}(t)}{(\Phi(t))^{k_{p}+1}} \left| \frac{\Psi(t) \Phi(t)}{t} \right|^{p} (\Phi^{(1)}(t))^{(k-1)p} \left| B_{k-1}(t) \right|^{p} dt \\ &\leq K \int_{\lambda_{1}}^{\infty} \left\{ \frac{\gamma(t) \Phi^{(1)}(t)}{\Phi(t)} \right\}^{pk} \left\{ \frac{\Phi(t)}{\gamma(t) \Phi^{(1)}(t)} \right\}^{p-1} \left(\frac{\gamma(t)}{t} \right)^{p-1} t^{-(k_{p}+1)} \left| B_{k-1}(t) \right|^{p} dt \\ &\leq K \int_{\lambda_{1}}^{\infty} t^{-(k_{p}+1)} \left| B_{k-1}(t) \right|^{p} dt \leq K(^{*}), \end{split}$$

by hypotheses.

PROOF OF (2.3.5).

Since, by Leibnitz's formula and Lemma 3,

$$\begin{split} \vartheta\left(t,\,u\right) &\equiv \left(\frac{d}{du}\right)^{k} \left\{ \left(\Phi\left(t\right) - \Phi\left(u\right)\right)^{k-1} \frac{\Psi\left(u\right) \Phi\left(u\right)}{u} \right\} \\ &= \sum_{j=0}^{k} \, \binom{k}{j} \left(-1\right)^{k-j} \, \Gamma\left(k-j+1\right) \, u^{-(k-j+1)} \times \\ &\times \left(\frac{d}{du}\right)^{j} \left\{ \left(\Phi\left(t\right) - \Phi\left(u\right)\right)^{k-1} \, \Psi\left(u\right) \, \Phi\left(u\right) \right\} \end{split}$$

^(*) Throughout K's denote absolute constants, not necessarily the same at each occurrence.

for generalized absolute Riess summability I

$$\begin{split} &= \sum_{j=0}^{k} \sum_{r=0}^{j} (-1)^{k-j} \frac{\Gamma(k+1)}{\Gamma(r+1) \Gamma(j-r+1)} u^{-(k-j+1)} \times \\ &\times \Phi^{(j-r)}(u) \left(\frac{d}{du}\right)^{r} \{ (\Phi(t) - \Phi(u))^{k-1} \Psi(u) \} \\ &= \sum_{j=0}^{k} \sum_{s=0}^{j} \sum_{s=0}^{r} (-1)^{k-j} \frac{\Gamma(k+1)}{\Gamma(s+1) \Gamma(r-s+1) \Gamma(j-r+1)} \times \\ &\times u^{-(k-j+1)} \Phi^{(j-r)}(u) \Psi^{(r-s)}(u) \left(\frac{d}{du}\right)^{s} \{ (\Phi(t) - \Phi(u))^{k-1} \} \\ &= \sum_{j=0}^{k} \sum_{r=0}^{j} (-1)^{k-j} \frac{\Gamma(k+1)}{\Gamma(r+1) \Gamma(j-r+1)} u^{-(k-j+1)} \times \\ &\times \Phi^{(j-r)}(u) \Psi^{(r)}(u) (\Phi(t) - \Phi(u))^{k-1} + \\ &+ \sum_{i=1}^{k} \sum_{s=1}^{j} \sum_{m=1}^{r} \sum_{m=1}^{\min(s, k-1)} K_{j, r, s, m} u^{-(k-j+1)} \times \\ &\times \Phi^{(j-r)}(u) \Psi^{(r-s)}(u) (\Phi(t) - \Phi(u))^{k-1-m} \prod_{i=1}^{s} (\Phi^{(i)}(u))^{a_{i}} \end{split}$$

where α 's are zeros or positive integers, such that

$$\sum_{i=1}^{s} \alpha_i = m; \quad \sum_{i=1}^{s} i\alpha_i = s,$$

we have

$$\begin{split} \vartheta (t, u) &= \sum_{j=0}^{k} \sum_{r=0}^{j} K_{j, r} F_{1}(u) u^{-(k+1)} \Phi (u) (\Phi (t) - \Phi (u))^{k-1} + \\ &+ \sum_{j=1}^{k} \sum_{r=1}^{j} \sum_{s=1}^{r} \sum_{m=1}^{\min(s, k-1)} K_{j, r, s, m} F_{2}(u) \times \\ &\times u^{-(k+1)} (\Phi (u))^{m} (\Phi (t) - \Phi (u))^{k-m-1}, \end{split}$$

where

Z. U. AHMAD : Summability factors

are bounded functions in (λ_1, ∞) , by hypotheses.

Therefore, in order to establish (2.3.5), by virtue of Minkowski's inequality we only need to show that, for $0 \le r \le j \le k$,

and, for $1 \le s \le r \le j \le k$, $1 \le m \le \min(s, k-1)$,

$$\begin{split} J_2 = & \int_{\lambda_1}^{\infty} \frac{\varPhi^{(1)}(t)}{\varPhi(t)^{kp+1}} \, dt \left| \int_{\lambda_1}^{t} B_{k-1}(u) \; F_2(u) \; u^{-(k+1)} \times \right. \\ & \times \{\varPhi(u)\}^m \, (\varPhi(t) - \varPhi(u))^{k-m-1} \, du \left| \stackrel{p}{\sim} < \infty. \end{split}$$

Now, applying Hölder's inequality, we observe that, for $0 \le r \le j \le k$,

$$\begin{split} J_{1} &\leq \int_{\lambda_{1}}^{\infty} \frac{\varPhi^{(1)}\left(t\right)}{\varPhi\left(t\right)^{k_{p}+1}} \, dt \left(\int_{\lambda_{1}}^{t} \left| B_{k-1}\left(u\right) \right| \left| F_{1}\left(u\right) \right| \, u^{-(k+1)} \, \varPhi\left(u\right) \left(\varPhi\left(t\right) - \varPhi\left(u\right)\right)^{k-1} du \right)^{p} \\ &< \int_{\lambda_{1}}^{\infty} \frac{\varPhi^{(1)}\left(t\right)}{\left\{\varPhi\left(t\right)\right\}^{k_{p}+1}} \, dt \, \left(\int_{\lambda_{1}}^{t} \left| B_{k-1}\left(u\right) \right|^{p} \left| F_{1}\left(u\right) \right|^{p} \times \\ & \times u^{-(k+1)p} \, \left(\varPhi\left(u\right)\right)^{k} \, \left(\varPhi^{(1)}\left(u\right)\right)^{-(p-1)} \, \left(\varPhi\left(t\right) - \varPhi\left(u\right)\right)^{k-1} \, du \right) \times \\ & \times \left(\int_{1}^{t} \left(\varPhi\left(t\right) - \varPhi\left(u\right)\right)^{k-1} \, \varPhi^{(1)}\left(u\right) \, du \right)^{p-1} \end{split}$$

for generalized absolute Riesz summerability I

$$< K \int_{\lambda_{1}}^{\infty} \frac{\Phi^{(1)}(t)}{\{\Phi(t)\}^{2}} dt \int_{\lambda_{1}}^{t} |B_{k-1}(u)|^{p} u^{-(kp+1)} \times \\ \times \left(\frac{\Phi(u)}{\gamma(u) \Phi^{(1)}(u)}\right)^{p} \left(\frac{\gamma(u)}{u}\right)^{p-1} \Phi(u) \left(1 - \frac{\Phi(u)}{\Phi(t)}\right)^{k-1} du \\ \le K \int_{\lambda_{1}}^{\infty} u^{-(kp+1)} |B_{k-1}(u)|^{p} du \Phi(u) \int_{u}^{\infty} \left(1 - \frac{\Phi(u)}{\Phi(t)}\right)^{k-1} \frac{\Phi^{(1)}(t)}{(\Phi(t))^{2}} dt \\ \le K \int_{\lambda_{1}}^{\infty} u^{-(kp+1)} |B_{k-1}(u)|^{p} du \\ \le K,$$

by hypotheses.

Again, applying Hölder's inequality, we find that for $1 \le s \le r \le j \le k$ and $1 \le m \le \min(s, k-1)$,

$$\begin{split} J_{2} &< \int_{\lambda_{1}}^{\infty} \frac{\varPhi^{(1)}\left(t\right)}{\left(\varPhi(t)\right)^{k_{p}+1}} \left(\varPhi(t)\right)^{(k-1)p} dt \left(\int_{\lambda_{1}}^{t} \left| B_{k-1}\left(u\right) \right| \times \\ & \times \left| F_{2}\left(u\right) \right| \varPhi(u) u^{-(k+1)} \left\{ \frac{\varPhi(u)}{\varPhi(t)} \right\}^{m} \left\{ 1 - \frac{\varPhi(u)}{\varPhi(t)} \right\}^{k-m-1} du \right)^{p} \\ &< \int_{\lambda_{1}}^{\infty} \frac{\varPhi^{(1)}\left(t\right)}{\left(\varPhi(t)\right)^{k_{p}+1}} dt \left(\int_{\lambda_{1}}^{t} \left| B_{k-1}\left(u\right) \right|^{p} \left| F_{2}\left(u\right) \right|^{p} \times \\ & \times u^{-(k+1)p} \left(\varPhi(u)\right)^{p} \left(\varPhi^{(1)}\left(u\right)\right)^{1-p} \left\{ 1 - \frac{\varPhi(u)}{\varPhi(t)} \right\}^{k-m-1} du \right) \times \\ & \times \left(\int_{\lambda_{1}}^{t} \left\{ 1 - \frac{\varPhi(u)}{\varPhi(t)} \right\}^{k-m-1} \varPhi^{(1)}\left(u\right) \left\{ \frac{\varPhi(u)}{\varPhi(t)} \right\}^{\frac{mp}{1-p}} du \right)^{p-1} \\ &\leq K \int_{\lambda_{1}}^{\infty} \frac{\varPhi^{(1)}\left(t\right)}{\left(\varPhi(t)\right)^{k_{p}+1}} dt \int_{\lambda_{1}}^{t} u^{-(k_{p}+1)} \left| B_{k-1}\left(u\right) \right|^{p} \left| F_{2}\left(u\right) \right|^{p} \times \end{split}$$

Z. U. AHMAD: Summability factors

$$\times \left\{ \frac{\Phi(u)}{\gamma(u) \Phi^{(1)}(u)} \right\}^{p-1} \left\{ \frac{\gamma(u)}{u} \right\}^{p-1} \Phi(u) \left\{ 1 - \frac{\Phi(u)}{\Phi(t)} \right\}^{k-m-1} du$$

$$\leq K \int_{\lambda_1}^{\infty} u^{-(kp+1)} |B_{k-1}(u)|^p du \int_{u}^{\infty} \left\{ 1 - \frac{\Phi(u)}{\Phi(t)} \right\}^{k-m-1} \Phi(u) \frac{\Phi^{(1)}(t)}{(\Phi(t))^2} dt$$

$$\leq K \int_{\lambda_1}^{\infty} u^{-(kp+1)} |B_{k-1}(u)|^p du$$

$$\leq K,$$

by hypotheses. This completes the proof of (2.3.5.).

Thus the proof of our theorem is completed.

In fine I would like to express my sincerest thanks to Professor T. Pati, for his encouragement and advice. I am also thankful to University Grants Commission for their financial support under which this work was carried out at the Department of Post-Graudate Studies and Research in Mathematics, University of Jablapur, Jabalpur.

REFERENCES

- Z. U. AHMAD, Absolute summability factors of infinite series by Rieszian means, Rend. Cir. Mat. Palermo (2), 11 (1962), 91-104.
- [2] Z. U. AHMAD, Absolute Riesz summability factors of infinite series, Jour. of Math., 2 (1966), 11-22.
- [3] G. D. DIKSHIT, On the absolute Riesz summability factors of infinite series (I), Indian Jour. Math., 1 (1958), 33-40.
- [4] U. GUHA, The second theorem of consistency for absolute Riesz summability, Jour. London Math. Soc., 31 (1956), 300-311.
- [5] G. H. HARDY, and M. RIESZ, The general theory of Dirichlet series, Cambridge Tracts. in Maths. and Math. Physics, No. 18 (1915).
- [6] J. M. HYSLOP, On the absolute summability by Rieszian means, Proc. Edinburgh Math. Soc. (2), 5 (1936), 46-54.
- [7] S. M. MAZHAR, On an extension of absolute Riesz summability, Proc. Nat. Inst. Sci. India, 26 A (1960), 160-167.
- [8] S. M. MAZHAR, On the second theorem of consistency for generalized absolute Riesz summability (I), Proc. Nat. Inst. Sci. India, 27 A (1961), 11-17.
- [9] S. M. MAZHAR, A theorem on generalized absolute Riesz summability, Annali della Scuola Normale Superiore di Pisa (3), 19 (1965), 513-518.
- [10] N. OBRECHKOFF, Sur la summation absolue de séries de Dirichlet, C. R. Acad. Sc. (Paris), 136 (1928), 215-217.
- [11] N. OBRECHKOFF, Über die absolute Summierung der Dirichletschen Reihen, Math. Zeitschr., 30 (1929), 375-386.
- [12] J. B. TATCHELL, A Theorem on absolute Riesz summability, Jour. London Math. Soc., 29 (1954), 49-59.
- [13] C. DE LA VALLÉE POUSSIN, Course d'analyse infinitésimale (I), Louvain Paris, 5th Ed. (1923).

Department of Mathematics and Statistics, Aligarh Muslim University, Aligarh, India.