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GEOMETRY AND FUNCTION ALGEBRA

ON PSEUDO-FLAT MANIFOLDS

A. MILANI and C. REA (Pisa) (*)

§ 1. The results.

The convexity or concavity conditions for a complex manifold X can
be given essentially in two ways :

(i) there is some smooth open set A cc X such that the Levi-form

of aA has a given signature;
(ii) there is a C°° exaustive whose levi-form has

a given signature.
Among the various consequencies of conditions of type (ii) we have,

for instance, the theorem of Grauert which says that X is Stein and only
if there exists a ~~ whith positive definite Levi-form.

The conditions of type (i) are obviously weaker and they are interesting
only as concavity or flatness conditions. For example, it is easy to prove
that if 8A has a negative eigenvalue at each point then ~’ does not have
any non constant holomorphic functions (see [1]).

Convexity conditions of type (i) are generally too weak or identically
satisfied: for instance, the analogous in (i) of Grauert’s conditions in tri-

vially fulfilled by every complex manifold.
In this paper we are concerned with the case where the Levi-form of

aA vanishes, i. e. with pseudo flatness. We are indebted to R. Niremberg
who gave the idea of studying pseudo-flat manifolds : the transversal se-

quence and the proof of prop. (3.2) come from a collaboration with him of
one of the authors during his stay in Italy.

Pervenuto alla Redazione il 16 Luglio 1971.
(*) During the preparation of this work the first author was supported by So. Norm.

Sup. Pisa, and the seoond author by the C.N.R. research group.
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DEFINITION. A connected complex manifold X is said to be pseudo-flat
if there is a real analytic orientable hypersurface Y cc .Y whose Levi-form
vanishes on all complex vectors tangent to Y.

The pair (X, Y) is said to be a pseudo-flat pair.

EXAMPLES.

(A) the cartesian product T x C of a compact manifold T and the

c01np lex line (;.
For each Goo closed curve e c 0, ((T X (t, T X e) is a pseudo-flat pair,

hence T is pseudo-hat. All holomorphic functions on T x C is pseudo-
flat. All holomorphic functions on T X C depend obviously only on the
second variable : thus there is only one aualytically indipendent holomorphic
function.

(B) the Grauert’s example.
It is an example which shows the necessity of the strong pseudocon-

vexity assumption in Grauert’s theorem above It is obtained by perturbing
the complex structure of the torus (t2/Z4 in such a way that an open
subset X between two meridians has a C°° real function 99 with vanishing
Levi form and the level sets of qJ are three-dimensional (real) levi-flat tori.

In every such torus there are dense complex submanifolds of X. By
the maximum principle X has obviously no global holomorphic junctions
(costants excepted). For details about Grauert’s example see [1].

It is easy to see that a Levi-flat hypersurface Y is foliated by com-
plex hypersurfaces of X. This will be explained in § 2. In the case (A)
the foliation is trivial while in the case (B) each leaf is dense.

The aim of this paper is to prove that these two examples correspond
essentially to the only possible types of pseudo-flat manifolds.

We will actually prove the following theorems :

THEOREM 1. Every pseudo-flat manifold X has at most one global ana-
lytically independent function. In other words the image of every holomorphic
map ~-~ k &#x3E; 1, is a thin subset.

THEOREM 2..Let (X, Y) be a pseudo-flat pair. The following three con.
ditions are equivalent :

(i) The leaves of Y are compact,
(ii) Y has a neighbourhood on which a non costant holomorphic func-

tion is defined,
(iii) Y has a neighbourhood Q consisting of an holomorphic family of

compact complex ananifolds which are complex submanifolds of X; the para-
meter space is an open Riemann surface B and Y is the restriction the fa-
mily S~ --~ B to a Cw circle of B.
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(For definition of holomorphic families see § 2~ d)).

COROLLARY. If cohomology group (Z, 0) of c01nplex vector 

vanishes for each leaf Z c: Y and the pair (X, Y) is «with function» then

the neighbourhood Q of th. 2 can be chosen such an holomorphic
.fiber bundle.

PROOF. We first take a neighbourhood b with the properties which
92 has in th. 2 and put B = By a theorem of Kodaira and Spencer
([5] p. 350) the function b-dim Hi &#x26; e) is upper-semicontinuous,
hence there exists a neighbourhood B of in B such that dim

Thus the holomorphic family 92 -+ B is locally
trivial by the theorem of Kodaira and Spencer (I), i. e. is an holomorphic
fiber bundle.

REMARK 1. From the semicontinuity theorem mentioned above it

follows in any case that dim Hi (Z7 -0) is bounded, when Z varies among
the fibers of Q, up to replace D by a neighbourhood a-’ B’ of Y, where
B’ cc B is an open neighbourhood of the C- circle nY.

EXAMPLE It would be interesting besides the corollary of Th. 2, to
show an example of a pseudo-flat manifold X with the following properties :

(i) X is an holomorphic deformation of 1-dimensional tori with

(ii) All compact pseudo-hat hypersurfaces of X are the inverse ima-

ges of analytic circles e c A by the projection n: A,
(iii) No family a-1 C~ is locally trivial.

Here X is the quotient (t X A)/G, where G is the group of transla-

tions (Z1’ z2) -~ (01 + n + mz2 , 
The projection x is induced on X by the natural projection C m A - A.
The fibers are the tori T (z2) = G/(Z Z). Hence T (z2) ~ T (z2) if

and only if z’= where y is an element of the modular group whose

orbits in C are discrete sets. To prove (ii) we observe that the leaves of
a compact pseudo-flat hypersurface of X are compact by th. 2, since X has
the global non costant function 1l. Hence a must be constant on the leaves.

(i) For Coo deformations this theorem is due to Frolicher-Nijenhuis [4]. The proof
of Kodaira-Spencer ([5] p. 365) can be easily applied to holomorphic families. For elemen-
tary proofs see [2], n. 1 or [8], §§ 4 and 7.
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DEFINITION The pseudo-flat pair (X, Y) is said to be with or without

(function) if the conditions of theorem 2 are respectively verified or not.
The manifold X will be said with or without function if all pseudo-flat

pairs (X, Y) are with or without function.

(A) and (B) are examples of pseudo.flat manifolds with and without

function.

REMARK 2. If a pseudo-flat manifold has a global holomorphic func-
tion then it is with. However it is easy to construct a pseudo-flat pair
(X, Y) with function, also if X has no non constant global holomorphic
function : take a real C- curve e in the compact Riemann surface M1 and
a compact manifold The pair X M2 , is an example.

REMARK 3. The types with and without of pseudo-flat manifolds and

pairs are extremely unstable. Actually the complex structure of Grauert’s

example can be perturbed by a parameter in such a way that both types
are dense.

§ 2. Levi.flat hypersurfaces.

a) Foliations. We indicate by F a fixed class of functions which can
be Cr , r = 1, 2, ... , oo, m, or holomorphic. If the T.manifold M has an

atlas of h coordinates (z, t) _ (zi , ... , zn , ti , ... , tk) with coordinate transforma-
tions of the form

then we say that M has a lc-codimeusional The coordinates (z, t)
can be real or complex and are supposed to vary in the set z (  1, I t ( 
 1; their domains are called distinguished and the t coordinates are

called transversal. Take a maximal distinguished atlas of M. The subsets

of the distinguished neighbourhoods defined by equations t = const are

called sheets of the foliation and form a neighbourhood basis of a new

topology (finer) on M called the fine topology. The connected components
of M in the fine topology are the leaves of the foliation. Each leaf is a r-

submanifold of M (not necessarily locally closed) and the zas are local

coordinates on it. If Q (x) denotes the subspace of Tx M which is tangent
to the leaf through x, the n-dimensional distribution Q : x 2013~ ~ (x) is in-

volutive (see [7] p-116). Conversely an involutive I’distribution on M deter-
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mines an unique T-foliation on M whose leaves are the maximal integrals
of the foliation (2).

b) Semiholomorphic foliation on a Levi-flat hypersurface.
In the next two sections we shall briefly describe all that we need

from [9] about semiholomorphic foliations on Levi nat hypersurfaces. Take
a C" hypersurface Y of a complex manifold X of complex dimension
n + 1, given by the equation 0 = 0, with dO # 0 on Y and, at each
y E Y, the complex tangent space Ty Y of the complex vectors v = ¿a va (âj8za)y
such that v4S = 0.

The real image Q Clf) of Ty Y is the set of all vectors of the type
v + v, with v E Ty Y. CD (y) is a 1-codimensional subspace of the usual (real)
tangent space of Y at y and the distribution y - Cj) (y) is involutive if

and only if the Levi-form

vanishes on Ty T. In this case Y is said to be -Levi-flat, and the foliation
induced by T) has distinguished coordinates (z1, ... , zn , t) where the z’s are

complex, t is real and in the coordinate transformation z’ (z, t), the cor-
rispondence z --&#x3E; z’ for fixed t is biholomorphic. Therefore the foliation is

called semiholomorphic.

c) Extension of the semiholomorphic foliation and special neigh-
bourhoods.

If Y is of class C- , then it can be shown ([9]) that each point y E Y
has a neighbourhood in X with complex coordinates (zi , ... , ,zn, x) such
that 4Y does not depend on Z1 , ... , zn . Such neighbourhoods and coordinates
are called special. It is very easy to check that special coordinates transform
by the rule

Hence the union iii of the special neighbourhoods becomes a 1-codimemen-

sional holomorphic foliation. The leaves of this foliation which meet Y be-

long to Y and are precisely the leaves of the semiholomorphic foliation of
Y. In other words: take special coordinates (2~...~~) and a C- para-

(2) If I’= Cs ~ then (D is of class Cs‘1, We shall never be concerned with the case

Cs exept C°° and COO .
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metrization

of the curve z = 0, ø ( x) = 0.
The image of the map (z, t) - (z, a (t)) is a distinguished open subset

of Y and (z, t) are distinguisched coordinates.

REMARK. The existence of the special coordinates is the only reason
for which we suppose that Y is Ow and not Coo in the setting of the

theorems.

In [6] there is an example of a C°° compact Levi nat hypersurface
with a point which does not have any special neighbourhood. However
there are some partial results (for instance proposition (3.1)) that we can
prove without the C~’ assumption on Y.

d) Families of complex manifolds.

DEFINITION 2-1. Let y be a semiholomorphic foliation of class ek (k =

= 0,1,..., oo, w), and B a Ck-manifold. Assume that there is a surjective ek-map
~c : y ~ B such that y becomes a Ck-6ber bundle over B whose fibers are
the leaves of the foliation. Then y is said to be a of complex
manifolds.

DEFINITION 2.2 Let y be an holomorphic foliation, B a complex ma-

nifold, y - B an holomorphic surjective map wich is a C- fiber bundle ;
if the sets (b) are leaves of y for each b E B then we say that y is an

h-olomorphic family of complex manifolds. y is said to be locally trivial if it

is an holomorphic fiber bundle.

REMARK. is a T-submanifold of B, then n-l A has an obvious

structure of r family complex manifolds.

§ 3. First proofs.

DEFINITION. A convergent sequence in a foliation is said to be

transversal if there is a distinguished neighbourhood of its limit which has
infinitely many sheets containing points of the sequence.

PROPOSITION 3.1 Let X be a connected complex manifold containing a
C°° compact Levi-flat hypersurface Y. If there is a non constant holomorphio
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f unction h on a neighbourhood of Y which is constant on a leaf Z of the

semiholomorphic foliation of Y, then Z is compact.

PROOF. Suppose, on the contrary, that Z is a non compact leaf of Y. Z
contains a sequence whose limit z does not belong to Z. Take a distin-

guished neighbourhood of z in Y and count the sheets meeting ~z~j. If there
Were finitely many such sheets, then one of them would contain some sub-
sequence of But the limit of a convergent sequence in a sheet lies in
the leaf containing the sheet, so we would have z E Z. Hence the seqnence

izi) must be transversal.
Let c be the value of h on z and consider the analytic space rS =-= ( f = el.

S contains infinitely many n - 1 dimensional distinct snbmadifolds 8p. (the
sheets meeting Izil) and a convergent sequence ~z~~, with z, E s,. But S
must be locally connected at the limit z of ~z~?, hence S has an interior
point, i. e. S = X. So h would be a constant. Q. E. D.

COROLLARY 3.1 Let h be a non constant holomorphic function on some
neighbourhood of Y. The leaf through each point z E Y such that h (z) I =
max I h I is compact,
y

PROOF. Let Z be the leaf through z. We have h (z) I = max I h I and
z

h is holomorphic on Z. Hence h a is constant on Z. Q.E.D.
From now on we suppose that (X, Y) is a pseudo-flat pair, i.e. Y is Ow .

LEMMA 3.1 Let h be an holomorphic function defined on a special
neighbourhood of the limit z of some transversal sequence (z~~. Suppose that
h is constant on every sheet containing points of the sequence, Then h depends
only on the transversal variable x.

PROOF. Using special coordinates, write z, = (Xl, z = (lil 0. By
hypothesis h (x;L , y) = h (xx , i), VÂ, V y E Dn-1 Chose an arbitrary y E 
and consider the holomorphic function y (x) = h (x, y) - h (x, y)) of one va-
riable. We have 7 = 0 and is a convergent sequence in C contai-

ning infinitely many points. Hence V = 0 and the lemma is proved. Q.E.D.

PROPOSITION 3.2. If there exists a non costant holomorphic function oil

some neighbourhood of Y, then all leaves of Y are compact.

PROOF. We will show first that Y contains infinitely many compact
leaves. Suppose that Z2, ... , ZN are the only compact leaves of Y.

9. Annali della Scuola Norm. Sup di Pisa.
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Using the non constant holomorphic function h we construct a new holo-
morphic function

Since g (z) vanishes on all compact leaves, by corollary 3.1 it vanishes

identically. But this implies that h can take only finitely many values on
Y, hence it would be a constant on the real hypersurface Y and so every
where. We are sure now that we can choose infinitely many points zA on
Y such that each one belongs to a different compact leaf. Passing eventually
to some subsequence we can suppose that fzil converges; the sequence

is obviously transversal. Hence, by lemma 3.1, there is a special neigh-
bourhood U such that

(3.1) h depends only on the transversal variable x.

We shall now prove that (3.1) is valid for each special neighbourhood.
Let U, U’ two non-disjoint special neighbourhoods and suppose that (3.1)
is valid in U. Let (x, y) and (x’, y’) be the coordinates on U and U’ respec-
tively. At each point of U’ we have

But ah and ax vanish on U’, hence the holomorphic function ah,~ " 
ay«

vanishes on the open subset U’ of U’, thus it vanishes on We

have now proved that there is a special neighbourhood in which (3.1) is

valid, and that if (3.1) is valid in some special neighbourhood, then it

remains valid on every special neighbourhood intersecting it. Hence, by an
obvious connectedness argument, (3.1) must be valid on each special neigh-
bourhood.

Observe that (3.1) means that h is constant on each sheet. Now the

sheets are coordinate patches of the leaves, hence h must be constant on
the leaves. Hence, by proposition (3.1), each leaf is compact. Q.E.D.

PROOF OF THEOREM 1.

We can suppose of course that hi and h2 are not constant. So we can ap-
ply the proposition (3.2) above, and precisely make use of the fact that
(3.1) is valid on every special neighbourhood for h1 and for h2. Hence we
have

and the theorem follows.
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~ 4. Stabilty of foliations.

a) We shall now recall some deeper facts about foliations. This sec-
tion is the continuation of § 2, a).

The sheets of a distinguished neighbourhood U of a foliated manifold
M of class r are equivalence classes under a relation eu and the quotient
space reu has an obvious structure of k-dimensional T-manifold with the

transversal coordinates. Let denote the canonical projection 
Let p, p’ be points of two distinguished non disjont neighbourhoods

U, U’ such that the corresponding sheets intersect. There exists two neig-
hbourhood W, W’ of and n, p’ such that each sheet 9 W meets

an unique sheet 0’ c nun W’ and vice versa. This induces a F.isomorphism
between W and W’. Take now p and p’ in the same leaf Z and a CO path
y joining them and lying on Z. Using a finite distinguished covering
Uo ... , y UN of y, with p E Uo , p’ E UN and repeating the construction above,
we get two neighbourhoods W, W’ of nu o p and p’ and a T.isomorphism
x (y) between them.

Consider the set of germs of local T-isomorphisIDø sen-

ding nu p onto and the germ of x (y), which we shall denote bypp

co (y), they are determined by p, p’ and y; they do not depend on the choice of
the distinguisched neighbourhoods U, U’ (or Uo , ... , UN). So we map the
bomotopy classes of paths from p to p’ (lying on Z) into If V and

V’ are transversal at p and p’, w (y) induces obviously a germ of T-map
def

V -+ V’. For p = p’ this map is a group homomorphism 7TI(Z) --~ rp = Tp,p’
whose image bolZ is called the holonomy group of Z ; its group structure

does not depend on the choice of p on Z.

THEOREM (Reeb [10]) If the leaf Z is compact and has finite holonomy
group, then there exists a fundamental system of neighbourhoods U of Z such
that :

(i) U is a union of compact leaves ;

(ii) the holonomy group of each leaf of U is a quotient group of bol Z

b) The one-codimensional case.

If the foliation is of (real) codimension one, the holonomy germs can be

identified, by the transversal coordinate, with germs of homeomorphisms
(of class 1’) of 1R in itself, taken at a fixed point, say the origin. Then
the holonomy can be only of few types, because of the following :
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LEMMA 4.1. Let w be a germ at 0 of local homeomorphism of 1R leaving
0 fixed. Then only three cases can occur :

(i) co is the germ of the identity ;
(ii) co is the germ of the symmetry s : x 1-+ - x ;

(iii) For each f : U - U’ which has OJ as germ at 0 and each neighbour-
hood V of 0, there exist a ~ E U such that V contains infinitely many distinct
points of the type fn(, 4:), (n E ~G).

PROOF. Observe first that the class of germs satisfying (iii) is stable

by the involutions :

We shall assume that co satisfies neither (i) nor (ii) and prove that any
f realising 0 satisfies (iii), up to applying some of the involutions above.
Actually for each neighbourhood Y of 0, the connected component of 0 in
V contains a point ~ such We can suppose that ~ and f (~)
have the same sign, up a change of the function f by - f, and that f (~)  ~
by replacing eventually f with f 1. Moreover, if ~  0, we can setq =

- f (~) and g (x) _ - f -1 (- x), so we have 0  g (~)  r~. Hence there is

no restriction in supposing 0  f (~)  ~. Let (a, b) be the connected compo-
nent of ~ in the Since the point a belongs to V, it is a

fixed point. Thus f ([0, a]) = [0, a]; hence we have, by injectivity of f and
connectedness of (a, b) that a  f (x)  x for each x E (a, b). In particular
f n (~)  J’~ (~) for 0  m  n. Hence the points jn (~) are all distinct aud

contained in V (n &#x3E; 0). Q. E. D.

c) Foliations without holonomy.
The leaves of a r foliation on a manifold l~ can be regarded as clas-

ses of an open equivalence relation p. The quotient space CM need not
in general be Hausdorff.

A foliation is said to be without holonomy if the holonomy group of
every leaf is reduced to the identity.

PROPOSITION 4.1. The global quotient space of a foliation of class T,
without holonomy and with compact leaves is an Hausdorff 1nanifold of class
1’ and the canonical _projection 71 is of class r.

PROOF. Consider distinguished covering of the foliated manifold

M. The local quotient spaces are isomorphic to the disc ~ x ~  1. By com-
pactness of the leaves and Reeb’s stability theorem we may suppose that
no ~T; meets some leaf along more than one sheet. Then the maps CM
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which associate to each sheet in IT~ the corresponding leaf are 1 - 1, and
by openness of a also homeomorphisms on their image : they form exactly
the atlas of a F-manifold for The coordinate changes are the transver-
sal part x’ --- x’ (x) of (2.3), hence they are of class .r. Separation axiom
is a consequence of Reeb’s theorem : actually by the fact that the open
sets which are unions of leaves form a fundamental system of neighbourhoods
of each leaf, and that all leaves are compact (hence separated by open
sets, by 1’4 separation axiom on M) The projection of ITz on is of class

Ii and this projection is exacty the expression of the global projection n :
in the local chart so n is of class r. Q.E.D.

d) The normal bundle of a stable leaf.

Let Z be a compact leaf of a Ck-foliated manifold M(with lc =1,2  ...
... , 00, co) and suppose that bolz is finite (i. e. Z is a stable leaf).

By the Ck imbedding theorem ([7] p. 149) there exists a ek riemannian
metric on M, and, by the compactness of Z, there exists an 8 ] 0 such
that each ball of radius a with center at any point z E Z, is a normal neigh-
bourhood of z.

This means that for each tangent vector v E Tz ~ E, the geodesic
def

yv starting from z with velocity v contains the point expv = yv (1). It can

be shown that, for sufficiently small fixed E, the submanifolds

are all transversal to the foliation and are disjoint for distinct z’s.

When 8 varies near 0, the union 54 of all De (z) for z E Z describe a

fundamental system neighbourhoods. Each point of El~ belongs to an unique

DE (zj and the is a Ck projection ; 93 becomes in this

way a fiber bundle Ck-1-isomorphic to the normal bundle of the inclusion

Z c_ X. By the compactnes of Z we can choose a distinguished covering
N N N N

Uo , ... , of Z, such that each Uj meets Z in an unique sheet Now

take poins b0, b1, ... , b A, whith Sj and continuous paths 7, joi-
ning bo to b1, ... , respectively.

By Reeb’s theorem, for each 8 &#x3E; 0 there exists a &#x3E; 0 such that, for
each z E Z, the open set

is containcd in 9. and each leaf Z’ c (z) is compact.
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We take now a distinguished shrinking ( lo) of which still covers

Z, with E U. 1 2 and p &#x3E; 0 so small that

The sheets oj ~~ form a new covering of Z. We choose a neighbour-
hood Do of bo in D8 (bo) such that 60 (yi), ..., co are germs of maps h (y~)
defined on all Do , I injective and of maximal rank and their images j5; are
contained in D, (bl), ..., D, (bAJ. Do can be supposed so small that we have

Consider the restriction o : N -~ Z of the projection defined above on

~&#x26; and set Dj = a-’ (b~~. Dj is an open neighbourhood of ba in Dj and
h (y;) : Do -+ Dj is a Cx-isomorphism, Now the open sets Nj = g-1 gj are con-
tained in the sets on the left side of (4.1), hence they are contained in 

For each path cj c: 5j from z to hj we have That is the

same Ok-l- isomorphism 0-1 obtained by moving the points along
the sheets, because the sheets are all simply connected. Moreover the map

is a C&#x26; isomorphism. I with p = a; hence it is a local trivialization of

N ~ Z which becomes a fiber bundle.
For each C E Do n si we have :

Hence the structure group of N is contained in (actually it is) b01Z.
Finally, take a leaf Z’ c N. We have Z’ nDi * 0 for each j, hence

Z’ n Uj is a sheet s, by (4.1) we have uo c Uj so oZ’ = Z. Since the struc-
tural group is bolZ and Z’ is invariant by the action of it, Z’ is a sub-
bundle with discrete fiber, i. e. a covering space of Z. By compactness
of Z’ (Reeb’s theorem) the fiber must be finite. (For this construction see
for example [3] or other works of Ehresmann).


