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BOUNDARY VALUES FOR SOBOLEV -SPACES
WITH WEIGHTS. DENSITY

OF D (03A9) IN Wsp,03B30,...,03B3r (03A9) AND IN Hsp,03B30,...,03B3r(03A9)
FOR s &#x3E; 0 AND r = [s - 1 p]-

by HANS TRIEBEL

1. Introduction and results.

Let 8 be a bounded domain in the Euclidean n-space Rn with smooth

boundary. We consider the SOBOLEV-SLOBODEOKIJ-Spaces W; (0);

for s = integer,

for s # integer, s = [s] -~- ii) with [s] integer, 0 [ Is) ~ 1. D’ (2) denotes
the complex distributions over 8. We have a similar definition when we

replace R by Rn or an other bounded or unbounded domain. It is well-known

that TV, (9) is the restriction of W; to 0, and the norms 11 D) 
and

Q&#x3E;



74

are equivalent. Further we consider the LEBESGUE - spaces or BESSEL -

potential-spaces H; (0). The definition of &#x3E; 0, 1  p  00, is

with

~S’ is the set of tempered distributions. F is the Fo uriertrans formation. F-1
is the inverse Fouriertransformation. Hp* (2) is defined as the restriction of

gp (Rn) to 0,

If s an integer, so holds

v = vy denotes the normal vector in (See [10] or [12]). For a real
number a we set

For 8 we define
p

and in the same way ~) for

the completion of D (9) in W~ (9) (Hp" (0)). D (St) is the set of all complex
infinitely differentiable functions with compact support in 9. 

’
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and

For p = 2 the result is known and proved by LIONS and MAGMNES [6].
For 1  p  oo, p # 2, the result for the W-spaces is also known for the

« non-singular » cases 8 - 1 integer see 8 . For the
p

.g-spaces in the non-singular cases see SHANIR [14]. The density of D (0)

in (S) and (1?), s  1 is also known and proved by LIONS and
p

MAGENES in [7]. In [7] is also a proof for W;/p (0) = (0). The author

is unknown if the problem for the singular cases s -. 1 .= integer is sol-
p 

g

ved. In the book of LIONS and MAGENES is it remarked as a problem ([6J,
problem 18.3, p. 116). We give a proof including the singular cases. The
considerations show that the main part of this note is concerned with the

singular cases, the considerations for the non-singular cases are simple and
more or less an appendix to the singular cases. Our main tool is a coin.

parsion of the W spaces and the H-spaces with special SoBOLEV-spaces
with weights on the background of interpolation theory. So we carry over
the singular cases for W-spaces and H-spaces to singular cases for 

spaces with weights. After solving the problem for these spaces we return
to the W-spaces and .g-spaces. Now we describe the needed SOBOLEV-spa.
ces with weights.

We set

For , an integer l; and a real number a ; 0 

is a BANACH-space. With spaces of such or similar type are concerned
many papers in the last years, see the collected papers in [20], especially
the papers of DZABRAILOV, Ju. S. NIKOL’SKIJ and USPENSKIJ. We refer

also to [1]. The boundary values on the hyperplane - 0) are known.
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But for selfcontainedness we shall develop the needed results. We set

o -

and denote with 111, , p the closure of all functions f E C °° (M) with compact
support in M+. Further we need an interpolation method. We use the

K-method, developed by LIONS-PEETRE [9] and [13] (See also [2]).
Let Bo and B1 be two BANACH-spaces with B1 c B0 . Then we set for

u E Bo and t &#x3E; 0

and for 0  8  1, and 1 

(For p = oo we have to change the definition in the usual way). (Bo, p

is a BANAOH-space and 11 n 11,9,p is a norm.

L. For a function the expression

has boundary values on the plane
L 1 J

and

(c does not depend on f’~.
Then holds
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The most difficult part is the proof of (c) for the singular cases a in-
p

teger - 1 . *
p

First we prove theorem 2. On the basis of this result we prove theo-
rem 1.

Interpolation theory and the method for the proof of theorem 1 lead

to a sharper result than theorem 1. For description of this result we

introduce the BESOV-spaces

l integer ; ~==1~...; 00:1; ~=8~ It

is possible to describe the norms of explicitly, but we do not make
it, see [11] or [19]. (For the domain M, q = 2, and s # integer see formula
(33). In the general case the norms have a similar structure). Now we can

0

formulate a result which is sharper than theorem 1. We denote with B;q (0)
the completion of D (0) in B~q (0).

Theorem 3 is sharper than theorem 1 because
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and

The singular cases 8 = integer 1 are the most interesting cases. The
p

results for the non-singular cases follow immediately from theorem 1. For

fixed p the spaces B~q with 1  q  oo are very « near » to each other in the
sense of interpolation theory. From this point of view the difference in (a,)
and (b) for the singular cases makes clear that the question of boundary
values and approximation in these cases is delicate.

The motive for the considerations in this paper is the following. In [18]
we show that the spaces W; (0) and Hp (0), s ) 0, are isomorphic to lp or
Lp ((0, 1)). Especially they have a SCHAUDER-basis. With help of theorem 1

o , o ,
follows in an easy way that the spaces Wp (0) (and Hp (2)), s &#x3E; 0, are

complemented subspaces of Wp (0) (and jS~ (0)). So they are also isomorphic to
lp or Lp ((0, 1)), and they have also a SaHkUDER basis.

2. Proofs.

2.1. Density property for the spaces Pz,ø,p I We want to show that the
0 °°-functions with compact support in M are dense in l = 1, 2, ... ;
0  a _ l~ ; 1  _p  oo. We choose a function X (t) with

We set Then holds

By this holds

The existence of a) and the estimate
ax’

n
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follows from the well.known theory for the spaces Wj ((a, b))). But we can
approximate 1p (xn) u (x) in the deaidered way in (M) and so also in

So we may assume without loss of generality

We set u (x) - 0 for

It is not hard to show

On the other hand we can approximate in (M) (and so
also in in the desired way. This completes the proof.

2.2. Proof of theorem 2 (a).

1. STEP. First we consider the special case 0-0 = lp, at ~ 0. For

we want to show

oo means that we can estimate the right side of (1) by the left side with
help of a positive constant (independent of t) and vice versa. That the

right side of (1) is smaller than the left side (with help of a positive con
stant) is clear. We have to prove the opposite direction by a « good &#x3E;&#x3E;
decomposition of f in We assume

that f is C c*-function with compact support in M. we set
J

f =fo and / == 0. Then follows the desired inequality.

For 0 C t  ~ we need a special construction. On the basis of the
~ 

2

well-known HARDY inequality [4]
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o~ &#x3E; 1; 1  p  oo ; follows with help of SoBOLEV’s inequalities [15]

Approximation shows that (3) is true for w E W((0 1)). We return to the
...

It holds With help of (3) follows

Using SoBOLEV’s embedding theorems for the intervall (0, 1) (see [12] or

[15]) we find

(4) and (5) lead to the desired inequality. This completes the proof of

(1) for C --functions with compact support in and

the 1 - power of the right side of ( 1 ) are equivalent norms in . Now
p 

’ ’

the proof of (1) for follows from 2.1.

2. STEP. We prove theorem 2 (a) for lp snd 0. ( 1 ) shows
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We compute the right side in a completely elementary way. It is equal to

by suitable choice of the positive constants c and c’. But this proves theo-
rem 2 (a) for ao = lp and a, --- 0.

3. STEP. The full proof of theorem 2 (a) follows now from the reitera-
tion-theorem of interpolation theory [9] and the special case of the second

step. 

2.3. Proof of theorem ’, a a number with

where p’ is determined by - 
J

, and t’ E ~0~ 1~ with

(We assume without loss of generality that u (t) is real, so that t’ exists).
Then is

Using inequality (3) and SoBOLEv’s inequalities [15] we find

a is an arbitrary number with

If f (x) a C°°-function with compact support in ii then follows form (6)

6. Annali della Scuola Norm. Sup. di Pisa.
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with

This leads to theorem 2 (b) for C °° ~ functions. The full proof follows from
the density property 2.1.

2.4. Proof of theorem 2 (c).

1. STEP. A trivial consequence of theorem 2 (b) is

2. STEP. For the proof of the opposite direction we start with a re-
mark. Let f be a function of the right side of (7). 2.1 shows that we find

C 110-functions = 1, 2, ... ; with compact support in ~ with

Then follows from theorem 2 (b)

for k - oo. But this shows that it is sufficient to approximate C "-functions

f with compact support in M and with

by C °°-functions with compact support in M + .

3. We prove theorem 2 (c) for the non-singular integer

-- 1 . In this case we can use standard estimate technique. We use a setp
of functions X, (t) ; 0 ( X  2013 ; with2
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(c independent of ~). Let f be a C --function with compact support in M
and with (8). For the proof of theorem 2 (c) it is sufficient to show

For this it is sufficient to show

4. We prove theorem 2 (c) for the singular cases oc = kp - I ;
k =1, 2, ... , l. The estimate of the last step does not work because oc +
-(-12013(2013)p==0. We generalize the estimate technique developed in

[16]. Let f be a C °°-function with compact support in if and with (8). Now
we have

We write f (x) in the form

For the function g (x) the estimate of the last step works (there we can
replace 1n by m + 1). So we can assume (without loss of generality) g(x) = 0
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It holds

bj,8 are constants. Especially we hawe

for 0  j  Z - 1. o (x (6)) is symbol in the sense 8 10. We extend

the function cp, (x) into the sn-intervall [e-l/a, 2 by the polynom in xn

in such a way that

and

for j = 0, ... , l -1 hold. We determine the coefficients ai by induction.
With holp of (13) and the definition of ~t (x) we find

We set

Then holds )) for all 6 &#x3E; 0. We want to show
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and

For this purpose are the following three estimates are sufficient.

(c~) From (12) with j =1 follows

(b) From (16) follows

(c) From (16) follows

This proves (18). Now we have to show the possibility of approximation
of 1p¿ (x) for a fixed s by C °°-functions with compact support in M+ in the
space Pl,,,,,p. For this purpose we choose a number p with 0  p  1 and

determine a polynom in xn

in such a way that

holds. We compute the coefficients by induction. With help of (12) we find

By this 0 (x (p)) is to understand in the sense p l 0, (s is fixed). Now we
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construct

We want to show

We know ’Y’. E PZ,a,p. · Using (19) the relation (21) follows from

and

(18) and (21) show that the functions Yj., (! (x) approximate f (x) in PZ,a,p.
But for the functions Yj8, f! (x~) the estimate technique of the third step works
(we may replace 1n by 1n + 1). It follows that we can approximate f (x) by

1

functions in the sense of the third step. But

Xi (xn) ’1).. e (x) E Xn (M) and vanishes near the plane (x xn = 0 ). Such a
function we can approximate in (and so also in Pi, a, p) by C °°-

functions with compact support in M+. This completes the proof.

2.5. An embedding theorem. We go over to the proof of theorem I. We

start with an embedding theorem and define (M) for s = [s] -~- (s~, [s]
integer, 0  is)  1.
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From the well-known fact (see [9] or [10])

and the structure of the interpolationfunctional u) follows

Indeed, for a 000 - function u with compact support in if is

Approximation shows that the first and the last expression in this relation
are equivalent also for u E Lp (M). From this follows (22).

Now we want to prove

If x an integer this follows from the inequality (3) and the smoothness
property 2.1. integer the result is a consequence of theorem 2 (a)
and (22).

2.6. The spaces The completion of all 0--functions with

compact support in M+ in the space TVpx Xn (M) we denote with Xu (M).compact support in .ll + in the space we denote with W(f).
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We want to show : f E (M) belongs to

this means 1

1. STEP. It is well known that for a function (l~) the opera-

have boundary values,

holds. Indeed, this relation follows from one-dimensional embedding theorem

r 
- . 

,1 , r

[12], and an integration over This proves that the conditions (24)
are necessary.

2. STEP. We assume and (24) holds. In the same way as
in the second step of 2.4 we approximate f in by C°°-iLmctions
with compact support in M for which (24) also holds. (We used that the

C °°-functions with compact support in M are dense in W;,.(M)). So we
assume without loss of generality that f is a C °°-function with compact

support in ~ and (24) holds. Now it is easy to see

Then follows from theorem 2 (c) that we can approximate f in by
C°°-functions with compact support in M+. Now (23) and (26) show that
the same is true in Hence (24) is also sufficient.
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2.7. Proof of theorem 1 for the W-spaces.

0
1. STEP. Let f E Wp (0). With help of the usual method of local

coordinates and the embedding theorems [12], p. 291, follows

2. STEP. Let be f E and (27) holds. (27) is equivalent to

We use again the method of local coordinates and the last relation. It fol-

lows that we can restrict the considerations to the case:

With help of similar arguments as above we may assume that f is a 0--
function with compact support in M. From the interpolation theory for

1V-spaces and also from the theory of equivalent norms [5] follows for

(s)&#x3E;0

The first and the last term together are equivalent to from 2.5.



90

Now ve approximate f in the sense of 2.6 by 0 --functions Cpk with

compact support in M+ in the space (M). But the approximation
method developed in the third and the fourth step of 2.4 and the explicit

expression for the norm show

For the method in the third step this is clear. For the method in the

fourth step also, when we take into consideration that we need only the
case Further we may assume

This completes the proof. 

’ ’

2.8. Proof of theorem 1 for the, .g-spaces.
0

1. STEP. Let f E .~p (2). With help of embedding theorems [12] p. 420,
and local coordinates, follows again (27).

2. STEP. We consider the case 1 ~ p  2. Then we have

and (27) holds. With the same method as above we show

that we can assume without loss of generality f E C °° (). But then we ap-
progimate f in W; (0) by functions from D (0). The last estimate shows

that this is also an approximation in This proves the theorem 1 for

j5~ with 1  p  2.

3. STEP. The case 2  p  00. Let j’ E H; (0) and (27) holds. We

may again assume j - we can approximate f in

by D (8) functions. The pos-

sibility of approximation in jS~ follows from

If s = integer we use again local coordinates and restrict the consi-



91

derations to the case

The considerations to the begin of the fourth step of 2.4 show that we can
restrict our attention to the case

Now we use an one-dimensional embedding theorem. It is

with With help of (23) (one dimensional case)
follows

Theorem 2 (a) and the interpolation theory for W.spaces lead to

B;,2 are BEsov spaces. For definition and interpolation theorems see [3,12,

17]. (See also formula (33)). With follows

1

Theorem 2 (c) shows that we can approximate xn P in the space

+i,2-a+i-c),2 in the desired way (one-dimensional case). But the re-

i

lation (32) proves that we can approximate x 1 r also in the space

j6~2((~l)) in the desired wa,y. Now we go over to the space Bp, 2 (1’~ ).


